xref: /openbmc/linux/drivers/gpu/drm/i915/intel_device_info.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "intel_device_info.h"
28 #include "i915_drv.h"
29 
30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
31 static const char * const platform_names[] = {
32 	PLATFORM_NAME(I830),
33 	PLATFORM_NAME(I845G),
34 	PLATFORM_NAME(I85X),
35 	PLATFORM_NAME(I865G),
36 	PLATFORM_NAME(I915G),
37 	PLATFORM_NAME(I915GM),
38 	PLATFORM_NAME(I945G),
39 	PLATFORM_NAME(I945GM),
40 	PLATFORM_NAME(G33),
41 	PLATFORM_NAME(PINEVIEW),
42 	PLATFORM_NAME(I965G),
43 	PLATFORM_NAME(I965GM),
44 	PLATFORM_NAME(G45),
45 	PLATFORM_NAME(GM45),
46 	PLATFORM_NAME(IRONLAKE),
47 	PLATFORM_NAME(SANDYBRIDGE),
48 	PLATFORM_NAME(IVYBRIDGE),
49 	PLATFORM_NAME(VALLEYVIEW),
50 	PLATFORM_NAME(HASWELL),
51 	PLATFORM_NAME(BROADWELL),
52 	PLATFORM_NAME(CHERRYVIEW),
53 	PLATFORM_NAME(SKYLAKE),
54 	PLATFORM_NAME(BROXTON),
55 	PLATFORM_NAME(KABYLAKE),
56 	PLATFORM_NAME(GEMINILAKE),
57 	PLATFORM_NAME(COFFEELAKE),
58 	PLATFORM_NAME(CANNONLAKE),
59 	PLATFORM_NAME(ICELAKE),
60 	PLATFORM_NAME(ELKHARTLAKE),
61 	PLATFORM_NAME(TIGERLAKE),
62 };
63 #undef PLATFORM_NAME
64 
65 const char *intel_platform_name(enum intel_platform platform)
66 {
67 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
68 
69 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
70 			 platform_names[platform] == NULL))
71 		return "<unknown>";
72 
73 	return platform_names[platform];
74 }
75 
76 static const char *iommu_name(void)
77 {
78 	const char *msg = "n/a";
79 
80 #ifdef CONFIG_INTEL_IOMMU
81 	msg = enableddisabled(intel_iommu_gfx_mapped);
82 #endif
83 
84 	return msg;
85 }
86 
87 void intel_device_info_print_static(const struct intel_device_info *info,
88 				    struct drm_printer *p)
89 {
90 	drm_printf(p, "engines: %x\n", info->engine_mask);
91 	drm_printf(p, "gen: %d\n", info->gen);
92 	drm_printf(p, "gt: %d\n", info->gt);
93 	drm_printf(p, "iommu: %s\n", iommu_name());
94 	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
95 	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
96 	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
97 	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
98 	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
99 
100 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
101 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
102 #undef PRINT_FLAG
103 
104 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
105 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
106 #undef PRINT_FLAG
107 }
108 
109 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
110 {
111 	int s;
112 
113 	drm_printf(p, "slice total: %u, mask=%04x\n",
114 		   hweight8(sseu->slice_mask), sseu->slice_mask);
115 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
116 	for (s = 0; s < sseu->max_slices; s++) {
117 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
118 			   s, intel_sseu_subslices_per_slice(sseu, s),
119 			   intel_sseu_get_subslices(sseu, s));
120 	}
121 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
122 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
123 	drm_printf(p, "has slice power gating: %s\n",
124 		   yesno(sseu->has_slice_pg));
125 	drm_printf(p, "has subslice power gating: %s\n",
126 		   yesno(sseu->has_subslice_pg));
127 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
128 }
129 
130 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
131 				     struct drm_printer *p)
132 {
133 	sseu_dump(&info->sseu, p);
134 
135 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
136 		   info->cs_timestamp_frequency_khz);
137 }
138 
139 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
140 		       int subslice)
141 {
142 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
143 
144 	return slice * slice_stride + subslice * sseu->eu_stride;
145 }
146 
147 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
148 			int subslice)
149 {
150 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
151 	u16 eu_mask = 0;
152 
153 	for (i = 0; i < sseu->eu_stride; i++) {
154 		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
155 			(i * BITS_PER_BYTE);
156 	}
157 
158 	return eu_mask;
159 }
160 
161 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
162 			 u16 eu_mask)
163 {
164 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
165 
166 	for (i = 0; i < sseu->eu_stride; i++) {
167 		sseu->eu_mask[offset + i] =
168 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
169 	}
170 }
171 
172 void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
173 				      struct drm_printer *p)
174 {
175 	int s, ss;
176 
177 	if (sseu->max_slices == 0) {
178 		drm_printf(p, "Unavailable\n");
179 		return;
180 	}
181 
182 	for (s = 0; s < sseu->max_slices; s++) {
183 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
184 			   s, intel_sseu_subslices_per_slice(sseu, s),
185 			   intel_sseu_get_subslices(sseu, s));
186 
187 		for (ss = 0; ss < sseu->max_subslices; ss++) {
188 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
189 
190 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
191 				   ss, hweight16(enabled_eus), enabled_eus);
192 		}
193 	}
194 }
195 
196 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
197 {
198 	u16 i, total = 0;
199 
200 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
201 		total += hweight8(sseu->eu_mask[i]);
202 
203 	return total;
204 }
205 
206 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
207 				    u8 s_en, u32 ss_en, u16 eu_en)
208 {
209 	int s, ss;
210 
211 	/* ss_en represents entire subslice mask across all slices */
212 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
213 		   sizeof(ss_en) * BITS_PER_BYTE);
214 
215 	for (s = 0; s < sseu->max_slices; s++) {
216 		if ((s_en & BIT(s)) == 0)
217 			continue;
218 
219 		sseu->slice_mask |= BIT(s);
220 
221 		intel_sseu_set_subslices(sseu, s, ss_en);
222 
223 		for (ss = 0; ss < sseu->max_subslices; ss++)
224 			if (intel_sseu_has_subslice(sseu, s, ss))
225 				sseu_set_eus(sseu, s, ss, eu_en);
226 	}
227 	sseu->eu_per_subslice = hweight16(eu_en);
228 	sseu->eu_total = compute_eu_total(sseu);
229 }
230 
231 static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
232 {
233 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
234 	u8 s_en;
235 	u32 dss_en;
236 	u16 eu_en = 0;
237 	u8 eu_en_fuse;
238 	int eu;
239 
240 	/*
241 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
242 	 * Instead of splitting these, provide userspace with an array
243 	 * of DSS to more closely represent the hardware resource.
244 	 */
245 	intel_sseu_set_info(sseu, 1, 6, 16);
246 
247 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
248 
249 	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
250 
251 	/* one bit per pair of EUs */
252 	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
253 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
254 		if (eu_en_fuse & BIT(eu))
255 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
256 
257 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
258 
259 	/* TGL only supports slice-level power gating */
260 	sseu->has_slice_pg = 1;
261 }
262 
263 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
264 {
265 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
266 	u8 s_en;
267 	u32 ss_en;
268 	u8 eu_en;
269 
270 	if (IS_ELKHARTLAKE(dev_priv))
271 		intel_sseu_set_info(sseu, 1, 4, 8);
272 	else
273 		intel_sseu_set_info(sseu, 1, 8, 8);
274 
275 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
276 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
277 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
278 
279 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
280 
281 	/* ICL has no power gating restrictions. */
282 	sseu->has_slice_pg = 1;
283 	sseu->has_subslice_pg = 1;
284 	sseu->has_eu_pg = 1;
285 }
286 
287 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
288 {
289 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
290 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
291 	int s, ss;
292 	const int eu_mask = 0xff;
293 	u32 subslice_mask, eu_en;
294 
295 	intel_sseu_set_info(sseu, 6, 4, 8);
296 
297 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
298 			    GEN10_F2_S_ENA_SHIFT;
299 
300 	/* Slice0 */
301 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
302 	for (ss = 0; ss < sseu->max_subslices; ss++)
303 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
304 	/* Slice1 */
305 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
306 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
307 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
308 	/* Slice2 */
309 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
310 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
311 	/* Slice3 */
312 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
313 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
314 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
315 	/* Slice4 */
316 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
317 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
318 	/* Slice5 */
319 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
320 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
321 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
322 
323 	subslice_mask = (1 << 4) - 1;
324 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
325 			   GEN10_F2_SS_DIS_SHIFT);
326 
327 	for (s = 0; s < sseu->max_slices; s++) {
328 		u32 subslice_mask_with_eus = subslice_mask;
329 
330 		for (ss = 0; ss < sseu->max_subslices; ss++) {
331 			if (sseu_get_eus(sseu, s, ss) == 0)
332 				subslice_mask_with_eus &= ~BIT(ss);
333 		}
334 
335 		/*
336 		 * Slice0 can have up to 3 subslices, but there are only 2 in
337 		 * slice1/2.
338 		 */
339 		intel_sseu_set_subslices(sseu, s, s == 0 ?
340 						  subslice_mask_with_eus :
341 						  subslice_mask_with_eus & 0x3);
342 	}
343 
344 	sseu->eu_total = compute_eu_total(sseu);
345 
346 	/*
347 	 * CNL is expected to always have a uniform distribution
348 	 * of EU across subslices with the exception that any one
349 	 * EU in any one subslice may be fused off for die
350 	 * recovery.
351 	 */
352 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
353 				DIV_ROUND_UP(sseu->eu_total,
354 					     intel_sseu_subslice_total(sseu)) :
355 				0;
356 
357 	/* No restrictions on Power Gating */
358 	sseu->has_slice_pg = 1;
359 	sseu->has_subslice_pg = 1;
360 	sseu->has_eu_pg = 1;
361 }
362 
363 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
364 {
365 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
366 	u32 fuse;
367 	u8 subslice_mask = 0;
368 
369 	fuse = I915_READ(CHV_FUSE_GT);
370 
371 	sseu->slice_mask = BIT(0);
372 	intel_sseu_set_info(sseu, 1, 2, 8);
373 
374 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
375 		u8 disabled_mask =
376 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
377 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
378 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
379 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
380 
381 		subslice_mask |= BIT(0);
382 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
383 	}
384 
385 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
386 		u8 disabled_mask =
387 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
388 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
389 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
390 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
391 
392 		subslice_mask |= BIT(1);
393 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
394 	}
395 
396 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
397 
398 	sseu->eu_total = compute_eu_total(sseu);
399 
400 	/*
401 	 * CHV expected to always have a uniform distribution of EU
402 	 * across subslices.
403 	*/
404 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
405 				sseu->eu_total /
406 					intel_sseu_subslice_total(sseu) :
407 				0;
408 	/*
409 	 * CHV supports subslice power gating on devices with more than
410 	 * one subslice, and supports EU power gating on devices with
411 	 * more than one EU pair per subslice.
412 	*/
413 	sseu->has_slice_pg = 0;
414 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
415 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
416 }
417 
418 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
419 {
420 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
421 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
422 	int s, ss;
423 	u32 fuse2, eu_disable, subslice_mask;
424 	const u8 eu_mask = 0xff;
425 
426 	fuse2 = I915_READ(GEN8_FUSE2);
427 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
428 
429 	/* BXT has a single slice and at most 3 subslices. */
430 	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
431 			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
432 
433 	/*
434 	 * The subslice disable field is global, i.e. it applies
435 	 * to each of the enabled slices.
436 	*/
437 	subslice_mask = (1 << sseu->max_subslices) - 1;
438 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
439 			   GEN9_F2_SS_DIS_SHIFT);
440 
441 	/*
442 	 * Iterate through enabled slices and subslices to
443 	 * count the total enabled EU.
444 	*/
445 	for (s = 0; s < sseu->max_slices; s++) {
446 		if (!(sseu->slice_mask & BIT(s)))
447 			/* skip disabled slice */
448 			continue;
449 
450 		intel_sseu_set_subslices(sseu, s, subslice_mask);
451 
452 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
453 		for (ss = 0; ss < sseu->max_subslices; ss++) {
454 			int eu_per_ss;
455 			u8 eu_disabled_mask;
456 
457 			if (!intel_sseu_has_subslice(sseu, s, ss))
458 				/* skip disabled subslice */
459 				continue;
460 
461 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
462 
463 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
464 
465 			eu_per_ss = sseu->max_eus_per_subslice -
466 				hweight8(eu_disabled_mask);
467 
468 			/*
469 			 * Record which subslice(s) has(have) 7 EUs. we
470 			 * can tune the hash used to spread work among
471 			 * subslices if they are unbalanced.
472 			 */
473 			if (eu_per_ss == 7)
474 				sseu->subslice_7eu[s] |= BIT(ss);
475 		}
476 	}
477 
478 	sseu->eu_total = compute_eu_total(sseu);
479 
480 	/*
481 	 * SKL is expected to always have a uniform distribution
482 	 * of EU across subslices with the exception that any one
483 	 * EU in any one subslice may be fused off for die
484 	 * recovery. BXT is expected to be perfectly uniform in EU
485 	 * distribution.
486 	*/
487 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
488 				DIV_ROUND_UP(sseu->eu_total,
489 					     intel_sseu_subslice_total(sseu)) :
490 				0;
491 	/*
492 	 * SKL+ supports slice power gating on devices with more than
493 	 * one slice, and supports EU power gating on devices with
494 	 * more than one EU pair per subslice. BXT+ supports subslice
495 	 * power gating on devices with more than one subslice, and
496 	 * supports EU power gating on devices with more than one EU
497 	 * pair per subslice.
498 	*/
499 	sseu->has_slice_pg =
500 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
501 	sseu->has_subslice_pg =
502 		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
503 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
504 
505 	if (IS_GEN9_LP(dev_priv)) {
506 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
507 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
508 
509 		sseu->min_eu_in_pool = 0;
510 		if (info->has_pooled_eu) {
511 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
512 				sseu->min_eu_in_pool = 3;
513 			else if (IS_SS_DISABLED(1))
514 				sseu->min_eu_in_pool = 6;
515 			else
516 				sseu->min_eu_in_pool = 9;
517 		}
518 #undef IS_SS_DISABLED
519 	}
520 }
521 
522 static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
523 {
524 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
525 	int s, ss;
526 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
527 
528 	fuse2 = I915_READ(GEN8_FUSE2);
529 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
530 	intel_sseu_set_info(sseu, 3, 3, 8);
531 
532 	/*
533 	 * The subslice disable field is global, i.e. it applies
534 	 * to each of the enabled slices.
535 	 */
536 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
537 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
538 			   GEN8_F2_SS_DIS_SHIFT);
539 
540 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
541 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
542 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
543 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
544 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
545 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
546 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
547 
548 	/*
549 	 * Iterate through enabled slices and subslices to
550 	 * count the total enabled EU.
551 	 */
552 	for (s = 0; s < sseu->max_slices; s++) {
553 		if (!(sseu->slice_mask & BIT(s)))
554 			/* skip disabled slice */
555 			continue;
556 
557 		intel_sseu_set_subslices(sseu, s, subslice_mask);
558 
559 		for (ss = 0; ss < sseu->max_subslices; ss++) {
560 			u8 eu_disabled_mask;
561 			u32 n_disabled;
562 
563 			if (!intel_sseu_has_subslice(sseu, s, ss))
564 				/* skip disabled subslice */
565 				continue;
566 
567 			eu_disabled_mask =
568 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
569 
570 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
571 
572 			n_disabled = hweight8(eu_disabled_mask);
573 
574 			/*
575 			 * Record which subslices have 7 EUs.
576 			 */
577 			if (sseu->max_eus_per_subslice - n_disabled == 7)
578 				sseu->subslice_7eu[s] |= 1 << ss;
579 		}
580 	}
581 
582 	sseu->eu_total = compute_eu_total(sseu);
583 
584 	/*
585 	 * BDW is expected to always have a uniform distribution of EU across
586 	 * subslices with the exception that any one EU in any one subslice may
587 	 * be fused off for die recovery.
588 	 */
589 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
590 				DIV_ROUND_UP(sseu->eu_total,
591 					     intel_sseu_subslice_total(sseu)) :
592 				0;
593 
594 	/*
595 	 * BDW supports slice power gating on devices with more than
596 	 * one slice.
597 	 */
598 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
599 	sseu->has_subslice_pg = 0;
600 	sseu->has_eu_pg = 0;
601 }
602 
603 static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
604 {
605 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
606 	u32 fuse1;
607 	u8 subslice_mask = 0;
608 	int s, ss;
609 
610 	/*
611 	 * There isn't a register to tell us how many slices/subslices. We
612 	 * work off the PCI-ids here.
613 	 */
614 	switch (INTEL_INFO(dev_priv)->gt) {
615 	default:
616 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
617 		/* fall through */
618 	case 1:
619 		sseu->slice_mask = BIT(0);
620 		subslice_mask = BIT(0);
621 		break;
622 	case 2:
623 		sseu->slice_mask = BIT(0);
624 		subslice_mask = BIT(0) | BIT(1);
625 		break;
626 	case 3:
627 		sseu->slice_mask = BIT(0) | BIT(1);
628 		subslice_mask = BIT(0) | BIT(1);
629 		break;
630 	}
631 
632 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
633 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
634 	default:
635 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
636 			     HSW_F1_EU_DIS_SHIFT);
637 		/* fall through */
638 	case HSW_F1_EU_DIS_10EUS:
639 		sseu->eu_per_subslice = 10;
640 		break;
641 	case HSW_F1_EU_DIS_8EUS:
642 		sseu->eu_per_subslice = 8;
643 		break;
644 	case HSW_F1_EU_DIS_6EUS:
645 		sseu->eu_per_subslice = 6;
646 		break;
647 	}
648 
649 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
650 			    hweight8(subslice_mask),
651 			    sseu->eu_per_subslice);
652 
653 	for (s = 0; s < sseu->max_slices; s++) {
654 		intel_sseu_set_subslices(sseu, s, subslice_mask);
655 
656 		for (ss = 0; ss < sseu->max_subslices; ss++) {
657 			sseu_set_eus(sseu, s, ss,
658 				     (1UL << sseu->eu_per_subslice) - 1);
659 		}
660 	}
661 
662 	sseu->eu_total = compute_eu_total(sseu);
663 
664 	/* No powergating for you. */
665 	sseu->has_slice_pg = 0;
666 	sseu->has_subslice_pg = 0;
667 	sseu->has_eu_pg = 0;
668 }
669 
670 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
671 {
672 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
673 	u32 base_freq, frac_freq;
674 
675 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
676 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
677 	base_freq *= 1000;
678 
679 	frac_freq = ((ts_override &
680 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
681 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
682 	frac_freq = 1000 / (frac_freq + 1);
683 
684 	return base_freq + frac_freq;
685 }
686 
687 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
688 					u32 rpm_config_reg)
689 {
690 	u32 f19_2_mhz = 19200;
691 	u32 f24_mhz = 24000;
692 	u32 crystal_clock = (rpm_config_reg &
693 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
694 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
695 
696 	switch (crystal_clock) {
697 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
698 		return f19_2_mhz;
699 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
700 		return f24_mhz;
701 	default:
702 		MISSING_CASE(crystal_clock);
703 		return 0;
704 	}
705 }
706 
707 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
708 					u32 rpm_config_reg)
709 {
710 	u32 f19_2_mhz = 19200;
711 	u32 f24_mhz = 24000;
712 	u32 f25_mhz = 25000;
713 	u32 f38_4_mhz = 38400;
714 	u32 crystal_clock = (rpm_config_reg &
715 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
716 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
717 
718 	switch (crystal_clock) {
719 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
720 		return f24_mhz;
721 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
722 		return f19_2_mhz;
723 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
724 		return f38_4_mhz;
725 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
726 		return f25_mhz;
727 	default:
728 		MISSING_CASE(crystal_clock);
729 		return 0;
730 	}
731 }
732 
733 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
734 {
735 	u32 f12_5_mhz = 12500;
736 	u32 f19_2_mhz = 19200;
737 	u32 f24_mhz = 24000;
738 
739 	if (INTEL_GEN(dev_priv) <= 4) {
740 		/* PRMs say:
741 		 *
742 		 *     "The value in this register increments once every 16
743 		 *      hclks." (through the “Clocking Configuration”
744 		 *      (“CLKCFG”) MCHBAR register)
745 		 */
746 		return dev_priv->rawclk_freq / 16;
747 	} else if (INTEL_GEN(dev_priv) <= 8) {
748 		/* PRMs say:
749 		 *
750 		 *     "The PCU TSC counts 10ns increments; this timestamp
751 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
752 		 *      rolling over every 1.5 hours).
753 		 */
754 		return f12_5_mhz;
755 	} else if (INTEL_GEN(dev_priv) <= 9) {
756 		u32 ctc_reg = I915_READ(CTC_MODE);
757 		u32 freq = 0;
758 
759 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
760 			freq = read_reference_ts_freq(dev_priv);
761 		} else {
762 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
763 
764 			/* Now figure out how the command stream's timestamp
765 			 * register increments from this frequency (it might
766 			 * increment only every few clock cycle).
767 			 */
768 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
769 				      CTC_SHIFT_PARAMETER_SHIFT);
770 		}
771 
772 		return freq;
773 	} else if (INTEL_GEN(dev_priv) <= 12) {
774 		u32 ctc_reg = I915_READ(CTC_MODE);
775 		u32 freq = 0;
776 
777 		/* First figure out the reference frequency. There are 2 ways
778 		 * we can compute the frequency, either through the
779 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
780 		 * tells us which one we should use.
781 		 */
782 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
783 			freq = read_reference_ts_freq(dev_priv);
784 		} else {
785 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
786 
787 			if (INTEL_GEN(dev_priv) <= 10)
788 				freq = gen10_get_crystal_clock_freq(dev_priv,
789 								rpm_config_reg);
790 			else
791 				freq = gen11_get_crystal_clock_freq(dev_priv,
792 								rpm_config_reg);
793 
794 			/* Now figure out how the command stream's timestamp
795 			 * register increments from this frequency (it might
796 			 * increment only every few clock cycle).
797 			 */
798 			freq >>= 3 - ((rpm_config_reg &
799 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
800 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
801 		}
802 
803 		return freq;
804 	}
805 
806 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
807 	return 0;
808 }
809 
810 #undef INTEL_VGA_DEVICE
811 #define INTEL_VGA_DEVICE(id, info) (id)
812 
813 static const u16 subplatform_ult_ids[] = {
814 	INTEL_HSW_ULT_GT1_IDS(0),
815 	INTEL_HSW_ULT_GT2_IDS(0),
816 	INTEL_HSW_ULT_GT3_IDS(0),
817 	INTEL_BDW_ULT_GT1_IDS(0),
818 	INTEL_BDW_ULT_GT2_IDS(0),
819 	INTEL_BDW_ULT_GT3_IDS(0),
820 	INTEL_BDW_ULT_RSVD_IDS(0),
821 	INTEL_SKL_ULT_GT1_IDS(0),
822 	INTEL_SKL_ULT_GT2_IDS(0),
823 	INTEL_SKL_ULT_GT3_IDS(0),
824 	INTEL_KBL_ULT_GT1_IDS(0),
825 	INTEL_KBL_ULT_GT2_IDS(0),
826 	INTEL_KBL_ULT_GT3_IDS(0),
827 	INTEL_CFL_U_GT2_IDS(0),
828 	INTEL_CFL_U_GT3_IDS(0),
829 	INTEL_WHL_U_GT1_IDS(0),
830 	INTEL_WHL_U_GT2_IDS(0),
831 	INTEL_WHL_U_GT3_IDS(0),
832 	INTEL_CML_U_GT1_IDS(0),
833 	INTEL_CML_U_GT2_IDS(0),
834 };
835 
836 static const u16 subplatform_ulx_ids[] = {
837 	INTEL_HSW_ULX_GT1_IDS(0),
838 	INTEL_HSW_ULX_GT2_IDS(0),
839 	INTEL_BDW_ULX_GT1_IDS(0),
840 	INTEL_BDW_ULX_GT2_IDS(0),
841 	INTEL_BDW_ULX_GT3_IDS(0),
842 	INTEL_BDW_ULX_RSVD_IDS(0),
843 	INTEL_SKL_ULX_GT1_IDS(0),
844 	INTEL_SKL_ULX_GT2_IDS(0),
845 	INTEL_KBL_ULX_GT1_IDS(0),
846 	INTEL_KBL_ULX_GT2_IDS(0),
847 	INTEL_AML_KBL_GT2_IDS(0),
848 	INTEL_AML_CFL_GT2_IDS(0),
849 };
850 
851 static const u16 subplatform_portf_ids[] = {
852 	INTEL_CNL_PORT_F_IDS(0),
853 	INTEL_ICL_PORT_F_IDS(0),
854 };
855 
856 static bool find_devid(u16 id, const u16 *p, unsigned int num)
857 {
858 	for (; num; num--, p++) {
859 		if (*p == id)
860 			return true;
861 	}
862 
863 	return false;
864 }
865 
866 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
867 {
868 	const struct intel_device_info *info = INTEL_INFO(i915);
869 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
870 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
871 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
872 	u16 devid = INTEL_DEVID(i915);
873 	u32 mask = 0;
874 
875 	/* Make sure IS_<platform> checks are working. */
876 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
877 
878 	/* Find and mark subplatform bits based on the PCI device id. */
879 	if (find_devid(devid, subplatform_ult_ids,
880 		       ARRAY_SIZE(subplatform_ult_ids))) {
881 		mask = BIT(INTEL_SUBPLATFORM_ULT);
882 	} else if (find_devid(devid, subplatform_ulx_ids,
883 			      ARRAY_SIZE(subplatform_ulx_ids))) {
884 		mask = BIT(INTEL_SUBPLATFORM_ULX);
885 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
886 			/* ULX machines are also considered ULT. */
887 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
888 		}
889 	} else if (find_devid(devid, subplatform_portf_ids,
890 			      ARRAY_SIZE(subplatform_portf_ids))) {
891 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
892 	}
893 
894 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
895 
896 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
897 }
898 
899 /**
900  * intel_device_info_runtime_init - initialize runtime info
901  * @dev_priv: the i915 device
902  *
903  * Determine various intel_device_info fields at runtime.
904  *
905  * Use it when either:
906  *   - it's judged too laborious to fill n static structures with the limit
907  *     when a simple if statement does the job,
908  *   - run-time checks (eg read fuse/strap registers) are needed.
909  *
910  * This function needs to be called:
911  *   - after the MMIO has been setup as we are reading registers,
912  *   - after the PCH has been detected,
913  *   - before the first usage of the fields it can tweak.
914  */
915 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
916 {
917 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
918 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
919 	enum pipe pipe;
920 
921 	if (INTEL_GEN(dev_priv) >= 10) {
922 		for_each_pipe(dev_priv, pipe)
923 			runtime->num_scalers[pipe] = 2;
924 	} else if (IS_GEN(dev_priv, 9)) {
925 		runtime->num_scalers[PIPE_A] = 2;
926 		runtime->num_scalers[PIPE_B] = 2;
927 		runtime->num_scalers[PIPE_C] = 1;
928 	}
929 
930 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
931 
932 	if (INTEL_GEN(dev_priv) >= 11)
933 		for_each_pipe(dev_priv, pipe)
934 			runtime->num_sprites[pipe] = 6;
935 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
936 		for_each_pipe(dev_priv, pipe)
937 			runtime->num_sprites[pipe] = 3;
938 	else if (IS_BROXTON(dev_priv)) {
939 		/*
940 		 * Skylake and Broxton currently don't expose the topmost plane as its
941 		 * use is exclusive with the legacy cursor and we only want to expose
942 		 * one of those, not both. Until we can safely expose the topmost plane
943 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
944 		 * we don't expose the topmost plane at all to prevent ABI breakage
945 		 * down the line.
946 		 */
947 
948 		runtime->num_sprites[PIPE_A] = 2;
949 		runtime->num_sprites[PIPE_B] = 2;
950 		runtime->num_sprites[PIPE_C] = 1;
951 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
952 		for_each_pipe(dev_priv, pipe)
953 			runtime->num_sprites[pipe] = 2;
954 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
955 		for_each_pipe(dev_priv, pipe)
956 			runtime->num_sprites[pipe] = 1;
957 	}
958 
959 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
960 	    HAS_PCH_SPLIT(dev_priv)) {
961 		u32 fuse_strap = I915_READ(FUSE_STRAP);
962 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
963 
964 		/*
965 		 * SFUSE_STRAP is supposed to have a bit signalling the display
966 		 * is fused off. Unfortunately it seems that, at least in
967 		 * certain cases, fused off display means that PCH display
968 		 * reads don't land anywhere. In that case, we read 0s.
969 		 *
970 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
971 		 * should be set when taking over after the firmware.
972 		 */
973 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
974 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
975 		    (HAS_PCH_CPT(dev_priv) &&
976 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
977 			DRM_INFO("Display fused off, disabling\n");
978 			info->pipe_mask = 0;
979 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
980 			DRM_INFO("PipeC fused off\n");
981 			info->pipe_mask &= ~BIT(PIPE_C);
982 		}
983 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
984 		u32 dfsm = I915_READ(SKL_DFSM);
985 		u8 enabled_mask = info->pipe_mask;
986 
987 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
988 			enabled_mask &= ~BIT(PIPE_A);
989 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
990 			enabled_mask &= ~BIT(PIPE_B);
991 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
992 			enabled_mask &= ~BIT(PIPE_C);
993 		if (INTEL_GEN(dev_priv) >= 12 &&
994 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE))
995 			enabled_mask &= ~BIT(PIPE_D);
996 
997 		/*
998 		 * At least one pipe should be enabled and if there are
999 		 * disabled pipes, they should be the last ones, with no holes
1000 		 * in the mask.
1001 		 */
1002 		if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
1003 			DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
1004 				  enabled_mask);
1005 		else
1006 			info->pipe_mask = enabled_mask;
1007 
1008 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
1009 			info->display.has_hdcp = 0;
1010 
1011 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
1012 			info->display.has_fbc = 0;
1013 
1014 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
1015 			info->display.has_csr = 0;
1016 
1017 		if (INTEL_GEN(dev_priv) >= 10 &&
1018 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
1019 			info->display.has_dsc = 0;
1020 	}
1021 
1022 	/* Initialize slice/subslice/EU info */
1023 	if (IS_HASWELL(dev_priv))
1024 		hsw_sseu_info_init(dev_priv);
1025 	else if (IS_CHERRYVIEW(dev_priv))
1026 		cherryview_sseu_info_init(dev_priv);
1027 	else if (IS_BROADWELL(dev_priv))
1028 		bdw_sseu_info_init(dev_priv);
1029 	else if (IS_GEN(dev_priv, 9))
1030 		gen9_sseu_info_init(dev_priv);
1031 	else if (IS_GEN(dev_priv, 10))
1032 		gen10_sseu_info_init(dev_priv);
1033 	else if (IS_GEN(dev_priv, 11))
1034 		gen11_sseu_info_init(dev_priv);
1035 	else if (INTEL_GEN(dev_priv) >= 12)
1036 		gen12_sseu_info_init(dev_priv);
1037 
1038 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1039 		DRM_INFO("Disabling ppGTT for VT-d support\n");
1040 		info->ppgtt_type = INTEL_PPGTT_NONE;
1041 	}
1042 
1043 	/* Initialize command stream timestamp frequency */
1044 	runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
1045 }
1046 
1047 void intel_driver_caps_print(const struct intel_driver_caps *caps,
1048 			     struct drm_printer *p)
1049 {
1050 	drm_printf(p, "Has logical contexts? %s\n",
1051 		   yesno(caps->has_logical_contexts));
1052 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
1053 }
1054 
1055 /*
1056  * Determine which engines are fused off in our particular hardware. Since the
1057  * fuse register is in the blitter powerwell, we need forcewake to be ready at
1058  * this point (but later we need to prune the forcewake domains for engines that
1059  * are indeed fused off).
1060  */
1061 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1062 {
1063 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1064 	unsigned int logical_vdbox = 0;
1065 	unsigned int i;
1066 	u32 media_fuse;
1067 	u16 vdbox_mask;
1068 	u16 vebox_mask;
1069 
1070 	if (INTEL_GEN(dev_priv) < 11)
1071 		return;
1072 
1073 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1074 
1075 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1076 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1077 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1078 
1079 	for (i = 0; i < I915_MAX_VCS; i++) {
1080 		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1081 			vdbox_mask &= ~BIT(i);
1082 			continue;
1083 		}
1084 
1085 		if (!(BIT(i) & vdbox_mask)) {
1086 			info->engine_mask &= ~BIT(_VCS(i));
1087 			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
1088 			continue;
1089 		}
1090 
1091 		/*
1092 		 * In Gen11, only even numbered logical VDBOXes are
1093 		 * hooked up to an SFC (Scaler & Format Converter) unit.
1094 		 * In TGL each VDBOX has access to an SFC.
1095 		 */
1096 		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
1097 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1098 	}
1099 	DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
1100 			 vdbox_mask, VDBOX_MASK(dev_priv));
1101 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1102 
1103 	for (i = 0; i < I915_MAX_VECS; i++) {
1104 		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1105 			vebox_mask &= ~BIT(i);
1106 			continue;
1107 		}
1108 
1109 		if (!(BIT(i) & vebox_mask)) {
1110 			info->engine_mask &= ~BIT(_VECS(i));
1111 			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
1112 		}
1113 	}
1114 	DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
1115 			 vebox_mask, VEBOX_MASK(dev_priv));
1116 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1117 }
1118