xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vma.h (revision 2e35facf82bcdd9b9eb9129f4fb31127b79249ec)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef __I915_VMA_H__
26 #define __I915_VMA_H__
27 
28 #include <linux/io-mapping.h>
29 #include <linux/rbtree.h>
30 
31 #include <drm/drm_mm.h>
32 
33 #include "i915_gem_gtt.h"
34 #include "i915_gem_fence_reg.h"
35 #include "i915_gem_object.h"
36 
37 #include "i915_active.h"
38 #include "i915_request.h"
39 
40 enum i915_cache_level;
41 
42 /**
43  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
44  * VMA's presence cannot be guaranteed before binding, or after unbinding the
45  * object into/from the address space.
46  *
47  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
48  * will always be <= an objects lifetime. So object refcounting should cover us.
49  */
50 struct i915_vma {
51 	struct drm_mm_node node;
52 	struct drm_i915_gem_object *obj;
53 	struct i915_address_space *vm;
54 	const struct i915_vma_ops *ops;
55 	struct drm_i915_fence_reg *fence;
56 	struct reservation_object *resv; /** Alias of obj->resv */
57 	struct sg_table *pages;
58 	void __iomem *iomap;
59 	void *private; /* owned by creator */
60 	u64 size;
61 	u64 display_alignment;
62 	struct i915_page_sizes page_sizes;
63 
64 	u32 fence_size;
65 	u32 fence_alignment;
66 
67 	/**
68 	 * Count of the number of times this vma has been opened by different
69 	 * handles (but same file) for execbuf, i.e. the number of aliases
70 	 * that exist in the ctx->handle_vmas LUT for this vma.
71 	 */
72 	unsigned int open_count;
73 	unsigned long flags;
74 	/**
75 	 * How many users have pinned this object in GTT space.
76 	 *
77 	 * This is a tightly bound, fairly small number of users, so we
78 	 * stuff inside the flags field so that we can both check for overflow
79 	 * and detect a no-op i915_vma_pin() in a single check, while also
80 	 * pinning the vma.
81 	 *
82 	 * The worst case display setup would have the same vma pinned for
83 	 * use on each plane on each crtc, while also building the next atomic
84 	 * state and holding a pin for the length of the cleanup queue. In the
85 	 * future, the flip queue may be increased from 1.
86 	 * Estimated worst case: 3 [qlen] * 4 [max crtcs] * 7 [max planes] = 84
87 	 *
88 	 * For GEM, the number of concurrent users for pwrite/pread is
89 	 * unbounded. For execbuffer, it is currently one but will in future
90 	 * be extended to allow multiple clients to pin vma concurrently.
91 	 *
92 	 * We also use suballocated pages, with each suballocation claiming
93 	 * its own pin on the shared vma. At present, this is limited to
94 	 * exclusive cachelines of a single page, so a maximum of 64 possible
95 	 * users.
96 	 */
97 #define I915_VMA_PIN_MASK 0xff
98 #define I915_VMA_PIN_OVERFLOW	BIT(8)
99 
100 	/** Flags and address space this VMA is bound to */
101 #define I915_VMA_GLOBAL_BIND	BIT(9)
102 #define I915_VMA_LOCAL_BIND	BIT(10)
103 #define I915_VMA_BIND_MASK (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND | I915_VMA_PIN_OVERFLOW)
104 
105 #define I915_VMA_GGTT		BIT(11)
106 #define I915_VMA_CAN_FENCE	BIT(12)
107 #define I915_VMA_CLOSED		BIT(13)
108 #define I915_VMA_USERFAULT_BIT	14
109 #define I915_VMA_USERFAULT	BIT(I915_VMA_USERFAULT_BIT)
110 #define I915_VMA_GGTT_WRITE	BIT(15)
111 
112 	struct i915_active active;
113 	struct i915_active_request last_fence;
114 
115 	/**
116 	 * Support different GGTT views into the same object.
117 	 * This means there can be multiple VMA mappings per object and per VM.
118 	 * i915_ggtt_view_type is used to distinguish between those entries.
119 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
120 	 * assumed in GEM functions which take no ggtt view parameter.
121 	 */
122 	struct i915_ggtt_view ggtt_view;
123 
124 	/** This object's place on the active/inactive lists */
125 	struct list_head vm_link;
126 
127 	struct list_head obj_link; /* Link in the object's VMA list */
128 	struct rb_node obj_node;
129 	struct hlist_node obj_hash;
130 
131 	/** This vma's place in the execbuf reservation list */
132 	struct list_head exec_link;
133 	struct list_head reloc_link;
134 
135 	/** This vma's place in the eviction list */
136 	struct list_head evict_link;
137 
138 	struct list_head closed_link;
139 
140 	/**
141 	 * Used for performing relocations during execbuffer insertion.
142 	 */
143 	unsigned int *exec_flags;
144 	struct hlist_node exec_node;
145 	u32 exec_handle;
146 };
147 
148 struct i915_vma *
149 i915_vma_instance(struct drm_i915_gem_object *obj,
150 		  struct i915_address_space *vm,
151 		  const struct i915_ggtt_view *view);
152 
153 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags);
154 #define I915_VMA_RELEASE_MAP BIT(0)
155 
156 static inline bool i915_vma_is_active(const struct i915_vma *vma)
157 {
158 	return !i915_active_is_idle(&vma->active);
159 }
160 
161 int __must_check i915_vma_move_to_active(struct i915_vma *vma,
162 					 struct i915_request *rq,
163 					 unsigned int flags);
164 
165 static inline bool i915_vma_is_ggtt(const struct i915_vma *vma)
166 {
167 	return vma->flags & I915_VMA_GGTT;
168 }
169 
170 static inline bool i915_vma_has_ggtt_write(const struct i915_vma *vma)
171 {
172 	return vma->flags & I915_VMA_GGTT_WRITE;
173 }
174 
175 static inline void i915_vma_set_ggtt_write(struct i915_vma *vma)
176 {
177 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
178 	vma->flags |= I915_VMA_GGTT_WRITE;
179 }
180 
181 static inline void i915_vma_unset_ggtt_write(struct i915_vma *vma)
182 {
183 	vma->flags &= ~I915_VMA_GGTT_WRITE;
184 }
185 
186 void i915_vma_flush_writes(struct i915_vma *vma);
187 
188 static inline bool i915_vma_is_map_and_fenceable(const struct i915_vma *vma)
189 {
190 	return vma->flags & I915_VMA_CAN_FENCE;
191 }
192 
193 static inline bool i915_vma_is_closed(const struct i915_vma *vma)
194 {
195 	return vma->flags & I915_VMA_CLOSED;
196 }
197 
198 static inline bool i915_vma_set_userfault(struct i915_vma *vma)
199 {
200 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
201 	return __test_and_set_bit(I915_VMA_USERFAULT_BIT, &vma->flags);
202 }
203 
204 static inline void i915_vma_unset_userfault(struct i915_vma *vma)
205 {
206 	return __clear_bit(I915_VMA_USERFAULT_BIT, &vma->flags);
207 }
208 
209 static inline bool i915_vma_has_userfault(const struct i915_vma *vma)
210 {
211 	return test_bit(I915_VMA_USERFAULT_BIT, &vma->flags);
212 }
213 
214 static inline u32 i915_ggtt_offset(const struct i915_vma *vma)
215 {
216 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
217 	GEM_BUG_ON(!vma->node.allocated);
218 	GEM_BUG_ON(upper_32_bits(vma->node.start));
219 	GEM_BUG_ON(upper_32_bits(vma->node.start + vma->node.size - 1));
220 	return lower_32_bits(vma->node.start);
221 }
222 
223 static inline u32 i915_ggtt_pin_bias(struct i915_vma *vma)
224 {
225 	return i915_vm_to_ggtt(vma->vm)->pin_bias;
226 }
227 
228 static inline struct i915_vma *i915_vma_get(struct i915_vma *vma)
229 {
230 	i915_gem_object_get(vma->obj);
231 	return vma;
232 }
233 
234 static inline void i915_vma_put(struct i915_vma *vma)
235 {
236 	i915_gem_object_put(vma->obj);
237 }
238 
239 static __always_inline ptrdiff_t ptrdiff(const void *a, const void *b)
240 {
241 	return a - b;
242 }
243 
244 static inline long
245 i915_vma_compare(struct i915_vma *vma,
246 		 struct i915_address_space *vm,
247 		 const struct i915_ggtt_view *view)
248 {
249 	ptrdiff_t cmp;
250 
251 	GEM_BUG_ON(view && !i915_is_ggtt(vm));
252 
253 	cmp = ptrdiff(vma->vm, vm);
254 	if (cmp)
255 		return cmp;
256 
257 	BUILD_BUG_ON(I915_GGTT_VIEW_NORMAL != 0);
258 	cmp = vma->ggtt_view.type;
259 	if (!view)
260 		return cmp;
261 
262 	cmp -= view->type;
263 	if (cmp)
264 		return cmp;
265 
266 	assert_i915_gem_gtt_types();
267 
268 	/* ggtt_view.type also encodes its size so that we both distinguish
269 	 * different views using it as a "type" and also use a compact (no
270 	 * accessing of uninitialised padding bytes) memcmp without storing
271 	 * an extra parameter or adding more code.
272 	 *
273 	 * To ensure that the memcmp is valid for all branches of the union,
274 	 * even though the code looks like it is just comparing one branch,
275 	 * we assert above that all branches have the same address, and that
276 	 * each branch has a unique type/size.
277 	 */
278 	BUILD_BUG_ON(I915_GGTT_VIEW_NORMAL >= I915_GGTT_VIEW_PARTIAL);
279 	BUILD_BUG_ON(I915_GGTT_VIEW_PARTIAL >= I915_GGTT_VIEW_ROTATED);
280 	BUILD_BUG_ON(I915_GGTT_VIEW_ROTATED >= I915_GGTT_VIEW_REMAPPED);
281 	BUILD_BUG_ON(offsetof(typeof(*view), rotated) !=
282 		     offsetof(typeof(*view), partial));
283 	BUILD_BUG_ON(offsetof(typeof(*view), rotated) !=
284 		     offsetof(typeof(*view), remapped));
285 	return memcmp(&vma->ggtt_view.partial, &view->partial, view->type);
286 }
287 
288 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
289 		  u32 flags);
290 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long cache_level);
291 bool i915_vma_misplaced(const struct i915_vma *vma,
292 			u64 size, u64 alignment, u64 flags);
293 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
294 void i915_vma_revoke_mmap(struct i915_vma *vma);
295 int __must_check i915_vma_unbind(struct i915_vma *vma);
296 void i915_vma_unlink_ctx(struct i915_vma *vma);
297 void i915_vma_close(struct i915_vma *vma);
298 void i915_vma_reopen(struct i915_vma *vma);
299 void i915_vma_destroy(struct i915_vma *vma);
300 
301 int __i915_vma_do_pin(struct i915_vma *vma,
302 		      u64 size, u64 alignment, u64 flags);
303 static inline int __must_check
304 i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
305 {
306 	BUILD_BUG_ON(PIN_MBZ != I915_VMA_PIN_OVERFLOW);
307 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
308 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
309 
310 	/* Pin early to prevent the shrinker/eviction logic from destroying
311 	 * our vma as we insert and bind.
312 	 */
313 	if (likely(((++vma->flags ^ flags) & I915_VMA_BIND_MASK) == 0)) {
314 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
315 		GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
316 		return 0;
317 	}
318 
319 	return __i915_vma_do_pin(vma, size, alignment, flags);
320 }
321 
322 static inline int i915_vma_pin_count(const struct i915_vma *vma)
323 {
324 	return vma->flags & I915_VMA_PIN_MASK;
325 }
326 
327 static inline bool i915_vma_is_pinned(const struct i915_vma *vma)
328 {
329 	return i915_vma_pin_count(vma);
330 }
331 
332 static inline void __i915_vma_pin(struct i915_vma *vma)
333 {
334 	vma->flags++;
335 	GEM_BUG_ON(vma->flags & I915_VMA_PIN_OVERFLOW);
336 }
337 
338 static inline void __i915_vma_unpin(struct i915_vma *vma)
339 {
340 	vma->flags--;
341 }
342 
343 static inline void i915_vma_unpin(struct i915_vma *vma)
344 {
345 	GEM_BUG_ON(!i915_vma_is_pinned(vma));
346 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
347 	__i915_vma_unpin(vma);
348 }
349 
350 static inline bool i915_vma_is_bound(const struct i915_vma *vma,
351 				     unsigned int where)
352 {
353 	return vma->flags & where;
354 }
355 
356 /**
357  * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
358  * @vma: VMA to iomap
359  *
360  * The passed in VMA has to be pinned in the global GTT mappable region.
361  * An extra pinning of the VMA is acquired for the return iomapping,
362  * the caller must call i915_vma_unpin_iomap to relinquish the pinning
363  * after the iomapping is no longer required.
364  *
365  * Callers must hold the struct_mutex.
366  *
367  * Returns a valid iomapped pointer or ERR_PTR.
368  */
369 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
370 #define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
371 
372 /**
373  * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
374  * @vma: VMA to unpin
375  *
376  * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
377  *
378  * Callers must hold the struct_mutex. This function is only valid to be
379  * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
380  */
381 void i915_vma_unpin_iomap(struct i915_vma *vma);
382 
383 static inline struct page *i915_vma_first_page(struct i915_vma *vma)
384 {
385 	GEM_BUG_ON(!vma->pages);
386 	return sg_page(vma->pages->sgl);
387 }
388 
389 /**
390  * i915_vma_pin_fence - pin fencing state
391  * @vma: vma to pin fencing for
392  *
393  * This pins the fencing state (whether tiled or untiled) to make sure the
394  * vma (and its object) is ready to be used as a scanout target. Fencing
395  * status must be synchronize first by calling i915_vma_get_fence():
396  *
397  * The resulting fence pin reference must be released again with
398  * i915_vma_unpin_fence().
399  *
400  * Returns:
401  *
402  * True if the vma has a fence, false otherwise.
403  */
404 int i915_vma_pin_fence(struct i915_vma *vma);
405 int __must_check i915_vma_put_fence(struct i915_vma *vma);
406 
407 static inline void __i915_vma_unpin_fence(struct i915_vma *vma)
408 {
409 	GEM_BUG_ON(vma->fence->pin_count <= 0);
410 	vma->fence->pin_count--;
411 }
412 
413 /**
414  * i915_vma_unpin_fence - unpin fencing state
415  * @vma: vma to unpin fencing for
416  *
417  * This releases the fence pin reference acquired through
418  * i915_vma_pin_fence. It will handle both objects with and without an
419  * attached fence correctly, callers do not need to distinguish this.
420  */
421 static inline void
422 i915_vma_unpin_fence(struct i915_vma *vma)
423 {
424 	/* lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); */
425 	if (vma->fence)
426 		__i915_vma_unpin_fence(vma);
427 }
428 
429 void i915_vma_parked(struct drm_i915_private *i915);
430 
431 #define for_each_until(cond) if (cond) break; else
432 
433 /**
434  * for_each_ggtt_vma - Iterate over the GGTT VMA belonging to an object.
435  * @V: the #i915_vma iterator
436  * @OBJ: the #drm_i915_gem_object
437  *
438  * GGTT VMA are placed at the being of the object's vma_list, see
439  * vma_create(), so we can stop our walk as soon as we see a ppgtt VMA,
440  * or the list is empty ofc.
441  */
442 #define for_each_ggtt_vma(V, OBJ) \
443 	list_for_each_entry(V, &(OBJ)->vma.list, obj_link)		\
444 		for_each_until(!i915_vma_is_ggtt(V))
445 
446 struct i915_vma *i915_vma_alloc(void);
447 void i915_vma_free(struct i915_vma *vma);
448 
449 #endif
450