xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vma.c (revision e4c881d2)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_tiling.h"
33 #include "gt/intel_engine.h"
34 #include "gt/intel_engine_heartbeat.h"
35 #include "gt/intel_gt.h"
36 #include "gt/intel_gt_pm.h"
37 #include "gt/intel_gt_requests.h"
38 #include "gt/intel_tlb.h"
39 
40 #include "i915_drv.h"
41 #include "i915_gem_evict.h"
42 #include "i915_sw_fence_work.h"
43 #include "i915_trace.h"
44 #include "i915_vma.h"
45 #include "i915_vma_resource.h"
46 
47 static inline void assert_vma_held_evict(const struct i915_vma *vma)
48 {
49 	/*
50 	 * We may be forced to unbind when the vm is dead, to clean it up.
51 	 * This is the only exception to the requirement of the object lock
52 	 * being held.
53 	 */
54 	if (kref_read(&vma->vm->ref))
55 		assert_object_held_shared(vma->obj);
56 }
57 
58 static struct kmem_cache *slab_vmas;
59 
60 static struct i915_vma *i915_vma_alloc(void)
61 {
62 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
63 }
64 
65 static void i915_vma_free(struct i915_vma *vma)
66 {
67 	return kmem_cache_free(slab_vmas, vma);
68 }
69 
70 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
71 
72 #include <linux/stackdepot.h>
73 
74 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
75 {
76 	char buf[512];
77 
78 	if (!vma->node.stack) {
79 		drm_dbg(vma->obj->base.dev,
80 			"vma.node [%08llx + %08llx] %s: unknown owner\n",
81 			vma->node.start, vma->node.size, reason);
82 		return;
83 	}
84 
85 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
86 	drm_dbg(vma->obj->base.dev,
87 		"vma.node [%08llx + %08llx] %s: inserted at %s\n",
88 		vma->node.start, vma->node.size, reason, buf);
89 }
90 
91 #else
92 
93 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
94 {
95 }
96 
97 #endif
98 
99 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
100 {
101 	return container_of(ref, typeof(struct i915_vma), active);
102 }
103 
104 static int __i915_vma_active(struct i915_active *ref)
105 {
106 	struct i915_vma *vma = active_to_vma(ref);
107 
108 	if (!i915_vma_tryget(vma))
109 		return -ENOENT;
110 
111 	/*
112 	 * Exclude global GTT VMA from holding a GT wakeref
113 	 * while active, otherwise GPU never goes idle.
114 	 */
115 	if (!i915_vma_is_ggtt(vma))
116 		intel_gt_pm_get(vma->vm->gt);
117 
118 	return 0;
119 }
120 
121 static void __i915_vma_retire(struct i915_active *ref)
122 {
123 	struct i915_vma *vma = active_to_vma(ref);
124 
125 	if (!i915_vma_is_ggtt(vma)) {
126 		/*
127 		 * Since we can be called from atomic contexts,
128 		 * use an async variant of intel_gt_pm_put().
129 		 */
130 		intel_gt_pm_put_async(vma->vm->gt);
131 	}
132 
133 	i915_vma_put(vma);
134 }
135 
136 static struct i915_vma *
137 vma_create(struct drm_i915_gem_object *obj,
138 	   struct i915_address_space *vm,
139 	   const struct i915_gtt_view *view)
140 {
141 	struct i915_vma *pos = ERR_PTR(-E2BIG);
142 	struct i915_vma *vma;
143 	struct rb_node *rb, **p;
144 	int err;
145 
146 	/* The aliasing_ppgtt should never be used directly! */
147 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
148 
149 	vma = i915_vma_alloc();
150 	if (vma == NULL)
151 		return ERR_PTR(-ENOMEM);
152 
153 	vma->ops = &vm->vma_ops;
154 	vma->obj = obj;
155 	vma->size = obj->base.size;
156 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
157 
158 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
159 
160 	/* Declare ourselves safe for use inside shrinkers */
161 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
162 		fs_reclaim_acquire(GFP_KERNEL);
163 		might_lock(&vma->active.mutex);
164 		fs_reclaim_release(GFP_KERNEL);
165 	}
166 
167 	INIT_LIST_HEAD(&vma->closed_link);
168 	INIT_LIST_HEAD(&vma->obj_link);
169 	RB_CLEAR_NODE(&vma->obj_node);
170 
171 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
172 		vma->gtt_view = *view;
173 		if (view->type == I915_GTT_VIEW_PARTIAL) {
174 			GEM_BUG_ON(range_overflows_t(u64,
175 						     view->partial.offset,
176 						     view->partial.size,
177 						     obj->base.size >> PAGE_SHIFT));
178 			vma->size = view->partial.size;
179 			vma->size <<= PAGE_SHIFT;
180 			GEM_BUG_ON(vma->size > obj->base.size);
181 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
182 			vma->size = intel_rotation_info_size(&view->rotated);
183 			vma->size <<= PAGE_SHIFT;
184 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
185 			vma->size = intel_remapped_info_size(&view->remapped);
186 			vma->size <<= PAGE_SHIFT;
187 		}
188 	}
189 
190 	if (unlikely(vma->size > vm->total))
191 		goto err_vma;
192 
193 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
194 
195 	err = mutex_lock_interruptible(&vm->mutex);
196 	if (err) {
197 		pos = ERR_PTR(err);
198 		goto err_vma;
199 	}
200 
201 	vma->vm = vm;
202 	list_add_tail(&vma->vm_link, &vm->unbound_list);
203 
204 	spin_lock(&obj->vma.lock);
205 	if (i915_is_ggtt(vm)) {
206 		if (unlikely(overflows_type(vma->size, u32)))
207 			goto err_unlock;
208 
209 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
210 						      i915_gem_object_get_tiling(obj),
211 						      i915_gem_object_get_stride(obj));
212 		if (unlikely(vma->fence_size < vma->size || /* overflow */
213 			     vma->fence_size > vm->total))
214 			goto err_unlock;
215 
216 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
217 
218 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
219 								i915_gem_object_get_tiling(obj),
220 								i915_gem_object_get_stride(obj));
221 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
222 
223 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
224 	}
225 
226 	rb = NULL;
227 	p = &obj->vma.tree.rb_node;
228 	while (*p) {
229 		long cmp;
230 
231 		rb = *p;
232 		pos = rb_entry(rb, struct i915_vma, obj_node);
233 
234 		/*
235 		 * If the view already exists in the tree, another thread
236 		 * already created a matching vma, so return the older instance
237 		 * and dispose of ours.
238 		 */
239 		cmp = i915_vma_compare(pos, vm, view);
240 		if (cmp < 0)
241 			p = &rb->rb_right;
242 		else if (cmp > 0)
243 			p = &rb->rb_left;
244 		else
245 			goto err_unlock;
246 	}
247 	rb_link_node(&vma->obj_node, rb, p);
248 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
249 
250 	if (i915_vma_is_ggtt(vma))
251 		/*
252 		 * We put the GGTT vma at the start of the vma-list, followed
253 		 * by the ppGGTT vma. This allows us to break early when
254 		 * iterating over only the GGTT vma for an object, see
255 		 * for_each_ggtt_vma()
256 		 */
257 		list_add(&vma->obj_link, &obj->vma.list);
258 	else
259 		list_add_tail(&vma->obj_link, &obj->vma.list);
260 
261 	spin_unlock(&obj->vma.lock);
262 	mutex_unlock(&vm->mutex);
263 
264 	return vma;
265 
266 err_unlock:
267 	spin_unlock(&obj->vma.lock);
268 	list_del_init(&vma->vm_link);
269 	mutex_unlock(&vm->mutex);
270 err_vma:
271 	i915_vma_free(vma);
272 	return pos;
273 }
274 
275 static struct i915_vma *
276 i915_vma_lookup(struct drm_i915_gem_object *obj,
277 	   struct i915_address_space *vm,
278 	   const struct i915_gtt_view *view)
279 {
280 	struct rb_node *rb;
281 
282 	rb = obj->vma.tree.rb_node;
283 	while (rb) {
284 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
285 		long cmp;
286 
287 		cmp = i915_vma_compare(vma, vm, view);
288 		if (cmp == 0)
289 			return vma;
290 
291 		if (cmp < 0)
292 			rb = rb->rb_right;
293 		else
294 			rb = rb->rb_left;
295 	}
296 
297 	return NULL;
298 }
299 
300 /**
301  * i915_vma_instance - return the singleton instance of the VMA
302  * @obj: parent &struct drm_i915_gem_object to be mapped
303  * @vm: address space in which the mapping is located
304  * @view: additional mapping requirements
305  *
306  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
307  * the same @view characteristics. If a match is not found, one is created.
308  * Once created, the VMA is kept until either the object is freed, or the
309  * address space is closed.
310  *
311  * Returns the vma, or an error pointer.
312  */
313 struct i915_vma *
314 i915_vma_instance(struct drm_i915_gem_object *obj,
315 		  struct i915_address_space *vm,
316 		  const struct i915_gtt_view *view)
317 {
318 	struct i915_vma *vma;
319 
320 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
321 	GEM_BUG_ON(!kref_read(&vm->ref));
322 
323 	spin_lock(&obj->vma.lock);
324 	vma = i915_vma_lookup(obj, vm, view);
325 	spin_unlock(&obj->vma.lock);
326 
327 	/* vma_create() will resolve the race if another creates the vma */
328 	if (unlikely(!vma))
329 		vma = vma_create(obj, vm, view);
330 
331 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
332 	return vma;
333 }
334 
335 struct i915_vma_work {
336 	struct dma_fence_work base;
337 	struct i915_address_space *vm;
338 	struct i915_vm_pt_stash stash;
339 	struct i915_vma_resource *vma_res;
340 	struct drm_i915_gem_object *obj;
341 	struct i915_sw_dma_fence_cb cb;
342 	unsigned int pat_index;
343 	unsigned int flags;
344 };
345 
346 static void __vma_bind(struct dma_fence_work *work)
347 {
348 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
349 	struct i915_vma_resource *vma_res = vw->vma_res;
350 
351 	/*
352 	 * We are about the bind the object, which must mean we have already
353 	 * signaled the work to potentially clear/move the pages underneath. If
354 	 * something went wrong at that stage then the object should have
355 	 * unknown_state set, in which case we need to skip the bind.
356 	 */
357 	if (i915_gem_object_has_unknown_state(vw->obj))
358 		return;
359 
360 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
361 			       vma_res, vw->pat_index, vw->flags);
362 }
363 
364 static void __vma_release(struct dma_fence_work *work)
365 {
366 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
367 
368 	if (vw->obj)
369 		i915_gem_object_put(vw->obj);
370 
371 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
372 	if (vw->vma_res)
373 		i915_vma_resource_put(vw->vma_res);
374 }
375 
376 static const struct dma_fence_work_ops bind_ops = {
377 	.name = "bind",
378 	.work = __vma_bind,
379 	.release = __vma_release,
380 };
381 
382 struct i915_vma_work *i915_vma_work(void)
383 {
384 	struct i915_vma_work *vw;
385 
386 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
387 	if (!vw)
388 		return NULL;
389 
390 	dma_fence_work_init(&vw->base, &bind_ops);
391 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
392 
393 	return vw;
394 }
395 
396 int i915_vma_wait_for_bind(struct i915_vma *vma)
397 {
398 	int err = 0;
399 
400 	if (rcu_access_pointer(vma->active.excl.fence)) {
401 		struct dma_fence *fence;
402 
403 		rcu_read_lock();
404 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
405 		rcu_read_unlock();
406 		if (fence) {
407 			err = dma_fence_wait(fence, true);
408 			dma_fence_put(fence);
409 		}
410 	}
411 
412 	return err;
413 }
414 
415 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
416 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
417 {
418 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
419 	int err;
420 
421 	if (!fence)
422 		return 0;
423 
424 	if (dma_fence_is_signaled(fence))
425 		err = fence->error;
426 	else
427 		err = -EBUSY;
428 
429 	dma_fence_put(fence);
430 
431 	return err;
432 }
433 #else
434 #define i915_vma_verify_bind_complete(_vma) 0
435 #endif
436 
437 I915_SELFTEST_EXPORT void
438 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
439 				struct i915_vma *vma)
440 {
441 	struct drm_i915_gem_object *obj = vma->obj;
442 
443 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
444 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
445 			       i915_gem_object_is_lmem(obj), obj->mm.region,
446 			       vma->ops, vma->private, __i915_vma_offset(vma),
447 			       __i915_vma_size(vma), vma->size, vma->guard);
448 }
449 
450 /**
451  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
452  * @vma: VMA to map
453  * @pat_index: PAT index to set in PTE
454  * @flags: flags like global or local mapping
455  * @work: preallocated worker for allocating and binding the PTE
456  * @vma_res: pointer to a preallocated vma resource. The resource is either
457  * consumed or freed.
458  *
459  * DMA addresses are taken from the scatter-gather table of this object (or of
460  * this VMA in case of non-default GGTT views) and PTE entries set up.
461  * Note that DMA addresses are also the only part of the SG table we care about.
462  */
463 int i915_vma_bind(struct i915_vma *vma,
464 		  unsigned int pat_index,
465 		  u32 flags,
466 		  struct i915_vma_work *work,
467 		  struct i915_vma_resource *vma_res)
468 {
469 	u32 bind_flags;
470 	u32 vma_flags;
471 	int ret;
472 
473 	lockdep_assert_held(&vma->vm->mutex);
474 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
475 	GEM_BUG_ON(vma->size > i915_vma_size(vma));
476 
477 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
478 					      vma->node.size,
479 					      vma->vm->total))) {
480 		i915_vma_resource_free(vma_res);
481 		return -ENODEV;
482 	}
483 
484 	if (GEM_DEBUG_WARN_ON(!flags)) {
485 		i915_vma_resource_free(vma_res);
486 		return -EINVAL;
487 	}
488 
489 	bind_flags = flags;
490 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
491 
492 	vma_flags = atomic_read(&vma->flags);
493 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
494 
495 	bind_flags &= ~vma_flags;
496 	if (bind_flags == 0) {
497 		i915_vma_resource_free(vma_res);
498 		return 0;
499 	}
500 
501 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
502 
503 	/* Wait for or await async unbinds touching our range */
504 	if (work && bind_flags & vma->vm->bind_async_flags)
505 		ret = i915_vma_resource_bind_dep_await(vma->vm,
506 						       &work->base.chain,
507 						       vma->node.start,
508 						       vma->node.size,
509 						       true,
510 						       GFP_NOWAIT |
511 						       __GFP_RETRY_MAYFAIL |
512 						       __GFP_NOWARN);
513 	else
514 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
515 						      vma->node.size, true);
516 	if (ret) {
517 		i915_vma_resource_free(vma_res);
518 		return ret;
519 	}
520 
521 	if (vma->resource || !vma_res) {
522 		/* Rebinding with an additional I915_VMA_*_BIND */
523 		GEM_WARN_ON(!vma_flags);
524 		i915_vma_resource_free(vma_res);
525 	} else {
526 		i915_vma_resource_init_from_vma(vma_res, vma);
527 		vma->resource = vma_res;
528 	}
529 	trace_i915_vma_bind(vma, bind_flags);
530 	if (work && bind_flags & vma->vm->bind_async_flags) {
531 		struct dma_fence *prev;
532 
533 		work->vma_res = i915_vma_resource_get(vma->resource);
534 		work->pat_index = pat_index;
535 		work->flags = bind_flags;
536 
537 		/*
538 		 * Note we only want to chain up to the migration fence on
539 		 * the pages (not the object itself). As we don't track that,
540 		 * yet, we have to use the exclusive fence instead.
541 		 *
542 		 * Also note that we do not want to track the async vma as
543 		 * part of the obj->resv->excl_fence as it only affects
544 		 * execution and not content or object's backing store lifetime.
545 		 */
546 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
547 		if (prev) {
548 			__i915_sw_fence_await_dma_fence(&work->base.chain,
549 							prev,
550 							&work->cb);
551 			dma_fence_put(prev);
552 		}
553 
554 		work->base.dma.error = 0; /* enable the queue_work() */
555 		work->obj = i915_gem_object_get(vma->obj);
556 	} else {
557 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
558 		if (ret) {
559 			i915_vma_resource_free(vma->resource);
560 			vma->resource = NULL;
561 
562 			return ret;
563 		}
564 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
565 				   bind_flags);
566 	}
567 
568 	atomic_or(bind_flags, &vma->flags);
569 	return 0;
570 }
571 
572 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
573 {
574 	void __iomem *ptr;
575 	int err;
576 
577 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
578 		return IOMEM_ERR_PTR(-EINVAL);
579 
580 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
581 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
582 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
583 
584 	ptr = READ_ONCE(vma->iomap);
585 	if (ptr == NULL) {
586 		/*
587 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
588 		 * instead, which already supports mapping non-contiguous chunks
589 		 * of pages, that way we can also drop the
590 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
591 		 */
592 		if (i915_gem_object_is_lmem(vma->obj)) {
593 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
594 							  vma->obj->base.size);
595 		} else if (i915_vma_is_map_and_fenceable(vma)) {
596 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
597 						i915_vma_offset(vma),
598 						i915_vma_size(vma));
599 		} else {
600 			ptr = (void __iomem *)
601 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
602 			if (IS_ERR(ptr)) {
603 				err = PTR_ERR(ptr);
604 				goto err;
605 			}
606 			ptr = page_pack_bits(ptr, 1);
607 		}
608 
609 		if (ptr == NULL) {
610 			err = -ENOMEM;
611 			goto err;
612 		}
613 
614 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
615 			if (page_unmask_bits(ptr))
616 				__i915_gem_object_release_map(vma->obj);
617 			else
618 				io_mapping_unmap(ptr);
619 			ptr = vma->iomap;
620 		}
621 	}
622 
623 	__i915_vma_pin(vma);
624 
625 	err = i915_vma_pin_fence(vma);
626 	if (err)
627 		goto err_unpin;
628 
629 	i915_vma_set_ggtt_write(vma);
630 
631 	/* NB Access through the GTT requires the device to be awake. */
632 	return page_mask_bits(ptr);
633 
634 err_unpin:
635 	__i915_vma_unpin(vma);
636 err:
637 	return IOMEM_ERR_PTR(err);
638 }
639 
640 void i915_vma_flush_writes(struct i915_vma *vma)
641 {
642 	if (i915_vma_unset_ggtt_write(vma))
643 		intel_gt_flush_ggtt_writes(vma->vm->gt);
644 }
645 
646 void i915_vma_unpin_iomap(struct i915_vma *vma)
647 {
648 	GEM_BUG_ON(vma->iomap == NULL);
649 
650 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
651 
652 	i915_vma_flush_writes(vma);
653 
654 	i915_vma_unpin_fence(vma);
655 	i915_vma_unpin(vma);
656 }
657 
658 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
659 {
660 	struct i915_vma *vma;
661 	struct drm_i915_gem_object *obj;
662 
663 	vma = fetch_and_zero(p_vma);
664 	if (!vma)
665 		return;
666 
667 	obj = vma->obj;
668 	GEM_BUG_ON(!obj);
669 
670 	i915_vma_unpin(vma);
671 
672 	if (flags & I915_VMA_RELEASE_MAP)
673 		i915_gem_object_unpin_map(obj);
674 
675 	i915_gem_object_put(obj);
676 }
677 
678 bool i915_vma_misplaced(const struct i915_vma *vma,
679 			u64 size, u64 alignment, u64 flags)
680 {
681 	if (!drm_mm_node_allocated(&vma->node))
682 		return false;
683 
684 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
685 		return true;
686 
687 	if (i915_vma_size(vma) < size)
688 		return true;
689 
690 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
691 	if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
692 		return true;
693 
694 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
695 		return true;
696 
697 	if (flags & PIN_OFFSET_BIAS &&
698 	    i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
699 		return true;
700 
701 	if (flags & PIN_OFFSET_FIXED &&
702 	    i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
703 		return true;
704 
705 	if (flags & PIN_OFFSET_GUARD &&
706 	    vma->guard < (flags & PIN_OFFSET_MASK))
707 		return true;
708 
709 	return false;
710 }
711 
712 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
713 {
714 	bool mappable, fenceable;
715 
716 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
717 	GEM_BUG_ON(!vma->fence_size);
718 
719 	fenceable = (i915_vma_size(vma) >= vma->fence_size &&
720 		     IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
721 
722 	mappable = i915_ggtt_offset(vma) + vma->fence_size <=
723 		   i915_vm_to_ggtt(vma->vm)->mappable_end;
724 
725 	if (mappable && fenceable)
726 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
727 	else
728 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
729 }
730 
731 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
732 {
733 	struct drm_mm_node *node = &vma->node;
734 	struct drm_mm_node *other;
735 
736 	/*
737 	 * On some machines we have to be careful when putting differing types
738 	 * of snoopable memory together to avoid the prefetcher crossing memory
739 	 * domains and dying. During vm initialisation, we decide whether or not
740 	 * these constraints apply and set the drm_mm.color_adjust
741 	 * appropriately.
742 	 */
743 	if (!i915_vm_has_cache_coloring(vma->vm))
744 		return true;
745 
746 	/* Only valid to be called on an already inserted vma */
747 	GEM_BUG_ON(!drm_mm_node_allocated(node));
748 	GEM_BUG_ON(list_empty(&node->node_list));
749 
750 	other = list_prev_entry(node, node_list);
751 	if (i915_node_color_differs(other, color) &&
752 	    !drm_mm_hole_follows(other))
753 		return false;
754 
755 	other = list_next_entry(node, node_list);
756 	if (i915_node_color_differs(other, color) &&
757 	    !drm_mm_hole_follows(node))
758 		return false;
759 
760 	return true;
761 }
762 
763 /**
764  * i915_vma_insert - finds a slot for the vma in its address space
765  * @vma: the vma
766  * @ww: An optional struct i915_gem_ww_ctx
767  * @size: requested size in bytes (can be larger than the VMA)
768  * @alignment: required alignment
769  * @flags: mask of PIN_* flags to use
770  *
771  * First we try to allocate some free space that meets the requirements for
772  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
773  * preferrably the oldest idle entry to make room for the new VMA.
774  *
775  * Returns:
776  * 0 on success, negative error code otherwise.
777  */
778 static int
779 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
780 		u64 size, u64 alignment, u64 flags)
781 {
782 	unsigned long color, guard;
783 	u64 start, end;
784 	int ret;
785 
786 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
787 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
788 	GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
789 
790 	size = max(size, vma->size);
791 	alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
792 	if (flags & PIN_MAPPABLE) {
793 		size = max_t(typeof(size), size, vma->fence_size);
794 		alignment = max_t(typeof(alignment),
795 				  alignment, vma->fence_alignment);
796 	}
797 
798 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
799 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
800 	GEM_BUG_ON(!is_power_of_2(alignment));
801 
802 	guard = vma->guard; /* retain guard across rebinds */
803 	if (flags & PIN_OFFSET_GUARD) {
804 		GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
805 		guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
806 	}
807 	/*
808 	 * As we align the node upon insertion, but the hardware gets
809 	 * node.start + guard, the easiest way to make that work is
810 	 * to make the guard a multiple of the alignment size.
811 	 */
812 	guard = ALIGN(guard, alignment);
813 
814 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
815 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
816 
817 	end = vma->vm->total;
818 	if (flags & PIN_MAPPABLE)
819 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
820 	if (flags & PIN_ZONE_4G)
821 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
822 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
823 
824 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
825 
826 	/*
827 	 * If binding the object/GGTT view requires more space than the entire
828 	 * aperture has, reject it early before evicting everything in a vain
829 	 * attempt to find space.
830 	 */
831 	if (size > end - 2 * guard) {
832 		drm_dbg(vma->obj->base.dev,
833 			"Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
834 			size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
835 		return -ENOSPC;
836 	}
837 
838 	color = 0;
839 
840 	if (i915_vm_has_cache_coloring(vma->vm))
841 		color = vma->obj->pat_index;
842 
843 	if (flags & PIN_OFFSET_FIXED) {
844 		u64 offset = flags & PIN_OFFSET_MASK;
845 		if (!IS_ALIGNED(offset, alignment) ||
846 		    range_overflows(offset, size, end))
847 			return -EINVAL;
848 		/*
849 		 * The caller knows not of the guard added by others and
850 		 * requests for the offset of the start of its buffer
851 		 * to be fixed, which may not be the same as the position
852 		 * of the vma->node due to the guard pages.
853 		 */
854 		if (offset < guard || offset + size > end - guard)
855 			return -ENOSPC;
856 
857 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
858 					   size + 2 * guard,
859 					   offset - guard,
860 					   color, flags);
861 		if (ret)
862 			return ret;
863 	} else {
864 		size += 2 * guard;
865 		/*
866 		 * We only support huge gtt pages through the 48b PPGTT,
867 		 * however we also don't want to force any alignment for
868 		 * objects which need to be tightly packed into the low 32bits.
869 		 *
870 		 * Note that we assume that GGTT are limited to 4GiB for the
871 		 * forseeable future. See also i915_ggtt_offset().
872 		 */
873 		if (upper_32_bits(end - 1) &&
874 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
875 		    !HAS_64K_PAGES(vma->vm->i915)) {
876 			/*
877 			 * We can't mix 64K and 4K PTEs in the same page-table
878 			 * (2M block), and so to avoid the ugliness and
879 			 * complexity of coloring we opt for just aligning 64K
880 			 * objects to 2M.
881 			 */
882 			u64 page_alignment =
883 				rounddown_pow_of_two(vma->page_sizes.sg |
884 						     I915_GTT_PAGE_SIZE_2M);
885 
886 			/*
887 			 * Check we don't expand for the limited Global GTT
888 			 * (mappable aperture is even more precious!). This
889 			 * also checks that we exclude the aliasing-ppgtt.
890 			 */
891 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
892 
893 			alignment = max(alignment, page_alignment);
894 
895 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
896 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
897 		}
898 
899 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
900 					  size, alignment, color,
901 					  start, end, flags);
902 		if (ret)
903 			return ret;
904 
905 		GEM_BUG_ON(vma->node.start < start);
906 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
907 	}
908 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
909 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
910 
911 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
912 	vma->guard = guard;
913 
914 	return 0;
915 }
916 
917 static void
918 i915_vma_detach(struct i915_vma *vma)
919 {
920 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
921 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
922 
923 	/*
924 	 * And finally now the object is completely decoupled from this
925 	 * vma, we can drop its hold on the backing storage and allow
926 	 * it to be reaped by the shrinker.
927 	 */
928 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
929 }
930 
931 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
932 {
933 	unsigned int bound;
934 
935 	bound = atomic_read(&vma->flags);
936 
937 	if (flags & PIN_VALIDATE) {
938 		flags &= I915_VMA_BIND_MASK;
939 
940 		return (flags & bound) == flags;
941 	}
942 
943 	/* with the lock mandatory for unbind, we don't race here */
944 	flags &= I915_VMA_BIND_MASK;
945 	do {
946 		if (unlikely(flags & ~bound))
947 			return false;
948 
949 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
950 			return false;
951 
952 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
953 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
954 
955 	return true;
956 }
957 
958 static struct scatterlist *
959 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
960 	     unsigned int width, unsigned int height,
961 	     unsigned int src_stride, unsigned int dst_stride,
962 	     struct sg_table *st, struct scatterlist *sg)
963 {
964 	unsigned int column, row;
965 	pgoff_t src_idx;
966 
967 	for (column = 0; column < width; column++) {
968 		unsigned int left;
969 
970 		src_idx = src_stride * (height - 1) + column + offset;
971 		for (row = 0; row < height; row++) {
972 			st->nents++;
973 			/*
974 			 * We don't need the pages, but need to initialize
975 			 * the entries so the sg list can be happily traversed.
976 			 * The only thing we need are DMA addresses.
977 			 */
978 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
979 			sg_dma_address(sg) =
980 				i915_gem_object_get_dma_address(obj, src_idx);
981 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
982 			sg = sg_next(sg);
983 			src_idx -= src_stride;
984 		}
985 
986 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
987 
988 		if (!left)
989 			continue;
990 
991 		st->nents++;
992 
993 		/*
994 		 * The DE ignores the PTEs for the padding tiles, the sg entry
995 		 * here is just a conenience to indicate how many padding PTEs
996 		 * to insert at this spot.
997 		 */
998 		sg_set_page(sg, NULL, left, 0);
999 		sg_dma_address(sg) = 0;
1000 		sg_dma_len(sg) = left;
1001 		sg = sg_next(sg);
1002 	}
1003 
1004 	return sg;
1005 }
1006 
1007 static noinline struct sg_table *
1008 intel_rotate_pages(struct intel_rotation_info *rot_info,
1009 		   struct drm_i915_gem_object *obj)
1010 {
1011 	unsigned int size = intel_rotation_info_size(rot_info);
1012 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1013 	struct sg_table *st;
1014 	struct scatterlist *sg;
1015 	int ret = -ENOMEM;
1016 	int i;
1017 
1018 	/* Allocate target SG list. */
1019 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1020 	if (!st)
1021 		goto err_st_alloc;
1022 
1023 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1024 	if (ret)
1025 		goto err_sg_alloc;
1026 
1027 	st->nents = 0;
1028 	sg = st->sgl;
1029 
1030 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1031 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1032 				  rot_info->plane[i].width, rot_info->plane[i].height,
1033 				  rot_info->plane[i].src_stride,
1034 				  rot_info->plane[i].dst_stride,
1035 				  st, sg);
1036 
1037 	return st;
1038 
1039 err_sg_alloc:
1040 	kfree(st);
1041 err_st_alloc:
1042 
1043 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1044 		obj->base.size, rot_info->plane[0].width,
1045 		rot_info->plane[0].height, size);
1046 
1047 	return ERR_PTR(ret);
1048 }
1049 
1050 static struct scatterlist *
1051 add_padding_pages(unsigned int count,
1052 		  struct sg_table *st, struct scatterlist *sg)
1053 {
1054 	st->nents++;
1055 
1056 	/*
1057 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1058 	 * here is just a convenience to indicate how many padding PTEs
1059 	 * to insert at this spot.
1060 	 */
1061 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1062 	sg_dma_address(sg) = 0;
1063 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1064 	sg = sg_next(sg);
1065 
1066 	return sg;
1067 }
1068 
1069 static struct scatterlist *
1070 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1071 			      unsigned long offset, unsigned int alignment_pad,
1072 			      unsigned int width, unsigned int height,
1073 			      unsigned int src_stride, unsigned int dst_stride,
1074 			      struct sg_table *st, struct scatterlist *sg,
1075 			      unsigned int *gtt_offset)
1076 {
1077 	unsigned int row;
1078 
1079 	if (!width || !height)
1080 		return sg;
1081 
1082 	if (alignment_pad)
1083 		sg = add_padding_pages(alignment_pad, st, sg);
1084 
1085 	for (row = 0; row < height; row++) {
1086 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1087 
1088 		while (left) {
1089 			dma_addr_t addr;
1090 			unsigned int length;
1091 
1092 			/*
1093 			 * We don't need the pages, but need to initialize
1094 			 * the entries so the sg list can be happily traversed.
1095 			 * The only thing we need are DMA addresses.
1096 			 */
1097 
1098 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1099 
1100 			length = min(left, length);
1101 
1102 			st->nents++;
1103 
1104 			sg_set_page(sg, NULL, length, 0);
1105 			sg_dma_address(sg) = addr;
1106 			sg_dma_len(sg) = length;
1107 			sg = sg_next(sg);
1108 
1109 			offset += length / I915_GTT_PAGE_SIZE;
1110 			left -= length;
1111 		}
1112 
1113 		offset += src_stride - width;
1114 
1115 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1116 
1117 		if (!left)
1118 			continue;
1119 
1120 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1121 	}
1122 
1123 	*gtt_offset += alignment_pad + dst_stride * height;
1124 
1125 	return sg;
1126 }
1127 
1128 static struct scatterlist *
1129 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1130 		       pgoff_t obj_offset,
1131 		       unsigned int count,
1132 		       struct sg_table *st, struct scatterlist *sg)
1133 {
1134 	struct scatterlist *iter;
1135 	unsigned int offset;
1136 
1137 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1138 	GEM_BUG_ON(!iter);
1139 
1140 	do {
1141 		unsigned int len;
1142 
1143 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1144 			  count << PAGE_SHIFT);
1145 		sg_set_page(sg, NULL, len, 0);
1146 		sg_dma_address(sg) =
1147 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1148 		sg_dma_len(sg) = len;
1149 
1150 		st->nents++;
1151 		count -= len >> PAGE_SHIFT;
1152 		if (count == 0)
1153 			return sg;
1154 
1155 		sg = __sg_next(sg);
1156 		iter = __sg_next(iter);
1157 		offset = 0;
1158 	} while (1);
1159 }
1160 
1161 static struct scatterlist *
1162 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1163 			       pgoff_t obj_offset, unsigned int alignment_pad,
1164 			       unsigned int size,
1165 			       struct sg_table *st, struct scatterlist *sg,
1166 			       unsigned int *gtt_offset)
1167 {
1168 	if (!size)
1169 		return sg;
1170 
1171 	if (alignment_pad)
1172 		sg = add_padding_pages(alignment_pad, st, sg);
1173 
1174 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1175 	sg = sg_next(sg);
1176 
1177 	*gtt_offset += alignment_pad + size;
1178 
1179 	return sg;
1180 }
1181 
1182 static struct scatterlist *
1183 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1184 			struct drm_i915_gem_object *obj,
1185 			int color_plane,
1186 			struct sg_table *st, struct scatterlist *sg,
1187 			unsigned int *gtt_offset)
1188 {
1189 	unsigned int alignment_pad = 0;
1190 
1191 	if (rem_info->plane_alignment)
1192 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1193 
1194 	if (rem_info->plane[color_plane].linear)
1195 		sg = remap_linear_color_plane_pages(obj,
1196 						    rem_info->plane[color_plane].offset,
1197 						    alignment_pad,
1198 						    rem_info->plane[color_plane].size,
1199 						    st, sg,
1200 						    gtt_offset);
1201 
1202 	else
1203 		sg = remap_tiled_color_plane_pages(obj,
1204 						   rem_info->plane[color_plane].offset,
1205 						   alignment_pad,
1206 						   rem_info->plane[color_plane].width,
1207 						   rem_info->plane[color_plane].height,
1208 						   rem_info->plane[color_plane].src_stride,
1209 						   rem_info->plane[color_plane].dst_stride,
1210 						   st, sg,
1211 						   gtt_offset);
1212 
1213 	return sg;
1214 }
1215 
1216 static noinline struct sg_table *
1217 intel_remap_pages(struct intel_remapped_info *rem_info,
1218 		  struct drm_i915_gem_object *obj)
1219 {
1220 	unsigned int size = intel_remapped_info_size(rem_info);
1221 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1222 	struct sg_table *st;
1223 	struct scatterlist *sg;
1224 	unsigned int gtt_offset = 0;
1225 	int ret = -ENOMEM;
1226 	int i;
1227 
1228 	/* Allocate target SG list. */
1229 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1230 	if (!st)
1231 		goto err_st_alloc;
1232 
1233 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1234 	if (ret)
1235 		goto err_sg_alloc;
1236 
1237 	st->nents = 0;
1238 	sg = st->sgl;
1239 
1240 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1241 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1242 
1243 	i915_sg_trim(st);
1244 
1245 	return st;
1246 
1247 err_sg_alloc:
1248 	kfree(st);
1249 err_st_alloc:
1250 
1251 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1252 		obj->base.size, rem_info->plane[0].width,
1253 		rem_info->plane[0].height, size);
1254 
1255 	return ERR_PTR(ret);
1256 }
1257 
1258 static noinline struct sg_table *
1259 intel_partial_pages(const struct i915_gtt_view *view,
1260 		    struct drm_i915_gem_object *obj)
1261 {
1262 	struct sg_table *st;
1263 	struct scatterlist *sg;
1264 	unsigned int count = view->partial.size;
1265 	int ret = -ENOMEM;
1266 
1267 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1268 	if (!st)
1269 		goto err_st_alloc;
1270 
1271 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1272 	if (ret)
1273 		goto err_sg_alloc;
1274 
1275 	st->nents = 0;
1276 
1277 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1278 
1279 	sg_mark_end(sg);
1280 	i915_sg_trim(st); /* Drop any unused tail entries. */
1281 
1282 	return st;
1283 
1284 err_sg_alloc:
1285 	kfree(st);
1286 err_st_alloc:
1287 	return ERR_PTR(ret);
1288 }
1289 
1290 static int
1291 __i915_vma_get_pages(struct i915_vma *vma)
1292 {
1293 	struct sg_table *pages;
1294 
1295 	/*
1296 	 * The vma->pages are only valid within the lifespan of the borrowed
1297 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1298 	 * must be the vma->pages. A simple rule is that vma->pages must only
1299 	 * be accessed when the obj->mm.pages are pinned.
1300 	 */
1301 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1302 
1303 	switch (vma->gtt_view.type) {
1304 	default:
1305 		GEM_BUG_ON(vma->gtt_view.type);
1306 		fallthrough;
1307 	case I915_GTT_VIEW_NORMAL:
1308 		pages = vma->obj->mm.pages;
1309 		break;
1310 
1311 	case I915_GTT_VIEW_ROTATED:
1312 		pages =
1313 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1314 		break;
1315 
1316 	case I915_GTT_VIEW_REMAPPED:
1317 		pages =
1318 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1319 		break;
1320 
1321 	case I915_GTT_VIEW_PARTIAL:
1322 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1323 		break;
1324 	}
1325 
1326 	if (IS_ERR(pages)) {
1327 		drm_err(&vma->vm->i915->drm,
1328 			"Failed to get pages for VMA view type %u (%ld)!\n",
1329 			vma->gtt_view.type, PTR_ERR(pages));
1330 		return PTR_ERR(pages);
1331 	}
1332 
1333 	vma->pages = pages;
1334 
1335 	return 0;
1336 }
1337 
1338 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1339 {
1340 	int err;
1341 
1342 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1343 		return 0;
1344 
1345 	err = i915_gem_object_pin_pages(vma->obj);
1346 	if (err)
1347 		return err;
1348 
1349 	err = __i915_vma_get_pages(vma);
1350 	if (err)
1351 		goto err_unpin;
1352 
1353 	vma->page_sizes = vma->obj->mm.page_sizes;
1354 	atomic_inc(&vma->pages_count);
1355 
1356 	return 0;
1357 
1358 err_unpin:
1359 	__i915_gem_object_unpin_pages(vma->obj);
1360 
1361 	return err;
1362 }
1363 
1364 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1365 {
1366 	struct intel_gt *gt;
1367 	int id;
1368 
1369 	if (!tlb)
1370 		return;
1371 
1372 	/*
1373 	 * Before we release the pages that were bound by this vma, we
1374 	 * must invalidate all the TLBs that may still have a reference
1375 	 * back to our physical address. It only needs to be done once,
1376 	 * so after updating the PTE to point away from the pages, record
1377 	 * the most recent TLB invalidation seqno, and if we have not yet
1378 	 * flushed the TLBs upon release, perform a full invalidation.
1379 	 */
1380 	for_each_gt(gt, vm->i915, id)
1381 		WRITE_ONCE(tlb[id],
1382 			   intel_gt_next_invalidate_tlb_full(gt));
1383 }
1384 
1385 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1386 {
1387 	/* We allocate under vma_get_pages, so beware the shrinker */
1388 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1389 
1390 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1391 		if (vma->pages != vma->obj->mm.pages) {
1392 			sg_free_table(vma->pages);
1393 			kfree(vma->pages);
1394 		}
1395 		vma->pages = NULL;
1396 
1397 		i915_gem_object_unpin_pages(vma->obj);
1398 	}
1399 }
1400 
1401 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1402 {
1403 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1404 		return;
1405 
1406 	__vma_put_pages(vma, 1);
1407 }
1408 
1409 static void vma_unbind_pages(struct i915_vma *vma)
1410 {
1411 	unsigned int count;
1412 
1413 	lockdep_assert_held(&vma->vm->mutex);
1414 
1415 	/* The upper portion of pages_count is the number of bindings */
1416 	count = atomic_read(&vma->pages_count);
1417 	count >>= I915_VMA_PAGES_BIAS;
1418 	GEM_BUG_ON(!count);
1419 
1420 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1421 }
1422 
1423 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1424 		    u64 size, u64 alignment, u64 flags)
1425 {
1426 	struct i915_vma_work *work = NULL;
1427 	struct dma_fence *moving = NULL;
1428 	struct i915_vma_resource *vma_res = NULL;
1429 	intel_wakeref_t wakeref;
1430 	unsigned int bound;
1431 	int err;
1432 
1433 	assert_vma_held(vma);
1434 	GEM_BUG_ON(!ww);
1435 
1436 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1437 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1438 
1439 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1440 
1441 	/* First try and grab the pin without rebinding the vma */
1442 	if (try_qad_pin(vma, flags))
1443 		return 0;
1444 
1445 	err = i915_vma_get_pages(vma);
1446 	if (err)
1447 		return err;
1448 
1449 	/*
1450 	 * In case of a global GTT, we must hold a runtime-pm wakeref
1451 	 * while global PTEs are updated.  In other cases, we hold
1452 	 * the rpm reference while the VMA is active.  Since runtime
1453 	 * resume may require allocations, which are forbidden inside
1454 	 * vm->mutex, get the first rpm wakeref outside of the mutex.
1455 	 */
1456 	wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1457 
1458 	if (flags & vma->vm->bind_async_flags) {
1459 		/* lock VM */
1460 		err = i915_vm_lock_objects(vma->vm, ww);
1461 		if (err)
1462 			goto err_rpm;
1463 
1464 		work = i915_vma_work();
1465 		if (!work) {
1466 			err = -ENOMEM;
1467 			goto err_rpm;
1468 		}
1469 
1470 		work->vm = vma->vm;
1471 
1472 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1473 		if (err)
1474 			goto err_rpm;
1475 
1476 		dma_fence_work_chain(&work->base, moving);
1477 
1478 		/* Allocate enough page directories to used PTE */
1479 		if (vma->vm->allocate_va_range) {
1480 			err = i915_vm_alloc_pt_stash(vma->vm,
1481 						     &work->stash,
1482 						     vma->size);
1483 			if (err)
1484 				goto err_fence;
1485 
1486 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1487 			if (err)
1488 				goto err_fence;
1489 		}
1490 	}
1491 
1492 	vma_res = i915_vma_resource_alloc();
1493 	if (IS_ERR(vma_res)) {
1494 		err = PTR_ERR(vma_res);
1495 		goto err_fence;
1496 	}
1497 
1498 	/*
1499 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1500 	 *
1501 	 * We conflate the Global GTT with the user's vma when using the
1502 	 * aliasing-ppgtt, but it is still vitally important to try and
1503 	 * keep the use cases distinct. For example, userptr objects are
1504 	 * not allowed inside the Global GTT as that will cause lock
1505 	 * inversions when we have to evict them the mmu_notifier callbacks -
1506 	 * but they are allowed to be part of the user ppGTT which can never
1507 	 * be mapped. As such we try to give the distinct users of the same
1508 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1509 	 * and i915_ppgtt separate].
1510 	 *
1511 	 * NB this may cause us to mask real lock inversions -- while the
1512 	 * code is safe today, lockdep may not be able to spot future
1513 	 * transgressions.
1514 	 */
1515 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1516 					      !(flags & PIN_GLOBAL));
1517 	if (err)
1518 		goto err_vma_res;
1519 
1520 	/* No more allocations allowed now we hold vm->mutex */
1521 
1522 	if (unlikely(i915_vma_is_closed(vma))) {
1523 		err = -ENOENT;
1524 		goto err_unlock;
1525 	}
1526 
1527 	bound = atomic_read(&vma->flags);
1528 	if (unlikely(bound & I915_VMA_ERROR)) {
1529 		err = -ENOMEM;
1530 		goto err_unlock;
1531 	}
1532 
1533 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1534 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1535 		goto err_unlock;
1536 	}
1537 
1538 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1539 		if (!(flags & PIN_VALIDATE))
1540 			__i915_vma_pin(vma);
1541 		goto err_unlock;
1542 	}
1543 
1544 	err = i915_active_acquire(&vma->active);
1545 	if (err)
1546 		goto err_unlock;
1547 
1548 	if (!(bound & I915_VMA_BIND_MASK)) {
1549 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1550 		if (err)
1551 			goto err_active;
1552 
1553 		if (i915_is_ggtt(vma->vm))
1554 			__i915_vma_set_map_and_fenceable(vma);
1555 	}
1556 
1557 	GEM_BUG_ON(!vma->pages);
1558 	err = i915_vma_bind(vma,
1559 			    vma->obj->pat_index,
1560 			    flags, work, vma_res);
1561 	vma_res = NULL;
1562 	if (err)
1563 		goto err_remove;
1564 
1565 	/* There should only be at most 2 active bindings (user, global) */
1566 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1567 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1568 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1569 
1570 	if (!(flags & PIN_VALIDATE)) {
1571 		__i915_vma_pin(vma);
1572 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1573 	}
1574 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1575 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1576 
1577 err_remove:
1578 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1579 		i915_vma_detach(vma);
1580 		drm_mm_remove_node(&vma->node);
1581 	}
1582 err_active:
1583 	i915_active_release(&vma->active);
1584 err_unlock:
1585 	mutex_unlock(&vma->vm->mutex);
1586 err_vma_res:
1587 	i915_vma_resource_free(vma_res);
1588 err_fence:
1589 	if (work)
1590 		dma_fence_work_commit_imm(&work->base);
1591 err_rpm:
1592 	intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1593 
1594 	if (moving)
1595 		dma_fence_put(moving);
1596 
1597 	i915_vma_put_pages(vma);
1598 	return err;
1599 }
1600 
1601 static void flush_idle_contexts(struct intel_gt *gt)
1602 {
1603 	struct intel_engine_cs *engine;
1604 	enum intel_engine_id id;
1605 
1606 	for_each_engine(engine, gt, id)
1607 		intel_engine_flush_barriers(engine);
1608 
1609 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1610 }
1611 
1612 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1613 			   u32 align, unsigned int flags)
1614 {
1615 	struct i915_address_space *vm = vma->vm;
1616 	struct intel_gt *gt;
1617 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1618 	int err;
1619 
1620 	do {
1621 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1622 
1623 		if (err != -ENOSPC) {
1624 			if (!err) {
1625 				err = i915_vma_wait_for_bind(vma);
1626 				if (err)
1627 					i915_vma_unpin(vma);
1628 			}
1629 			return err;
1630 		}
1631 
1632 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1633 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1634 			flush_idle_contexts(gt);
1635 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1636 			/*
1637 			 * We pass NULL ww here, as we don't want to unbind
1638 			 * locked objects when called from execbuf when pinning
1639 			 * is removed. This would probably regress badly.
1640 			 */
1641 			i915_gem_evict_vm(vm, NULL, NULL);
1642 			mutex_unlock(&vm->mutex);
1643 		}
1644 	} while (1);
1645 }
1646 
1647 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1648 		  u32 align, unsigned int flags)
1649 {
1650 	struct i915_gem_ww_ctx _ww;
1651 	int err;
1652 
1653 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1654 
1655 	if (ww)
1656 		return __i915_ggtt_pin(vma, ww, align, flags);
1657 
1658 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1659 
1660 	for_i915_gem_ww(&_ww, err, true) {
1661 		err = i915_gem_object_lock(vma->obj, &_ww);
1662 		if (!err)
1663 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1664 	}
1665 
1666 	return err;
1667 }
1668 
1669 /**
1670  * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1671  * @obj: i915 GEM object
1672  * This function clears scanout flags for objects ggtt vmas. These flags are set
1673  * when object is pinned for display use and this function to clear them all is
1674  * targeted to be called by frontbuffer tracking code when the frontbuffer is
1675  * about to be released.
1676  */
1677 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1678 {
1679 	struct i915_vma *vma;
1680 
1681 	spin_lock(&obj->vma.lock);
1682 	for_each_ggtt_vma(vma, obj) {
1683 		i915_vma_clear_scanout(vma);
1684 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1685 	}
1686 	spin_unlock(&obj->vma.lock);
1687 }
1688 
1689 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1690 {
1691 	/*
1692 	 * We defer actually closing, unbinding and destroying the VMA until
1693 	 * the next idle point, or if the object is freed in the meantime. By
1694 	 * postponing the unbind, we allow for it to be resurrected by the
1695 	 * client, avoiding the work required to rebind the VMA. This is
1696 	 * advantageous for DRI, where the client/server pass objects
1697 	 * between themselves, temporarily opening a local VMA to the
1698 	 * object, and then closing it again. The same object is then reused
1699 	 * on the next frame (or two, depending on the depth of the swap queue)
1700 	 * causing us to rebind the VMA once more. This ends up being a lot
1701 	 * of wasted work for the steady state.
1702 	 */
1703 	GEM_BUG_ON(i915_vma_is_closed(vma));
1704 	list_add(&vma->closed_link, &gt->closed_vma);
1705 }
1706 
1707 void i915_vma_close(struct i915_vma *vma)
1708 {
1709 	struct intel_gt *gt = vma->vm->gt;
1710 	unsigned long flags;
1711 
1712 	if (i915_vma_is_ggtt(vma))
1713 		return;
1714 
1715 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1716 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1717 					&gt->closed_lock,
1718 					flags)) {
1719 		__vma_close(vma, gt);
1720 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1721 	}
1722 }
1723 
1724 static void __i915_vma_remove_closed(struct i915_vma *vma)
1725 {
1726 	list_del_init(&vma->closed_link);
1727 }
1728 
1729 void i915_vma_reopen(struct i915_vma *vma)
1730 {
1731 	struct intel_gt *gt = vma->vm->gt;
1732 
1733 	spin_lock_irq(&gt->closed_lock);
1734 	if (i915_vma_is_closed(vma))
1735 		__i915_vma_remove_closed(vma);
1736 	spin_unlock_irq(&gt->closed_lock);
1737 }
1738 
1739 static void force_unbind(struct i915_vma *vma)
1740 {
1741 	if (!drm_mm_node_allocated(&vma->node))
1742 		return;
1743 
1744 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1745 	WARN_ON(__i915_vma_unbind(vma));
1746 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1747 }
1748 
1749 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1750 			       bool vm_ddestroy)
1751 {
1752 	struct drm_i915_gem_object *obj = vma->obj;
1753 
1754 	GEM_BUG_ON(i915_vma_is_active(vma));
1755 
1756 	spin_lock(&obj->vma.lock);
1757 	list_del(&vma->obj_link);
1758 	if (!RB_EMPTY_NODE(&vma->obj_node))
1759 		rb_erase(&vma->obj_node, &obj->vma.tree);
1760 
1761 	spin_unlock(&obj->vma.lock);
1762 
1763 	spin_lock_irq(&gt->closed_lock);
1764 	__i915_vma_remove_closed(vma);
1765 	spin_unlock_irq(&gt->closed_lock);
1766 
1767 	if (vm_ddestroy)
1768 		i915_vm_resv_put(vma->vm);
1769 
1770 	/* Wait for async active retire */
1771 	i915_active_wait(&vma->active);
1772 	i915_active_fini(&vma->active);
1773 	GEM_WARN_ON(vma->resource);
1774 	i915_vma_free(vma);
1775 }
1776 
1777 /*
1778  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1779  * the initial reference.
1780  *
1781  * This function should be called when it's decided the vma isn't needed
1782  * anymore. The caller must assure that it doesn't race with another lookup
1783  * plus destroy, typically by taking an appropriate reference.
1784  *
1785  * Current callsites are
1786  * - __i915_gem_object_pages_fini()
1787  * - __i915_vm_close() - Blocks the above function by taking a reference on
1788  * the object.
1789  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1790  * on the vm and a reference on the object. Also takes the object lock so
1791  * destruction from __i915_vma_parked() can be blocked by holding the
1792  * object lock. Since the object lock is only allowed from within i915 with
1793  * an object refcount, holding the object lock also implicitly blocks the
1794  * vma freeing from __i915_gem_object_pages_fini().
1795  *
1796  * Because of locks taken during destruction, a vma is also guaranteed to
1797  * stay alive while the following locks are held if it was looked up while
1798  * holding one of the locks:
1799  * - vm->mutex
1800  * - obj->vma.lock
1801  * - gt->closed_lock
1802  */
1803 void i915_vma_destroy_locked(struct i915_vma *vma)
1804 {
1805 	lockdep_assert_held(&vma->vm->mutex);
1806 
1807 	force_unbind(vma);
1808 	list_del_init(&vma->vm_link);
1809 	release_references(vma, vma->vm->gt, false);
1810 }
1811 
1812 void i915_vma_destroy(struct i915_vma *vma)
1813 {
1814 	struct intel_gt *gt;
1815 	bool vm_ddestroy;
1816 
1817 	mutex_lock(&vma->vm->mutex);
1818 	force_unbind(vma);
1819 	list_del_init(&vma->vm_link);
1820 	vm_ddestroy = vma->vm_ddestroy;
1821 	vma->vm_ddestroy = false;
1822 
1823 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1824 	gt = vma->vm->gt;
1825 	mutex_unlock(&vma->vm->mutex);
1826 	release_references(vma, gt, vm_ddestroy);
1827 }
1828 
1829 void i915_vma_parked(struct intel_gt *gt)
1830 {
1831 	struct i915_vma *vma, *next;
1832 	LIST_HEAD(closed);
1833 
1834 	spin_lock_irq(&gt->closed_lock);
1835 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1836 		struct drm_i915_gem_object *obj = vma->obj;
1837 		struct i915_address_space *vm = vma->vm;
1838 
1839 		/* XXX All to avoid keeping a reference on i915_vma itself */
1840 
1841 		if (!kref_get_unless_zero(&obj->base.refcount))
1842 			continue;
1843 
1844 		if (!i915_vm_tryget(vm)) {
1845 			i915_gem_object_put(obj);
1846 			continue;
1847 		}
1848 
1849 		list_move(&vma->closed_link, &closed);
1850 	}
1851 	spin_unlock_irq(&gt->closed_lock);
1852 
1853 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1854 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1855 		struct drm_i915_gem_object *obj = vma->obj;
1856 		struct i915_address_space *vm = vma->vm;
1857 
1858 		if (i915_gem_object_trylock(obj, NULL)) {
1859 			INIT_LIST_HEAD(&vma->closed_link);
1860 			i915_vma_destroy(vma);
1861 			i915_gem_object_unlock(obj);
1862 		} else {
1863 			/* back you go.. */
1864 			spin_lock_irq(&gt->closed_lock);
1865 			list_add(&vma->closed_link, &gt->closed_vma);
1866 			spin_unlock_irq(&gt->closed_lock);
1867 		}
1868 
1869 		i915_gem_object_put(obj);
1870 		i915_vm_put(vm);
1871 	}
1872 }
1873 
1874 static void __i915_vma_iounmap(struct i915_vma *vma)
1875 {
1876 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1877 
1878 	if (vma->iomap == NULL)
1879 		return;
1880 
1881 	if (page_unmask_bits(vma->iomap))
1882 		__i915_gem_object_release_map(vma->obj);
1883 	else
1884 		io_mapping_unmap(vma->iomap);
1885 	vma->iomap = NULL;
1886 }
1887 
1888 void i915_vma_revoke_mmap(struct i915_vma *vma)
1889 {
1890 	struct drm_vma_offset_node *node;
1891 	u64 vma_offset;
1892 
1893 	if (!i915_vma_has_userfault(vma))
1894 		return;
1895 
1896 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1897 	GEM_BUG_ON(!vma->obj->userfault_count);
1898 
1899 	node = &vma->mmo->vma_node;
1900 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1901 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1902 			    drm_vma_node_offset_addr(node) + vma_offset,
1903 			    vma->size,
1904 			    1);
1905 
1906 	i915_vma_unset_userfault(vma);
1907 	if (!--vma->obj->userfault_count)
1908 		list_del(&vma->obj->userfault_link);
1909 }
1910 
1911 static int
1912 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1913 {
1914 	return __i915_request_await_exclusive(rq, &vma->active);
1915 }
1916 
1917 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1918 {
1919 	int err;
1920 
1921 	/* Wait for the vma to be bound before we start! */
1922 	err = __i915_request_await_bind(rq, vma);
1923 	if (err)
1924 		return err;
1925 
1926 	return i915_active_add_request(&vma->active, rq);
1927 }
1928 
1929 int _i915_vma_move_to_active(struct i915_vma *vma,
1930 			     struct i915_request *rq,
1931 			     struct dma_fence *fence,
1932 			     unsigned int flags)
1933 {
1934 	struct drm_i915_gem_object *obj = vma->obj;
1935 	int err;
1936 
1937 	assert_object_held(obj);
1938 
1939 	GEM_BUG_ON(!vma->pages);
1940 
1941 	if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1942 		err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1943 		if (unlikely(err))
1944 			return err;
1945 	}
1946 	err = __i915_vma_move_to_active(vma, rq);
1947 	if (unlikely(err))
1948 		return err;
1949 
1950 	/*
1951 	 * Reserve fences slot early to prevent an allocation after preparing
1952 	 * the workload and associating fences with dma_resv.
1953 	 */
1954 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1955 		struct dma_fence *curr;
1956 		int idx;
1957 
1958 		dma_fence_array_for_each(curr, idx, fence)
1959 			;
1960 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1961 		if (unlikely(err))
1962 			return err;
1963 	}
1964 
1965 	if (flags & EXEC_OBJECT_WRITE) {
1966 		struct intel_frontbuffer *front;
1967 
1968 		front = i915_gem_object_get_frontbuffer(obj);
1969 		if (unlikely(front)) {
1970 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1971 				i915_active_add_request(&front->write, rq);
1972 			intel_frontbuffer_put(front);
1973 		}
1974 	}
1975 
1976 	if (fence) {
1977 		struct dma_fence *curr;
1978 		enum dma_resv_usage usage;
1979 		int idx;
1980 
1981 		if (flags & EXEC_OBJECT_WRITE) {
1982 			usage = DMA_RESV_USAGE_WRITE;
1983 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1984 			obj->read_domains = 0;
1985 		} else {
1986 			usage = DMA_RESV_USAGE_READ;
1987 			obj->write_domain = 0;
1988 		}
1989 
1990 		dma_fence_array_for_each(curr, idx, fence)
1991 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1992 	}
1993 
1994 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1995 		i915_active_add_request(&vma->fence->active, rq);
1996 
1997 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1998 	obj->mm.dirty = true;
1999 
2000 	GEM_BUG_ON(!i915_vma_is_active(vma));
2001 	return 0;
2002 }
2003 
2004 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
2005 {
2006 	struct i915_vma_resource *vma_res = vma->resource;
2007 	struct dma_fence *unbind_fence;
2008 
2009 	GEM_BUG_ON(i915_vma_is_pinned(vma));
2010 	assert_vma_held_evict(vma);
2011 
2012 	if (i915_vma_is_map_and_fenceable(vma)) {
2013 		/* Force a pagefault for domain tracking on next user access */
2014 		i915_vma_revoke_mmap(vma);
2015 
2016 		/*
2017 		 * Check that we have flushed all writes through the GGTT
2018 		 * before the unbind, other due to non-strict nature of those
2019 		 * indirect writes they may end up referencing the GGTT PTE
2020 		 * after the unbind.
2021 		 *
2022 		 * Note that we may be concurrently poking at the GGTT_WRITE
2023 		 * bit from set-domain, as we mark all GGTT vma associated
2024 		 * with an object. We know this is for another vma, as we
2025 		 * are currently unbinding this one -- so if this vma will be
2026 		 * reused, it will be refaulted and have its dirty bit set
2027 		 * before the next write.
2028 		 */
2029 		i915_vma_flush_writes(vma);
2030 
2031 		/* release the fence reg _after_ flushing */
2032 		i915_vma_revoke_fence(vma);
2033 
2034 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2035 	}
2036 
2037 	__i915_vma_iounmap(vma);
2038 
2039 	GEM_BUG_ON(vma->fence);
2040 	GEM_BUG_ON(i915_vma_has_userfault(vma));
2041 
2042 	/* Object backend must be async capable. */
2043 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2044 
2045 	/* If vm is not open, unbind is a nop. */
2046 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2047 		kref_read(&vma->vm->ref);
2048 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
2049 		vma->vm->skip_pte_rewrite;
2050 	trace_i915_vma_unbind(vma);
2051 
2052 	if (async)
2053 		unbind_fence = i915_vma_resource_unbind(vma_res,
2054 							vma->obj->mm.tlb);
2055 	else
2056 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2057 
2058 	vma->resource = NULL;
2059 
2060 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2061 		   &vma->flags);
2062 
2063 	i915_vma_detach(vma);
2064 
2065 	if (!async) {
2066 		if (unbind_fence) {
2067 			dma_fence_wait(unbind_fence, false);
2068 			dma_fence_put(unbind_fence);
2069 			unbind_fence = NULL;
2070 		}
2071 		vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb);
2072 	}
2073 
2074 	/*
2075 	 * Binding itself may not have completed until the unbind fence signals,
2076 	 * so don't drop the pages until that happens, unless the resource is
2077 	 * async_capable.
2078 	 */
2079 
2080 	vma_unbind_pages(vma);
2081 	return unbind_fence;
2082 }
2083 
2084 int __i915_vma_unbind(struct i915_vma *vma)
2085 {
2086 	int ret;
2087 
2088 	lockdep_assert_held(&vma->vm->mutex);
2089 	assert_vma_held_evict(vma);
2090 
2091 	if (!drm_mm_node_allocated(&vma->node))
2092 		return 0;
2093 
2094 	if (i915_vma_is_pinned(vma)) {
2095 		vma_print_allocator(vma, "is pinned");
2096 		return -EAGAIN;
2097 	}
2098 
2099 	/*
2100 	 * After confirming that no one else is pinning this vma, wait for
2101 	 * any laggards who may have crept in during the wait (through
2102 	 * a residual pin skipping the vm->mutex) to complete.
2103 	 */
2104 	ret = i915_vma_sync(vma);
2105 	if (ret)
2106 		return ret;
2107 
2108 	GEM_BUG_ON(i915_vma_is_active(vma));
2109 	__i915_vma_evict(vma, false);
2110 
2111 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2112 	return 0;
2113 }
2114 
2115 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2116 {
2117 	struct dma_fence *fence;
2118 
2119 	lockdep_assert_held(&vma->vm->mutex);
2120 
2121 	if (!drm_mm_node_allocated(&vma->node))
2122 		return NULL;
2123 
2124 	if (i915_vma_is_pinned(vma) ||
2125 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2126 		return ERR_PTR(-EAGAIN);
2127 
2128 	/*
2129 	 * We probably need to replace this with awaiting the fences of the
2130 	 * object's dma_resv when the vma active goes away. When doing that
2131 	 * we need to be careful to not add the vma_resource unbind fence
2132 	 * immediately to the object's dma_resv, because then unbinding
2133 	 * the next vma from the object, in case there are many, will
2134 	 * actually await the unbinding of the previous vmas, which is
2135 	 * undesirable.
2136 	 */
2137 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2138 				       I915_ACTIVE_AWAIT_EXCL |
2139 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2140 		return ERR_PTR(-EBUSY);
2141 	}
2142 
2143 	fence = __i915_vma_evict(vma, true);
2144 
2145 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2146 
2147 	return fence;
2148 }
2149 
2150 int i915_vma_unbind(struct i915_vma *vma)
2151 {
2152 	struct i915_address_space *vm = vma->vm;
2153 	intel_wakeref_t wakeref = 0;
2154 	int err;
2155 
2156 	assert_object_held_shared(vma->obj);
2157 
2158 	/* Optimistic wait before taking the mutex */
2159 	err = i915_vma_sync(vma);
2160 	if (err)
2161 		return err;
2162 
2163 	if (!drm_mm_node_allocated(&vma->node))
2164 		return 0;
2165 
2166 	if (i915_vma_is_pinned(vma)) {
2167 		vma_print_allocator(vma, "is pinned");
2168 		return -EAGAIN;
2169 	}
2170 
2171 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2172 		/* XXX not always required: nop_clear_range */
2173 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2174 
2175 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2176 	if (err)
2177 		goto out_rpm;
2178 
2179 	err = __i915_vma_unbind(vma);
2180 	mutex_unlock(&vm->mutex);
2181 
2182 out_rpm:
2183 	if (wakeref)
2184 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2185 	return err;
2186 }
2187 
2188 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2189 {
2190 	struct drm_i915_gem_object *obj = vma->obj;
2191 	struct i915_address_space *vm = vma->vm;
2192 	intel_wakeref_t wakeref = 0;
2193 	struct dma_fence *fence;
2194 	int err;
2195 
2196 	/*
2197 	 * We need the dma-resv lock since we add the
2198 	 * unbind fence to the dma-resv object.
2199 	 */
2200 	assert_object_held(obj);
2201 
2202 	if (!drm_mm_node_allocated(&vma->node))
2203 		return 0;
2204 
2205 	if (i915_vma_is_pinned(vma)) {
2206 		vma_print_allocator(vma, "is pinned");
2207 		return -EAGAIN;
2208 	}
2209 
2210 	if (!obj->mm.rsgt)
2211 		return -EBUSY;
2212 
2213 	err = dma_resv_reserve_fences(obj->base.resv, 2);
2214 	if (err)
2215 		return -EBUSY;
2216 
2217 	/*
2218 	 * It would be great if we could grab this wakeref from the
2219 	 * async unbind work if needed, but we can't because it uses
2220 	 * kmalloc and it's in the dma-fence signalling critical path.
2221 	 */
2222 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2223 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2224 
2225 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2226 		err = -EBUSY;
2227 		goto out_rpm;
2228 	} else if (!trylock_vm) {
2229 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2230 		if (err)
2231 			goto out_rpm;
2232 	}
2233 
2234 	fence = __i915_vma_unbind_async(vma);
2235 	mutex_unlock(&vm->mutex);
2236 	if (IS_ERR_OR_NULL(fence)) {
2237 		err = PTR_ERR_OR_ZERO(fence);
2238 		goto out_rpm;
2239 	}
2240 
2241 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2242 	dma_fence_put(fence);
2243 
2244 out_rpm:
2245 	if (wakeref)
2246 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2247 	return err;
2248 }
2249 
2250 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2251 {
2252 	int err;
2253 
2254 	i915_gem_object_lock(vma->obj, NULL);
2255 	err = i915_vma_unbind(vma);
2256 	i915_gem_object_unlock(vma->obj);
2257 
2258 	return err;
2259 }
2260 
2261 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2262 {
2263 	i915_gem_object_make_unshrinkable(vma->obj);
2264 	return vma;
2265 }
2266 
2267 void i915_vma_make_shrinkable(struct i915_vma *vma)
2268 {
2269 	i915_gem_object_make_shrinkable(vma->obj);
2270 }
2271 
2272 void i915_vma_make_purgeable(struct i915_vma *vma)
2273 {
2274 	i915_gem_object_make_purgeable(vma->obj);
2275 }
2276 
2277 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2278 #include "selftests/i915_vma.c"
2279 #endif
2280 
2281 void i915_vma_module_exit(void)
2282 {
2283 	kmem_cache_destroy(slab_vmas);
2284 }
2285 
2286 int __init i915_vma_module_init(void)
2287 {
2288 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2289 	if (!slab_vmas)
2290 		return -ENOMEM;
2291 
2292 	return 0;
2293 }
2294