1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "display/intel_cdclk.h"
28 #include "intel_device_info.h"
29 #include "i915_drv.h"
30 
31 #define PLATFORM_NAME(x) [INTEL_##x] = #x
32 static const char * const platform_names[] = {
33 	PLATFORM_NAME(I830),
34 	PLATFORM_NAME(I845G),
35 	PLATFORM_NAME(I85X),
36 	PLATFORM_NAME(I865G),
37 	PLATFORM_NAME(I915G),
38 	PLATFORM_NAME(I915GM),
39 	PLATFORM_NAME(I945G),
40 	PLATFORM_NAME(I945GM),
41 	PLATFORM_NAME(G33),
42 	PLATFORM_NAME(PINEVIEW),
43 	PLATFORM_NAME(I965G),
44 	PLATFORM_NAME(I965GM),
45 	PLATFORM_NAME(G45),
46 	PLATFORM_NAME(GM45),
47 	PLATFORM_NAME(IRONLAKE),
48 	PLATFORM_NAME(SANDYBRIDGE),
49 	PLATFORM_NAME(IVYBRIDGE),
50 	PLATFORM_NAME(VALLEYVIEW),
51 	PLATFORM_NAME(HASWELL),
52 	PLATFORM_NAME(BROADWELL),
53 	PLATFORM_NAME(CHERRYVIEW),
54 	PLATFORM_NAME(SKYLAKE),
55 	PLATFORM_NAME(BROXTON),
56 	PLATFORM_NAME(KABYLAKE),
57 	PLATFORM_NAME(GEMINILAKE),
58 	PLATFORM_NAME(COFFEELAKE),
59 	PLATFORM_NAME(CANNONLAKE),
60 	PLATFORM_NAME(ICELAKE),
61 	PLATFORM_NAME(ELKHARTLAKE),
62 	PLATFORM_NAME(TIGERLAKE),
63 };
64 #undef PLATFORM_NAME
65 
66 const char *intel_platform_name(enum intel_platform platform)
67 {
68 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
69 
70 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
71 			 platform_names[platform] == NULL))
72 		return "<unknown>";
73 
74 	return platform_names[platform];
75 }
76 
77 static const char *iommu_name(void)
78 {
79 	const char *msg = "n/a";
80 
81 #ifdef CONFIG_INTEL_IOMMU
82 	msg = enableddisabled(intel_iommu_gfx_mapped);
83 #endif
84 
85 	return msg;
86 }
87 
88 void intel_device_info_print_static(const struct intel_device_info *info,
89 				    struct drm_printer *p)
90 {
91 	drm_printf(p, "engines: %x\n", info->engine_mask);
92 	drm_printf(p, "gen: %d\n", info->gen);
93 	drm_printf(p, "gt: %d\n", info->gt);
94 	drm_printf(p, "iommu: %s\n", iommu_name());
95 	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
96 	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
97 	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
98 	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
99 	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
100 
101 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
102 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
103 #undef PRINT_FLAG
104 
105 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
106 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
107 #undef PRINT_FLAG
108 }
109 
110 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
111 {
112 	int s;
113 
114 	drm_printf(p, "slice total: %u, mask=%04x\n",
115 		   hweight8(sseu->slice_mask), sseu->slice_mask);
116 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
117 	for (s = 0; s < sseu->max_slices; s++) {
118 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
119 			   s, intel_sseu_subslices_per_slice(sseu, s),
120 			   intel_sseu_get_subslices(sseu, s));
121 	}
122 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
123 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
124 	drm_printf(p, "has slice power gating: %s\n",
125 		   yesno(sseu->has_slice_pg));
126 	drm_printf(p, "has subslice power gating: %s\n",
127 		   yesno(sseu->has_subslice_pg));
128 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
129 }
130 
131 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
132 				     struct drm_printer *p)
133 {
134 	sseu_dump(&info->sseu, p);
135 
136 	drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
137 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
138 		   info->cs_timestamp_frequency_khz);
139 }
140 
141 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
142 		       int subslice)
143 {
144 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
145 
146 	return slice * slice_stride + subslice * sseu->eu_stride;
147 }
148 
149 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
150 			int subslice)
151 {
152 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
153 	u16 eu_mask = 0;
154 
155 	for (i = 0; i < sseu->eu_stride; i++) {
156 		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
157 			(i * BITS_PER_BYTE);
158 	}
159 
160 	return eu_mask;
161 }
162 
163 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
164 			 u16 eu_mask)
165 {
166 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
167 
168 	for (i = 0; i < sseu->eu_stride; i++) {
169 		sseu->eu_mask[offset + i] =
170 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
171 	}
172 }
173 
174 void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
175 				      struct drm_printer *p)
176 {
177 	int s, ss;
178 
179 	if (sseu->max_slices == 0) {
180 		drm_printf(p, "Unavailable\n");
181 		return;
182 	}
183 
184 	for (s = 0; s < sseu->max_slices; s++) {
185 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
186 			   s, intel_sseu_subslices_per_slice(sseu, s),
187 			   intel_sseu_get_subslices(sseu, s));
188 
189 		for (ss = 0; ss < sseu->max_subslices; ss++) {
190 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
191 
192 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
193 				   ss, hweight16(enabled_eus), enabled_eus);
194 		}
195 	}
196 }
197 
198 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
199 {
200 	u16 i, total = 0;
201 
202 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
203 		total += hweight8(sseu->eu_mask[i]);
204 
205 	return total;
206 }
207 
208 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
209 				    u8 s_en, u32 ss_en, u16 eu_en)
210 {
211 	int s, ss;
212 
213 	/* ss_en represents entire subslice mask across all slices */
214 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
215 		   sizeof(ss_en) * BITS_PER_BYTE);
216 
217 	for (s = 0; s < sseu->max_slices; s++) {
218 		if ((s_en & BIT(s)) == 0)
219 			continue;
220 
221 		sseu->slice_mask |= BIT(s);
222 
223 		intel_sseu_set_subslices(sseu, s, ss_en);
224 
225 		for (ss = 0; ss < sseu->max_subslices; ss++)
226 			if (intel_sseu_has_subslice(sseu, s, ss))
227 				sseu_set_eus(sseu, s, ss, eu_en);
228 	}
229 	sseu->eu_per_subslice = hweight16(eu_en);
230 	sseu->eu_total = compute_eu_total(sseu);
231 }
232 
233 static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
234 {
235 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
236 	u8 s_en;
237 	u32 dss_en;
238 	u16 eu_en = 0;
239 	u8 eu_en_fuse;
240 	int eu;
241 
242 	/*
243 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
244 	 * Instead of splitting these, provide userspace with an array
245 	 * of DSS to more closely represent the hardware resource.
246 	 */
247 	intel_sseu_set_info(sseu, 1, 6, 16);
248 
249 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
250 
251 	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
252 
253 	/* one bit per pair of EUs */
254 	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
255 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
256 		if (eu_en_fuse & BIT(eu))
257 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
258 
259 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
260 
261 	/* TGL only supports slice-level power gating */
262 	sseu->has_slice_pg = 1;
263 }
264 
265 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
266 {
267 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
268 	u8 s_en;
269 	u32 ss_en;
270 	u8 eu_en;
271 
272 	if (IS_ELKHARTLAKE(dev_priv))
273 		intel_sseu_set_info(sseu, 1, 4, 8);
274 	else
275 		intel_sseu_set_info(sseu, 1, 8, 8);
276 
277 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
278 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
279 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
280 
281 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
282 
283 	/* ICL has no power gating restrictions. */
284 	sseu->has_slice_pg = 1;
285 	sseu->has_subslice_pg = 1;
286 	sseu->has_eu_pg = 1;
287 }
288 
289 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
290 {
291 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
292 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
293 	int s, ss;
294 	const int eu_mask = 0xff;
295 	u32 subslice_mask, eu_en;
296 
297 	intel_sseu_set_info(sseu, 6, 4, 8);
298 
299 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
300 			    GEN10_F2_S_ENA_SHIFT;
301 
302 	/* Slice0 */
303 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
304 	for (ss = 0; ss < sseu->max_subslices; ss++)
305 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
306 	/* Slice1 */
307 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
308 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
309 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
310 	/* Slice2 */
311 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
312 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
313 	/* Slice3 */
314 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
315 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
316 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
317 	/* Slice4 */
318 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
319 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
320 	/* Slice5 */
321 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
322 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
323 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
324 
325 	subslice_mask = (1 << 4) - 1;
326 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
327 			   GEN10_F2_SS_DIS_SHIFT);
328 
329 	for (s = 0; s < sseu->max_slices; s++) {
330 		u32 subslice_mask_with_eus = subslice_mask;
331 
332 		for (ss = 0; ss < sseu->max_subslices; ss++) {
333 			if (sseu_get_eus(sseu, s, ss) == 0)
334 				subslice_mask_with_eus &= ~BIT(ss);
335 		}
336 
337 		/*
338 		 * Slice0 can have up to 3 subslices, but there are only 2 in
339 		 * slice1/2.
340 		 */
341 		intel_sseu_set_subslices(sseu, s, s == 0 ?
342 						  subslice_mask_with_eus :
343 						  subslice_mask_with_eus & 0x3);
344 	}
345 
346 	sseu->eu_total = compute_eu_total(sseu);
347 
348 	/*
349 	 * CNL is expected to always have a uniform distribution
350 	 * of EU across subslices with the exception that any one
351 	 * EU in any one subslice may be fused off for die
352 	 * recovery.
353 	 */
354 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
355 				DIV_ROUND_UP(sseu->eu_total,
356 					     intel_sseu_subslice_total(sseu)) :
357 				0;
358 
359 	/* No restrictions on Power Gating */
360 	sseu->has_slice_pg = 1;
361 	sseu->has_subslice_pg = 1;
362 	sseu->has_eu_pg = 1;
363 }
364 
365 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
366 {
367 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
368 	u32 fuse;
369 	u8 subslice_mask = 0;
370 
371 	fuse = I915_READ(CHV_FUSE_GT);
372 
373 	sseu->slice_mask = BIT(0);
374 	intel_sseu_set_info(sseu, 1, 2, 8);
375 
376 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
377 		u8 disabled_mask =
378 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
379 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
380 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
381 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
382 
383 		subslice_mask |= BIT(0);
384 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
385 	}
386 
387 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
388 		u8 disabled_mask =
389 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
390 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
391 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
392 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
393 
394 		subslice_mask |= BIT(1);
395 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
396 	}
397 
398 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
399 
400 	sseu->eu_total = compute_eu_total(sseu);
401 
402 	/*
403 	 * CHV expected to always have a uniform distribution of EU
404 	 * across subslices.
405 	*/
406 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
407 				sseu->eu_total /
408 					intel_sseu_subslice_total(sseu) :
409 				0;
410 	/*
411 	 * CHV supports subslice power gating on devices with more than
412 	 * one subslice, and supports EU power gating on devices with
413 	 * more than one EU pair per subslice.
414 	*/
415 	sseu->has_slice_pg = 0;
416 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
417 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
418 }
419 
420 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
421 {
422 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
423 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
424 	int s, ss;
425 	u32 fuse2, eu_disable, subslice_mask;
426 	const u8 eu_mask = 0xff;
427 
428 	fuse2 = I915_READ(GEN8_FUSE2);
429 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
430 
431 	/* BXT has a single slice and at most 3 subslices. */
432 	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
433 			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
434 
435 	/*
436 	 * The subslice disable field is global, i.e. it applies
437 	 * to each of the enabled slices.
438 	*/
439 	subslice_mask = (1 << sseu->max_subslices) - 1;
440 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
441 			   GEN9_F2_SS_DIS_SHIFT);
442 
443 	/*
444 	 * Iterate through enabled slices and subslices to
445 	 * count the total enabled EU.
446 	*/
447 	for (s = 0; s < sseu->max_slices; s++) {
448 		if (!(sseu->slice_mask & BIT(s)))
449 			/* skip disabled slice */
450 			continue;
451 
452 		intel_sseu_set_subslices(sseu, s, subslice_mask);
453 
454 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
455 		for (ss = 0; ss < sseu->max_subslices; ss++) {
456 			int eu_per_ss;
457 			u8 eu_disabled_mask;
458 
459 			if (!intel_sseu_has_subslice(sseu, s, ss))
460 				/* skip disabled subslice */
461 				continue;
462 
463 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
464 
465 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
466 
467 			eu_per_ss = sseu->max_eus_per_subslice -
468 				hweight8(eu_disabled_mask);
469 
470 			/*
471 			 * Record which subslice(s) has(have) 7 EUs. we
472 			 * can tune the hash used to spread work among
473 			 * subslices if they are unbalanced.
474 			 */
475 			if (eu_per_ss == 7)
476 				sseu->subslice_7eu[s] |= BIT(ss);
477 		}
478 	}
479 
480 	sseu->eu_total = compute_eu_total(sseu);
481 
482 	/*
483 	 * SKL is expected to always have a uniform distribution
484 	 * of EU across subslices with the exception that any one
485 	 * EU in any one subslice may be fused off for die
486 	 * recovery. BXT is expected to be perfectly uniform in EU
487 	 * distribution.
488 	*/
489 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
490 				DIV_ROUND_UP(sseu->eu_total,
491 					     intel_sseu_subslice_total(sseu)) :
492 				0;
493 	/*
494 	 * SKL+ supports slice power gating on devices with more than
495 	 * one slice, and supports EU power gating on devices with
496 	 * more than one EU pair per subslice. BXT+ supports subslice
497 	 * power gating on devices with more than one subslice, and
498 	 * supports EU power gating on devices with more than one EU
499 	 * pair per subslice.
500 	*/
501 	sseu->has_slice_pg =
502 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
503 	sseu->has_subslice_pg =
504 		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
505 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
506 
507 	if (IS_GEN9_LP(dev_priv)) {
508 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
509 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
510 
511 		sseu->min_eu_in_pool = 0;
512 		if (info->has_pooled_eu) {
513 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
514 				sseu->min_eu_in_pool = 3;
515 			else if (IS_SS_DISABLED(1))
516 				sseu->min_eu_in_pool = 6;
517 			else
518 				sseu->min_eu_in_pool = 9;
519 		}
520 #undef IS_SS_DISABLED
521 	}
522 }
523 
524 static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
525 {
526 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
527 	int s, ss;
528 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
529 
530 	fuse2 = I915_READ(GEN8_FUSE2);
531 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
532 	intel_sseu_set_info(sseu, 3, 3, 8);
533 
534 	/*
535 	 * The subslice disable field is global, i.e. it applies
536 	 * to each of the enabled slices.
537 	 */
538 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
539 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
540 			   GEN8_F2_SS_DIS_SHIFT);
541 
542 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
543 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
544 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
545 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
546 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
547 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
548 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
549 
550 	/*
551 	 * Iterate through enabled slices and subslices to
552 	 * count the total enabled EU.
553 	 */
554 	for (s = 0; s < sseu->max_slices; s++) {
555 		if (!(sseu->slice_mask & BIT(s)))
556 			/* skip disabled slice */
557 			continue;
558 
559 		intel_sseu_set_subslices(sseu, s, subslice_mask);
560 
561 		for (ss = 0; ss < sseu->max_subslices; ss++) {
562 			u8 eu_disabled_mask;
563 			u32 n_disabled;
564 
565 			if (!intel_sseu_has_subslice(sseu, s, ss))
566 				/* skip disabled subslice */
567 				continue;
568 
569 			eu_disabled_mask =
570 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
571 
572 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
573 
574 			n_disabled = hweight8(eu_disabled_mask);
575 
576 			/*
577 			 * Record which subslices have 7 EUs.
578 			 */
579 			if (sseu->max_eus_per_subslice - n_disabled == 7)
580 				sseu->subslice_7eu[s] |= 1 << ss;
581 		}
582 	}
583 
584 	sseu->eu_total = compute_eu_total(sseu);
585 
586 	/*
587 	 * BDW is expected to always have a uniform distribution of EU across
588 	 * subslices with the exception that any one EU in any one subslice may
589 	 * be fused off for die recovery.
590 	 */
591 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
592 				DIV_ROUND_UP(sseu->eu_total,
593 					     intel_sseu_subslice_total(sseu)) :
594 				0;
595 
596 	/*
597 	 * BDW supports slice power gating on devices with more than
598 	 * one slice.
599 	 */
600 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
601 	sseu->has_subslice_pg = 0;
602 	sseu->has_eu_pg = 0;
603 }
604 
605 static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
606 {
607 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
608 	u32 fuse1;
609 	u8 subslice_mask = 0;
610 	int s, ss;
611 
612 	/*
613 	 * There isn't a register to tell us how many slices/subslices. We
614 	 * work off the PCI-ids here.
615 	 */
616 	switch (INTEL_INFO(dev_priv)->gt) {
617 	default:
618 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
619 		/* fall through */
620 	case 1:
621 		sseu->slice_mask = BIT(0);
622 		subslice_mask = BIT(0);
623 		break;
624 	case 2:
625 		sseu->slice_mask = BIT(0);
626 		subslice_mask = BIT(0) | BIT(1);
627 		break;
628 	case 3:
629 		sseu->slice_mask = BIT(0) | BIT(1);
630 		subslice_mask = BIT(0) | BIT(1);
631 		break;
632 	}
633 
634 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
635 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
636 	default:
637 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
638 			     HSW_F1_EU_DIS_SHIFT);
639 		/* fall through */
640 	case HSW_F1_EU_DIS_10EUS:
641 		sseu->eu_per_subslice = 10;
642 		break;
643 	case HSW_F1_EU_DIS_8EUS:
644 		sseu->eu_per_subslice = 8;
645 		break;
646 	case HSW_F1_EU_DIS_6EUS:
647 		sseu->eu_per_subslice = 6;
648 		break;
649 	}
650 
651 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
652 			    hweight8(subslice_mask),
653 			    sseu->eu_per_subslice);
654 
655 	for (s = 0; s < sseu->max_slices; s++) {
656 		intel_sseu_set_subslices(sseu, s, subslice_mask);
657 
658 		for (ss = 0; ss < sseu->max_subslices; ss++) {
659 			sseu_set_eus(sseu, s, ss,
660 				     (1UL << sseu->eu_per_subslice) - 1);
661 		}
662 	}
663 
664 	sseu->eu_total = compute_eu_total(sseu);
665 
666 	/* No powergating for you. */
667 	sseu->has_slice_pg = 0;
668 	sseu->has_subslice_pg = 0;
669 	sseu->has_eu_pg = 0;
670 }
671 
672 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
673 {
674 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
675 	u32 base_freq, frac_freq;
676 
677 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
678 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
679 	base_freq *= 1000;
680 
681 	frac_freq = ((ts_override &
682 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
683 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
684 	frac_freq = 1000 / (frac_freq + 1);
685 
686 	return base_freq + frac_freq;
687 }
688 
689 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
690 					u32 rpm_config_reg)
691 {
692 	u32 f19_2_mhz = 19200;
693 	u32 f24_mhz = 24000;
694 	u32 crystal_clock = (rpm_config_reg &
695 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
696 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
697 
698 	switch (crystal_clock) {
699 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
700 		return f19_2_mhz;
701 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
702 		return f24_mhz;
703 	default:
704 		MISSING_CASE(crystal_clock);
705 		return 0;
706 	}
707 }
708 
709 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
710 					u32 rpm_config_reg)
711 {
712 	u32 f19_2_mhz = 19200;
713 	u32 f24_mhz = 24000;
714 	u32 f25_mhz = 25000;
715 	u32 f38_4_mhz = 38400;
716 	u32 crystal_clock = (rpm_config_reg &
717 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
718 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
719 
720 	switch (crystal_clock) {
721 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
722 		return f24_mhz;
723 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
724 		return f19_2_mhz;
725 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
726 		return f38_4_mhz;
727 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
728 		return f25_mhz;
729 	default:
730 		MISSING_CASE(crystal_clock);
731 		return 0;
732 	}
733 }
734 
735 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
736 {
737 	u32 f12_5_mhz = 12500;
738 	u32 f19_2_mhz = 19200;
739 	u32 f24_mhz = 24000;
740 
741 	if (INTEL_GEN(dev_priv) <= 4) {
742 		/* PRMs say:
743 		 *
744 		 *     "The value in this register increments once every 16
745 		 *      hclks." (through the “Clocking Configuration”
746 		 *      (“CLKCFG”) MCHBAR register)
747 		 */
748 		return RUNTIME_INFO(dev_priv)->rawclk_freq / 16;
749 	} else if (INTEL_GEN(dev_priv) <= 8) {
750 		/* PRMs say:
751 		 *
752 		 *     "The PCU TSC counts 10ns increments; this timestamp
753 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
754 		 *      rolling over every 1.5 hours).
755 		 */
756 		return f12_5_mhz;
757 	} else if (INTEL_GEN(dev_priv) <= 9) {
758 		u32 ctc_reg = I915_READ(CTC_MODE);
759 		u32 freq = 0;
760 
761 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
762 			freq = read_reference_ts_freq(dev_priv);
763 		} else {
764 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
765 
766 			/* Now figure out how the command stream's timestamp
767 			 * register increments from this frequency (it might
768 			 * increment only every few clock cycle).
769 			 */
770 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
771 				      CTC_SHIFT_PARAMETER_SHIFT);
772 		}
773 
774 		return freq;
775 	} else if (INTEL_GEN(dev_priv) <= 12) {
776 		u32 ctc_reg = I915_READ(CTC_MODE);
777 		u32 freq = 0;
778 
779 		/* First figure out the reference frequency. There are 2 ways
780 		 * we can compute the frequency, either through the
781 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
782 		 * tells us which one we should use.
783 		 */
784 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
785 			freq = read_reference_ts_freq(dev_priv);
786 		} else {
787 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
788 
789 			if (INTEL_GEN(dev_priv) <= 10)
790 				freq = gen10_get_crystal_clock_freq(dev_priv,
791 								rpm_config_reg);
792 			else
793 				freq = gen11_get_crystal_clock_freq(dev_priv,
794 								rpm_config_reg);
795 
796 			/* Now figure out how the command stream's timestamp
797 			 * register increments from this frequency (it might
798 			 * increment only every few clock cycle).
799 			 */
800 			freq >>= 3 - ((rpm_config_reg &
801 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
802 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
803 		}
804 
805 		return freq;
806 	}
807 
808 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
809 	return 0;
810 }
811 
812 #undef INTEL_VGA_DEVICE
813 #define INTEL_VGA_DEVICE(id, info) (id)
814 
815 static const u16 subplatform_ult_ids[] = {
816 	INTEL_HSW_ULT_GT1_IDS(0),
817 	INTEL_HSW_ULT_GT2_IDS(0),
818 	INTEL_HSW_ULT_GT3_IDS(0),
819 	INTEL_BDW_ULT_GT1_IDS(0),
820 	INTEL_BDW_ULT_GT2_IDS(0),
821 	INTEL_BDW_ULT_GT3_IDS(0),
822 	INTEL_BDW_ULT_RSVD_IDS(0),
823 	INTEL_SKL_ULT_GT1_IDS(0),
824 	INTEL_SKL_ULT_GT2_IDS(0),
825 	INTEL_SKL_ULT_GT3_IDS(0),
826 	INTEL_KBL_ULT_GT1_IDS(0),
827 	INTEL_KBL_ULT_GT2_IDS(0),
828 	INTEL_KBL_ULT_GT3_IDS(0),
829 	INTEL_CFL_U_GT2_IDS(0),
830 	INTEL_CFL_U_GT3_IDS(0),
831 	INTEL_WHL_U_GT1_IDS(0),
832 	INTEL_WHL_U_GT2_IDS(0),
833 	INTEL_WHL_U_GT3_IDS(0),
834 	INTEL_CML_U_GT1_IDS(0),
835 	INTEL_CML_U_GT2_IDS(0),
836 };
837 
838 static const u16 subplatform_ulx_ids[] = {
839 	INTEL_HSW_ULX_GT1_IDS(0),
840 	INTEL_HSW_ULX_GT2_IDS(0),
841 	INTEL_BDW_ULX_GT1_IDS(0),
842 	INTEL_BDW_ULX_GT2_IDS(0),
843 	INTEL_BDW_ULX_GT3_IDS(0),
844 	INTEL_BDW_ULX_RSVD_IDS(0),
845 	INTEL_SKL_ULX_GT1_IDS(0),
846 	INTEL_SKL_ULX_GT2_IDS(0),
847 	INTEL_KBL_ULX_GT1_IDS(0),
848 	INTEL_KBL_ULX_GT2_IDS(0),
849 	INTEL_AML_KBL_GT2_IDS(0),
850 	INTEL_AML_CFL_GT2_IDS(0),
851 };
852 
853 static const u16 subplatform_portf_ids[] = {
854 	INTEL_CNL_PORT_F_IDS(0),
855 	INTEL_ICL_PORT_F_IDS(0),
856 };
857 
858 static bool find_devid(u16 id, const u16 *p, unsigned int num)
859 {
860 	for (; num; num--, p++) {
861 		if (*p == id)
862 			return true;
863 	}
864 
865 	return false;
866 }
867 
868 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
869 {
870 	const struct intel_device_info *info = INTEL_INFO(i915);
871 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
872 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
873 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
874 	u16 devid = INTEL_DEVID(i915);
875 	u32 mask = 0;
876 
877 	/* Make sure IS_<platform> checks are working. */
878 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
879 
880 	/* Find and mark subplatform bits based on the PCI device id. */
881 	if (find_devid(devid, subplatform_ult_ids,
882 		       ARRAY_SIZE(subplatform_ult_ids))) {
883 		mask = BIT(INTEL_SUBPLATFORM_ULT);
884 	} else if (find_devid(devid, subplatform_ulx_ids,
885 			      ARRAY_SIZE(subplatform_ulx_ids))) {
886 		mask = BIT(INTEL_SUBPLATFORM_ULX);
887 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
888 			/* ULX machines are also considered ULT. */
889 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
890 		}
891 	} else if (find_devid(devid, subplatform_portf_ids,
892 			      ARRAY_SIZE(subplatform_portf_ids))) {
893 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
894 	}
895 
896 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
897 
898 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
899 }
900 
901 /**
902  * intel_device_info_runtime_init - initialize runtime info
903  * @dev_priv: the i915 device
904  *
905  * Determine various intel_device_info fields at runtime.
906  *
907  * Use it when either:
908  *   - it's judged too laborious to fill n static structures with the limit
909  *     when a simple if statement does the job,
910  *   - run-time checks (eg read fuse/strap registers) are needed.
911  *
912  * This function needs to be called:
913  *   - after the MMIO has been setup as we are reading registers,
914  *   - after the PCH has been detected,
915  *   - before the first usage of the fields it can tweak.
916  */
917 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
918 {
919 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
920 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
921 	enum pipe pipe;
922 
923 	if (INTEL_GEN(dev_priv) >= 10) {
924 		for_each_pipe(dev_priv, pipe)
925 			runtime->num_scalers[pipe] = 2;
926 	} else if (IS_GEN(dev_priv, 9)) {
927 		runtime->num_scalers[PIPE_A] = 2;
928 		runtime->num_scalers[PIPE_B] = 2;
929 		runtime->num_scalers[PIPE_C] = 1;
930 	}
931 
932 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
933 
934 	if (INTEL_GEN(dev_priv) >= 11)
935 		for_each_pipe(dev_priv, pipe)
936 			runtime->num_sprites[pipe] = 6;
937 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
938 		for_each_pipe(dev_priv, pipe)
939 			runtime->num_sprites[pipe] = 3;
940 	else if (IS_BROXTON(dev_priv)) {
941 		/*
942 		 * Skylake and Broxton currently don't expose the topmost plane as its
943 		 * use is exclusive with the legacy cursor and we only want to expose
944 		 * one of those, not both. Until we can safely expose the topmost plane
945 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
946 		 * we don't expose the topmost plane at all to prevent ABI breakage
947 		 * down the line.
948 		 */
949 
950 		runtime->num_sprites[PIPE_A] = 2;
951 		runtime->num_sprites[PIPE_B] = 2;
952 		runtime->num_sprites[PIPE_C] = 1;
953 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
954 		for_each_pipe(dev_priv, pipe)
955 			runtime->num_sprites[pipe] = 2;
956 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
957 		for_each_pipe(dev_priv, pipe)
958 			runtime->num_sprites[pipe] = 1;
959 	}
960 
961 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
962 	    HAS_PCH_SPLIT(dev_priv)) {
963 		u32 fuse_strap = I915_READ(FUSE_STRAP);
964 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
965 
966 		/*
967 		 * SFUSE_STRAP is supposed to have a bit signalling the display
968 		 * is fused off. Unfortunately it seems that, at least in
969 		 * certain cases, fused off display means that PCH display
970 		 * reads don't land anywhere. In that case, we read 0s.
971 		 *
972 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
973 		 * should be set when taking over after the firmware.
974 		 */
975 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
976 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
977 		    (HAS_PCH_CPT(dev_priv) &&
978 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
979 			drm_info(&dev_priv->drm,
980 				 "Display fused off, disabling\n");
981 			info->pipe_mask = 0;
982 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
983 			drm_info(&dev_priv->drm, "PipeC fused off\n");
984 			info->pipe_mask &= ~BIT(PIPE_C);
985 		}
986 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
987 		u32 dfsm = I915_READ(SKL_DFSM);
988 		u8 enabled_mask = info->pipe_mask;
989 
990 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
991 			enabled_mask &= ~BIT(PIPE_A);
992 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
993 			enabled_mask &= ~BIT(PIPE_B);
994 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
995 			enabled_mask &= ~BIT(PIPE_C);
996 		if (INTEL_GEN(dev_priv) >= 12 &&
997 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE))
998 			enabled_mask &= ~BIT(PIPE_D);
999 
1000 		/*
1001 		 * At least one pipe should be enabled and if there are
1002 		 * disabled pipes, they should be the last ones, with no holes
1003 		 * in the mask.
1004 		 */
1005 		if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
1006 			drm_err(&dev_priv->drm,
1007 				"invalid pipe fuse configuration: enabled_mask=0x%x\n",
1008 				enabled_mask);
1009 		else
1010 			info->pipe_mask = enabled_mask;
1011 
1012 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
1013 			info->display.has_hdcp = 0;
1014 
1015 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
1016 			info->display.has_fbc = 0;
1017 
1018 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
1019 			info->display.has_csr = 0;
1020 
1021 		if (INTEL_GEN(dev_priv) >= 10 &&
1022 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
1023 			info->display.has_dsc = 0;
1024 	}
1025 
1026 	/* Initialize slice/subslice/EU info */
1027 	if (IS_HASWELL(dev_priv))
1028 		hsw_sseu_info_init(dev_priv);
1029 	else if (IS_CHERRYVIEW(dev_priv))
1030 		cherryview_sseu_info_init(dev_priv);
1031 	else if (IS_BROADWELL(dev_priv))
1032 		bdw_sseu_info_init(dev_priv);
1033 	else if (IS_GEN(dev_priv, 9))
1034 		gen9_sseu_info_init(dev_priv);
1035 	else if (IS_GEN(dev_priv, 10))
1036 		gen10_sseu_info_init(dev_priv);
1037 	else if (IS_GEN(dev_priv, 11))
1038 		gen11_sseu_info_init(dev_priv);
1039 	else if (INTEL_GEN(dev_priv) >= 12)
1040 		gen12_sseu_info_init(dev_priv);
1041 
1042 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1043 		drm_info(&dev_priv->drm,
1044 			 "Disabling ppGTT for VT-d support\n");
1045 		info->ppgtt_type = INTEL_PPGTT_NONE;
1046 	}
1047 
1048 	runtime->rawclk_freq = intel_read_rawclk(dev_priv);
1049 	drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
1050 
1051 	/* Initialize command stream timestamp frequency */
1052 	runtime->cs_timestamp_frequency_khz =
1053 		read_timestamp_frequency(dev_priv);
1054 	if (runtime->cs_timestamp_frequency_khz) {
1055 		runtime->cs_timestamp_period_ns =
1056 			div_u64(1e6, runtime->cs_timestamp_frequency_khz);
1057 		drm_dbg(&dev_priv->drm,
1058 			"CS timestamp wraparound in %lldms\n",
1059 			div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
1060 					    S32_MAX),
1061 				USEC_PER_SEC));
1062 	}
1063 }
1064 
1065 void intel_driver_caps_print(const struct intel_driver_caps *caps,
1066 			     struct drm_printer *p)
1067 {
1068 	drm_printf(p, "Has logical contexts? %s\n",
1069 		   yesno(caps->has_logical_contexts));
1070 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
1071 }
1072 
1073 /*
1074  * Determine which engines are fused off in our particular hardware. Since the
1075  * fuse register is in the blitter powerwell, we need forcewake to be ready at
1076  * this point (but later we need to prune the forcewake domains for engines that
1077  * are indeed fused off).
1078  */
1079 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1080 {
1081 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1082 	unsigned int logical_vdbox = 0;
1083 	unsigned int i;
1084 	u32 media_fuse;
1085 	u16 vdbox_mask;
1086 	u16 vebox_mask;
1087 
1088 	if (INTEL_GEN(dev_priv) < 11)
1089 		return;
1090 
1091 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1092 
1093 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1094 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1095 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1096 
1097 	for (i = 0; i < I915_MAX_VCS; i++) {
1098 		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1099 			vdbox_mask &= ~BIT(i);
1100 			continue;
1101 		}
1102 
1103 		if (!(BIT(i) & vdbox_mask)) {
1104 			info->engine_mask &= ~BIT(_VCS(i));
1105 			drm_dbg(&dev_priv->drm, "vcs%u fused off\n", i);
1106 			continue;
1107 		}
1108 
1109 		/*
1110 		 * In Gen11, only even numbered logical VDBOXes are
1111 		 * hooked up to an SFC (Scaler & Format Converter) unit.
1112 		 * In TGL each VDBOX has access to an SFC.
1113 		 */
1114 		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
1115 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1116 	}
1117 	drm_dbg(&dev_priv->drm, "vdbox enable: %04x, instances: %04lx\n",
1118 		vdbox_mask, VDBOX_MASK(dev_priv));
1119 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1120 
1121 	for (i = 0; i < I915_MAX_VECS; i++) {
1122 		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1123 			vebox_mask &= ~BIT(i);
1124 			continue;
1125 		}
1126 
1127 		if (!(BIT(i) & vebox_mask)) {
1128 			info->engine_mask &= ~BIT(_VECS(i));
1129 			drm_dbg(&dev_priv->drm, "vecs%u fused off\n", i);
1130 		}
1131 	}
1132 	drm_dbg(&dev_priv->drm, "vebox enable: %04x, instances: %04lx\n",
1133 		vebox_mask, VEBOX_MASK(dev_priv));
1134 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1135 }
1136