xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vma.c (revision f69e98a91a01fd7c5755dd710e94a17d6e9f583f)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <drm/drm_gem.h>
27 
28 #include "display/intel_frontbuffer.h"
29 #include "gem/i915_gem_lmem.h"
30 #include "gem/i915_gem_tiling.h"
31 #include "gt/intel_engine.h"
32 #include "gt/intel_engine_heartbeat.h"
33 #include "gt/intel_gt.h"
34 #include "gt/intel_gt_requests.h"
35 
36 #include "i915_drv.h"
37 #include "i915_gem_evict.h"
38 #include "i915_sw_fence_work.h"
39 #include "i915_trace.h"
40 #include "i915_vma.h"
41 #include "i915_vma_resource.h"
42 
43 static inline void assert_vma_held_evict(const struct i915_vma *vma)
44 {
45 	/*
46 	 * We may be forced to unbind when the vm is dead, to clean it up.
47 	 * This is the only exception to the requirement of the object lock
48 	 * being held.
49 	 */
50 	if (kref_read(&vma->vm->ref))
51 		assert_object_held_shared(vma->obj);
52 }
53 
54 static struct kmem_cache *slab_vmas;
55 
56 static struct i915_vma *i915_vma_alloc(void)
57 {
58 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
59 }
60 
61 static void i915_vma_free(struct i915_vma *vma)
62 {
63 	return kmem_cache_free(slab_vmas, vma);
64 }
65 
66 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
67 
68 #include <linux/stackdepot.h>
69 
70 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
71 {
72 	char buf[512];
73 
74 	if (!vma->node.stack) {
75 		DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
76 				 vma->node.start, vma->node.size, reason);
77 		return;
78 	}
79 
80 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
81 	DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
82 			 vma->node.start, vma->node.size, reason, buf);
83 }
84 
85 #else
86 
87 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
88 {
89 }
90 
91 #endif
92 
93 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
94 {
95 	return container_of(ref, typeof(struct i915_vma), active);
96 }
97 
98 static int __i915_vma_active(struct i915_active *ref)
99 {
100 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
101 }
102 
103 static void __i915_vma_retire(struct i915_active *ref)
104 {
105 	i915_vma_put(active_to_vma(ref));
106 }
107 
108 static struct i915_vma *
109 vma_create(struct drm_i915_gem_object *obj,
110 	   struct i915_address_space *vm,
111 	   const struct i915_ggtt_view *view)
112 {
113 	struct i915_vma *pos = ERR_PTR(-E2BIG);
114 	struct i915_vma *vma;
115 	struct rb_node *rb, **p;
116 	int err;
117 
118 	/* The aliasing_ppgtt should never be used directly! */
119 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
120 
121 	vma = i915_vma_alloc();
122 	if (vma == NULL)
123 		return ERR_PTR(-ENOMEM);
124 
125 	vma->ops = &vm->vma_ops;
126 	vma->obj = obj;
127 	vma->size = obj->base.size;
128 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
129 
130 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
131 
132 	/* Declare ourselves safe for use inside shrinkers */
133 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
134 		fs_reclaim_acquire(GFP_KERNEL);
135 		might_lock(&vma->active.mutex);
136 		fs_reclaim_release(GFP_KERNEL);
137 	}
138 
139 	INIT_LIST_HEAD(&vma->closed_link);
140 	INIT_LIST_HEAD(&vma->obj_link);
141 	RB_CLEAR_NODE(&vma->obj_node);
142 
143 	if (view && view->type != I915_GGTT_VIEW_NORMAL) {
144 		vma->ggtt_view = *view;
145 		if (view->type == I915_GGTT_VIEW_PARTIAL) {
146 			GEM_BUG_ON(range_overflows_t(u64,
147 						     view->partial.offset,
148 						     view->partial.size,
149 						     obj->base.size >> PAGE_SHIFT));
150 			vma->size = view->partial.size;
151 			vma->size <<= PAGE_SHIFT;
152 			GEM_BUG_ON(vma->size > obj->base.size);
153 		} else if (view->type == I915_GGTT_VIEW_ROTATED) {
154 			vma->size = intel_rotation_info_size(&view->rotated);
155 			vma->size <<= PAGE_SHIFT;
156 		} else if (view->type == I915_GGTT_VIEW_REMAPPED) {
157 			vma->size = intel_remapped_info_size(&view->remapped);
158 			vma->size <<= PAGE_SHIFT;
159 		}
160 	}
161 
162 	if (unlikely(vma->size > vm->total))
163 		goto err_vma;
164 
165 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
166 
167 	err = mutex_lock_interruptible(&vm->mutex);
168 	if (err) {
169 		pos = ERR_PTR(err);
170 		goto err_vma;
171 	}
172 
173 	vma->vm = vm;
174 	list_add_tail(&vma->vm_link, &vm->unbound_list);
175 
176 	spin_lock(&obj->vma.lock);
177 	if (i915_is_ggtt(vm)) {
178 		if (unlikely(overflows_type(vma->size, u32)))
179 			goto err_unlock;
180 
181 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
182 						      i915_gem_object_get_tiling(obj),
183 						      i915_gem_object_get_stride(obj));
184 		if (unlikely(vma->fence_size < vma->size || /* overflow */
185 			     vma->fence_size > vm->total))
186 			goto err_unlock;
187 
188 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
189 
190 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
191 								i915_gem_object_get_tiling(obj),
192 								i915_gem_object_get_stride(obj));
193 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
194 
195 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
196 	}
197 
198 	rb = NULL;
199 	p = &obj->vma.tree.rb_node;
200 	while (*p) {
201 		long cmp;
202 
203 		rb = *p;
204 		pos = rb_entry(rb, struct i915_vma, obj_node);
205 
206 		/*
207 		 * If the view already exists in the tree, another thread
208 		 * already created a matching vma, so return the older instance
209 		 * and dispose of ours.
210 		 */
211 		cmp = i915_vma_compare(pos, vm, view);
212 		if (cmp < 0)
213 			p = &rb->rb_right;
214 		else if (cmp > 0)
215 			p = &rb->rb_left;
216 		else
217 			goto err_unlock;
218 	}
219 	rb_link_node(&vma->obj_node, rb, p);
220 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
221 
222 	if (i915_vma_is_ggtt(vma))
223 		/*
224 		 * We put the GGTT vma at the start of the vma-list, followed
225 		 * by the ppGGTT vma. This allows us to break early when
226 		 * iterating over only the GGTT vma for an object, see
227 		 * for_each_ggtt_vma()
228 		 */
229 		list_add(&vma->obj_link, &obj->vma.list);
230 	else
231 		list_add_tail(&vma->obj_link, &obj->vma.list);
232 
233 	spin_unlock(&obj->vma.lock);
234 	mutex_unlock(&vm->mutex);
235 
236 	return vma;
237 
238 err_unlock:
239 	spin_unlock(&obj->vma.lock);
240 	list_del_init(&vma->vm_link);
241 	mutex_unlock(&vm->mutex);
242 err_vma:
243 	i915_vma_free(vma);
244 	return pos;
245 }
246 
247 static struct i915_vma *
248 i915_vma_lookup(struct drm_i915_gem_object *obj,
249 	   struct i915_address_space *vm,
250 	   const struct i915_ggtt_view *view)
251 {
252 	struct rb_node *rb;
253 
254 	rb = obj->vma.tree.rb_node;
255 	while (rb) {
256 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
257 		long cmp;
258 
259 		cmp = i915_vma_compare(vma, vm, view);
260 		if (cmp == 0)
261 			return vma;
262 
263 		if (cmp < 0)
264 			rb = rb->rb_right;
265 		else
266 			rb = rb->rb_left;
267 	}
268 
269 	return NULL;
270 }
271 
272 /**
273  * i915_vma_instance - return the singleton instance of the VMA
274  * @obj: parent &struct drm_i915_gem_object to be mapped
275  * @vm: address space in which the mapping is located
276  * @view: additional mapping requirements
277  *
278  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
279  * the same @view characteristics. If a match is not found, one is created.
280  * Once created, the VMA is kept until either the object is freed, or the
281  * address space is closed.
282  *
283  * Returns the vma, or an error pointer.
284  */
285 struct i915_vma *
286 i915_vma_instance(struct drm_i915_gem_object *obj,
287 		  struct i915_address_space *vm,
288 		  const struct i915_ggtt_view *view)
289 {
290 	struct i915_vma *vma;
291 
292 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
293 	GEM_BUG_ON(!kref_read(&vm->ref));
294 
295 	spin_lock(&obj->vma.lock);
296 	vma = i915_vma_lookup(obj, vm, view);
297 	spin_unlock(&obj->vma.lock);
298 
299 	/* vma_create() will resolve the race if another creates the vma */
300 	if (unlikely(!vma))
301 		vma = vma_create(obj, vm, view);
302 
303 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
304 	return vma;
305 }
306 
307 struct i915_vma_work {
308 	struct dma_fence_work base;
309 	struct i915_address_space *vm;
310 	struct i915_vm_pt_stash stash;
311 	struct i915_vma_resource *vma_res;
312 	struct drm_i915_gem_object *pinned;
313 	struct i915_sw_dma_fence_cb cb;
314 	enum i915_cache_level cache_level;
315 	unsigned int flags;
316 };
317 
318 static void __vma_bind(struct dma_fence_work *work)
319 {
320 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
321 	struct i915_vma_resource *vma_res = vw->vma_res;
322 
323 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
324 			       vma_res, vw->cache_level, vw->flags);
325 
326 }
327 
328 static void __vma_release(struct dma_fence_work *work)
329 {
330 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
331 
332 	if (vw->pinned)
333 		i915_gem_object_put(vw->pinned);
334 
335 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
336 	if (vw->vma_res)
337 		i915_vma_resource_put(vw->vma_res);
338 }
339 
340 static const struct dma_fence_work_ops bind_ops = {
341 	.name = "bind",
342 	.work = __vma_bind,
343 	.release = __vma_release,
344 };
345 
346 struct i915_vma_work *i915_vma_work(void)
347 {
348 	struct i915_vma_work *vw;
349 
350 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
351 	if (!vw)
352 		return NULL;
353 
354 	dma_fence_work_init(&vw->base, &bind_ops);
355 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
356 
357 	return vw;
358 }
359 
360 int i915_vma_wait_for_bind(struct i915_vma *vma)
361 {
362 	int err = 0;
363 
364 	if (rcu_access_pointer(vma->active.excl.fence)) {
365 		struct dma_fence *fence;
366 
367 		rcu_read_lock();
368 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
369 		rcu_read_unlock();
370 		if (fence) {
371 			err = dma_fence_wait(fence, true);
372 			dma_fence_put(fence);
373 		}
374 	}
375 
376 	return err;
377 }
378 
379 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
380 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
381 {
382 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
383 	int err;
384 
385 	if (!fence)
386 		return 0;
387 
388 	if (dma_fence_is_signaled(fence))
389 		err = fence->error;
390 	else
391 		err = -EBUSY;
392 
393 	dma_fence_put(fence);
394 
395 	return err;
396 }
397 #else
398 #define i915_vma_verify_bind_complete(_vma) 0
399 #endif
400 
401 I915_SELFTEST_EXPORT void
402 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
403 				struct i915_vma *vma)
404 {
405 	struct drm_i915_gem_object *obj = vma->obj;
406 
407 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
408 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
409 			       i915_gem_object_is_lmem(obj), obj->mm.region,
410 			       vma->ops, vma->private, vma->node.start,
411 			       vma->node.size, vma->size);
412 }
413 
414 /**
415  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
416  * @vma: VMA to map
417  * @cache_level: mapping cache level
418  * @flags: flags like global or local mapping
419  * @work: preallocated worker for allocating and binding the PTE
420  * @vma_res: pointer to a preallocated vma resource. The resource is either
421  * consumed or freed.
422  *
423  * DMA addresses are taken from the scatter-gather table of this object (or of
424  * this VMA in case of non-default GGTT views) and PTE entries set up.
425  * Note that DMA addresses are also the only part of the SG table we care about.
426  */
427 int i915_vma_bind(struct i915_vma *vma,
428 		  enum i915_cache_level cache_level,
429 		  u32 flags,
430 		  struct i915_vma_work *work,
431 		  struct i915_vma_resource *vma_res)
432 {
433 	u32 bind_flags;
434 	u32 vma_flags;
435 	int ret;
436 
437 	lockdep_assert_held(&vma->vm->mutex);
438 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
439 	GEM_BUG_ON(vma->size > vma->node.size);
440 
441 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
442 					      vma->node.size,
443 					      vma->vm->total))) {
444 		i915_vma_resource_free(vma_res);
445 		return -ENODEV;
446 	}
447 
448 	if (GEM_DEBUG_WARN_ON(!flags)) {
449 		i915_vma_resource_free(vma_res);
450 		return -EINVAL;
451 	}
452 
453 	bind_flags = flags;
454 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
455 
456 	vma_flags = atomic_read(&vma->flags);
457 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
458 
459 	bind_flags &= ~vma_flags;
460 	if (bind_flags == 0) {
461 		i915_vma_resource_free(vma_res);
462 		return 0;
463 	}
464 
465 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
466 
467 	/* Wait for or await async unbinds touching our range */
468 	if (work && bind_flags & vma->vm->bind_async_flags)
469 		ret = i915_vma_resource_bind_dep_await(vma->vm,
470 						       &work->base.chain,
471 						       vma->node.start,
472 						       vma->node.size,
473 						       true,
474 						       GFP_NOWAIT |
475 						       __GFP_RETRY_MAYFAIL |
476 						       __GFP_NOWARN);
477 	else
478 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
479 						      vma->node.size, true);
480 	if (ret) {
481 		i915_vma_resource_free(vma_res);
482 		return ret;
483 	}
484 
485 	if (vma->resource || !vma_res) {
486 		/* Rebinding with an additional I915_VMA_*_BIND */
487 		GEM_WARN_ON(!vma_flags);
488 		i915_vma_resource_free(vma_res);
489 	} else {
490 		i915_vma_resource_init_from_vma(vma_res, vma);
491 		vma->resource = vma_res;
492 	}
493 	trace_i915_vma_bind(vma, bind_flags);
494 	if (work && bind_flags & vma->vm->bind_async_flags) {
495 		struct dma_fence *prev;
496 
497 		work->vma_res = i915_vma_resource_get(vma->resource);
498 		work->cache_level = cache_level;
499 		work->flags = bind_flags;
500 
501 		/*
502 		 * Note we only want to chain up to the migration fence on
503 		 * the pages (not the object itself). As we don't track that,
504 		 * yet, we have to use the exclusive fence instead.
505 		 *
506 		 * Also note that we do not want to track the async vma as
507 		 * part of the obj->resv->excl_fence as it only affects
508 		 * execution and not content or object's backing store lifetime.
509 		 */
510 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
511 		if (prev) {
512 			__i915_sw_fence_await_dma_fence(&work->base.chain,
513 							prev,
514 							&work->cb);
515 			dma_fence_put(prev);
516 		}
517 
518 		work->base.dma.error = 0; /* enable the queue_work() */
519 
520 		/*
521 		 * If we don't have the refcounted pages list, keep a reference
522 		 * on the object to avoid waiting for the async bind to
523 		 * complete in the object destruction path.
524 		 */
525 		if (!work->vma_res->bi.pages_rsgt)
526 			work->pinned = i915_gem_object_get(vma->obj);
527 	} else {
528 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
529 		if (ret) {
530 			i915_vma_resource_free(vma->resource);
531 			vma->resource = NULL;
532 
533 			return ret;
534 		}
535 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
536 				   bind_flags);
537 	}
538 
539 	set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags);
540 
541 	atomic_or(bind_flags, &vma->flags);
542 	return 0;
543 }
544 
545 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
546 {
547 	void __iomem *ptr;
548 	int err;
549 
550 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
551 		return IOMEM_ERR_PTR(-EINVAL);
552 
553 	if (!i915_gem_object_is_lmem(vma->obj)) {
554 		if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) {
555 			err = -ENODEV;
556 			goto err;
557 		}
558 	}
559 
560 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
561 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
562 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
563 
564 	ptr = READ_ONCE(vma->iomap);
565 	if (ptr == NULL) {
566 		/*
567 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
568 		 * instead, which already supports mapping non-contiguous chunks
569 		 * of pages, that way we can also drop the
570 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
571 		 */
572 		if (i915_gem_object_is_lmem(vma->obj))
573 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
574 							  vma->obj->base.size);
575 		else
576 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
577 						vma->node.start,
578 						vma->node.size);
579 		if (ptr == NULL) {
580 			err = -ENOMEM;
581 			goto err;
582 		}
583 
584 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
585 			io_mapping_unmap(ptr);
586 			ptr = vma->iomap;
587 		}
588 	}
589 
590 	__i915_vma_pin(vma);
591 
592 	err = i915_vma_pin_fence(vma);
593 	if (err)
594 		goto err_unpin;
595 
596 	i915_vma_set_ggtt_write(vma);
597 
598 	/* NB Access through the GTT requires the device to be awake. */
599 	return ptr;
600 
601 err_unpin:
602 	__i915_vma_unpin(vma);
603 err:
604 	return IOMEM_ERR_PTR(err);
605 }
606 
607 void i915_vma_flush_writes(struct i915_vma *vma)
608 {
609 	if (i915_vma_unset_ggtt_write(vma))
610 		intel_gt_flush_ggtt_writes(vma->vm->gt);
611 }
612 
613 void i915_vma_unpin_iomap(struct i915_vma *vma)
614 {
615 	GEM_BUG_ON(vma->iomap == NULL);
616 
617 	i915_vma_flush_writes(vma);
618 
619 	i915_vma_unpin_fence(vma);
620 	i915_vma_unpin(vma);
621 }
622 
623 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
624 {
625 	struct i915_vma *vma;
626 	struct drm_i915_gem_object *obj;
627 
628 	vma = fetch_and_zero(p_vma);
629 	if (!vma)
630 		return;
631 
632 	obj = vma->obj;
633 	GEM_BUG_ON(!obj);
634 
635 	i915_vma_unpin(vma);
636 
637 	if (flags & I915_VMA_RELEASE_MAP)
638 		i915_gem_object_unpin_map(obj);
639 
640 	i915_gem_object_put(obj);
641 }
642 
643 bool i915_vma_misplaced(const struct i915_vma *vma,
644 			u64 size, u64 alignment, u64 flags)
645 {
646 	if (!drm_mm_node_allocated(&vma->node))
647 		return false;
648 
649 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
650 		return true;
651 
652 	if (vma->node.size < size)
653 		return true;
654 
655 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
656 	if (alignment && !IS_ALIGNED(vma->node.start, alignment))
657 		return true;
658 
659 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
660 		return true;
661 
662 	if (flags & PIN_OFFSET_BIAS &&
663 	    vma->node.start < (flags & PIN_OFFSET_MASK))
664 		return true;
665 
666 	if (flags & PIN_OFFSET_FIXED &&
667 	    vma->node.start != (flags & PIN_OFFSET_MASK))
668 		return true;
669 
670 	return false;
671 }
672 
673 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
674 {
675 	bool mappable, fenceable;
676 
677 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
678 	GEM_BUG_ON(!vma->fence_size);
679 
680 	fenceable = (vma->node.size >= vma->fence_size &&
681 		     IS_ALIGNED(vma->node.start, vma->fence_alignment));
682 
683 	mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
684 
685 	if (mappable && fenceable)
686 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
687 	else
688 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
689 }
690 
691 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
692 {
693 	struct drm_mm_node *node = &vma->node;
694 	struct drm_mm_node *other;
695 
696 	/*
697 	 * On some machines we have to be careful when putting differing types
698 	 * of snoopable memory together to avoid the prefetcher crossing memory
699 	 * domains and dying. During vm initialisation, we decide whether or not
700 	 * these constraints apply and set the drm_mm.color_adjust
701 	 * appropriately.
702 	 */
703 	if (!i915_vm_has_cache_coloring(vma->vm))
704 		return true;
705 
706 	/* Only valid to be called on an already inserted vma */
707 	GEM_BUG_ON(!drm_mm_node_allocated(node));
708 	GEM_BUG_ON(list_empty(&node->node_list));
709 
710 	other = list_prev_entry(node, node_list);
711 	if (i915_node_color_differs(other, color) &&
712 	    !drm_mm_hole_follows(other))
713 		return false;
714 
715 	other = list_next_entry(node, node_list);
716 	if (i915_node_color_differs(other, color) &&
717 	    !drm_mm_hole_follows(node))
718 		return false;
719 
720 	return true;
721 }
722 
723 /**
724  * i915_vma_insert - finds a slot for the vma in its address space
725  * @vma: the vma
726  * @size: requested size in bytes (can be larger than the VMA)
727  * @alignment: required alignment
728  * @flags: mask of PIN_* flags to use
729  *
730  * First we try to allocate some free space that meets the requirements for
731  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
732  * preferrably the oldest idle entry to make room for the new VMA.
733  *
734  * Returns:
735  * 0 on success, negative error code otherwise.
736  */
737 static int
738 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
739 		u64 size, u64 alignment, u64 flags)
740 {
741 	unsigned long color;
742 	u64 start, end;
743 	int ret;
744 
745 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
746 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
747 
748 	size = max(size, vma->size);
749 	alignment = max(alignment, vma->display_alignment);
750 	if (flags & PIN_MAPPABLE) {
751 		size = max_t(typeof(size), size, vma->fence_size);
752 		alignment = max_t(typeof(alignment),
753 				  alignment, vma->fence_alignment);
754 	}
755 
756 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
757 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
758 	GEM_BUG_ON(!is_power_of_2(alignment));
759 
760 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
761 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
762 
763 	end = vma->vm->total;
764 	if (flags & PIN_MAPPABLE)
765 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
766 	if (flags & PIN_ZONE_4G)
767 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
768 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
769 
770 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
771 	/*
772 	 * for compact-pt we round up the reservation to prevent
773 	 * any smaller pages being used within the same PDE
774 	 */
775 	if (NEEDS_COMPACT_PT(vma->vm->i915))
776 		size = round_up(size, alignment);
777 
778 	/* If binding the object/GGTT view requires more space than the entire
779 	 * aperture has, reject it early before evicting everything in a vain
780 	 * attempt to find space.
781 	 */
782 	if (size > end) {
783 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
784 			  size, flags & PIN_MAPPABLE ? "mappable" : "total",
785 			  end);
786 		return -ENOSPC;
787 	}
788 
789 	color = 0;
790 
791 	if (i915_vm_has_cache_coloring(vma->vm))
792 		color = vma->obj->cache_level;
793 
794 	if (flags & PIN_OFFSET_FIXED) {
795 		u64 offset = flags & PIN_OFFSET_MASK;
796 		if (!IS_ALIGNED(offset, alignment) ||
797 		    range_overflows(offset, size, end))
798 			return -EINVAL;
799 
800 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
801 					   size, offset, color,
802 					   flags);
803 		if (ret)
804 			return ret;
805 	} else {
806 		/*
807 		 * We only support huge gtt pages through the 48b PPGTT,
808 		 * however we also don't want to force any alignment for
809 		 * objects which need to be tightly packed into the low 32bits.
810 		 *
811 		 * Note that we assume that GGTT are limited to 4GiB for the
812 		 * forseeable future. See also i915_ggtt_offset().
813 		 */
814 		if (upper_32_bits(end - 1) &&
815 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
816 			/*
817 			 * We can't mix 64K and 4K PTEs in the same page-table
818 			 * (2M block), and so to avoid the ugliness and
819 			 * complexity of coloring we opt for just aligning 64K
820 			 * objects to 2M.
821 			 */
822 			u64 page_alignment =
823 				rounddown_pow_of_two(vma->page_sizes.sg |
824 						     I915_GTT_PAGE_SIZE_2M);
825 
826 			/*
827 			 * Check we don't expand for the limited Global GTT
828 			 * (mappable aperture is even more precious!). This
829 			 * also checks that we exclude the aliasing-ppgtt.
830 			 */
831 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
832 
833 			alignment = max(alignment, page_alignment);
834 
835 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
836 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
837 		}
838 
839 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
840 					  size, alignment, color,
841 					  start, end, flags);
842 		if (ret)
843 			return ret;
844 
845 		GEM_BUG_ON(vma->node.start < start);
846 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
847 	}
848 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
849 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
850 
851 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
852 
853 	return 0;
854 }
855 
856 static void
857 i915_vma_detach(struct i915_vma *vma)
858 {
859 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
860 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
861 
862 	/*
863 	 * And finally now the object is completely decoupled from this
864 	 * vma, we can drop its hold on the backing storage and allow
865 	 * it to be reaped by the shrinker.
866 	 */
867 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
868 }
869 
870 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
871 {
872 	unsigned int bound;
873 
874 	bound = atomic_read(&vma->flags);
875 
876 	if (flags & PIN_VALIDATE) {
877 		flags &= I915_VMA_BIND_MASK;
878 
879 		return (flags & bound) == flags;
880 	}
881 
882 	/* with the lock mandatory for unbind, we don't race here */
883 	flags &= I915_VMA_BIND_MASK;
884 	do {
885 		if (unlikely(flags & ~bound))
886 			return false;
887 
888 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
889 			return false;
890 
891 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
892 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
893 
894 	return true;
895 }
896 
897 static struct scatterlist *
898 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
899 	     unsigned int width, unsigned int height,
900 	     unsigned int src_stride, unsigned int dst_stride,
901 	     struct sg_table *st, struct scatterlist *sg)
902 {
903 	unsigned int column, row;
904 	unsigned int src_idx;
905 
906 	for (column = 0; column < width; column++) {
907 		unsigned int left;
908 
909 		src_idx = src_stride * (height - 1) + column + offset;
910 		for (row = 0; row < height; row++) {
911 			st->nents++;
912 			/*
913 			 * We don't need the pages, but need to initialize
914 			 * the entries so the sg list can be happily traversed.
915 			 * The only thing we need are DMA addresses.
916 			 */
917 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
918 			sg_dma_address(sg) =
919 				i915_gem_object_get_dma_address(obj, src_idx);
920 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
921 			sg = sg_next(sg);
922 			src_idx -= src_stride;
923 		}
924 
925 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
926 
927 		if (!left)
928 			continue;
929 
930 		st->nents++;
931 
932 		/*
933 		 * The DE ignores the PTEs for the padding tiles, the sg entry
934 		 * here is just a conenience to indicate how many padding PTEs
935 		 * to insert at this spot.
936 		 */
937 		sg_set_page(sg, NULL, left, 0);
938 		sg_dma_address(sg) = 0;
939 		sg_dma_len(sg) = left;
940 		sg = sg_next(sg);
941 	}
942 
943 	return sg;
944 }
945 
946 static noinline struct sg_table *
947 intel_rotate_pages(struct intel_rotation_info *rot_info,
948 		   struct drm_i915_gem_object *obj)
949 {
950 	unsigned int size = intel_rotation_info_size(rot_info);
951 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
952 	struct sg_table *st;
953 	struct scatterlist *sg;
954 	int ret = -ENOMEM;
955 	int i;
956 
957 	/* Allocate target SG list. */
958 	st = kmalloc(sizeof(*st), GFP_KERNEL);
959 	if (!st)
960 		goto err_st_alloc;
961 
962 	ret = sg_alloc_table(st, size, GFP_KERNEL);
963 	if (ret)
964 		goto err_sg_alloc;
965 
966 	st->nents = 0;
967 	sg = st->sgl;
968 
969 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
970 		sg = rotate_pages(obj, rot_info->plane[i].offset,
971 				  rot_info->plane[i].width, rot_info->plane[i].height,
972 				  rot_info->plane[i].src_stride,
973 				  rot_info->plane[i].dst_stride,
974 				  st, sg);
975 
976 	return st;
977 
978 err_sg_alloc:
979 	kfree(st);
980 err_st_alloc:
981 
982 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
983 		obj->base.size, rot_info->plane[0].width,
984 		rot_info->plane[0].height, size);
985 
986 	return ERR_PTR(ret);
987 }
988 
989 static struct scatterlist *
990 add_padding_pages(unsigned int count,
991 		  struct sg_table *st, struct scatterlist *sg)
992 {
993 	st->nents++;
994 
995 	/*
996 	 * The DE ignores the PTEs for the padding tiles, the sg entry
997 	 * here is just a convenience to indicate how many padding PTEs
998 	 * to insert at this spot.
999 	 */
1000 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1001 	sg_dma_address(sg) = 0;
1002 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1003 	sg = sg_next(sg);
1004 
1005 	return sg;
1006 }
1007 
1008 static struct scatterlist *
1009 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1010 			      unsigned int offset, unsigned int alignment_pad,
1011 			      unsigned int width, unsigned int height,
1012 			      unsigned int src_stride, unsigned int dst_stride,
1013 			      struct sg_table *st, struct scatterlist *sg,
1014 			      unsigned int *gtt_offset)
1015 {
1016 	unsigned int row;
1017 
1018 	if (!width || !height)
1019 		return sg;
1020 
1021 	if (alignment_pad)
1022 		sg = add_padding_pages(alignment_pad, st, sg);
1023 
1024 	for (row = 0; row < height; row++) {
1025 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1026 
1027 		while (left) {
1028 			dma_addr_t addr;
1029 			unsigned int length;
1030 
1031 			/*
1032 			 * We don't need the pages, but need to initialize
1033 			 * the entries so the sg list can be happily traversed.
1034 			 * The only thing we need are DMA addresses.
1035 			 */
1036 
1037 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1038 
1039 			length = min(left, length);
1040 
1041 			st->nents++;
1042 
1043 			sg_set_page(sg, NULL, length, 0);
1044 			sg_dma_address(sg) = addr;
1045 			sg_dma_len(sg) = length;
1046 			sg = sg_next(sg);
1047 
1048 			offset += length / I915_GTT_PAGE_SIZE;
1049 			left -= length;
1050 		}
1051 
1052 		offset += src_stride - width;
1053 
1054 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1055 
1056 		if (!left)
1057 			continue;
1058 
1059 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1060 	}
1061 
1062 	*gtt_offset += alignment_pad + dst_stride * height;
1063 
1064 	return sg;
1065 }
1066 
1067 static struct scatterlist *
1068 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1069 		       unsigned int obj_offset,
1070 		       unsigned int count,
1071 		       struct sg_table *st, struct scatterlist *sg)
1072 {
1073 	struct scatterlist *iter;
1074 	unsigned int offset;
1075 
1076 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1077 	GEM_BUG_ON(!iter);
1078 
1079 	do {
1080 		unsigned int len;
1081 
1082 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1083 			  count << PAGE_SHIFT);
1084 		sg_set_page(sg, NULL, len, 0);
1085 		sg_dma_address(sg) =
1086 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1087 		sg_dma_len(sg) = len;
1088 
1089 		st->nents++;
1090 		count -= len >> PAGE_SHIFT;
1091 		if (count == 0)
1092 			return sg;
1093 
1094 		sg = __sg_next(sg);
1095 		iter = __sg_next(iter);
1096 		offset = 0;
1097 	} while (1);
1098 }
1099 
1100 static struct scatterlist *
1101 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1102 			       unsigned int obj_offset, unsigned int alignment_pad,
1103 			       unsigned int size,
1104 			       struct sg_table *st, struct scatterlist *sg,
1105 			       unsigned int *gtt_offset)
1106 {
1107 	if (!size)
1108 		return sg;
1109 
1110 	if (alignment_pad)
1111 		sg = add_padding_pages(alignment_pad, st, sg);
1112 
1113 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1114 	sg = sg_next(sg);
1115 
1116 	*gtt_offset += alignment_pad + size;
1117 
1118 	return sg;
1119 }
1120 
1121 static struct scatterlist *
1122 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1123 			struct drm_i915_gem_object *obj,
1124 			int color_plane,
1125 			struct sg_table *st, struct scatterlist *sg,
1126 			unsigned int *gtt_offset)
1127 {
1128 	unsigned int alignment_pad = 0;
1129 
1130 	if (rem_info->plane_alignment)
1131 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1132 
1133 	if (rem_info->plane[color_plane].linear)
1134 		sg = remap_linear_color_plane_pages(obj,
1135 						    rem_info->plane[color_plane].offset,
1136 						    alignment_pad,
1137 						    rem_info->plane[color_plane].size,
1138 						    st, sg,
1139 						    gtt_offset);
1140 
1141 	else
1142 		sg = remap_tiled_color_plane_pages(obj,
1143 						   rem_info->plane[color_plane].offset,
1144 						   alignment_pad,
1145 						   rem_info->plane[color_plane].width,
1146 						   rem_info->plane[color_plane].height,
1147 						   rem_info->plane[color_plane].src_stride,
1148 						   rem_info->plane[color_plane].dst_stride,
1149 						   st, sg,
1150 						   gtt_offset);
1151 
1152 	return sg;
1153 }
1154 
1155 static noinline struct sg_table *
1156 intel_remap_pages(struct intel_remapped_info *rem_info,
1157 		  struct drm_i915_gem_object *obj)
1158 {
1159 	unsigned int size = intel_remapped_info_size(rem_info);
1160 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1161 	struct sg_table *st;
1162 	struct scatterlist *sg;
1163 	unsigned int gtt_offset = 0;
1164 	int ret = -ENOMEM;
1165 	int i;
1166 
1167 	/* Allocate target SG list. */
1168 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1169 	if (!st)
1170 		goto err_st_alloc;
1171 
1172 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1173 	if (ret)
1174 		goto err_sg_alloc;
1175 
1176 	st->nents = 0;
1177 	sg = st->sgl;
1178 
1179 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1180 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1181 
1182 	i915_sg_trim(st);
1183 
1184 	return st;
1185 
1186 err_sg_alloc:
1187 	kfree(st);
1188 err_st_alloc:
1189 
1190 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1191 		obj->base.size, rem_info->plane[0].width,
1192 		rem_info->plane[0].height, size);
1193 
1194 	return ERR_PTR(ret);
1195 }
1196 
1197 static noinline struct sg_table *
1198 intel_partial_pages(const struct i915_ggtt_view *view,
1199 		    struct drm_i915_gem_object *obj)
1200 {
1201 	struct sg_table *st;
1202 	struct scatterlist *sg;
1203 	unsigned int count = view->partial.size;
1204 	int ret = -ENOMEM;
1205 
1206 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1207 	if (!st)
1208 		goto err_st_alloc;
1209 
1210 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1211 	if (ret)
1212 		goto err_sg_alloc;
1213 
1214 	st->nents = 0;
1215 
1216 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1217 
1218 	sg_mark_end(sg);
1219 	i915_sg_trim(st); /* Drop any unused tail entries. */
1220 
1221 	return st;
1222 
1223 err_sg_alloc:
1224 	kfree(st);
1225 err_st_alloc:
1226 	return ERR_PTR(ret);
1227 }
1228 
1229 static int
1230 __i915_vma_get_pages(struct i915_vma *vma)
1231 {
1232 	struct sg_table *pages;
1233 
1234 	/*
1235 	 * The vma->pages are only valid within the lifespan of the borrowed
1236 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1237 	 * must be the vma->pages. A simple rule is that vma->pages must only
1238 	 * be accessed when the obj->mm.pages are pinned.
1239 	 */
1240 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1241 
1242 	switch (vma->ggtt_view.type) {
1243 	default:
1244 		GEM_BUG_ON(vma->ggtt_view.type);
1245 		fallthrough;
1246 	case I915_GGTT_VIEW_NORMAL:
1247 		pages = vma->obj->mm.pages;
1248 		break;
1249 
1250 	case I915_GGTT_VIEW_ROTATED:
1251 		pages =
1252 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1253 		break;
1254 
1255 	case I915_GGTT_VIEW_REMAPPED:
1256 		pages =
1257 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1258 		break;
1259 
1260 	case I915_GGTT_VIEW_PARTIAL:
1261 		pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1262 		break;
1263 	}
1264 
1265 	if (IS_ERR(pages)) {
1266 		drm_err(&vma->vm->i915->drm,
1267 			"Failed to get pages for VMA view type %u (%ld)!\n",
1268 			vma->ggtt_view.type, PTR_ERR(pages));
1269 		return PTR_ERR(pages);
1270 	}
1271 
1272 	vma->pages = pages;
1273 
1274 	return 0;
1275 }
1276 
1277 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1278 {
1279 	int err;
1280 
1281 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1282 		return 0;
1283 
1284 	err = i915_gem_object_pin_pages(vma->obj);
1285 	if (err)
1286 		return err;
1287 
1288 	err = __i915_vma_get_pages(vma);
1289 	if (err)
1290 		goto err_unpin;
1291 
1292 	vma->page_sizes = vma->obj->mm.page_sizes;
1293 	atomic_inc(&vma->pages_count);
1294 
1295 	return 0;
1296 
1297 err_unpin:
1298 	__i915_gem_object_unpin_pages(vma->obj);
1299 
1300 	return err;
1301 }
1302 
1303 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1304 {
1305 	/* We allocate under vma_get_pages, so beware the shrinker */
1306 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1307 
1308 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1309 		if (vma->pages != vma->obj->mm.pages) {
1310 			sg_free_table(vma->pages);
1311 			kfree(vma->pages);
1312 		}
1313 		vma->pages = NULL;
1314 
1315 		i915_gem_object_unpin_pages(vma->obj);
1316 	}
1317 }
1318 
1319 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1320 {
1321 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1322 		return;
1323 
1324 	__vma_put_pages(vma, 1);
1325 }
1326 
1327 static void vma_unbind_pages(struct i915_vma *vma)
1328 {
1329 	unsigned int count;
1330 
1331 	lockdep_assert_held(&vma->vm->mutex);
1332 
1333 	/* The upper portion of pages_count is the number of bindings */
1334 	count = atomic_read(&vma->pages_count);
1335 	count >>= I915_VMA_PAGES_BIAS;
1336 	GEM_BUG_ON(!count);
1337 
1338 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1339 }
1340 
1341 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1342 		    u64 size, u64 alignment, u64 flags)
1343 {
1344 	struct i915_vma_work *work = NULL;
1345 	struct dma_fence *moving = NULL;
1346 	struct i915_vma_resource *vma_res = NULL;
1347 	intel_wakeref_t wakeref = 0;
1348 	unsigned int bound;
1349 	int err;
1350 
1351 	assert_vma_held(vma);
1352 	GEM_BUG_ON(!ww);
1353 
1354 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1355 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1356 
1357 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1358 
1359 	/* First try and grab the pin without rebinding the vma */
1360 	if (try_qad_pin(vma, flags))
1361 		return 0;
1362 
1363 	err = i915_vma_get_pages(vma);
1364 	if (err)
1365 		return err;
1366 
1367 	if (flags & PIN_GLOBAL)
1368 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1369 
1370 	if (flags & vma->vm->bind_async_flags) {
1371 		/* lock VM */
1372 		err = i915_vm_lock_objects(vma->vm, ww);
1373 		if (err)
1374 			goto err_rpm;
1375 
1376 		work = i915_vma_work();
1377 		if (!work) {
1378 			err = -ENOMEM;
1379 			goto err_rpm;
1380 		}
1381 
1382 		work->vm = vma->vm;
1383 
1384 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1385 		if (err)
1386 			goto err_rpm;
1387 
1388 		dma_fence_work_chain(&work->base, moving);
1389 
1390 		/* Allocate enough page directories to used PTE */
1391 		if (vma->vm->allocate_va_range) {
1392 			err = i915_vm_alloc_pt_stash(vma->vm,
1393 						     &work->stash,
1394 						     vma->size);
1395 			if (err)
1396 				goto err_fence;
1397 
1398 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1399 			if (err)
1400 				goto err_fence;
1401 		}
1402 	}
1403 
1404 	vma_res = i915_vma_resource_alloc();
1405 	if (IS_ERR(vma_res)) {
1406 		err = PTR_ERR(vma_res);
1407 		goto err_fence;
1408 	}
1409 
1410 	/*
1411 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1412 	 *
1413 	 * We conflate the Global GTT with the user's vma when using the
1414 	 * aliasing-ppgtt, but it is still vitally important to try and
1415 	 * keep the use cases distinct. For example, userptr objects are
1416 	 * not allowed inside the Global GTT as that will cause lock
1417 	 * inversions when we have to evict them the mmu_notifier callbacks -
1418 	 * but they are allowed to be part of the user ppGTT which can never
1419 	 * be mapped. As such we try to give the distinct users of the same
1420 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1421 	 * and i915_ppgtt separate].
1422 	 *
1423 	 * NB this may cause us to mask real lock inversions -- while the
1424 	 * code is safe today, lockdep may not be able to spot future
1425 	 * transgressions.
1426 	 */
1427 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1428 					      !(flags & PIN_GLOBAL));
1429 	if (err)
1430 		goto err_vma_res;
1431 
1432 	/* No more allocations allowed now we hold vm->mutex */
1433 
1434 	if (unlikely(i915_vma_is_closed(vma))) {
1435 		err = -ENOENT;
1436 		goto err_unlock;
1437 	}
1438 
1439 	bound = atomic_read(&vma->flags);
1440 	if (unlikely(bound & I915_VMA_ERROR)) {
1441 		err = -ENOMEM;
1442 		goto err_unlock;
1443 	}
1444 
1445 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1446 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1447 		goto err_unlock;
1448 	}
1449 
1450 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1451 		if (!(flags & PIN_VALIDATE))
1452 			__i915_vma_pin(vma);
1453 		goto err_unlock;
1454 	}
1455 
1456 	err = i915_active_acquire(&vma->active);
1457 	if (err)
1458 		goto err_unlock;
1459 
1460 	if (!(bound & I915_VMA_BIND_MASK)) {
1461 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1462 		if (err)
1463 			goto err_active;
1464 
1465 		if (i915_is_ggtt(vma->vm))
1466 			__i915_vma_set_map_and_fenceable(vma);
1467 	}
1468 
1469 	GEM_BUG_ON(!vma->pages);
1470 	err = i915_vma_bind(vma,
1471 			    vma->obj->cache_level,
1472 			    flags, work, vma_res);
1473 	vma_res = NULL;
1474 	if (err)
1475 		goto err_remove;
1476 
1477 	/* There should only be at most 2 active bindings (user, global) */
1478 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1479 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1480 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1481 
1482 	if (!(flags & PIN_VALIDATE)) {
1483 		__i915_vma_pin(vma);
1484 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1485 	}
1486 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1487 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1488 
1489 err_remove:
1490 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1491 		i915_vma_detach(vma);
1492 		drm_mm_remove_node(&vma->node);
1493 	}
1494 err_active:
1495 	i915_active_release(&vma->active);
1496 err_unlock:
1497 	mutex_unlock(&vma->vm->mutex);
1498 err_vma_res:
1499 	i915_vma_resource_free(vma_res);
1500 err_fence:
1501 	if (work)
1502 		dma_fence_work_commit_imm(&work->base);
1503 err_rpm:
1504 	if (wakeref)
1505 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1506 
1507 	if (moving)
1508 		dma_fence_put(moving);
1509 
1510 	i915_vma_put_pages(vma);
1511 	return err;
1512 }
1513 
1514 static void flush_idle_contexts(struct intel_gt *gt)
1515 {
1516 	struct intel_engine_cs *engine;
1517 	enum intel_engine_id id;
1518 
1519 	for_each_engine(engine, gt, id)
1520 		intel_engine_flush_barriers(engine);
1521 
1522 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1523 }
1524 
1525 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1526 			   u32 align, unsigned int flags)
1527 {
1528 	struct i915_address_space *vm = vma->vm;
1529 	int err;
1530 
1531 	do {
1532 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1533 
1534 		if (err != -ENOSPC) {
1535 			if (!err) {
1536 				err = i915_vma_wait_for_bind(vma);
1537 				if (err)
1538 					i915_vma_unpin(vma);
1539 			}
1540 			return err;
1541 		}
1542 
1543 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1544 		flush_idle_contexts(vm->gt);
1545 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1546 			/*
1547 			 * We pass NULL ww here, as we don't want to unbind
1548 			 * locked objects when called from execbuf when pinning
1549 			 * is removed. This would probably regress badly.
1550 			 */
1551 			i915_gem_evict_vm(vm, NULL);
1552 			mutex_unlock(&vm->mutex);
1553 		}
1554 	} while (1);
1555 }
1556 
1557 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1558 		  u32 align, unsigned int flags)
1559 {
1560 	struct i915_gem_ww_ctx _ww;
1561 	int err;
1562 
1563 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1564 
1565 	if (ww)
1566 		return __i915_ggtt_pin(vma, ww, align, flags);
1567 
1568 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1569 
1570 	for_i915_gem_ww(&_ww, err, true) {
1571 		err = i915_gem_object_lock(vma->obj, &_ww);
1572 		if (!err)
1573 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1574 	}
1575 
1576 	return err;
1577 }
1578 
1579 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1580 {
1581 	/*
1582 	 * We defer actually closing, unbinding and destroying the VMA until
1583 	 * the next idle point, or if the object is freed in the meantime. By
1584 	 * postponing the unbind, we allow for it to be resurrected by the
1585 	 * client, avoiding the work required to rebind the VMA. This is
1586 	 * advantageous for DRI, where the client/server pass objects
1587 	 * between themselves, temporarily opening a local VMA to the
1588 	 * object, and then closing it again. The same object is then reused
1589 	 * on the next frame (or two, depending on the depth of the swap queue)
1590 	 * causing us to rebind the VMA once more. This ends up being a lot
1591 	 * of wasted work for the steady state.
1592 	 */
1593 	GEM_BUG_ON(i915_vma_is_closed(vma));
1594 	list_add(&vma->closed_link, &gt->closed_vma);
1595 }
1596 
1597 void i915_vma_close(struct i915_vma *vma)
1598 {
1599 	struct intel_gt *gt = vma->vm->gt;
1600 	unsigned long flags;
1601 
1602 	if (i915_vma_is_ggtt(vma))
1603 		return;
1604 
1605 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1606 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1607 					&gt->closed_lock,
1608 					flags)) {
1609 		__vma_close(vma, gt);
1610 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1611 	}
1612 }
1613 
1614 static void __i915_vma_remove_closed(struct i915_vma *vma)
1615 {
1616 	list_del_init(&vma->closed_link);
1617 }
1618 
1619 void i915_vma_reopen(struct i915_vma *vma)
1620 {
1621 	struct intel_gt *gt = vma->vm->gt;
1622 
1623 	spin_lock_irq(&gt->closed_lock);
1624 	if (i915_vma_is_closed(vma))
1625 		__i915_vma_remove_closed(vma);
1626 	spin_unlock_irq(&gt->closed_lock);
1627 }
1628 
1629 static void force_unbind(struct i915_vma *vma)
1630 {
1631 	if (!drm_mm_node_allocated(&vma->node))
1632 		return;
1633 
1634 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1635 	WARN_ON(__i915_vma_unbind(vma));
1636 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1637 }
1638 
1639 static void release_references(struct i915_vma *vma, bool vm_ddestroy)
1640 {
1641 	struct drm_i915_gem_object *obj = vma->obj;
1642 	struct intel_gt *gt = vma->vm->gt;
1643 
1644 	GEM_BUG_ON(i915_vma_is_active(vma));
1645 
1646 	spin_lock(&obj->vma.lock);
1647 	list_del(&vma->obj_link);
1648 	if (!RB_EMPTY_NODE(&vma->obj_node))
1649 		rb_erase(&vma->obj_node, &obj->vma.tree);
1650 
1651 	spin_unlock(&obj->vma.lock);
1652 
1653 	spin_lock_irq(&gt->closed_lock);
1654 	__i915_vma_remove_closed(vma);
1655 	spin_unlock_irq(&gt->closed_lock);
1656 
1657 	if (vm_ddestroy)
1658 		i915_vm_resv_put(vma->vm);
1659 
1660 	i915_active_fini(&vma->active);
1661 	GEM_WARN_ON(vma->resource);
1662 	i915_vma_free(vma);
1663 }
1664 
1665 /**
1666  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1667  * the initial reference.
1668  *
1669  * This function should be called when it's decided the vma isn't needed
1670  * anymore. The caller must assure that it doesn't race with another lookup
1671  * plus destroy, typically by taking an appropriate reference.
1672  *
1673  * Current callsites are
1674  * - __i915_gem_object_pages_fini()
1675  * - __i915_vm_close() - Blocks the above function by taking a reference on
1676  * the object.
1677  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1678  * on the vm and a reference on the object. Also takes the object lock so
1679  * destruction from __i915_vma_parked() can be blocked by holding the
1680  * object lock. Since the object lock is only allowed from within i915 with
1681  * an object refcount, holding the object lock also implicitly blocks the
1682  * vma freeing from __i915_gem_object_pages_fini().
1683  *
1684  * Because of locks taken during destruction, a vma is also guaranteed to
1685  * stay alive while the following locks are held if it was looked up while
1686  * holding one of the locks:
1687  * - vm->mutex
1688  * - obj->vma.lock
1689  * - gt->closed_lock
1690  */
1691 void i915_vma_destroy_locked(struct i915_vma *vma)
1692 {
1693 	lockdep_assert_held(&vma->vm->mutex);
1694 
1695 	force_unbind(vma);
1696 	list_del_init(&vma->vm_link);
1697 	release_references(vma, false);
1698 }
1699 
1700 void i915_vma_destroy(struct i915_vma *vma)
1701 {
1702 	bool vm_ddestroy;
1703 
1704 	mutex_lock(&vma->vm->mutex);
1705 	force_unbind(vma);
1706 	list_del_init(&vma->vm_link);
1707 	vm_ddestroy = vma->vm_ddestroy;
1708 	vma->vm_ddestroy = false;
1709 	mutex_unlock(&vma->vm->mutex);
1710 	release_references(vma, vm_ddestroy);
1711 }
1712 
1713 void i915_vma_parked(struct intel_gt *gt)
1714 {
1715 	struct i915_vma *vma, *next;
1716 	LIST_HEAD(closed);
1717 
1718 	spin_lock_irq(&gt->closed_lock);
1719 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1720 		struct drm_i915_gem_object *obj = vma->obj;
1721 		struct i915_address_space *vm = vma->vm;
1722 
1723 		/* XXX All to avoid keeping a reference on i915_vma itself */
1724 
1725 		if (!kref_get_unless_zero(&obj->base.refcount))
1726 			continue;
1727 
1728 		if (!i915_vm_tryget(vm)) {
1729 			i915_gem_object_put(obj);
1730 			continue;
1731 		}
1732 
1733 		list_move(&vma->closed_link, &closed);
1734 	}
1735 	spin_unlock_irq(&gt->closed_lock);
1736 
1737 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1738 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1739 		struct drm_i915_gem_object *obj = vma->obj;
1740 		struct i915_address_space *vm = vma->vm;
1741 
1742 		if (i915_gem_object_trylock(obj, NULL)) {
1743 			INIT_LIST_HEAD(&vma->closed_link);
1744 			i915_vma_destroy(vma);
1745 			i915_gem_object_unlock(obj);
1746 		} else {
1747 			/* back you go.. */
1748 			spin_lock_irq(&gt->closed_lock);
1749 			list_add(&vma->closed_link, &gt->closed_vma);
1750 			spin_unlock_irq(&gt->closed_lock);
1751 		}
1752 
1753 		i915_gem_object_put(obj);
1754 		i915_vm_put(vm);
1755 	}
1756 }
1757 
1758 static void __i915_vma_iounmap(struct i915_vma *vma)
1759 {
1760 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1761 
1762 	if (vma->iomap == NULL)
1763 		return;
1764 
1765 	io_mapping_unmap(vma->iomap);
1766 	vma->iomap = NULL;
1767 }
1768 
1769 void i915_vma_revoke_mmap(struct i915_vma *vma)
1770 {
1771 	struct drm_vma_offset_node *node;
1772 	u64 vma_offset;
1773 
1774 	if (!i915_vma_has_userfault(vma))
1775 		return;
1776 
1777 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1778 	GEM_BUG_ON(!vma->obj->userfault_count);
1779 
1780 	node = &vma->mmo->vma_node;
1781 	vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
1782 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1783 			    drm_vma_node_offset_addr(node) + vma_offset,
1784 			    vma->size,
1785 			    1);
1786 
1787 	i915_vma_unset_userfault(vma);
1788 	if (!--vma->obj->userfault_count)
1789 		list_del(&vma->obj->userfault_link);
1790 }
1791 
1792 static int
1793 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1794 {
1795 	return __i915_request_await_exclusive(rq, &vma->active);
1796 }
1797 
1798 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1799 {
1800 	int err;
1801 
1802 	/* Wait for the vma to be bound before we start! */
1803 	err = __i915_request_await_bind(rq, vma);
1804 	if (err)
1805 		return err;
1806 
1807 	return i915_active_add_request(&vma->active, rq);
1808 }
1809 
1810 int _i915_vma_move_to_active(struct i915_vma *vma,
1811 			     struct i915_request *rq,
1812 			     struct dma_fence *fence,
1813 			     unsigned int flags)
1814 {
1815 	struct drm_i915_gem_object *obj = vma->obj;
1816 	int err;
1817 
1818 	assert_object_held(obj);
1819 
1820 	GEM_BUG_ON(!vma->pages);
1821 
1822 	err = __i915_vma_move_to_active(vma, rq);
1823 	if (unlikely(err))
1824 		return err;
1825 
1826 	if (flags & EXEC_OBJECT_WRITE) {
1827 		struct intel_frontbuffer *front;
1828 
1829 		front = __intel_frontbuffer_get(obj);
1830 		if (unlikely(front)) {
1831 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1832 				i915_active_add_request(&front->write, rq);
1833 			intel_frontbuffer_put(front);
1834 		}
1835 
1836 		if (!(flags & __EXEC_OBJECT_NO_RESERVE)) {
1837 			err = dma_resv_reserve_fences(vma->obj->base.resv, 1);
1838 			if (unlikely(err))
1839 				return err;
1840 		}
1841 
1842 		if (fence) {
1843 			dma_resv_add_fence(vma->obj->base.resv, fence,
1844 					   DMA_RESV_USAGE_WRITE);
1845 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1846 			obj->read_domains = 0;
1847 		}
1848 	} else {
1849 		if (!(flags & __EXEC_OBJECT_NO_RESERVE)) {
1850 			err = dma_resv_reserve_fences(vma->obj->base.resv, 1);
1851 			if (unlikely(err))
1852 				return err;
1853 		}
1854 
1855 		if (fence) {
1856 			dma_resv_add_fence(vma->obj->base.resv, fence,
1857 					   DMA_RESV_USAGE_READ);
1858 			obj->write_domain = 0;
1859 		}
1860 	}
1861 
1862 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1863 		i915_active_add_request(&vma->fence->active, rq);
1864 
1865 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1866 	obj->mm.dirty = true;
1867 
1868 	GEM_BUG_ON(!i915_vma_is_active(vma));
1869 	return 0;
1870 }
1871 
1872 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1873 {
1874 	struct i915_vma_resource *vma_res = vma->resource;
1875 	struct dma_fence *unbind_fence;
1876 
1877 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1878 	assert_vma_held_evict(vma);
1879 
1880 	if (i915_vma_is_map_and_fenceable(vma)) {
1881 		/* Force a pagefault for domain tracking on next user access */
1882 		i915_vma_revoke_mmap(vma);
1883 
1884 		/*
1885 		 * Check that we have flushed all writes through the GGTT
1886 		 * before the unbind, other due to non-strict nature of those
1887 		 * indirect writes they may end up referencing the GGTT PTE
1888 		 * after the unbind.
1889 		 *
1890 		 * Note that we may be concurrently poking at the GGTT_WRITE
1891 		 * bit from set-domain, as we mark all GGTT vma associated
1892 		 * with an object. We know this is for another vma, as we
1893 		 * are currently unbinding this one -- so if this vma will be
1894 		 * reused, it will be refaulted and have its dirty bit set
1895 		 * before the next write.
1896 		 */
1897 		i915_vma_flush_writes(vma);
1898 
1899 		/* release the fence reg _after_ flushing */
1900 		i915_vma_revoke_fence(vma);
1901 
1902 		__i915_vma_iounmap(vma);
1903 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1904 	}
1905 	GEM_BUG_ON(vma->fence);
1906 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1907 
1908 	/* Object backend must be async capable. */
1909 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1910 
1911 	/* If vm is not open, unbind is a nop. */
1912 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1913 		kref_read(&vma->vm->ref);
1914 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1915 		vma->vm->skip_pte_rewrite;
1916 	trace_i915_vma_unbind(vma);
1917 
1918 	unbind_fence = i915_vma_resource_unbind(vma_res);
1919 	vma->resource = NULL;
1920 
1921 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1922 		   &vma->flags);
1923 
1924 	i915_vma_detach(vma);
1925 
1926 	if (!async && unbind_fence) {
1927 		dma_fence_wait(unbind_fence, false);
1928 		dma_fence_put(unbind_fence);
1929 		unbind_fence = NULL;
1930 	}
1931 
1932 	/*
1933 	 * Binding itself may not have completed until the unbind fence signals,
1934 	 * so don't drop the pages until that happens, unless the resource is
1935 	 * async_capable.
1936 	 */
1937 
1938 	vma_unbind_pages(vma);
1939 	return unbind_fence;
1940 }
1941 
1942 int __i915_vma_unbind(struct i915_vma *vma)
1943 {
1944 	int ret;
1945 
1946 	lockdep_assert_held(&vma->vm->mutex);
1947 	assert_vma_held_evict(vma);
1948 
1949 	if (!drm_mm_node_allocated(&vma->node))
1950 		return 0;
1951 
1952 	if (i915_vma_is_pinned(vma)) {
1953 		vma_print_allocator(vma, "is pinned");
1954 		return -EAGAIN;
1955 	}
1956 
1957 	/*
1958 	 * After confirming that no one else is pinning this vma, wait for
1959 	 * any laggards who may have crept in during the wait (through
1960 	 * a residual pin skipping the vm->mutex) to complete.
1961 	 */
1962 	ret = i915_vma_sync(vma);
1963 	if (ret)
1964 		return ret;
1965 
1966 	GEM_BUG_ON(i915_vma_is_active(vma));
1967 	__i915_vma_evict(vma, false);
1968 
1969 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
1970 	return 0;
1971 }
1972 
1973 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
1974 {
1975 	struct dma_fence *fence;
1976 
1977 	lockdep_assert_held(&vma->vm->mutex);
1978 
1979 	if (!drm_mm_node_allocated(&vma->node))
1980 		return NULL;
1981 
1982 	if (i915_vma_is_pinned(vma) ||
1983 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
1984 		return ERR_PTR(-EAGAIN);
1985 
1986 	/*
1987 	 * We probably need to replace this with awaiting the fences of the
1988 	 * object's dma_resv when the vma active goes away. When doing that
1989 	 * we need to be careful to not add the vma_resource unbind fence
1990 	 * immediately to the object's dma_resv, because then unbinding
1991 	 * the next vma from the object, in case there are many, will
1992 	 * actually await the unbinding of the previous vmas, which is
1993 	 * undesirable.
1994 	 */
1995 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
1996 				       I915_ACTIVE_AWAIT_EXCL |
1997 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
1998 		return ERR_PTR(-EBUSY);
1999 	}
2000 
2001 	fence = __i915_vma_evict(vma, true);
2002 
2003 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2004 
2005 	return fence;
2006 }
2007 
2008 int i915_vma_unbind(struct i915_vma *vma)
2009 {
2010 	struct i915_address_space *vm = vma->vm;
2011 	intel_wakeref_t wakeref = 0;
2012 	int err;
2013 
2014 	assert_object_held_shared(vma->obj);
2015 
2016 	/* Optimistic wait before taking the mutex */
2017 	err = i915_vma_sync(vma);
2018 	if (err)
2019 		return err;
2020 
2021 	if (!drm_mm_node_allocated(&vma->node))
2022 		return 0;
2023 
2024 	if (i915_vma_is_pinned(vma)) {
2025 		vma_print_allocator(vma, "is pinned");
2026 		return -EAGAIN;
2027 	}
2028 
2029 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2030 		/* XXX not always required: nop_clear_range */
2031 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2032 
2033 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2034 	if (err)
2035 		goto out_rpm;
2036 
2037 	err = __i915_vma_unbind(vma);
2038 	mutex_unlock(&vm->mutex);
2039 
2040 out_rpm:
2041 	if (wakeref)
2042 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2043 	return err;
2044 }
2045 
2046 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2047 {
2048 	struct drm_i915_gem_object *obj = vma->obj;
2049 	struct i915_address_space *vm = vma->vm;
2050 	intel_wakeref_t wakeref = 0;
2051 	struct dma_fence *fence;
2052 	int err;
2053 
2054 	/*
2055 	 * We need the dma-resv lock since we add the
2056 	 * unbind fence to the dma-resv object.
2057 	 */
2058 	assert_object_held(obj);
2059 
2060 	if (!drm_mm_node_allocated(&vma->node))
2061 		return 0;
2062 
2063 	if (i915_vma_is_pinned(vma)) {
2064 		vma_print_allocator(vma, "is pinned");
2065 		return -EAGAIN;
2066 	}
2067 
2068 	if (!obj->mm.rsgt)
2069 		return -EBUSY;
2070 
2071 	err = dma_resv_reserve_fences(obj->base.resv, 1);
2072 	if (err)
2073 		return -EBUSY;
2074 
2075 	/*
2076 	 * It would be great if we could grab this wakeref from the
2077 	 * async unbind work if needed, but we can't because it uses
2078 	 * kmalloc and it's in the dma-fence signalling critical path.
2079 	 */
2080 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2081 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2082 
2083 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2084 		err = -EBUSY;
2085 		goto out_rpm;
2086 	} else if (!trylock_vm) {
2087 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2088 		if (err)
2089 			goto out_rpm;
2090 	}
2091 
2092 	fence = __i915_vma_unbind_async(vma);
2093 	mutex_unlock(&vm->mutex);
2094 	if (IS_ERR_OR_NULL(fence)) {
2095 		err = PTR_ERR_OR_ZERO(fence);
2096 		goto out_rpm;
2097 	}
2098 
2099 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2100 	dma_fence_put(fence);
2101 
2102 out_rpm:
2103 	if (wakeref)
2104 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2105 	return err;
2106 }
2107 
2108 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2109 {
2110 	int err;
2111 
2112 	i915_gem_object_lock(vma->obj, NULL);
2113 	err = i915_vma_unbind(vma);
2114 	i915_gem_object_unlock(vma->obj);
2115 
2116 	return err;
2117 }
2118 
2119 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2120 {
2121 	i915_gem_object_make_unshrinkable(vma->obj);
2122 	return vma;
2123 }
2124 
2125 void i915_vma_make_shrinkable(struct i915_vma *vma)
2126 {
2127 	i915_gem_object_make_shrinkable(vma->obj);
2128 }
2129 
2130 void i915_vma_make_purgeable(struct i915_vma *vma)
2131 {
2132 	i915_gem_object_make_purgeable(vma->obj);
2133 }
2134 
2135 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2136 #include "selftests/i915_vma.c"
2137 #endif
2138 
2139 void i915_vma_module_exit(void)
2140 {
2141 	kmem_cache_destroy(slab_vmas);
2142 }
2143 
2144 int __init i915_vma_module_init(void)
2145 {
2146 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2147 	if (!slab_vmas)
2148 		return -ENOMEM;
2149 
2150 	return 0;
2151 }
2152