1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 #include <drm/i915_pciids.h>
27 
28 #include "display/intel_cdclk.h"
29 #include "intel_device_info.h"
30 #include "i915_drv.h"
31 
32 #define PLATFORM_NAME(x) [INTEL_##x] = #x
33 static const char * const platform_names[] = {
34 	PLATFORM_NAME(I830),
35 	PLATFORM_NAME(I845G),
36 	PLATFORM_NAME(I85X),
37 	PLATFORM_NAME(I865G),
38 	PLATFORM_NAME(I915G),
39 	PLATFORM_NAME(I915GM),
40 	PLATFORM_NAME(I945G),
41 	PLATFORM_NAME(I945GM),
42 	PLATFORM_NAME(G33),
43 	PLATFORM_NAME(PINEVIEW),
44 	PLATFORM_NAME(I965G),
45 	PLATFORM_NAME(I965GM),
46 	PLATFORM_NAME(G45),
47 	PLATFORM_NAME(GM45),
48 	PLATFORM_NAME(IRONLAKE),
49 	PLATFORM_NAME(SANDYBRIDGE),
50 	PLATFORM_NAME(IVYBRIDGE),
51 	PLATFORM_NAME(VALLEYVIEW),
52 	PLATFORM_NAME(HASWELL),
53 	PLATFORM_NAME(BROADWELL),
54 	PLATFORM_NAME(CHERRYVIEW),
55 	PLATFORM_NAME(SKYLAKE),
56 	PLATFORM_NAME(BROXTON),
57 	PLATFORM_NAME(KABYLAKE),
58 	PLATFORM_NAME(GEMINILAKE),
59 	PLATFORM_NAME(COFFEELAKE),
60 	PLATFORM_NAME(CANNONLAKE),
61 	PLATFORM_NAME(ICELAKE),
62 	PLATFORM_NAME(ELKHARTLAKE),
63 	PLATFORM_NAME(TIGERLAKE),
64 };
65 #undef PLATFORM_NAME
66 
67 const char *intel_platform_name(enum intel_platform platform)
68 {
69 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
70 
71 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
72 			 platform_names[platform] == NULL))
73 		return "<unknown>";
74 
75 	return platform_names[platform];
76 }
77 
78 static const char *iommu_name(void)
79 {
80 	const char *msg = "n/a";
81 
82 #ifdef CONFIG_INTEL_IOMMU
83 	msg = enableddisabled(intel_iommu_gfx_mapped);
84 #endif
85 
86 	return msg;
87 }
88 
89 void intel_device_info_print_static(const struct intel_device_info *info,
90 				    struct drm_printer *p)
91 {
92 	drm_printf(p, "engines: %x\n", info->engine_mask);
93 	drm_printf(p, "gen: %d\n", info->gen);
94 	drm_printf(p, "gt: %d\n", info->gt);
95 	drm_printf(p, "iommu: %s\n", iommu_name());
96 	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
97 	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
98 	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
99 	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
100 	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
101 	drm_printf(p, "dma_mask_size: %u\n", info->dma_mask_size);
102 
103 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
104 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
105 #undef PRINT_FLAG
106 
107 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
108 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
109 #undef PRINT_FLAG
110 }
111 
112 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
113 {
114 	int s;
115 
116 	drm_printf(p, "slice total: %u, mask=%04x\n",
117 		   hweight8(sseu->slice_mask), sseu->slice_mask);
118 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
119 	for (s = 0; s < sseu->max_slices; s++) {
120 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
121 			   s, intel_sseu_subslices_per_slice(sseu, s),
122 			   intel_sseu_get_subslices(sseu, s));
123 	}
124 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
125 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
126 	drm_printf(p, "has slice power gating: %s\n",
127 		   yesno(sseu->has_slice_pg));
128 	drm_printf(p, "has subslice power gating: %s\n",
129 		   yesno(sseu->has_subslice_pg));
130 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
131 }
132 
133 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
134 				     struct drm_printer *p)
135 {
136 	sseu_dump(&info->sseu, p);
137 
138 	drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
139 	drm_printf(p, "CS timestamp frequency: %u Hz\n",
140 		   info->cs_timestamp_frequency_hz);
141 }
142 
143 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
144 		       int subslice)
145 {
146 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
147 
148 	return slice * slice_stride + subslice * sseu->eu_stride;
149 }
150 
151 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
152 			int subslice)
153 {
154 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
155 	u16 eu_mask = 0;
156 
157 	for (i = 0; i < sseu->eu_stride; i++) {
158 		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
159 			(i * BITS_PER_BYTE);
160 	}
161 
162 	return eu_mask;
163 }
164 
165 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
166 			 u16 eu_mask)
167 {
168 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
169 
170 	for (i = 0; i < sseu->eu_stride; i++) {
171 		sseu->eu_mask[offset + i] =
172 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
173 	}
174 }
175 
176 void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
177 				      struct drm_printer *p)
178 {
179 	int s, ss;
180 
181 	if (sseu->max_slices == 0) {
182 		drm_printf(p, "Unavailable\n");
183 		return;
184 	}
185 
186 	for (s = 0; s < sseu->max_slices; s++) {
187 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
188 			   s, intel_sseu_subslices_per_slice(sseu, s),
189 			   intel_sseu_get_subslices(sseu, s));
190 
191 		for (ss = 0; ss < sseu->max_subslices; ss++) {
192 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
193 
194 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
195 				   ss, hweight16(enabled_eus), enabled_eus);
196 		}
197 	}
198 }
199 
200 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
201 {
202 	u16 i, total = 0;
203 
204 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
205 		total += hweight8(sseu->eu_mask[i]);
206 
207 	return total;
208 }
209 
210 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
211 				    u8 s_en, u32 ss_en, u16 eu_en)
212 {
213 	int s, ss;
214 
215 	/* ss_en represents entire subslice mask across all slices */
216 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
217 		   sizeof(ss_en) * BITS_PER_BYTE);
218 
219 	for (s = 0; s < sseu->max_slices; s++) {
220 		if ((s_en & BIT(s)) == 0)
221 			continue;
222 
223 		sseu->slice_mask |= BIT(s);
224 
225 		intel_sseu_set_subslices(sseu, s, ss_en);
226 
227 		for (ss = 0; ss < sseu->max_subslices; ss++)
228 			if (intel_sseu_has_subslice(sseu, s, ss))
229 				sseu_set_eus(sseu, s, ss, eu_en);
230 	}
231 	sseu->eu_per_subslice = hweight16(eu_en);
232 	sseu->eu_total = compute_eu_total(sseu);
233 }
234 
235 static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
236 {
237 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
238 	u8 s_en;
239 	u32 dss_en;
240 	u16 eu_en = 0;
241 	u8 eu_en_fuse;
242 	int eu;
243 
244 	/*
245 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
246 	 * Instead of splitting these, provide userspace with an array
247 	 * of DSS to more closely represent the hardware resource.
248 	 */
249 	intel_sseu_set_info(sseu, 1, 6, 16);
250 
251 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
252 
253 	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
254 
255 	/* one bit per pair of EUs */
256 	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
257 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
258 		if (eu_en_fuse & BIT(eu))
259 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
260 
261 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
262 
263 	/* TGL only supports slice-level power gating */
264 	sseu->has_slice_pg = 1;
265 }
266 
267 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
268 {
269 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
270 	u8 s_en;
271 	u32 ss_en;
272 	u8 eu_en;
273 
274 	if (IS_ELKHARTLAKE(dev_priv))
275 		intel_sseu_set_info(sseu, 1, 4, 8);
276 	else
277 		intel_sseu_set_info(sseu, 1, 8, 8);
278 
279 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
280 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
281 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
282 
283 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
284 
285 	/* ICL has no power gating restrictions. */
286 	sseu->has_slice_pg = 1;
287 	sseu->has_subslice_pg = 1;
288 	sseu->has_eu_pg = 1;
289 }
290 
291 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
292 {
293 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
294 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
295 	int s, ss;
296 	const int eu_mask = 0xff;
297 	u32 subslice_mask, eu_en;
298 
299 	intel_sseu_set_info(sseu, 6, 4, 8);
300 
301 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
302 			    GEN10_F2_S_ENA_SHIFT;
303 
304 	/* Slice0 */
305 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
306 	for (ss = 0; ss < sseu->max_subslices; ss++)
307 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
308 	/* Slice1 */
309 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
310 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
311 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
312 	/* Slice2 */
313 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
314 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
315 	/* Slice3 */
316 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
317 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
318 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
319 	/* Slice4 */
320 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
321 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
322 	/* Slice5 */
323 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
324 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
325 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
326 
327 	subslice_mask = (1 << 4) - 1;
328 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
329 			   GEN10_F2_SS_DIS_SHIFT);
330 
331 	for (s = 0; s < sseu->max_slices; s++) {
332 		u32 subslice_mask_with_eus = subslice_mask;
333 
334 		for (ss = 0; ss < sseu->max_subslices; ss++) {
335 			if (sseu_get_eus(sseu, s, ss) == 0)
336 				subslice_mask_with_eus &= ~BIT(ss);
337 		}
338 
339 		/*
340 		 * Slice0 can have up to 3 subslices, but there are only 2 in
341 		 * slice1/2.
342 		 */
343 		intel_sseu_set_subslices(sseu, s, s == 0 ?
344 						  subslice_mask_with_eus :
345 						  subslice_mask_with_eus & 0x3);
346 	}
347 
348 	sseu->eu_total = compute_eu_total(sseu);
349 
350 	/*
351 	 * CNL is expected to always have a uniform distribution
352 	 * of EU across subslices with the exception that any one
353 	 * EU in any one subslice may be fused off for die
354 	 * recovery.
355 	 */
356 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
357 				DIV_ROUND_UP(sseu->eu_total,
358 					     intel_sseu_subslice_total(sseu)) :
359 				0;
360 
361 	/* No restrictions on Power Gating */
362 	sseu->has_slice_pg = 1;
363 	sseu->has_subslice_pg = 1;
364 	sseu->has_eu_pg = 1;
365 }
366 
367 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
368 {
369 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
370 	u32 fuse;
371 	u8 subslice_mask = 0;
372 
373 	fuse = I915_READ(CHV_FUSE_GT);
374 
375 	sseu->slice_mask = BIT(0);
376 	intel_sseu_set_info(sseu, 1, 2, 8);
377 
378 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
379 		u8 disabled_mask =
380 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
381 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
382 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
383 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
384 
385 		subslice_mask |= BIT(0);
386 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
387 	}
388 
389 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
390 		u8 disabled_mask =
391 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
392 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
393 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
394 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
395 
396 		subslice_mask |= BIT(1);
397 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
398 	}
399 
400 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
401 
402 	sseu->eu_total = compute_eu_total(sseu);
403 
404 	/*
405 	 * CHV expected to always have a uniform distribution of EU
406 	 * across subslices.
407 	*/
408 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
409 				sseu->eu_total /
410 					intel_sseu_subslice_total(sseu) :
411 				0;
412 	/*
413 	 * CHV supports subslice power gating on devices with more than
414 	 * one subslice, and supports EU power gating on devices with
415 	 * more than one EU pair per subslice.
416 	*/
417 	sseu->has_slice_pg = 0;
418 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
419 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
420 }
421 
422 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
423 {
424 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
425 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
426 	int s, ss;
427 	u32 fuse2, eu_disable, subslice_mask;
428 	const u8 eu_mask = 0xff;
429 
430 	fuse2 = I915_READ(GEN8_FUSE2);
431 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
432 
433 	/* BXT has a single slice and at most 3 subslices. */
434 	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
435 			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
436 
437 	/*
438 	 * The subslice disable field is global, i.e. it applies
439 	 * to each of the enabled slices.
440 	*/
441 	subslice_mask = (1 << sseu->max_subslices) - 1;
442 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
443 			   GEN9_F2_SS_DIS_SHIFT);
444 
445 	/*
446 	 * Iterate through enabled slices and subslices to
447 	 * count the total enabled EU.
448 	*/
449 	for (s = 0; s < sseu->max_slices; s++) {
450 		if (!(sseu->slice_mask & BIT(s)))
451 			/* skip disabled slice */
452 			continue;
453 
454 		intel_sseu_set_subslices(sseu, s, subslice_mask);
455 
456 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
457 		for (ss = 0; ss < sseu->max_subslices; ss++) {
458 			int eu_per_ss;
459 			u8 eu_disabled_mask;
460 
461 			if (!intel_sseu_has_subslice(sseu, s, ss))
462 				/* skip disabled subslice */
463 				continue;
464 
465 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
466 
467 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
468 
469 			eu_per_ss = sseu->max_eus_per_subslice -
470 				hweight8(eu_disabled_mask);
471 
472 			/*
473 			 * Record which subslice(s) has(have) 7 EUs. we
474 			 * can tune the hash used to spread work among
475 			 * subslices if they are unbalanced.
476 			 */
477 			if (eu_per_ss == 7)
478 				sseu->subslice_7eu[s] |= BIT(ss);
479 		}
480 	}
481 
482 	sseu->eu_total = compute_eu_total(sseu);
483 
484 	/*
485 	 * SKL is expected to always have a uniform distribution
486 	 * of EU across subslices with the exception that any one
487 	 * EU in any one subslice may be fused off for die
488 	 * recovery. BXT is expected to be perfectly uniform in EU
489 	 * distribution.
490 	*/
491 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
492 				DIV_ROUND_UP(sseu->eu_total,
493 					     intel_sseu_subslice_total(sseu)) :
494 				0;
495 	/*
496 	 * SKL+ supports slice power gating on devices with more than
497 	 * one slice, and supports EU power gating on devices with
498 	 * more than one EU pair per subslice. BXT+ supports subslice
499 	 * power gating on devices with more than one subslice, and
500 	 * supports EU power gating on devices with more than one EU
501 	 * pair per subslice.
502 	*/
503 	sseu->has_slice_pg =
504 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
505 	sseu->has_subslice_pg =
506 		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
507 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
508 
509 	if (IS_GEN9_LP(dev_priv)) {
510 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
511 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
512 
513 		sseu->min_eu_in_pool = 0;
514 		if (info->has_pooled_eu) {
515 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
516 				sseu->min_eu_in_pool = 3;
517 			else if (IS_SS_DISABLED(1))
518 				sseu->min_eu_in_pool = 6;
519 			else
520 				sseu->min_eu_in_pool = 9;
521 		}
522 #undef IS_SS_DISABLED
523 	}
524 }
525 
526 static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
527 {
528 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
529 	int s, ss;
530 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
531 
532 	fuse2 = I915_READ(GEN8_FUSE2);
533 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
534 	intel_sseu_set_info(sseu, 3, 3, 8);
535 
536 	/*
537 	 * The subslice disable field is global, i.e. it applies
538 	 * to each of the enabled slices.
539 	 */
540 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
541 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
542 			   GEN8_F2_SS_DIS_SHIFT);
543 
544 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
545 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
546 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
547 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
548 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
549 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
550 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
551 
552 	/*
553 	 * Iterate through enabled slices and subslices to
554 	 * count the total enabled EU.
555 	 */
556 	for (s = 0; s < sseu->max_slices; s++) {
557 		if (!(sseu->slice_mask & BIT(s)))
558 			/* skip disabled slice */
559 			continue;
560 
561 		intel_sseu_set_subslices(sseu, s, subslice_mask);
562 
563 		for (ss = 0; ss < sseu->max_subslices; ss++) {
564 			u8 eu_disabled_mask;
565 			u32 n_disabled;
566 
567 			if (!intel_sseu_has_subslice(sseu, s, ss))
568 				/* skip disabled subslice */
569 				continue;
570 
571 			eu_disabled_mask =
572 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
573 
574 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
575 
576 			n_disabled = hweight8(eu_disabled_mask);
577 
578 			/*
579 			 * Record which subslices have 7 EUs.
580 			 */
581 			if (sseu->max_eus_per_subslice - n_disabled == 7)
582 				sseu->subslice_7eu[s] |= 1 << ss;
583 		}
584 	}
585 
586 	sseu->eu_total = compute_eu_total(sseu);
587 
588 	/*
589 	 * BDW is expected to always have a uniform distribution of EU across
590 	 * subslices with the exception that any one EU in any one subslice may
591 	 * be fused off for die recovery.
592 	 */
593 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
594 				DIV_ROUND_UP(sseu->eu_total,
595 					     intel_sseu_subslice_total(sseu)) :
596 				0;
597 
598 	/*
599 	 * BDW supports slice power gating on devices with more than
600 	 * one slice.
601 	 */
602 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
603 	sseu->has_subslice_pg = 0;
604 	sseu->has_eu_pg = 0;
605 }
606 
607 static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
608 {
609 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
610 	u32 fuse1;
611 	u8 subslice_mask = 0;
612 	int s, ss;
613 
614 	/*
615 	 * There isn't a register to tell us how many slices/subslices. We
616 	 * work off the PCI-ids here.
617 	 */
618 	switch (INTEL_INFO(dev_priv)->gt) {
619 	default:
620 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
621 		/* fall through */
622 	case 1:
623 		sseu->slice_mask = BIT(0);
624 		subslice_mask = BIT(0);
625 		break;
626 	case 2:
627 		sseu->slice_mask = BIT(0);
628 		subslice_mask = BIT(0) | BIT(1);
629 		break;
630 	case 3:
631 		sseu->slice_mask = BIT(0) | BIT(1);
632 		subslice_mask = BIT(0) | BIT(1);
633 		break;
634 	}
635 
636 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
637 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
638 	default:
639 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
640 			     HSW_F1_EU_DIS_SHIFT);
641 		/* fall through */
642 	case HSW_F1_EU_DIS_10EUS:
643 		sseu->eu_per_subslice = 10;
644 		break;
645 	case HSW_F1_EU_DIS_8EUS:
646 		sseu->eu_per_subslice = 8;
647 		break;
648 	case HSW_F1_EU_DIS_6EUS:
649 		sseu->eu_per_subslice = 6;
650 		break;
651 	}
652 
653 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
654 			    hweight8(subslice_mask),
655 			    sseu->eu_per_subslice);
656 
657 	for (s = 0; s < sseu->max_slices; s++) {
658 		intel_sseu_set_subslices(sseu, s, subslice_mask);
659 
660 		for (ss = 0; ss < sseu->max_subslices; ss++) {
661 			sseu_set_eus(sseu, s, ss,
662 				     (1UL << sseu->eu_per_subslice) - 1);
663 		}
664 	}
665 
666 	sseu->eu_total = compute_eu_total(sseu);
667 
668 	/* No powergating for you. */
669 	sseu->has_slice_pg = 0;
670 	sseu->has_subslice_pg = 0;
671 	sseu->has_eu_pg = 0;
672 }
673 
674 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
675 {
676 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
677 	u32 base_freq, frac_freq;
678 
679 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
680 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
681 	base_freq *= 1000000;
682 
683 	frac_freq = ((ts_override &
684 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
685 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
686 	frac_freq = 1000000 / (frac_freq + 1);
687 
688 	return base_freq + frac_freq;
689 }
690 
691 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
692 					u32 rpm_config_reg)
693 {
694 	u32 f19_2_mhz = 19200000;
695 	u32 f24_mhz = 24000000;
696 	u32 crystal_clock = (rpm_config_reg &
697 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
698 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
699 
700 	switch (crystal_clock) {
701 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
702 		return f19_2_mhz;
703 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
704 		return f24_mhz;
705 	default:
706 		MISSING_CASE(crystal_clock);
707 		return 0;
708 	}
709 }
710 
711 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
712 					u32 rpm_config_reg)
713 {
714 	u32 f19_2_mhz = 19200000;
715 	u32 f24_mhz = 24000000;
716 	u32 f25_mhz = 25000000;
717 	u32 f38_4_mhz = 38400000;
718 	u32 crystal_clock = (rpm_config_reg &
719 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
720 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
721 
722 	switch (crystal_clock) {
723 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
724 		return f24_mhz;
725 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
726 		return f19_2_mhz;
727 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
728 		return f38_4_mhz;
729 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
730 		return f25_mhz;
731 	default:
732 		MISSING_CASE(crystal_clock);
733 		return 0;
734 	}
735 }
736 
737 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
738 {
739 	u32 f12_5_mhz = 12500000;
740 	u32 f19_2_mhz = 19200000;
741 	u32 f24_mhz = 24000000;
742 
743 	if (INTEL_GEN(dev_priv) <= 4) {
744 		/* PRMs say:
745 		 *
746 		 *     "The value in this register increments once every 16
747 		 *      hclks." (through the “Clocking Configuration”
748 		 *      (“CLKCFG”) MCHBAR register)
749 		 */
750 		return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
751 	} else if (INTEL_GEN(dev_priv) <= 8) {
752 		/* PRMs say:
753 		 *
754 		 *     "The PCU TSC counts 10ns increments; this timestamp
755 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
756 		 *      rolling over every 1.5 hours).
757 		 */
758 		return f12_5_mhz;
759 	} else if (INTEL_GEN(dev_priv) <= 9) {
760 		u32 ctc_reg = I915_READ(CTC_MODE);
761 		u32 freq = 0;
762 
763 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
764 			freq = read_reference_ts_freq(dev_priv);
765 		} else {
766 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
767 
768 			/* Now figure out how the command stream's timestamp
769 			 * register increments from this frequency (it might
770 			 * increment only every few clock cycle).
771 			 */
772 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
773 				      CTC_SHIFT_PARAMETER_SHIFT);
774 		}
775 
776 		return freq;
777 	} else if (INTEL_GEN(dev_priv) <= 12) {
778 		u32 ctc_reg = I915_READ(CTC_MODE);
779 		u32 freq = 0;
780 
781 		/* First figure out the reference frequency. There are 2 ways
782 		 * we can compute the frequency, either through the
783 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
784 		 * tells us which one we should use.
785 		 */
786 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
787 			freq = read_reference_ts_freq(dev_priv);
788 		} else {
789 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
790 
791 			if (INTEL_GEN(dev_priv) <= 10)
792 				freq = gen10_get_crystal_clock_freq(dev_priv,
793 								rpm_config_reg);
794 			else
795 				freq = gen11_get_crystal_clock_freq(dev_priv,
796 								rpm_config_reg);
797 
798 			/* Now figure out how the command stream's timestamp
799 			 * register increments from this frequency (it might
800 			 * increment only every few clock cycle).
801 			 */
802 			freq >>= 3 - ((rpm_config_reg &
803 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
804 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
805 		}
806 
807 		return freq;
808 	}
809 
810 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
811 	return 0;
812 }
813 
814 #undef INTEL_VGA_DEVICE
815 #define INTEL_VGA_DEVICE(id, info) (id)
816 
817 static const u16 subplatform_ult_ids[] = {
818 	INTEL_HSW_ULT_GT1_IDS(0),
819 	INTEL_HSW_ULT_GT2_IDS(0),
820 	INTEL_HSW_ULT_GT3_IDS(0),
821 	INTEL_BDW_ULT_GT1_IDS(0),
822 	INTEL_BDW_ULT_GT2_IDS(0),
823 	INTEL_BDW_ULT_GT3_IDS(0),
824 	INTEL_BDW_ULT_RSVD_IDS(0),
825 	INTEL_SKL_ULT_GT1_IDS(0),
826 	INTEL_SKL_ULT_GT2_IDS(0),
827 	INTEL_SKL_ULT_GT3_IDS(0),
828 	INTEL_KBL_ULT_GT1_IDS(0),
829 	INTEL_KBL_ULT_GT2_IDS(0),
830 	INTEL_KBL_ULT_GT3_IDS(0),
831 	INTEL_CFL_U_GT2_IDS(0),
832 	INTEL_CFL_U_GT3_IDS(0),
833 	INTEL_WHL_U_GT1_IDS(0),
834 	INTEL_WHL_U_GT2_IDS(0),
835 	INTEL_WHL_U_GT3_IDS(0),
836 	INTEL_CML_U_GT1_IDS(0),
837 	INTEL_CML_U_GT2_IDS(0),
838 };
839 
840 static const u16 subplatform_ulx_ids[] = {
841 	INTEL_HSW_ULX_GT1_IDS(0),
842 	INTEL_HSW_ULX_GT2_IDS(0),
843 	INTEL_BDW_ULX_GT1_IDS(0),
844 	INTEL_BDW_ULX_GT2_IDS(0),
845 	INTEL_BDW_ULX_GT3_IDS(0),
846 	INTEL_BDW_ULX_RSVD_IDS(0),
847 	INTEL_SKL_ULX_GT1_IDS(0),
848 	INTEL_SKL_ULX_GT2_IDS(0),
849 	INTEL_KBL_ULX_GT1_IDS(0),
850 	INTEL_KBL_ULX_GT2_IDS(0),
851 	INTEL_AML_KBL_GT2_IDS(0),
852 	INTEL_AML_CFL_GT2_IDS(0),
853 };
854 
855 static const u16 subplatform_portf_ids[] = {
856 	INTEL_CNL_PORT_F_IDS(0),
857 	INTEL_ICL_PORT_F_IDS(0),
858 };
859 
860 static bool find_devid(u16 id, const u16 *p, unsigned int num)
861 {
862 	for (; num; num--, p++) {
863 		if (*p == id)
864 			return true;
865 	}
866 
867 	return false;
868 }
869 
870 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
871 {
872 	const struct intel_device_info *info = INTEL_INFO(i915);
873 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
874 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
875 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
876 	u16 devid = INTEL_DEVID(i915);
877 	u32 mask = 0;
878 
879 	/* Make sure IS_<platform> checks are working. */
880 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
881 
882 	/* Find and mark subplatform bits based on the PCI device id. */
883 	if (find_devid(devid, subplatform_ult_ids,
884 		       ARRAY_SIZE(subplatform_ult_ids))) {
885 		mask = BIT(INTEL_SUBPLATFORM_ULT);
886 	} else if (find_devid(devid, subplatform_ulx_ids,
887 			      ARRAY_SIZE(subplatform_ulx_ids))) {
888 		mask = BIT(INTEL_SUBPLATFORM_ULX);
889 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
890 			/* ULX machines are also considered ULT. */
891 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
892 		}
893 	} else if (find_devid(devid, subplatform_portf_ids,
894 			      ARRAY_SIZE(subplatform_portf_ids))) {
895 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
896 	}
897 
898 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
899 
900 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
901 }
902 
903 /**
904  * intel_device_info_runtime_init - initialize runtime info
905  * @dev_priv: the i915 device
906  *
907  * Determine various intel_device_info fields at runtime.
908  *
909  * Use it when either:
910  *   - it's judged too laborious to fill n static structures with the limit
911  *     when a simple if statement does the job,
912  *   - run-time checks (eg read fuse/strap registers) are needed.
913  *
914  * This function needs to be called:
915  *   - after the MMIO has been setup as we are reading registers,
916  *   - after the PCH has been detected,
917  *   - before the first usage of the fields it can tweak.
918  */
919 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
920 {
921 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
922 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
923 	enum pipe pipe;
924 
925 	if (INTEL_GEN(dev_priv) >= 10) {
926 		for_each_pipe(dev_priv, pipe)
927 			runtime->num_scalers[pipe] = 2;
928 	} else if (IS_GEN(dev_priv, 9)) {
929 		runtime->num_scalers[PIPE_A] = 2;
930 		runtime->num_scalers[PIPE_B] = 2;
931 		runtime->num_scalers[PIPE_C] = 1;
932 	}
933 
934 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
935 
936 	if (INTEL_GEN(dev_priv) >= 11)
937 		for_each_pipe(dev_priv, pipe)
938 			runtime->num_sprites[pipe] = 6;
939 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
940 		for_each_pipe(dev_priv, pipe)
941 			runtime->num_sprites[pipe] = 3;
942 	else if (IS_BROXTON(dev_priv)) {
943 		/*
944 		 * Skylake and Broxton currently don't expose the topmost plane as its
945 		 * use is exclusive with the legacy cursor and we only want to expose
946 		 * one of those, not both. Until we can safely expose the topmost plane
947 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
948 		 * we don't expose the topmost plane at all to prevent ABI breakage
949 		 * down the line.
950 		 */
951 
952 		runtime->num_sprites[PIPE_A] = 2;
953 		runtime->num_sprites[PIPE_B] = 2;
954 		runtime->num_sprites[PIPE_C] = 1;
955 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
956 		for_each_pipe(dev_priv, pipe)
957 			runtime->num_sprites[pipe] = 2;
958 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
959 		for_each_pipe(dev_priv, pipe)
960 			runtime->num_sprites[pipe] = 1;
961 	}
962 
963 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
964 	    HAS_PCH_SPLIT(dev_priv)) {
965 		u32 fuse_strap = I915_READ(FUSE_STRAP);
966 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
967 
968 		/*
969 		 * SFUSE_STRAP is supposed to have a bit signalling the display
970 		 * is fused off. Unfortunately it seems that, at least in
971 		 * certain cases, fused off display means that PCH display
972 		 * reads don't land anywhere. In that case, we read 0s.
973 		 *
974 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
975 		 * should be set when taking over after the firmware.
976 		 */
977 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
978 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
979 		    (HAS_PCH_CPT(dev_priv) &&
980 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
981 			drm_info(&dev_priv->drm,
982 				 "Display fused off, disabling\n");
983 			info->pipe_mask = 0;
984 			info->cpu_transcoder_mask = 0;
985 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
986 			drm_info(&dev_priv->drm, "PipeC fused off\n");
987 			info->pipe_mask &= ~BIT(PIPE_C);
988 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
989 		}
990 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
991 		u32 dfsm = I915_READ(SKL_DFSM);
992 
993 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE) {
994 			info->pipe_mask &= ~BIT(PIPE_A);
995 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_A);
996 		}
997 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE) {
998 			info->pipe_mask &= ~BIT(PIPE_B);
999 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_B);
1000 		}
1001 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE) {
1002 			info->pipe_mask &= ~BIT(PIPE_C);
1003 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
1004 		}
1005 		if (INTEL_GEN(dev_priv) >= 12 &&
1006 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE)) {
1007 			info->pipe_mask &= ~BIT(PIPE_D);
1008 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_D);
1009 		}
1010 
1011 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
1012 			info->display.has_hdcp = 0;
1013 
1014 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
1015 			info->display.has_fbc = 0;
1016 
1017 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
1018 			info->display.has_csr = 0;
1019 
1020 		if (INTEL_GEN(dev_priv) >= 10 &&
1021 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
1022 			info->display.has_dsc = 0;
1023 	}
1024 
1025 	/* Initialize slice/subslice/EU info */
1026 	if (IS_HASWELL(dev_priv))
1027 		hsw_sseu_info_init(dev_priv);
1028 	else if (IS_CHERRYVIEW(dev_priv))
1029 		cherryview_sseu_info_init(dev_priv);
1030 	else if (IS_BROADWELL(dev_priv))
1031 		bdw_sseu_info_init(dev_priv);
1032 	else if (IS_GEN(dev_priv, 9))
1033 		gen9_sseu_info_init(dev_priv);
1034 	else if (IS_GEN(dev_priv, 10))
1035 		gen10_sseu_info_init(dev_priv);
1036 	else if (IS_GEN(dev_priv, 11))
1037 		gen11_sseu_info_init(dev_priv);
1038 	else if (INTEL_GEN(dev_priv) >= 12)
1039 		gen12_sseu_info_init(dev_priv);
1040 
1041 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1042 		drm_info(&dev_priv->drm,
1043 			 "Disabling ppGTT for VT-d support\n");
1044 		info->ppgtt_type = INTEL_PPGTT_NONE;
1045 	}
1046 
1047 	runtime->rawclk_freq = intel_read_rawclk(dev_priv);
1048 	drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
1049 
1050 	/* Initialize command stream timestamp frequency */
1051 	runtime->cs_timestamp_frequency_hz =
1052 		read_timestamp_frequency(dev_priv);
1053 	if (runtime->cs_timestamp_frequency_hz) {
1054 		runtime->cs_timestamp_period_ns =
1055 			i915_cs_timestamp_ticks_to_ns(dev_priv, 1);
1056 		drm_dbg(&dev_priv->drm,
1057 			"CS timestamp wraparound in %lldms\n",
1058 			div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
1059 					    S32_MAX),
1060 				USEC_PER_SEC));
1061 	}
1062 }
1063 
1064 void intel_driver_caps_print(const struct intel_driver_caps *caps,
1065 			     struct drm_printer *p)
1066 {
1067 	drm_printf(p, "Has logical contexts? %s\n",
1068 		   yesno(caps->has_logical_contexts));
1069 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
1070 }
1071 
1072 /*
1073  * Determine which engines are fused off in our particular hardware. Since the
1074  * fuse register is in the blitter powerwell, we need forcewake to be ready at
1075  * this point (but later we need to prune the forcewake domains for engines that
1076  * are indeed fused off).
1077  */
1078 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1079 {
1080 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1081 	unsigned int logical_vdbox = 0;
1082 	unsigned int i;
1083 	u32 media_fuse;
1084 	u16 vdbox_mask;
1085 	u16 vebox_mask;
1086 
1087 	if (INTEL_GEN(dev_priv) < 11)
1088 		return;
1089 
1090 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1091 
1092 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1093 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1094 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1095 
1096 	for (i = 0; i < I915_MAX_VCS; i++) {
1097 		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1098 			vdbox_mask &= ~BIT(i);
1099 			continue;
1100 		}
1101 
1102 		if (!(BIT(i) & vdbox_mask)) {
1103 			info->engine_mask &= ~BIT(_VCS(i));
1104 			drm_dbg(&dev_priv->drm, "vcs%u fused off\n", i);
1105 			continue;
1106 		}
1107 
1108 		/*
1109 		 * In Gen11, only even numbered logical VDBOXes are
1110 		 * hooked up to an SFC (Scaler & Format Converter) unit.
1111 		 * In TGL each VDBOX has access to an SFC.
1112 		 */
1113 		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
1114 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1115 	}
1116 	drm_dbg(&dev_priv->drm, "vdbox enable: %04x, instances: %04lx\n",
1117 		vdbox_mask, VDBOX_MASK(dev_priv));
1118 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1119 
1120 	for (i = 0; i < I915_MAX_VECS; i++) {
1121 		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1122 			vebox_mask &= ~BIT(i);
1123 			continue;
1124 		}
1125 
1126 		if (!(BIT(i) & vebox_mask)) {
1127 			info->engine_mask &= ~BIT(_VECS(i));
1128 			drm_dbg(&dev_priv->drm, "vecs%u fused off\n", i);
1129 		}
1130 	}
1131 	drm_dbg(&dev_priv->drm, "vebox enable: %04x, instances: %04lx\n",
1132 		vebox_mask, VEBOX_MASK(dev_priv));
1133 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1134 }
1135