1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <drm/drm_print.h> 26 27 #include "intel_device_info.h" 28 #include "i915_drv.h" 29 30 #define PLATFORM_NAME(x) [INTEL_##x] = #x 31 static const char * const platform_names[] = { 32 PLATFORM_NAME(I830), 33 PLATFORM_NAME(I845G), 34 PLATFORM_NAME(I85X), 35 PLATFORM_NAME(I865G), 36 PLATFORM_NAME(I915G), 37 PLATFORM_NAME(I915GM), 38 PLATFORM_NAME(I945G), 39 PLATFORM_NAME(I945GM), 40 PLATFORM_NAME(G33), 41 PLATFORM_NAME(PINEVIEW), 42 PLATFORM_NAME(I965G), 43 PLATFORM_NAME(I965GM), 44 PLATFORM_NAME(G45), 45 PLATFORM_NAME(GM45), 46 PLATFORM_NAME(IRONLAKE), 47 PLATFORM_NAME(SANDYBRIDGE), 48 PLATFORM_NAME(IVYBRIDGE), 49 PLATFORM_NAME(VALLEYVIEW), 50 PLATFORM_NAME(HASWELL), 51 PLATFORM_NAME(BROADWELL), 52 PLATFORM_NAME(CHERRYVIEW), 53 PLATFORM_NAME(SKYLAKE), 54 PLATFORM_NAME(BROXTON), 55 PLATFORM_NAME(KABYLAKE), 56 PLATFORM_NAME(GEMINILAKE), 57 PLATFORM_NAME(COFFEELAKE), 58 PLATFORM_NAME(CANNONLAKE), 59 PLATFORM_NAME(ICELAKE), 60 }; 61 #undef PLATFORM_NAME 62 63 const char *intel_platform_name(enum intel_platform platform) 64 { 65 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS); 66 67 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) || 68 platform_names[platform] == NULL)) 69 return "<unknown>"; 70 71 return platform_names[platform]; 72 } 73 74 void intel_device_info_dump_flags(const struct intel_device_info *info, 75 struct drm_printer *p) 76 { 77 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name)); 78 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG); 79 #undef PRINT_FLAG 80 } 81 82 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) 83 { 84 int s; 85 86 drm_printf(p, "slice total: %u, mask=%04x\n", 87 hweight8(sseu->slice_mask), sseu->slice_mask); 88 drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu)); 89 for (s = 0; s < sseu->max_slices; s++) { 90 drm_printf(p, "slice%d: %u subslices, mask=%04x\n", 91 s, hweight8(sseu->subslice_mask[s]), 92 sseu->subslice_mask[s]); 93 } 94 drm_printf(p, "EU total: %u\n", sseu->eu_total); 95 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); 96 drm_printf(p, "has slice power gating: %s\n", 97 yesno(sseu->has_slice_pg)); 98 drm_printf(p, "has subslice power gating: %s\n", 99 yesno(sseu->has_subslice_pg)); 100 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg)); 101 } 102 103 void intel_device_info_dump_runtime(const struct intel_device_info *info, 104 struct drm_printer *p) 105 { 106 sseu_dump(&info->sseu, p); 107 108 drm_printf(p, "CS timestamp frequency: %u kHz\n", 109 info->cs_timestamp_frequency_khz); 110 } 111 112 void intel_device_info_dump(const struct intel_device_info *info, 113 struct drm_printer *p) 114 { 115 struct drm_i915_private *dev_priv = 116 container_of(info, struct drm_i915_private, info); 117 118 drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n", 119 INTEL_DEVID(dev_priv), 120 INTEL_REVID(dev_priv), 121 intel_platform_name(info->platform), 122 info->gen); 123 124 intel_device_info_dump_flags(info, p); 125 } 126 127 void intel_device_info_dump_topology(const struct sseu_dev_info *sseu, 128 struct drm_printer *p) 129 { 130 int s, ss; 131 132 if (sseu->max_slices == 0) { 133 drm_printf(p, "Unavailable\n"); 134 return; 135 } 136 137 for (s = 0; s < sseu->max_slices; s++) { 138 drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n", 139 s, hweight8(sseu->subslice_mask[s]), 140 sseu->subslice_mask[s]); 141 142 for (ss = 0; ss < sseu->max_subslices; ss++) { 143 u16 enabled_eus = sseu_get_eus(sseu, s, ss); 144 145 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", 146 ss, hweight16(enabled_eus), enabled_eus); 147 } 148 } 149 } 150 151 static u16 compute_eu_total(const struct sseu_dev_info *sseu) 152 { 153 u16 i, total = 0; 154 155 for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++) 156 total += hweight8(sseu->eu_mask[i]); 157 158 return total; 159 } 160 161 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv) 162 { 163 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; 164 u8 s_en; 165 u32 ss_en, ss_en_mask; 166 u8 eu_en; 167 int s; 168 169 sseu->max_slices = 1; 170 sseu->max_subslices = 8; 171 sseu->max_eus_per_subslice = 8; 172 173 s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; 174 ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE); 175 ss_en_mask = BIT(sseu->max_subslices) - 1; 176 eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); 177 178 for (s = 0; s < sseu->max_slices; s++) { 179 if (s_en & BIT(s)) { 180 int ss_idx = sseu->max_subslices * s; 181 int ss; 182 183 sseu->slice_mask |= BIT(s); 184 sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask; 185 for (ss = 0; ss < sseu->max_subslices; ss++) { 186 if (sseu->subslice_mask[s] & BIT(ss)) 187 sseu_set_eus(sseu, s, ss, eu_en); 188 } 189 } 190 } 191 sseu->eu_per_subslice = hweight8(eu_en); 192 sseu->eu_total = compute_eu_total(sseu); 193 194 /* ICL has no power gating restrictions. */ 195 sseu->has_slice_pg = 1; 196 sseu->has_subslice_pg = 1; 197 sseu->has_eu_pg = 1; 198 } 199 200 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv) 201 { 202 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; 203 const u32 fuse2 = I915_READ(GEN8_FUSE2); 204 int s, ss; 205 const int eu_mask = 0xff; 206 u32 subslice_mask, eu_en; 207 208 sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >> 209 GEN10_F2_S_ENA_SHIFT; 210 sseu->max_slices = 6; 211 sseu->max_subslices = 4; 212 sseu->max_eus_per_subslice = 8; 213 214 subslice_mask = (1 << 4) - 1; 215 subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >> 216 GEN10_F2_SS_DIS_SHIFT); 217 218 /* 219 * Slice0 can have up to 3 subslices, but there are only 2 in 220 * slice1/2. 221 */ 222 sseu->subslice_mask[0] = subslice_mask; 223 for (s = 1; s < sseu->max_slices; s++) 224 sseu->subslice_mask[s] = subslice_mask & 0x3; 225 226 /* Slice0 */ 227 eu_en = ~I915_READ(GEN8_EU_DISABLE0); 228 for (ss = 0; ss < sseu->max_subslices; ss++) 229 sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask); 230 /* Slice1 */ 231 sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask); 232 eu_en = ~I915_READ(GEN8_EU_DISABLE1); 233 sseu_set_eus(sseu, 1, 1, eu_en & eu_mask); 234 /* Slice2 */ 235 sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask); 236 sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask); 237 /* Slice3 */ 238 sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask); 239 eu_en = ~I915_READ(GEN8_EU_DISABLE2); 240 sseu_set_eus(sseu, 3, 1, eu_en & eu_mask); 241 /* Slice4 */ 242 sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask); 243 sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask); 244 /* Slice5 */ 245 sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask); 246 eu_en = ~I915_READ(GEN10_EU_DISABLE3); 247 sseu_set_eus(sseu, 5, 1, eu_en & eu_mask); 248 249 /* Do a second pass where we mark the subslices disabled if all their 250 * eus are off. 251 */ 252 for (s = 0; s < sseu->max_slices; s++) { 253 for (ss = 0; ss < sseu->max_subslices; ss++) { 254 if (sseu_get_eus(sseu, s, ss) == 0) 255 sseu->subslice_mask[s] &= ~BIT(ss); 256 } 257 } 258 259 sseu->eu_total = compute_eu_total(sseu); 260 261 /* 262 * CNL is expected to always have a uniform distribution 263 * of EU across subslices with the exception that any one 264 * EU in any one subslice may be fused off for die 265 * recovery. 266 */ 267 sseu->eu_per_subslice = sseu_subslice_total(sseu) ? 268 DIV_ROUND_UP(sseu->eu_total, 269 sseu_subslice_total(sseu)) : 0; 270 271 /* No restrictions on Power Gating */ 272 sseu->has_slice_pg = 1; 273 sseu->has_subslice_pg = 1; 274 sseu->has_eu_pg = 1; 275 } 276 277 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv) 278 { 279 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; 280 u32 fuse; 281 282 fuse = I915_READ(CHV_FUSE_GT); 283 284 sseu->slice_mask = BIT(0); 285 sseu->max_slices = 1; 286 sseu->max_subslices = 2; 287 sseu->max_eus_per_subslice = 8; 288 289 if (!(fuse & CHV_FGT_DISABLE_SS0)) { 290 u8 disabled_mask = 291 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> 292 CHV_FGT_EU_DIS_SS0_R0_SHIFT) | 293 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> 294 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); 295 296 sseu->subslice_mask[0] |= BIT(0); 297 sseu_set_eus(sseu, 0, 0, ~disabled_mask); 298 } 299 300 if (!(fuse & CHV_FGT_DISABLE_SS1)) { 301 u8 disabled_mask = 302 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> 303 CHV_FGT_EU_DIS_SS1_R0_SHIFT) | 304 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> 305 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); 306 307 sseu->subslice_mask[0] |= BIT(1); 308 sseu_set_eus(sseu, 0, 1, ~disabled_mask); 309 } 310 311 sseu->eu_total = compute_eu_total(sseu); 312 313 /* 314 * CHV expected to always have a uniform distribution of EU 315 * across subslices. 316 */ 317 sseu->eu_per_subslice = sseu_subslice_total(sseu) ? 318 sseu->eu_total / sseu_subslice_total(sseu) : 319 0; 320 /* 321 * CHV supports subslice power gating on devices with more than 322 * one subslice, and supports EU power gating on devices with 323 * more than one EU pair per subslice. 324 */ 325 sseu->has_slice_pg = 0; 326 sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1; 327 sseu->has_eu_pg = (sseu->eu_per_subslice > 2); 328 } 329 330 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv) 331 { 332 struct intel_device_info *info = mkwrite_device_info(dev_priv); 333 struct sseu_dev_info *sseu = &info->sseu; 334 int s, ss; 335 u32 fuse2, eu_disable, subslice_mask; 336 const u8 eu_mask = 0xff; 337 338 fuse2 = I915_READ(GEN8_FUSE2); 339 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 340 341 /* BXT has a single slice and at most 3 subslices. */ 342 sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3; 343 sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4; 344 sseu->max_eus_per_subslice = 8; 345 346 /* 347 * The subslice disable field is global, i.e. it applies 348 * to each of the enabled slices. 349 */ 350 subslice_mask = (1 << sseu->max_subslices) - 1; 351 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> 352 GEN9_F2_SS_DIS_SHIFT); 353 354 /* 355 * Iterate through enabled slices and subslices to 356 * count the total enabled EU. 357 */ 358 for (s = 0; s < sseu->max_slices; s++) { 359 if (!(sseu->slice_mask & BIT(s))) 360 /* skip disabled slice */ 361 continue; 362 363 sseu->subslice_mask[s] = subslice_mask; 364 365 eu_disable = I915_READ(GEN9_EU_DISABLE(s)); 366 for (ss = 0; ss < sseu->max_subslices; ss++) { 367 int eu_per_ss; 368 u8 eu_disabled_mask; 369 370 if (!(sseu->subslice_mask[s] & BIT(ss))) 371 /* skip disabled subslice */ 372 continue; 373 374 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; 375 376 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); 377 378 eu_per_ss = sseu->max_eus_per_subslice - 379 hweight8(eu_disabled_mask); 380 381 /* 382 * Record which subslice(s) has(have) 7 EUs. we 383 * can tune the hash used to spread work among 384 * subslices if they are unbalanced. 385 */ 386 if (eu_per_ss == 7) 387 sseu->subslice_7eu[s] |= BIT(ss); 388 } 389 } 390 391 sseu->eu_total = compute_eu_total(sseu); 392 393 /* 394 * SKL is expected to always have a uniform distribution 395 * of EU across subslices with the exception that any one 396 * EU in any one subslice may be fused off for die 397 * recovery. BXT is expected to be perfectly uniform in EU 398 * distribution. 399 */ 400 sseu->eu_per_subslice = sseu_subslice_total(sseu) ? 401 DIV_ROUND_UP(sseu->eu_total, 402 sseu_subslice_total(sseu)) : 0; 403 /* 404 * SKL+ supports slice power gating on devices with more than 405 * one slice, and supports EU power gating on devices with 406 * more than one EU pair per subslice. BXT+ supports subslice 407 * power gating on devices with more than one subslice, and 408 * supports EU power gating on devices with more than one EU 409 * pair per subslice. 410 */ 411 sseu->has_slice_pg = 412 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1; 413 sseu->has_subslice_pg = 414 IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1; 415 sseu->has_eu_pg = sseu->eu_per_subslice > 2; 416 417 if (IS_GEN9_LP(dev_priv)) { 418 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss))) 419 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3; 420 421 sseu->min_eu_in_pool = 0; 422 if (info->has_pooled_eu) { 423 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) 424 sseu->min_eu_in_pool = 3; 425 else if (IS_SS_DISABLED(1)) 426 sseu->min_eu_in_pool = 6; 427 else 428 sseu->min_eu_in_pool = 9; 429 } 430 #undef IS_SS_DISABLED 431 } 432 } 433 434 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv) 435 { 436 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; 437 int s, ss; 438 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ 439 440 fuse2 = I915_READ(GEN8_FUSE2); 441 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 442 sseu->max_slices = 3; 443 sseu->max_subslices = 3; 444 sseu->max_eus_per_subslice = 8; 445 446 /* 447 * The subslice disable field is global, i.e. it applies 448 * to each of the enabled slices. 449 */ 450 subslice_mask = GENMASK(sseu->max_subslices - 1, 0); 451 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> 452 GEN8_F2_SS_DIS_SHIFT); 453 454 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK; 455 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) | 456 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) << 457 (32 - GEN8_EU_DIS0_S1_SHIFT)); 458 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) | 459 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) << 460 (32 - GEN8_EU_DIS1_S2_SHIFT)); 461 462 /* 463 * Iterate through enabled slices and subslices to 464 * count the total enabled EU. 465 */ 466 for (s = 0; s < sseu->max_slices; s++) { 467 if (!(sseu->slice_mask & BIT(s))) 468 /* skip disabled slice */ 469 continue; 470 471 sseu->subslice_mask[s] = subslice_mask; 472 473 for (ss = 0; ss < sseu->max_subslices; ss++) { 474 u8 eu_disabled_mask; 475 u32 n_disabled; 476 477 if (!(sseu->subslice_mask[s] & BIT(ss))) 478 /* skip disabled subslice */ 479 continue; 480 481 eu_disabled_mask = 482 eu_disable[s] >> (ss * sseu->max_eus_per_subslice); 483 484 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); 485 486 n_disabled = hweight8(eu_disabled_mask); 487 488 /* 489 * Record which subslices have 7 EUs. 490 */ 491 if (sseu->max_eus_per_subslice - n_disabled == 7) 492 sseu->subslice_7eu[s] |= 1 << ss; 493 } 494 } 495 496 sseu->eu_total = compute_eu_total(sseu); 497 498 /* 499 * BDW is expected to always have a uniform distribution of EU across 500 * subslices with the exception that any one EU in any one subslice may 501 * be fused off for die recovery. 502 */ 503 sseu->eu_per_subslice = sseu_subslice_total(sseu) ? 504 DIV_ROUND_UP(sseu->eu_total, 505 sseu_subslice_total(sseu)) : 0; 506 507 /* 508 * BDW supports slice power gating on devices with more than 509 * one slice. 510 */ 511 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; 512 sseu->has_subslice_pg = 0; 513 sseu->has_eu_pg = 0; 514 } 515 516 static void haswell_sseu_info_init(struct drm_i915_private *dev_priv) 517 { 518 struct intel_device_info *info = mkwrite_device_info(dev_priv); 519 struct sseu_dev_info *sseu = &info->sseu; 520 u32 fuse1; 521 int s, ss; 522 523 /* 524 * There isn't a register to tell us how many slices/subslices. We 525 * work off the PCI-ids here. 526 */ 527 switch (info->gt) { 528 default: 529 MISSING_CASE(info->gt); 530 /* fall through */ 531 case 1: 532 sseu->slice_mask = BIT(0); 533 sseu->subslice_mask[0] = BIT(0); 534 break; 535 case 2: 536 sseu->slice_mask = BIT(0); 537 sseu->subslice_mask[0] = BIT(0) | BIT(1); 538 break; 539 case 3: 540 sseu->slice_mask = BIT(0) | BIT(1); 541 sseu->subslice_mask[0] = BIT(0) | BIT(1); 542 sseu->subslice_mask[1] = BIT(0) | BIT(1); 543 break; 544 } 545 546 sseu->max_slices = hweight8(sseu->slice_mask); 547 sseu->max_subslices = hweight8(sseu->subslice_mask[0]); 548 549 fuse1 = I915_READ(HSW_PAVP_FUSE1); 550 switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) { 551 default: 552 MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >> 553 HSW_F1_EU_DIS_SHIFT); 554 /* fall through */ 555 case HSW_F1_EU_DIS_10EUS: 556 sseu->eu_per_subslice = 10; 557 break; 558 case HSW_F1_EU_DIS_8EUS: 559 sseu->eu_per_subslice = 8; 560 break; 561 case HSW_F1_EU_DIS_6EUS: 562 sseu->eu_per_subslice = 6; 563 break; 564 } 565 sseu->max_eus_per_subslice = sseu->eu_per_subslice; 566 567 for (s = 0; s < sseu->max_slices; s++) { 568 for (ss = 0; ss < sseu->max_subslices; ss++) { 569 sseu_set_eus(sseu, s, ss, 570 (1UL << sseu->eu_per_subslice) - 1); 571 } 572 } 573 574 sseu->eu_total = compute_eu_total(sseu); 575 576 /* No powergating for you. */ 577 sseu->has_slice_pg = 0; 578 sseu->has_subslice_pg = 0; 579 sseu->has_eu_pg = 0; 580 } 581 582 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv) 583 { 584 u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE); 585 u32 base_freq, frac_freq; 586 587 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> 588 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; 589 base_freq *= 1000; 590 591 frac_freq = ((ts_override & 592 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> 593 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); 594 frac_freq = 1000 / (frac_freq + 1); 595 596 return base_freq + frac_freq; 597 } 598 599 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv, 600 u32 rpm_config_reg) 601 { 602 u32 f19_2_mhz = 19200; 603 u32 f24_mhz = 24000; 604 u32 crystal_clock = (rpm_config_reg & 605 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> 606 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; 607 608 switch (crystal_clock) { 609 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: 610 return f19_2_mhz; 611 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: 612 return f24_mhz; 613 default: 614 MISSING_CASE(crystal_clock); 615 return 0; 616 } 617 } 618 619 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv, 620 u32 rpm_config_reg) 621 { 622 u32 f19_2_mhz = 19200; 623 u32 f24_mhz = 24000; 624 u32 f25_mhz = 25000; 625 u32 f38_4_mhz = 38400; 626 u32 crystal_clock = (rpm_config_reg & 627 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> 628 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; 629 630 switch (crystal_clock) { 631 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: 632 return f24_mhz; 633 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: 634 return f19_2_mhz; 635 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: 636 return f38_4_mhz; 637 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: 638 return f25_mhz; 639 default: 640 MISSING_CASE(crystal_clock); 641 return 0; 642 } 643 } 644 645 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv) 646 { 647 u32 f12_5_mhz = 12500; 648 u32 f19_2_mhz = 19200; 649 u32 f24_mhz = 24000; 650 651 if (INTEL_GEN(dev_priv) <= 4) { 652 /* PRMs say: 653 * 654 * "The value in this register increments once every 16 655 * hclks." (through the “Clocking Configuration” 656 * (“CLKCFG”) MCHBAR register) 657 */ 658 return dev_priv->rawclk_freq / 16; 659 } else if (INTEL_GEN(dev_priv) <= 8) { 660 /* PRMs say: 661 * 662 * "The PCU TSC counts 10ns increments; this timestamp 663 * reflects bits 38:3 of the TSC (i.e. 80ns granularity, 664 * rolling over every 1.5 hours). 665 */ 666 return f12_5_mhz; 667 } else if (INTEL_GEN(dev_priv) <= 9) { 668 u32 ctc_reg = I915_READ(CTC_MODE); 669 u32 freq = 0; 670 671 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { 672 freq = read_reference_ts_freq(dev_priv); 673 } else { 674 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz; 675 676 /* Now figure out how the command stream's timestamp 677 * register increments from this frequency (it might 678 * increment only every few clock cycle). 679 */ 680 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> 681 CTC_SHIFT_PARAMETER_SHIFT); 682 } 683 684 return freq; 685 } else if (INTEL_GEN(dev_priv) <= 11) { 686 u32 ctc_reg = I915_READ(CTC_MODE); 687 u32 freq = 0; 688 689 /* First figure out the reference frequency. There are 2 ways 690 * we can compute the frequency, either through the 691 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE 692 * tells us which one we should use. 693 */ 694 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { 695 freq = read_reference_ts_freq(dev_priv); 696 } else { 697 u32 rpm_config_reg = I915_READ(RPM_CONFIG0); 698 699 if (INTEL_GEN(dev_priv) <= 10) 700 freq = gen10_get_crystal_clock_freq(dev_priv, 701 rpm_config_reg); 702 else 703 freq = gen11_get_crystal_clock_freq(dev_priv, 704 rpm_config_reg); 705 706 /* Now figure out how the command stream's timestamp 707 * register increments from this frequency (it might 708 * increment only every few clock cycle). 709 */ 710 freq >>= 3 - ((rpm_config_reg & 711 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 712 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); 713 } 714 715 return freq; 716 } 717 718 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n"); 719 return 0; 720 } 721 722 /** 723 * intel_device_info_runtime_init - initialize runtime info 724 * @info: intel device info struct 725 * 726 * Determine various intel_device_info fields at runtime. 727 * 728 * Use it when either: 729 * - it's judged too laborious to fill n static structures with the limit 730 * when a simple if statement does the job, 731 * - run-time checks (eg read fuse/strap registers) are needed. 732 * 733 * This function needs to be called: 734 * - after the MMIO has been setup as we are reading registers, 735 * - after the PCH has been detected, 736 * - before the first usage of the fields it can tweak. 737 */ 738 void intel_device_info_runtime_init(struct intel_device_info *info) 739 { 740 struct drm_i915_private *dev_priv = 741 container_of(info, struct drm_i915_private, info); 742 enum pipe pipe; 743 744 if (INTEL_GEN(dev_priv) >= 10) { 745 for_each_pipe(dev_priv, pipe) 746 info->num_scalers[pipe] = 2; 747 } else if (INTEL_GEN(dev_priv) == 9) { 748 info->num_scalers[PIPE_A] = 2; 749 info->num_scalers[PIPE_B] = 2; 750 info->num_scalers[PIPE_C] = 1; 751 } 752 753 BUILD_BUG_ON(I915_NUM_ENGINES > 754 sizeof(intel_ring_mask_t) * BITS_PER_BYTE); 755 756 /* 757 * Skylake and Broxton currently don't expose the topmost plane as its 758 * use is exclusive with the legacy cursor and we only want to expose 759 * one of those, not both. Until we can safely expose the topmost plane 760 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported, 761 * we don't expose the topmost plane at all to prevent ABI breakage 762 * down the line. 763 */ 764 if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv)) 765 for_each_pipe(dev_priv, pipe) 766 info->num_sprites[pipe] = 3; 767 else if (IS_BROXTON(dev_priv)) { 768 info->num_sprites[PIPE_A] = 2; 769 info->num_sprites[PIPE_B] = 2; 770 info->num_sprites[PIPE_C] = 1; 771 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 772 for_each_pipe(dev_priv, pipe) 773 info->num_sprites[pipe] = 2; 774 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) { 775 for_each_pipe(dev_priv, pipe) 776 info->num_sprites[pipe] = 1; 777 } 778 779 if (i915_modparams.disable_display) { 780 DRM_INFO("Display disabled (module parameter)\n"); 781 info->num_pipes = 0; 782 } else if (info->num_pipes > 0 && 783 (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) && 784 HAS_PCH_SPLIT(dev_priv)) { 785 u32 fuse_strap = I915_READ(FUSE_STRAP); 786 u32 sfuse_strap = I915_READ(SFUSE_STRAP); 787 788 /* 789 * SFUSE_STRAP is supposed to have a bit signalling the display 790 * is fused off. Unfortunately it seems that, at least in 791 * certain cases, fused off display means that PCH display 792 * reads don't land anywhere. In that case, we read 0s. 793 * 794 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK 795 * should be set when taking over after the firmware. 796 */ 797 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE || 798 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED || 799 (HAS_PCH_CPT(dev_priv) && 800 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) { 801 DRM_INFO("Display fused off, disabling\n"); 802 info->num_pipes = 0; 803 } else if (fuse_strap & IVB_PIPE_C_DISABLE) { 804 DRM_INFO("PipeC fused off\n"); 805 info->num_pipes -= 1; 806 } 807 } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) { 808 u32 dfsm = I915_READ(SKL_DFSM); 809 u8 disabled_mask = 0; 810 bool invalid; 811 int num_bits; 812 813 if (dfsm & SKL_DFSM_PIPE_A_DISABLE) 814 disabled_mask |= BIT(PIPE_A); 815 if (dfsm & SKL_DFSM_PIPE_B_DISABLE) 816 disabled_mask |= BIT(PIPE_B); 817 if (dfsm & SKL_DFSM_PIPE_C_DISABLE) 818 disabled_mask |= BIT(PIPE_C); 819 820 num_bits = hweight8(disabled_mask); 821 822 switch (disabled_mask) { 823 case BIT(PIPE_A): 824 case BIT(PIPE_B): 825 case BIT(PIPE_A) | BIT(PIPE_B): 826 case BIT(PIPE_A) | BIT(PIPE_C): 827 invalid = true; 828 break; 829 default: 830 invalid = false; 831 } 832 833 if (num_bits > info->num_pipes || invalid) 834 DRM_ERROR("invalid pipe fuse configuration: 0x%x\n", 835 disabled_mask); 836 else 837 info->num_pipes -= num_bits; 838 } 839 840 /* Initialize slice/subslice/EU info */ 841 if (IS_HASWELL(dev_priv)) 842 haswell_sseu_info_init(dev_priv); 843 else if (IS_CHERRYVIEW(dev_priv)) 844 cherryview_sseu_info_init(dev_priv); 845 else if (IS_BROADWELL(dev_priv)) 846 broadwell_sseu_info_init(dev_priv); 847 else if (INTEL_GEN(dev_priv) == 9) 848 gen9_sseu_info_init(dev_priv); 849 else if (INTEL_GEN(dev_priv) == 10) 850 gen10_sseu_info_init(dev_priv); 851 else if (INTEL_GEN(dev_priv) >= 11) 852 gen11_sseu_info_init(dev_priv); 853 854 /* Initialize command stream timestamp frequency */ 855 info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv); 856 } 857 858 void intel_driver_caps_print(const struct intel_driver_caps *caps, 859 struct drm_printer *p) 860 { 861 drm_printf(p, "Has logical contexts? %s\n", 862 yesno(caps->has_logical_contexts)); 863 drm_printf(p, "scheduler: %x\n", caps->scheduler); 864 } 865 866 /* 867 * Determine which engines are fused off in our particular hardware. Since the 868 * fuse register is in the blitter powerwell, we need forcewake to be ready at 869 * this point (but later we need to prune the forcewake domains for engines that 870 * are indeed fused off). 871 */ 872 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv) 873 { 874 struct intel_device_info *info = mkwrite_device_info(dev_priv); 875 u8 vdbox_disable, vebox_disable; 876 u32 media_fuse; 877 int i; 878 879 if (INTEL_GEN(dev_priv) < 11) 880 return; 881 882 media_fuse = I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE); 883 884 vdbox_disable = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 885 vebox_disable = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 886 GEN11_GT_VEBOX_DISABLE_SHIFT; 887 888 DRM_DEBUG_DRIVER("vdbox disable: %04x\n", vdbox_disable); 889 for (i = 0; i < I915_MAX_VCS; i++) { 890 if (!HAS_ENGINE(dev_priv, _VCS(i))) 891 continue; 892 893 if (!(BIT(i) & vdbox_disable)) 894 continue; 895 896 info->ring_mask &= ~ENGINE_MASK(_VCS(i)); 897 DRM_DEBUG_DRIVER("vcs%u fused off\n", i); 898 } 899 900 DRM_DEBUG_DRIVER("vebox disable: %04x\n", vebox_disable); 901 for (i = 0; i < I915_MAX_VECS; i++) { 902 if (!HAS_ENGINE(dev_priv, _VECS(i))) 903 continue; 904 905 if (!(BIT(i) & vebox_disable)) 906 continue; 907 908 info->ring_mask &= ~ENGINE_MASK(_VECS(i)); 909 DRM_DEBUG_DRIVER("vecs%u fused off\n", i); 910 } 911 } 912