1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #ifndef __I915_VMA_H__ 26 #define __I915_VMA_H__ 27 28 #include <linux/io-mapping.h> 29 #include <linux/rbtree.h> 30 31 #include <drm/drm_mm.h> 32 33 #include "i915_gem_gtt.h" 34 #include "i915_gem_fence_reg.h" 35 #include "gem/i915_gem_object.h" 36 37 #include "i915_active.h" 38 #include "i915_request.h" 39 40 enum i915_cache_level; 41 42 /** 43 * DOC: Virtual Memory Address 44 * 45 * A VMA represents a GEM BO that is bound into an address space. Therefore, a 46 * VMA's presence cannot be guaranteed before binding, or after unbinding the 47 * object into/from the address space. 48 * 49 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime 50 * will always be <= an objects lifetime. So object refcounting should cover us. 51 */ 52 struct i915_vma { 53 struct drm_mm_node node; 54 struct drm_i915_gem_object *obj; 55 struct i915_address_space *vm; 56 const struct i915_vma_ops *ops; 57 struct i915_fence_reg *fence; 58 struct reservation_object *resv; /** Alias of obj->resv */ 59 struct sg_table *pages; 60 void __iomem *iomap; 61 void *private; /* owned by creator */ 62 u64 size; 63 u64 display_alignment; 64 struct i915_page_sizes page_sizes; 65 66 u32 fence_size; 67 u32 fence_alignment; 68 69 /** 70 * Count of the number of times this vma has been opened by different 71 * handles (but same file) for execbuf, i.e. the number of aliases 72 * that exist in the ctx->handle_vmas LUT for this vma. 73 */ 74 atomic_t open_count; 75 unsigned long flags; 76 /** 77 * How many users have pinned this object in GTT space. 78 * 79 * This is a tightly bound, fairly small number of users, so we 80 * stuff inside the flags field so that we can both check for overflow 81 * and detect a no-op i915_vma_pin() in a single check, while also 82 * pinning the vma. 83 * 84 * The worst case display setup would have the same vma pinned for 85 * use on each plane on each crtc, while also building the next atomic 86 * state and holding a pin for the length of the cleanup queue. In the 87 * future, the flip queue may be increased from 1. 88 * Estimated worst case: 3 [qlen] * 4 [max crtcs] * 7 [max planes] = 84 89 * 90 * For GEM, the number of concurrent users for pwrite/pread is 91 * unbounded. For execbuffer, it is currently one but will in future 92 * be extended to allow multiple clients to pin vma concurrently. 93 * 94 * We also use suballocated pages, with each suballocation claiming 95 * its own pin on the shared vma. At present, this is limited to 96 * exclusive cachelines of a single page, so a maximum of 64 possible 97 * users. 98 */ 99 #define I915_VMA_PIN_MASK 0xff 100 #define I915_VMA_PIN_OVERFLOW BIT(8) 101 102 /** Flags and address space this VMA is bound to */ 103 #define I915_VMA_GLOBAL_BIND BIT(9) 104 #define I915_VMA_LOCAL_BIND BIT(10) 105 #define I915_VMA_BIND_MASK (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND | I915_VMA_PIN_OVERFLOW) 106 107 #define I915_VMA_GGTT BIT(11) 108 #define I915_VMA_CAN_FENCE BIT(12) 109 #define I915_VMA_USERFAULT_BIT 13 110 #define I915_VMA_USERFAULT BIT(I915_VMA_USERFAULT_BIT) 111 #define I915_VMA_GGTT_WRITE BIT(14) 112 113 struct i915_active active; 114 struct i915_active_request last_fence; 115 116 /** 117 * Support different GGTT views into the same object. 118 * This means there can be multiple VMA mappings per object and per VM. 119 * i915_ggtt_view_type is used to distinguish between those entries. 120 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also 121 * assumed in GEM functions which take no ggtt view parameter. 122 */ 123 struct i915_ggtt_view ggtt_view; 124 125 /** This object's place on the active/inactive lists */ 126 struct list_head vm_link; 127 128 struct list_head obj_link; /* Link in the object's VMA list */ 129 struct rb_node obj_node; 130 struct hlist_node obj_hash; 131 132 /** This vma's place in the execbuf reservation list */ 133 struct list_head exec_link; 134 struct list_head reloc_link; 135 136 /** This vma's place in the eviction list */ 137 struct list_head evict_link; 138 139 struct list_head closed_link; 140 141 /** 142 * Used for performing relocations during execbuffer insertion. 143 */ 144 unsigned int *exec_flags; 145 struct hlist_node exec_node; 146 u32 exec_handle; 147 }; 148 149 struct i915_vma * 150 i915_vma_instance(struct drm_i915_gem_object *obj, 151 struct i915_address_space *vm, 152 const struct i915_ggtt_view *view); 153 154 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags); 155 #define I915_VMA_RELEASE_MAP BIT(0) 156 157 static inline bool i915_vma_is_active(const struct i915_vma *vma) 158 { 159 return !i915_active_is_idle(&vma->active); 160 } 161 162 int __must_check i915_vma_move_to_active(struct i915_vma *vma, 163 struct i915_request *rq, 164 unsigned int flags); 165 166 static inline bool i915_vma_is_ggtt(const struct i915_vma *vma) 167 { 168 return vma->flags & I915_VMA_GGTT; 169 } 170 171 static inline bool i915_vma_has_ggtt_write(const struct i915_vma *vma) 172 { 173 return vma->flags & I915_VMA_GGTT_WRITE; 174 } 175 176 static inline void i915_vma_set_ggtt_write(struct i915_vma *vma) 177 { 178 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 179 vma->flags |= I915_VMA_GGTT_WRITE; 180 } 181 182 static inline void i915_vma_unset_ggtt_write(struct i915_vma *vma) 183 { 184 vma->flags &= ~I915_VMA_GGTT_WRITE; 185 } 186 187 void i915_vma_flush_writes(struct i915_vma *vma); 188 189 static inline bool i915_vma_is_map_and_fenceable(const struct i915_vma *vma) 190 { 191 return vma->flags & I915_VMA_CAN_FENCE; 192 } 193 194 static inline bool i915_vma_set_userfault(struct i915_vma *vma) 195 { 196 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 197 return __test_and_set_bit(I915_VMA_USERFAULT_BIT, &vma->flags); 198 } 199 200 static inline void i915_vma_unset_userfault(struct i915_vma *vma) 201 { 202 return __clear_bit(I915_VMA_USERFAULT_BIT, &vma->flags); 203 } 204 205 static inline bool i915_vma_has_userfault(const struct i915_vma *vma) 206 { 207 return test_bit(I915_VMA_USERFAULT_BIT, &vma->flags); 208 } 209 210 static inline bool i915_vma_is_closed(const struct i915_vma *vma) 211 { 212 return !list_empty(&vma->closed_link); 213 } 214 215 static inline u32 i915_ggtt_offset(const struct i915_vma *vma) 216 { 217 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 218 GEM_BUG_ON(!vma->node.allocated); 219 GEM_BUG_ON(upper_32_bits(vma->node.start)); 220 GEM_BUG_ON(upper_32_bits(vma->node.start + vma->node.size - 1)); 221 return lower_32_bits(vma->node.start); 222 } 223 224 static inline u32 i915_ggtt_pin_bias(struct i915_vma *vma) 225 { 226 return i915_vm_to_ggtt(vma->vm)->pin_bias; 227 } 228 229 static inline struct i915_vma *i915_vma_get(struct i915_vma *vma) 230 { 231 i915_gem_object_get(vma->obj); 232 return vma; 233 } 234 235 static inline void i915_vma_put(struct i915_vma *vma) 236 { 237 i915_gem_object_put(vma->obj); 238 } 239 240 static __always_inline ptrdiff_t ptrdiff(const void *a, const void *b) 241 { 242 return a - b; 243 } 244 245 static inline long 246 i915_vma_compare(struct i915_vma *vma, 247 struct i915_address_space *vm, 248 const struct i915_ggtt_view *view) 249 { 250 ptrdiff_t cmp; 251 252 GEM_BUG_ON(view && !i915_is_ggtt(vm)); 253 254 cmp = ptrdiff(vma->vm, vm); 255 if (cmp) 256 return cmp; 257 258 BUILD_BUG_ON(I915_GGTT_VIEW_NORMAL != 0); 259 cmp = vma->ggtt_view.type; 260 if (!view) 261 return cmp; 262 263 cmp -= view->type; 264 if (cmp) 265 return cmp; 266 267 assert_i915_gem_gtt_types(); 268 269 /* ggtt_view.type also encodes its size so that we both distinguish 270 * different views using it as a "type" and also use a compact (no 271 * accessing of uninitialised padding bytes) memcmp without storing 272 * an extra parameter or adding more code. 273 * 274 * To ensure that the memcmp is valid for all branches of the union, 275 * even though the code looks like it is just comparing one branch, 276 * we assert above that all branches have the same address, and that 277 * each branch has a unique type/size. 278 */ 279 BUILD_BUG_ON(I915_GGTT_VIEW_NORMAL >= I915_GGTT_VIEW_PARTIAL); 280 BUILD_BUG_ON(I915_GGTT_VIEW_PARTIAL >= I915_GGTT_VIEW_ROTATED); 281 BUILD_BUG_ON(I915_GGTT_VIEW_ROTATED >= I915_GGTT_VIEW_REMAPPED); 282 BUILD_BUG_ON(offsetof(typeof(*view), rotated) != 283 offsetof(typeof(*view), partial)); 284 BUILD_BUG_ON(offsetof(typeof(*view), rotated) != 285 offsetof(typeof(*view), remapped)); 286 return memcmp(&vma->ggtt_view.partial, &view->partial, view->type); 287 } 288 289 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, 290 u32 flags); 291 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long cache_level); 292 bool i915_vma_misplaced(const struct i915_vma *vma, 293 u64 size, u64 alignment, u64 flags); 294 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma); 295 void i915_vma_revoke_mmap(struct i915_vma *vma); 296 int __must_check i915_vma_unbind(struct i915_vma *vma); 297 void i915_vma_unlink_ctx(struct i915_vma *vma); 298 void i915_vma_close(struct i915_vma *vma); 299 void i915_vma_reopen(struct i915_vma *vma); 300 void i915_vma_destroy(struct i915_vma *vma); 301 302 #define assert_vma_held(vma) reservation_object_assert_held((vma)->resv) 303 304 static inline void i915_vma_lock(struct i915_vma *vma) 305 { 306 reservation_object_lock(vma->resv, NULL); 307 } 308 309 static inline void i915_vma_unlock(struct i915_vma *vma) 310 { 311 reservation_object_unlock(vma->resv); 312 } 313 314 int __i915_vma_do_pin(struct i915_vma *vma, 315 u64 size, u64 alignment, u64 flags); 316 static inline int __must_check 317 i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 318 { 319 BUILD_BUG_ON(PIN_MBZ != I915_VMA_PIN_OVERFLOW); 320 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 321 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 322 323 /* Pin early to prevent the shrinker/eviction logic from destroying 324 * our vma as we insert and bind. 325 */ 326 if (likely(((++vma->flags ^ flags) & I915_VMA_BIND_MASK) == 0)) { 327 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 328 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 329 return 0; 330 } 331 332 return __i915_vma_do_pin(vma, size, alignment, flags); 333 } 334 335 static inline int i915_vma_pin_count(const struct i915_vma *vma) 336 { 337 return vma->flags & I915_VMA_PIN_MASK; 338 } 339 340 static inline bool i915_vma_is_pinned(const struct i915_vma *vma) 341 { 342 return i915_vma_pin_count(vma); 343 } 344 345 static inline void __i915_vma_pin(struct i915_vma *vma) 346 { 347 vma->flags++; 348 GEM_BUG_ON(vma->flags & I915_VMA_PIN_OVERFLOW); 349 } 350 351 static inline void __i915_vma_unpin(struct i915_vma *vma) 352 { 353 vma->flags--; 354 } 355 356 static inline void i915_vma_unpin(struct i915_vma *vma) 357 { 358 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 359 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 360 __i915_vma_unpin(vma); 361 } 362 363 static inline bool i915_vma_is_bound(const struct i915_vma *vma, 364 unsigned int where) 365 { 366 return vma->flags & where; 367 } 368 369 /** 370 * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture 371 * @vma: VMA to iomap 372 * 373 * The passed in VMA has to be pinned in the global GTT mappable region. 374 * An extra pinning of the VMA is acquired for the return iomapping, 375 * the caller must call i915_vma_unpin_iomap to relinquish the pinning 376 * after the iomapping is no longer required. 377 * 378 * Callers must hold the struct_mutex. 379 * 380 * Returns a valid iomapped pointer or ERR_PTR. 381 */ 382 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma); 383 #define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x)) 384 385 /** 386 * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap 387 * @vma: VMA to unpin 388 * 389 * Unpins the previously iomapped VMA from i915_vma_pin_iomap(). 390 * 391 * Callers must hold the struct_mutex. This function is only valid to be 392 * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap(). 393 */ 394 void i915_vma_unpin_iomap(struct i915_vma *vma); 395 396 static inline struct page *i915_vma_first_page(struct i915_vma *vma) 397 { 398 GEM_BUG_ON(!vma->pages); 399 return sg_page(vma->pages->sgl); 400 } 401 402 /** 403 * i915_vma_pin_fence - pin fencing state 404 * @vma: vma to pin fencing for 405 * 406 * This pins the fencing state (whether tiled or untiled) to make sure the 407 * vma (and its object) is ready to be used as a scanout target. Fencing 408 * status must be synchronize first by calling i915_vma_get_fence(): 409 * 410 * The resulting fence pin reference must be released again with 411 * i915_vma_unpin_fence(). 412 * 413 * Returns: 414 * 415 * True if the vma has a fence, false otherwise. 416 */ 417 int i915_vma_pin_fence(struct i915_vma *vma); 418 int __must_check i915_vma_put_fence(struct i915_vma *vma); 419 420 static inline void __i915_vma_unpin_fence(struct i915_vma *vma) 421 { 422 GEM_BUG_ON(vma->fence->pin_count <= 0); 423 vma->fence->pin_count--; 424 } 425 426 /** 427 * i915_vma_unpin_fence - unpin fencing state 428 * @vma: vma to unpin fencing for 429 * 430 * This releases the fence pin reference acquired through 431 * i915_vma_pin_fence. It will handle both objects with and without an 432 * attached fence correctly, callers do not need to distinguish this. 433 */ 434 static inline void 435 i915_vma_unpin_fence(struct i915_vma *vma) 436 { 437 /* lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); */ 438 if (vma->fence) 439 __i915_vma_unpin_fence(vma); 440 } 441 442 void i915_vma_parked(struct drm_i915_private *i915); 443 444 #define for_each_until(cond) if (cond) break; else 445 446 /** 447 * for_each_ggtt_vma - Iterate over the GGTT VMA belonging to an object. 448 * @V: the #i915_vma iterator 449 * @OBJ: the #drm_i915_gem_object 450 * 451 * GGTT VMA are placed at the being of the object's vma_list, see 452 * vma_create(), so we can stop our walk as soon as we see a ppgtt VMA, 453 * or the list is empty ofc. 454 */ 455 #define for_each_ggtt_vma(V, OBJ) \ 456 list_for_each_entry(V, &(OBJ)->vma.list, obj_link) \ 457 for_each_until(!i915_vma_is_ggtt(V)) 458 459 struct i915_vma *i915_vma_alloc(void); 460 void i915_vma_free(struct i915_vma *vma); 461 462 #endif 463