1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "intel_device_info.h"
28 #include "i915_drv.h"
29 
30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
31 static const char * const platform_names[] = {
32 	PLATFORM_NAME(I830),
33 	PLATFORM_NAME(I845G),
34 	PLATFORM_NAME(I85X),
35 	PLATFORM_NAME(I865G),
36 	PLATFORM_NAME(I915G),
37 	PLATFORM_NAME(I915GM),
38 	PLATFORM_NAME(I945G),
39 	PLATFORM_NAME(I945GM),
40 	PLATFORM_NAME(G33),
41 	PLATFORM_NAME(PINEVIEW),
42 	PLATFORM_NAME(I965G),
43 	PLATFORM_NAME(I965GM),
44 	PLATFORM_NAME(G45),
45 	PLATFORM_NAME(GM45),
46 	PLATFORM_NAME(IRONLAKE),
47 	PLATFORM_NAME(SANDYBRIDGE),
48 	PLATFORM_NAME(IVYBRIDGE),
49 	PLATFORM_NAME(VALLEYVIEW),
50 	PLATFORM_NAME(HASWELL),
51 	PLATFORM_NAME(BROADWELL),
52 	PLATFORM_NAME(CHERRYVIEW),
53 	PLATFORM_NAME(SKYLAKE),
54 	PLATFORM_NAME(BROXTON),
55 	PLATFORM_NAME(KABYLAKE),
56 	PLATFORM_NAME(GEMINILAKE),
57 	PLATFORM_NAME(COFFEELAKE),
58 	PLATFORM_NAME(CANNONLAKE),
59 	PLATFORM_NAME(ICELAKE),
60 };
61 #undef PLATFORM_NAME
62 
63 const char *intel_platform_name(enum intel_platform platform)
64 {
65 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
66 
67 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
68 			 platform_names[platform] == NULL))
69 		return "<unknown>";
70 
71 	return platform_names[platform];
72 }
73 
74 void intel_device_info_dump_flags(const struct intel_device_info *info,
75 				  struct drm_printer *p)
76 {
77 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
78 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
79 #undef PRINT_FLAG
80 }
81 
82 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
83 {
84 	int s;
85 
86 	drm_printf(p, "slice total: %u, mask=%04x\n",
87 		   hweight8(sseu->slice_mask), sseu->slice_mask);
88 	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
89 	for (s = 0; s < sseu->max_slices; s++) {
90 		drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
91 			   s, hweight8(sseu->subslice_mask[s]),
92 			   sseu->subslice_mask[s]);
93 	}
94 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
95 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
96 	drm_printf(p, "has slice power gating: %s\n",
97 		   yesno(sseu->has_slice_pg));
98 	drm_printf(p, "has subslice power gating: %s\n",
99 		   yesno(sseu->has_subslice_pg));
100 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
101 }
102 
103 void intel_device_info_dump_runtime(const struct intel_device_info *info,
104 				    struct drm_printer *p)
105 {
106 	sseu_dump(&info->sseu, p);
107 
108 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
109 		   info->cs_timestamp_frequency_khz);
110 }
111 
112 void intel_device_info_dump(const struct intel_device_info *info,
113 			    struct drm_printer *p)
114 {
115 	struct drm_i915_private *dev_priv =
116 		container_of(info, struct drm_i915_private, info);
117 
118 	drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
119 		   INTEL_DEVID(dev_priv),
120 		   INTEL_REVID(dev_priv),
121 		   intel_platform_name(info->platform),
122 		   info->gen);
123 
124 	intel_device_info_dump_flags(info, p);
125 }
126 
127 void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
128 				     struct drm_printer *p)
129 {
130 	int s, ss;
131 
132 	if (sseu->max_slices == 0) {
133 		drm_printf(p, "Unavailable\n");
134 		return;
135 	}
136 
137 	for (s = 0; s < sseu->max_slices; s++) {
138 		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
139 			   s, hweight8(sseu->subslice_mask[s]),
140 			   sseu->subslice_mask[s]);
141 
142 		for (ss = 0; ss < sseu->max_subslices; ss++) {
143 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
144 
145 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
146 				   ss, hweight16(enabled_eus), enabled_eus);
147 		}
148 	}
149 }
150 
151 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
152 {
153 	u16 i, total = 0;
154 
155 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
156 		total += hweight8(sseu->eu_mask[i]);
157 
158 	return total;
159 }
160 
161 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
162 {
163 	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
164 	u8 s_en;
165 	u32 ss_en, ss_en_mask;
166 	u8 eu_en;
167 	int s;
168 
169 	sseu->max_slices = 1;
170 	sseu->max_subslices = 8;
171 	sseu->max_eus_per_subslice = 8;
172 
173 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
174 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
175 	ss_en_mask = BIT(sseu->max_subslices) - 1;
176 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
177 
178 	for (s = 0; s < sseu->max_slices; s++) {
179 		if (s_en & BIT(s)) {
180 			int ss_idx = sseu->max_subslices * s;
181 			int ss;
182 
183 			sseu->slice_mask |= BIT(s);
184 			sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
185 			for (ss = 0; ss < sseu->max_subslices; ss++) {
186 				if (sseu->subslice_mask[s] & BIT(ss))
187 					sseu_set_eus(sseu, s, ss, eu_en);
188 			}
189 		}
190 	}
191 	sseu->eu_per_subslice = hweight8(eu_en);
192 	sseu->eu_total = compute_eu_total(sseu);
193 
194 	/* ICL has no power gating restrictions. */
195 	sseu->has_slice_pg = 1;
196 	sseu->has_subslice_pg = 1;
197 	sseu->has_eu_pg = 1;
198 }
199 
200 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
201 {
202 	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
203 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
204 	int s, ss;
205 	const int eu_mask = 0xff;
206 	u32 subslice_mask, eu_en;
207 
208 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
209 			    GEN10_F2_S_ENA_SHIFT;
210 	sseu->max_slices = 6;
211 	sseu->max_subslices = 4;
212 	sseu->max_eus_per_subslice = 8;
213 
214 	subslice_mask = (1 << 4) - 1;
215 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
216 			   GEN10_F2_SS_DIS_SHIFT);
217 
218 	/*
219 	 * Slice0 can have up to 3 subslices, but there are only 2 in
220 	 * slice1/2.
221 	 */
222 	sseu->subslice_mask[0] = subslice_mask;
223 	for (s = 1; s < sseu->max_slices; s++)
224 		sseu->subslice_mask[s] = subslice_mask & 0x3;
225 
226 	/* Slice0 */
227 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
228 	for (ss = 0; ss < sseu->max_subslices; ss++)
229 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
230 	/* Slice1 */
231 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
232 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
233 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
234 	/* Slice2 */
235 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
236 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
237 	/* Slice3 */
238 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
239 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
240 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
241 	/* Slice4 */
242 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
243 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
244 	/* Slice5 */
245 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
246 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
247 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
248 
249 	/* Do a second pass where we mark the subslices disabled if all their
250 	 * eus are off.
251 	 */
252 	for (s = 0; s < sseu->max_slices; s++) {
253 		for (ss = 0; ss < sseu->max_subslices; ss++) {
254 			if (sseu_get_eus(sseu, s, ss) == 0)
255 				sseu->subslice_mask[s] &= ~BIT(ss);
256 		}
257 	}
258 
259 	sseu->eu_total = compute_eu_total(sseu);
260 
261 	/*
262 	 * CNL is expected to always have a uniform distribution
263 	 * of EU across subslices with the exception that any one
264 	 * EU in any one subslice may be fused off for die
265 	 * recovery.
266 	 */
267 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
268 				DIV_ROUND_UP(sseu->eu_total,
269 					     sseu_subslice_total(sseu)) : 0;
270 
271 	/* No restrictions on Power Gating */
272 	sseu->has_slice_pg = 1;
273 	sseu->has_subslice_pg = 1;
274 	sseu->has_eu_pg = 1;
275 }
276 
277 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
278 {
279 	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
280 	u32 fuse;
281 
282 	fuse = I915_READ(CHV_FUSE_GT);
283 
284 	sseu->slice_mask = BIT(0);
285 	sseu->max_slices = 1;
286 	sseu->max_subslices = 2;
287 	sseu->max_eus_per_subslice = 8;
288 
289 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
290 		u8 disabled_mask =
291 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
292 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
293 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
294 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
295 
296 		sseu->subslice_mask[0] |= BIT(0);
297 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
298 	}
299 
300 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
301 		u8 disabled_mask =
302 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
303 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
304 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
305 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
306 
307 		sseu->subslice_mask[0] |= BIT(1);
308 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
309 	}
310 
311 	sseu->eu_total = compute_eu_total(sseu);
312 
313 	/*
314 	 * CHV expected to always have a uniform distribution of EU
315 	 * across subslices.
316 	*/
317 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
318 				sseu->eu_total / sseu_subslice_total(sseu) :
319 				0;
320 	/*
321 	 * CHV supports subslice power gating on devices with more than
322 	 * one subslice, and supports EU power gating on devices with
323 	 * more than one EU pair per subslice.
324 	*/
325 	sseu->has_slice_pg = 0;
326 	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
327 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
328 }
329 
330 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
331 {
332 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
333 	struct sseu_dev_info *sseu = &info->sseu;
334 	int s, ss;
335 	u32 fuse2, eu_disable, subslice_mask;
336 	const u8 eu_mask = 0xff;
337 
338 	fuse2 = I915_READ(GEN8_FUSE2);
339 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
340 
341 	/* BXT has a single slice and at most 3 subslices. */
342 	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
343 	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
344 	sseu->max_eus_per_subslice = 8;
345 
346 	/*
347 	 * The subslice disable field is global, i.e. it applies
348 	 * to each of the enabled slices.
349 	*/
350 	subslice_mask = (1 << sseu->max_subslices) - 1;
351 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
352 			   GEN9_F2_SS_DIS_SHIFT);
353 
354 	/*
355 	 * Iterate through enabled slices and subslices to
356 	 * count the total enabled EU.
357 	*/
358 	for (s = 0; s < sseu->max_slices; s++) {
359 		if (!(sseu->slice_mask & BIT(s)))
360 			/* skip disabled slice */
361 			continue;
362 
363 		sseu->subslice_mask[s] = subslice_mask;
364 
365 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
366 		for (ss = 0; ss < sseu->max_subslices; ss++) {
367 			int eu_per_ss;
368 			u8 eu_disabled_mask;
369 
370 			if (!(sseu->subslice_mask[s] & BIT(ss)))
371 				/* skip disabled subslice */
372 				continue;
373 
374 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
375 
376 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
377 
378 			eu_per_ss = sseu->max_eus_per_subslice -
379 				hweight8(eu_disabled_mask);
380 
381 			/*
382 			 * Record which subslice(s) has(have) 7 EUs. we
383 			 * can tune the hash used to spread work among
384 			 * subslices if they are unbalanced.
385 			 */
386 			if (eu_per_ss == 7)
387 				sseu->subslice_7eu[s] |= BIT(ss);
388 		}
389 	}
390 
391 	sseu->eu_total = compute_eu_total(sseu);
392 
393 	/*
394 	 * SKL is expected to always have a uniform distribution
395 	 * of EU across subslices with the exception that any one
396 	 * EU in any one subslice may be fused off for die
397 	 * recovery. BXT is expected to be perfectly uniform in EU
398 	 * distribution.
399 	*/
400 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
401 				DIV_ROUND_UP(sseu->eu_total,
402 					     sseu_subslice_total(sseu)) : 0;
403 	/*
404 	 * SKL+ supports slice power gating on devices with more than
405 	 * one slice, and supports EU power gating on devices with
406 	 * more than one EU pair per subslice. BXT+ supports subslice
407 	 * power gating on devices with more than one subslice, and
408 	 * supports EU power gating on devices with more than one EU
409 	 * pair per subslice.
410 	*/
411 	sseu->has_slice_pg =
412 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
413 	sseu->has_subslice_pg =
414 		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
415 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
416 
417 	if (IS_GEN9_LP(dev_priv)) {
418 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
419 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
420 
421 		sseu->min_eu_in_pool = 0;
422 		if (info->has_pooled_eu) {
423 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
424 				sseu->min_eu_in_pool = 3;
425 			else if (IS_SS_DISABLED(1))
426 				sseu->min_eu_in_pool = 6;
427 			else
428 				sseu->min_eu_in_pool = 9;
429 		}
430 #undef IS_SS_DISABLED
431 	}
432 }
433 
434 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
435 {
436 	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
437 	int s, ss;
438 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
439 
440 	fuse2 = I915_READ(GEN8_FUSE2);
441 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
442 	sseu->max_slices = 3;
443 	sseu->max_subslices = 3;
444 	sseu->max_eus_per_subslice = 8;
445 
446 	/*
447 	 * The subslice disable field is global, i.e. it applies
448 	 * to each of the enabled slices.
449 	 */
450 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
451 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
452 			   GEN8_F2_SS_DIS_SHIFT);
453 
454 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
455 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
456 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
457 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
458 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
459 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
460 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
461 
462 	/*
463 	 * Iterate through enabled slices and subslices to
464 	 * count the total enabled EU.
465 	 */
466 	for (s = 0; s < sseu->max_slices; s++) {
467 		if (!(sseu->slice_mask & BIT(s)))
468 			/* skip disabled slice */
469 			continue;
470 
471 		sseu->subslice_mask[s] = subslice_mask;
472 
473 		for (ss = 0; ss < sseu->max_subslices; ss++) {
474 			u8 eu_disabled_mask;
475 			u32 n_disabled;
476 
477 			if (!(sseu->subslice_mask[ss] & BIT(ss)))
478 				/* skip disabled subslice */
479 				continue;
480 
481 			eu_disabled_mask =
482 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
483 
484 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
485 
486 			n_disabled = hweight8(eu_disabled_mask);
487 
488 			/*
489 			 * Record which subslices have 7 EUs.
490 			 */
491 			if (sseu->max_eus_per_subslice - n_disabled == 7)
492 				sseu->subslice_7eu[s] |= 1 << ss;
493 		}
494 	}
495 
496 	sseu->eu_total = compute_eu_total(sseu);
497 
498 	/*
499 	 * BDW is expected to always have a uniform distribution of EU across
500 	 * subslices with the exception that any one EU in any one subslice may
501 	 * be fused off for die recovery.
502 	 */
503 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
504 				DIV_ROUND_UP(sseu->eu_total,
505 					     sseu_subslice_total(sseu)) : 0;
506 
507 	/*
508 	 * BDW supports slice power gating on devices with more than
509 	 * one slice.
510 	 */
511 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
512 	sseu->has_subslice_pg = 0;
513 	sseu->has_eu_pg = 0;
514 }
515 
516 static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
517 {
518 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
519 	struct sseu_dev_info *sseu = &info->sseu;
520 	u32 fuse1;
521 	int s, ss;
522 
523 	/*
524 	 * There isn't a register to tell us how many slices/subslices. We
525 	 * work off the PCI-ids here.
526 	 */
527 	switch (info->gt) {
528 	default:
529 		MISSING_CASE(info->gt);
530 		/* fall through */
531 	case 1:
532 		sseu->slice_mask = BIT(0);
533 		sseu->subslice_mask[0] = BIT(0);
534 		break;
535 	case 2:
536 		sseu->slice_mask = BIT(0);
537 		sseu->subslice_mask[0] = BIT(0) | BIT(1);
538 		break;
539 	case 3:
540 		sseu->slice_mask = BIT(0) | BIT(1);
541 		sseu->subslice_mask[0] = BIT(0) | BIT(1);
542 		sseu->subslice_mask[1] = BIT(0) | BIT(1);
543 		break;
544 	}
545 
546 	sseu->max_slices = hweight8(sseu->slice_mask);
547 	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
548 
549 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
550 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
551 	default:
552 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
553 			     HSW_F1_EU_DIS_SHIFT);
554 		/* fall through */
555 	case HSW_F1_EU_DIS_10EUS:
556 		sseu->eu_per_subslice = 10;
557 		break;
558 	case HSW_F1_EU_DIS_8EUS:
559 		sseu->eu_per_subslice = 8;
560 		break;
561 	case HSW_F1_EU_DIS_6EUS:
562 		sseu->eu_per_subslice = 6;
563 		break;
564 	}
565 	sseu->max_eus_per_subslice = sseu->eu_per_subslice;
566 
567 	for (s = 0; s < sseu->max_slices; s++) {
568 		for (ss = 0; ss < sseu->max_subslices; ss++) {
569 			sseu_set_eus(sseu, s, ss,
570 				     (1UL << sseu->eu_per_subslice) - 1);
571 		}
572 	}
573 
574 	sseu->eu_total = compute_eu_total(sseu);
575 
576 	/* No powergating for you. */
577 	sseu->has_slice_pg = 0;
578 	sseu->has_subslice_pg = 0;
579 	sseu->has_eu_pg = 0;
580 }
581 
582 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
583 {
584 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
585 	u32 base_freq, frac_freq;
586 
587 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
588 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
589 	base_freq *= 1000;
590 
591 	frac_freq = ((ts_override &
592 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
593 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
594 	frac_freq = 1000 / (frac_freq + 1);
595 
596 	return base_freq + frac_freq;
597 }
598 
599 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
600 					u32 rpm_config_reg)
601 {
602 	u32 f19_2_mhz = 19200;
603 	u32 f24_mhz = 24000;
604 	u32 crystal_clock = (rpm_config_reg &
605 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
606 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
607 
608 	switch (crystal_clock) {
609 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
610 		return f19_2_mhz;
611 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
612 		return f24_mhz;
613 	default:
614 		MISSING_CASE(crystal_clock);
615 		return 0;
616 	}
617 }
618 
619 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
620 					u32 rpm_config_reg)
621 {
622 	u32 f19_2_mhz = 19200;
623 	u32 f24_mhz = 24000;
624 	u32 f25_mhz = 25000;
625 	u32 f38_4_mhz = 38400;
626 	u32 crystal_clock = (rpm_config_reg &
627 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
628 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
629 
630 	switch (crystal_clock) {
631 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
632 		return f24_mhz;
633 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
634 		return f19_2_mhz;
635 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
636 		return f38_4_mhz;
637 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
638 		return f25_mhz;
639 	default:
640 		MISSING_CASE(crystal_clock);
641 		return 0;
642 	}
643 }
644 
645 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
646 {
647 	u32 f12_5_mhz = 12500;
648 	u32 f19_2_mhz = 19200;
649 	u32 f24_mhz = 24000;
650 
651 	if (INTEL_GEN(dev_priv) <= 4) {
652 		/* PRMs say:
653 		 *
654 		 *     "The value in this register increments once every 16
655 		 *      hclks." (through the “Clocking Configuration”
656 		 *      (“CLKCFG”) MCHBAR register)
657 		 */
658 		return dev_priv->rawclk_freq / 16;
659 	} else if (INTEL_GEN(dev_priv) <= 8) {
660 		/* PRMs say:
661 		 *
662 		 *     "The PCU TSC counts 10ns increments; this timestamp
663 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
664 		 *      rolling over every 1.5 hours).
665 		 */
666 		return f12_5_mhz;
667 	} else if (INTEL_GEN(dev_priv) <= 9) {
668 		u32 ctc_reg = I915_READ(CTC_MODE);
669 		u32 freq = 0;
670 
671 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
672 			freq = read_reference_ts_freq(dev_priv);
673 		} else {
674 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
675 
676 			/* Now figure out how the command stream's timestamp
677 			 * register increments from this frequency (it might
678 			 * increment only every few clock cycle).
679 			 */
680 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
681 				      CTC_SHIFT_PARAMETER_SHIFT);
682 		}
683 
684 		return freq;
685 	} else if (INTEL_GEN(dev_priv) <= 11) {
686 		u32 ctc_reg = I915_READ(CTC_MODE);
687 		u32 freq = 0;
688 
689 		/* First figure out the reference frequency. There are 2 ways
690 		 * we can compute the frequency, either through the
691 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
692 		 * tells us which one we should use.
693 		 */
694 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
695 			freq = read_reference_ts_freq(dev_priv);
696 		} else {
697 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
698 
699 			if (INTEL_GEN(dev_priv) <= 10)
700 				freq = gen10_get_crystal_clock_freq(dev_priv,
701 								rpm_config_reg);
702 			else
703 				freq = gen11_get_crystal_clock_freq(dev_priv,
704 								rpm_config_reg);
705 
706 			/* Now figure out how the command stream's timestamp
707 			 * register increments from this frequency (it might
708 			 * increment only every few clock cycle).
709 			 */
710 			freq >>= 3 - ((rpm_config_reg &
711 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
712 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
713 		}
714 
715 		return freq;
716 	}
717 
718 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
719 	return 0;
720 }
721 
722 /**
723  * intel_device_info_runtime_init - initialize runtime info
724  * @info: intel device info struct
725  *
726  * Determine various intel_device_info fields at runtime.
727  *
728  * Use it when either:
729  *   - it's judged too laborious to fill n static structures with the limit
730  *     when a simple if statement does the job,
731  *   - run-time checks (eg read fuse/strap registers) are needed.
732  *
733  * This function needs to be called:
734  *   - after the MMIO has been setup as we are reading registers,
735  *   - after the PCH has been detected,
736  *   - before the first usage of the fields it can tweak.
737  */
738 void intel_device_info_runtime_init(struct intel_device_info *info)
739 {
740 	struct drm_i915_private *dev_priv =
741 		container_of(info, struct drm_i915_private, info);
742 	enum pipe pipe;
743 
744 	if (INTEL_GEN(dev_priv) >= 10) {
745 		for_each_pipe(dev_priv, pipe)
746 			info->num_scalers[pipe] = 2;
747 	} else if (INTEL_GEN(dev_priv) == 9) {
748 		info->num_scalers[PIPE_A] = 2;
749 		info->num_scalers[PIPE_B] = 2;
750 		info->num_scalers[PIPE_C] = 1;
751 	}
752 
753 	BUILD_BUG_ON(I915_NUM_ENGINES >
754 		     sizeof(intel_ring_mask_t) * BITS_PER_BYTE);
755 
756 	/*
757 	 * Skylake and Broxton currently don't expose the topmost plane as its
758 	 * use is exclusive with the legacy cursor and we only want to expose
759 	 * one of those, not both. Until we can safely expose the topmost plane
760 	 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
761 	 * we don't expose the topmost plane at all to prevent ABI breakage
762 	 * down the line.
763 	 */
764 	if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
765 		for_each_pipe(dev_priv, pipe)
766 			info->num_sprites[pipe] = 3;
767 	else if (IS_BROXTON(dev_priv)) {
768 		info->num_sprites[PIPE_A] = 2;
769 		info->num_sprites[PIPE_B] = 2;
770 		info->num_sprites[PIPE_C] = 1;
771 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
772 		for_each_pipe(dev_priv, pipe)
773 			info->num_sprites[pipe] = 2;
774 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
775 		for_each_pipe(dev_priv, pipe)
776 			info->num_sprites[pipe] = 1;
777 	}
778 
779 	if (i915_modparams.disable_display) {
780 		DRM_INFO("Display disabled (module parameter)\n");
781 		info->num_pipes = 0;
782 	} else if (info->num_pipes > 0 &&
783 		   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
784 		   HAS_PCH_SPLIT(dev_priv)) {
785 		u32 fuse_strap = I915_READ(FUSE_STRAP);
786 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
787 
788 		/*
789 		 * SFUSE_STRAP is supposed to have a bit signalling the display
790 		 * is fused off. Unfortunately it seems that, at least in
791 		 * certain cases, fused off display means that PCH display
792 		 * reads don't land anywhere. In that case, we read 0s.
793 		 *
794 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
795 		 * should be set when taking over after the firmware.
796 		 */
797 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
798 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
799 		    (HAS_PCH_CPT(dev_priv) &&
800 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
801 			DRM_INFO("Display fused off, disabling\n");
802 			info->num_pipes = 0;
803 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
804 			DRM_INFO("PipeC fused off\n");
805 			info->num_pipes -= 1;
806 		}
807 	} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
808 		u32 dfsm = I915_READ(SKL_DFSM);
809 		u8 disabled_mask = 0;
810 		bool invalid;
811 		int num_bits;
812 
813 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
814 			disabled_mask |= BIT(PIPE_A);
815 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
816 			disabled_mask |= BIT(PIPE_B);
817 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
818 			disabled_mask |= BIT(PIPE_C);
819 
820 		num_bits = hweight8(disabled_mask);
821 
822 		switch (disabled_mask) {
823 		case BIT(PIPE_A):
824 		case BIT(PIPE_B):
825 		case BIT(PIPE_A) | BIT(PIPE_B):
826 		case BIT(PIPE_A) | BIT(PIPE_C):
827 			invalid = true;
828 			break;
829 		default:
830 			invalid = false;
831 		}
832 
833 		if (num_bits > info->num_pipes || invalid)
834 			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
835 				  disabled_mask);
836 		else
837 			info->num_pipes -= num_bits;
838 	}
839 
840 	/* Initialize slice/subslice/EU info */
841 	if (IS_HASWELL(dev_priv))
842 		haswell_sseu_info_init(dev_priv);
843 	else if (IS_CHERRYVIEW(dev_priv))
844 		cherryview_sseu_info_init(dev_priv);
845 	else if (IS_BROADWELL(dev_priv))
846 		broadwell_sseu_info_init(dev_priv);
847 	else if (INTEL_GEN(dev_priv) == 9)
848 		gen9_sseu_info_init(dev_priv);
849 	else if (INTEL_GEN(dev_priv) == 10)
850 		gen10_sseu_info_init(dev_priv);
851 	else if (INTEL_GEN(dev_priv) >= 11)
852 		gen11_sseu_info_init(dev_priv);
853 
854 	/* Initialize command stream timestamp frequency */
855 	info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
856 }
857 
858 void intel_driver_caps_print(const struct intel_driver_caps *caps,
859 			     struct drm_printer *p)
860 {
861 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
862 }
863 
864 /*
865  * Determine which engines are fused off in our particular hardware. Since the
866  * fuse register is in the blitter powerwell, we need forcewake to be ready at
867  * this point (but later we need to prune the forcewake domains for engines that
868  * are indeed fused off).
869  */
870 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
871 {
872 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
873 	u8 vdbox_disable, vebox_disable;
874 	u32 media_fuse;
875 	int i;
876 
877 	if (INTEL_GEN(dev_priv) < 11)
878 		return;
879 
880 	media_fuse = I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
881 
882 	vdbox_disable = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
883 	vebox_disable = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
884 			GEN11_GT_VEBOX_DISABLE_SHIFT;
885 
886 	DRM_DEBUG_DRIVER("vdbox disable: %04x\n", vdbox_disable);
887 	for (i = 0; i < I915_MAX_VCS; i++) {
888 		if (!HAS_ENGINE(dev_priv, _VCS(i)))
889 			continue;
890 
891 		if (!(BIT(i) & vdbox_disable))
892 			continue;
893 
894 		info->ring_mask &= ~ENGINE_MASK(_VCS(i));
895 		DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
896 	}
897 
898 	DRM_DEBUG_DRIVER("vebox disable: %04x\n", vebox_disable);
899 	for (i = 0; i < I915_MAX_VECS; i++) {
900 		if (!HAS_ENGINE(dev_priv, _VECS(i)))
901 			continue;
902 
903 		if (!(BIT(i) & vebox_disable))
904 			continue;
905 
906 		info->ring_mask &= ~ENGINE_MASK(_VECS(i));
907 		DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
908 	}
909 }
910