1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <linux/dma-fence-array.h> 27 #include <drm/drm_gem.h> 28 29 #include "display/intel_display.h" 30 #include "display/intel_frontbuffer.h" 31 #include "gem/i915_gem_lmem.h" 32 #include "gem/i915_gem_tiling.h" 33 #include "gt/intel_engine.h" 34 #include "gt/intel_engine_heartbeat.h" 35 #include "gt/intel_gt.h" 36 #include "gt/intel_gt_pm.h" 37 #include "gt/intel_gt_requests.h" 38 #include "gt/intel_tlb.h" 39 40 #include "i915_drv.h" 41 #include "i915_gem_evict.h" 42 #include "i915_sw_fence_work.h" 43 #include "i915_trace.h" 44 #include "i915_vma.h" 45 #include "i915_vma_resource.h" 46 47 static inline void assert_vma_held_evict(const struct i915_vma *vma) 48 { 49 /* 50 * We may be forced to unbind when the vm is dead, to clean it up. 51 * This is the only exception to the requirement of the object lock 52 * being held. 53 */ 54 if (kref_read(&vma->vm->ref)) 55 assert_object_held_shared(vma->obj); 56 } 57 58 static struct kmem_cache *slab_vmas; 59 60 static struct i915_vma *i915_vma_alloc(void) 61 { 62 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL); 63 } 64 65 static void i915_vma_free(struct i915_vma *vma) 66 { 67 return kmem_cache_free(slab_vmas, vma); 68 } 69 70 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 71 72 #include <linux/stackdepot.h> 73 74 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 75 { 76 char buf[512]; 77 78 if (!vma->node.stack) { 79 drm_dbg(vma->obj->base.dev, 80 "vma.node [%08llx + %08llx] %s: unknown owner\n", 81 vma->node.start, vma->node.size, reason); 82 return; 83 } 84 85 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0); 86 drm_dbg(vma->obj->base.dev, 87 "vma.node [%08llx + %08llx] %s: inserted at %s\n", 88 vma->node.start, vma->node.size, reason, buf); 89 } 90 91 #else 92 93 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 94 { 95 } 96 97 #endif 98 99 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 100 { 101 return container_of(ref, typeof(struct i915_vma), active); 102 } 103 104 static int __i915_vma_active(struct i915_active *ref) 105 { 106 struct i915_vma *vma = active_to_vma(ref); 107 108 if (!i915_vma_tryget(vma)) 109 return -ENOENT; 110 111 /* 112 * Exclude global GTT VMA from holding a GT wakeref 113 * while active, otherwise GPU never goes idle. 114 */ 115 if (!i915_vma_is_ggtt(vma)) 116 intel_gt_pm_get(vma->vm->gt); 117 118 return 0; 119 } 120 121 static void __i915_vma_retire(struct i915_active *ref) 122 { 123 struct i915_vma *vma = active_to_vma(ref); 124 125 if (!i915_vma_is_ggtt(vma)) { 126 /* 127 * Since we can be called from atomic contexts, 128 * use an async variant of intel_gt_pm_put(). 129 */ 130 intel_gt_pm_put_async(vma->vm->gt); 131 } 132 133 i915_vma_put(vma); 134 } 135 136 static struct i915_vma * 137 vma_create(struct drm_i915_gem_object *obj, 138 struct i915_address_space *vm, 139 const struct i915_gtt_view *view) 140 { 141 struct i915_vma *pos = ERR_PTR(-E2BIG); 142 struct i915_vma *vma; 143 struct rb_node *rb, **p; 144 int err; 145 146 /* The aliasing_ppgtt should never be used directly! */ 147 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 148 149 vma = i915_vma_alloc(); 150 if (vma == NULL) 151 return ERR_PTR(-ENOMEM); 152 153 vma->ops = &vm->vma_ops; 154 vma->obj = obj; 155 vma->size = obj->base.size; 156 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 157 158 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0); 159 160 /* Declare ourselves safe for use inside shrinkers */ 161 if (IS_ENABLED(CONFIG_LOCKDEP)) { 162 fs_reclaim_acquire(GFP_KERNEL); 163 might_lock(&vma->active.mutex); 164 fs_reclaim_release(GFP_KERNEL); 165 } 166 167 INIT_LIST_HEAD(&vma->closed_link); 168 INIT_LIST_HEAD(&vma->obj_link); 169 RB_CLEAR_NODE(&vma->obj_node); 170 171 if (view && view->type != I915_GTT_VIEW_NORMAL) { 172 vma->gtt_view = *view; 173 if (view->type == I915_GTT_VIEW_PARTIAL) { 174 GEM_BUG_ON(range_overflows_t(u64, 175 view->partial.offset, 176 view->partial.size, 177 obj->base.size >> PAGE_SHIFT)); 178 vma->size = view->partial.size; 179 vma->size <<= PAGE_SHIFT; 180 GEM_BUG_ON(vma->size > obj->base.size); 181 } else if (view->type == I915_GTT_VIEW_ROTATED) { 182 vma->size = intel_rotation_info_size(&view->rotated); 183 vma->size <<= PAGE_SHIFT; 184 } else if (view->type == I915_GTT_VIEW_REMAPPED) { 185 vma->size = intel_remapped_info_size(&view->remapped); 186 vma->size <<= PAGE_SHIFT; 187 } 188 } 189 190 if (unlikely(vma->size > vm->total)) 191 goto err_vma; 192 193 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 194 195 err = mutex_lock_interruptible(&vm->mutex); 196 if (err) { 197 pos = ERR_PTR(err); 198 goto err_vma; 199 } 200 201 vma->vm = vm; 202 list_add_tail(&vma->vm_link, &vm->unbound_list); 203 204 spin_lock(&obj->vma.lock); 205 if (i915_is_ggtt(vm)) { 206 if (unlikely(overflows_type(vma->size, u32))) 207 goto err_unlock; 208 209 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 210 i915_gem_object_get_tiling(obj), 211 i915_gem_object_get_stride(obj)); 212 if (unlikely(vma->fence_size < vma->size || /* overflow */ 213 vma->fence_size > vm->total)) 214 goto err_unlock; 215 216 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 217 218 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 219 i915_gem_object_get_tiling(obj), 220 i915_gem_object_get_stride(obj)); 221 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 222 223 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 224 } 225 226 rb = NULL; 227 p = &obj->vma.tree.rb_node; 228 while (*p) { 229 long cmp; 230 231 rb = *p; 232 pos = rb_entry(rb, struct i915_vma, obj_node); 233 234 /* 235 * If the view already exists in the tree, another thread 236 * already created a matching vma, so return the older instance 237 * and dispose of ours. 238 */ 239 cmp = i915_vma_compare(pos, vm, view); 240 if (cmp < 0) 241 p = &rb->rb_right; 242 else if (cmp > 0) 243 p = &rb->rb_left; 244 else 245 goto err_unlock; 246 } 247 rb_link_node(&vma->obj_node, rb, p); 248 rb_insert_color(&vma->obj_node, &obj->vma.tree); 249 250 if (i915_vma_is_ggtt(vma)) 251 /* 252 * We put the GGTT vma at the start of the vma-list, followed 253 * by the ppGGTT vma. This allows us to break early when 254 * iterating over only the GGTT vma for an object, see 255 * for_each_ggtt_vma() 256 */ 257 list_add(&vma->obj_link, &obj->vma.list); 258 else 259 list_add_tail(&vma->obj_link, &obj->vma.list); 260 261 spin_unlock(&obj->vma.lock); 262 mutex_unlock(&vm->mutex); 263 264 return vma; 265 266 err_unlock: 267 spin_unlock(&obj->vma.lock); 268 list_del_init(&vma->vm_link); 269 mutex_unlock(&vm->mutex); 270 err_vma: 271 i915_vma_free(vma); 272 return pos; 273 } 274 275 static struct i915_vma * 276 i915_vma_lookup(struct drm_i915_gem_object *obj, 277 struct i915_address_space *vm, 278 const struct i915_gtt_view *view) 279 { 280 struct rb_node *rb; 281 282 rb = obj->vma.tree.rb_node; 283 while (rb) { 284 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 285 long cmp; 286 287 cmp = i915_vma_compare(vma, vm, view); 288 if (cmp == 0) 289 return vma; 290 291 if (cmp < 0) 292 rb = rb->rb_right; 293 else 294 rb = rb->rb_left; 295 } 296 297 return NULL; 298 } 299 300 /** 301 * i915_vma_instance - return the singleton instance of the VMA 302 * @obj: parent &struct drm_i915_gem_object to be mapped 303 * @vm: address space in which the mapping is located 304 * @view: additional mapping requirements 305 * 306 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 307 * the same @view characteristics. If a match is not found, one is created. 308 * Once created, the VMA is kept until either the object is freed, or the 309 * address space is closed. 310 * 311 * Returns the vma, or an error pointer. 312 */ 313 struct i915_vma * 314 i915_vma_instance(struct drm_i915_gem_object *obj, 315 struct i915_address_space *vm, 316 const struct i915_gtt_view *view) 317 { 318 struct i915_vma *vma; 319 320 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm)); 321 GEM_BUG_ON(!kref_read(&vm->ref)); 322 323 spin_lock(&obj->vma.lock); 324 vma = i915_vma_lookup(obj, vm, view); 325 spin_unlock(&obj->vma.lock); 326 327 /* vma_create() will resolve the race if another creates the vma */ 328 if (unlikely(!vma)) 329 vma = vma_create(obj, vm, view); 330 331 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 332 return vma; 333 } 334 335 struct i915_vma_work { 336 struct dma_fence_work base; 337 struct i915_address_space *vm; 338 struct i915_vm_pt_stash stash; 339 struct i915_vma_resource *vma_res; 340 struct drm_i915_gem_object *obj; 341 struct i915_sw_dma_fence_cb cb; 342 unsigned int pat_index; 343 unsigned int flags; 344 }; 345 346 static void __vma_bind(struct dma_fence_work *work) 347 { 348 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 349 struct i915_vma_resource *vma_res = vw->vma_res; 350 351 /* 352 * We are about the bind the object, which must mean we have already 353 * signaled the work to potentially clear/move the pages underneath. If 354 * something went wrong at that stage then the object should have 355 * unknown_state set, in which case we need to skip the bind. 356 */ 357 if (i915_gem_object_has_unknown_state(vw->obj)) 358 return; 359 360 vma_res->ops->bind_vma(vma_res->vm, &vw->stash, 361 vma_res, vw->pat_index, vw->flags); 362 } 363 364 static void __vma_release(struct dma_fence_work *work) 365 { 366 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 367 368 if (vw->obj) 369 i915_gem_object_put(vw->obj); 370 371 i915_vm_free_pt_stash(vw->vm, &vw->stash); 372 if (vw->vma_res) 373 i915_vma_resource_put(vw->vma_res); 374 } 375 376 static const struct dma_fence_work_ops bind_ops = { 377 .name = "bind", 378 .work = __vma_bind, 379 .release = __vma_release, 380 }; 381 382 struct i915_vma_work *i915_vma_work(void) 383 { 384 struct i915_vma_work *vw; 385 386 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 387 if (!vw) 388 return NULL; 389 390 dma_fence_work_init(&vw->base, &bind_ops); 391 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 392 393 return vw; 394 } 395 396 int i915_vma_wait_for_bind(struct i915_vma *vma) 397 { 398 int err = 0; 399 400 if (rcu_access_pointer(vma->active.excl.fence)) { 401 struct dma_fence *fence; 402 403 rcu_read_lock(); 404 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 405 rcu_read_unlock(); 406 if (fence) { 407 err = dma_fence_wait(fence, true); 408 dma_fence_put(fence); 409 } 410 } 411 412 return err; 413 } 414 415 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 416 static int i915_vma_verify_bind_complete(struct i915_vma *vma) 417 { 418 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl); 419 int err; 420 421 if (!fence) 422 return 0; 423 424 if (dma_fence_is_signaled(fence)) 425 err = fence->error; 426 else 427 err = -EBUSY; 428 429 dma_fence_put(fence); 430 431 return err; 432 } 433 #else 434 #define i915_vma_verify_bind_complete(_vma) 0 435 #endif 436 437 I915_SELFTEST_EXPORT void 438 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res, 439 struct i915_vma *vma) 440 { 441 struct drm_i915_gem_object *obj = vma->obj; 442 443 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes, 444 obj->mm.rsgt, i915_gem_object_is_readonly(obj), 445 i915_gem_object_is_lmem(obj), obj->mm.region, 446 vma->ops, vma->private, __i915_vma_offset(vma), 447 __i915_vma_size(vma), vma->size, vma->guard); 448 } 449 450 /** 451 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 452 * @vma: VMA to map 453 * @pat_index: PAT index to set in PTE 454 * @flags: flags like global or local mapping 455 * @work: preallocated worker for allocating and binding the PTE 456 * @vma_res: pointer to a preallocated vma resource. The resource is either 457 * consumed or freed. 458 * 459 * DMA addresses are taken from the scatter-gather table of this object (or of 460 * this VMA in case of non-default GGTT views) and PTE entries set up. 461 * Note that DMA addresses are also the only part of the SG table we care about. 462 */ 463 int i915_vma_bind(struct i915_vma *vma, 464 unsigned int pat_index, 465 u32 flags, 466 struct i915_vma_work *work, 467 struct i915_vma_resource *vma_res) 468 { 469 u32 bind_flags; 470 u32 vma_flags; 471 int ret; 472 473 lockdep_assert_held(&vma->vm->mutex); 474 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 475 GEM_BUG_ON(vma->size > i915_vma_size(vma)); 476 477 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 478 vma->node.size, 479 vma->vm->total))) { 480 i915_vma_resource_free(vma_res); 481 return -ENODEV; 482 } 483 484 if (GEM_DEBUG_WARN_ON(!flags)) { 485 i915_vma_resource_free(vma_res); 486 return -EINVAL; 487 } 488 489 bind_flags = flags; 490 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 491 492 vma_flags = atomic_read(&vma->flags); 493 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 494 495 bind_flags &= ~vma_flags; 496 if (bind_flags == 0) { 497 i915_vma_resource_free(vma_res); 498 return 0; 499 } 500 501 GEM_BUG_ON(!atomic_read(&vma->pages_count)); 502 503 /* Wait for or await async unbinds touching our range */ 504 if (work && bind_flags & vma->vm->bind_async_flags) 505 ret = i915_vma_resource_bind_dep_await(vma->vm, 506 &work->base.chain, 507 vma->node.start, 508 vma->node.size, 509 true, 510 GFP_NOWAIT | 511 __GFP_RETRY_MAYFAIL | 512 __GFP_NOWARN); 513 else 514 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start, 515 vma->node.size, true); 516 if (ret) { 517 i915_vma_resource_free(vma_res); 518 return ret; 519 } 520 521 if (vma->resource || !vma_res) { 522 /* Rebinding with an additional I915_VMA_*_BIND */ 523 GEM_WARN_ON(!vma_flags); 524 i915_vma_resource_free(vma_res); 525 } else { 526 i915_vma_resource_init_from_vma(vma_res, vma); 527 vma->resource = vma_res; 528 } 529 trace_i915_vma_bind(vma, bind_flags); 530 if (work && bind_flags & vma->vm->bind_async_flags) { 531 struct dma_fence *prev; 532 533 work->vma_res = i915_vma_resource_get(vma->resource); 534 work->pat_index = pat_index; 535 work->flags = bind_flags; 536 537 /* 538 * Note we only want to chain up to the migration fence on 539 * the pages (not the object itself). As we don't track that, 540 * yet, we have to use the exclusive fence instead. 541 * 542 * Also note that we do not want to track the async vma as 543 * part of the obj->resv->excl_fence as it only affects 544 * execution and not content or object's backing store lifetime. 545 */ 546 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 547 if (prev) { 548 __i915_sw_fence_await_dma_fence(&work->base.chain, 549 prev, 550 &work->cb); 551 dma_fence_put(prev); 552 } 553 554 work->base.dma.error = 0; /* enable the queue_work() */ 555 work->obj = i915_gem_object_get(vma->obj); 556 } else { 557 ret = i915_gem_object_wait_moving_fence(vma->obj, true); 558 if (ret) { 559 i915_vma_resource_free(vma->resource); 560 vma->resource = NULL; 561 562 return ret; 563 } 564 vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index, 565 bind_flags); 566 } 567 568 atomic_or(bind_flags, &vma->flags); 569 return 0; 570 } 571 572 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 573 { 574 void __iomem *ptr; 575 int err; 576 577 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY)) 578 return IOMEM_ERR_PTR(-EINVAL); 579 580 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 581 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 582 GEM_BUG_ON(i915_vma_verify_bind_complete(vma)); 583 584 ptr = READ_ONCE(vma->iomap); 585 if (ptr == NULL) { 586 /* 587 * TODO: consider just using i915_gem_object_pin_map() for lmem 588 * instead, which already supports mapping non-contiguous chunks 589 * of pages, that way we can also drop the 590 * I915_BO_ALLOC_CONTIGUOUS when allocating the object. 591 */ 592 if (i915_gem_object_is_lmem(vma->obj)) { 593 ptr = i915_gem_object_lmem_io_map(vma->obj, 0, 594 vma->obj->base.size); 595 } else if (i915_vma_is_map_and_fenceable(vma)) { 596 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 597 i915_vma_offset(vma), 598 i915_vma_size(vma)); 599 } else { 600 ptr = (void __iomem *) 601 i915_gem_object_pin_map(vma->obj, I915_MAP_WC); 602 if (IS_ERR(ptr)) { 603 err = PTR_ERR(ptr); 604 goto err; 605 } 606 ptr = page_pack_bits(ptr, 1); 607 } 608 609 if (ptr == NULL) { 610 err = -ENOMEM; 611 goto err; 612 } 613 614 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 615 if (page_unmask_bits(ptr)) 616 __i915_gem_object_release_map(vma->obj); 617 else 618 io_mapping_unmap(ptr); 619 ptr = vma->iomap; 620 } 621 } 622 623 __i915_vma_pin(vma); 624 625 err = i915_vma_pin_fence(vma); 626 if (err) 627 goto err_unpin; 628 629 i915_vma_set_ggtt_write(vma); 630 631 /* NB Access through the GTT requires the device to be awake. */ 632 return page_mask_bits(ptr); 633 634 err_unpin: 635 __i915_vma_unpin(vma); 636 err: 637 return IOMEM_ERR_PTR(err); 638 } 639 640 void i915_vma_flush_writes(struct i915_vma *vma) 641 { 642 if (i915_vma_unset_ggtt_write(vma)) 643 intel_gt_flush_ggtt_writes(vma->vm->gt); 644 } 645 646 void i915_vma_unpin_iomap(struct i915_vma *vma) 647 { 648 GEM_BUG_ON(vma->iomap == NULL); 649 650 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */ 651 652 i915_vma_flush_writes(vma); 653 654 i915_vma_unpin_fence(vma); 655 i915_vma_unpin(vma); 656 } 657 658 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 659 { 660 struct i915_vma *vma; 661 struct drm_i915_gem_object *obj; 662 663 vma = fetch_and_zero(p_vma); 664 if (!vma) 665 return; 666 667 obj = vma->obj; 668 GEM_BUG_ON(!obj); 669 670 i915_vma_unpin(vma); 671 672 if (flags & I915_VMA_RELEASE_MAP) 673 i915_gem_object_unpin_map(obj); 674 675 i915_gem_object_put(obj); 676 } 677 678 bool i915_vma_misplaced(const struct i915_vma *vma, 679 u64 size, u64 alignment, u64 flags) 680 { 681 if (!drm_mm_node_allocated(&vma->node)) 682 return false; 683 684 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 685 return true; 686 687 if (i915_vma_size(vma) < size) 688 return true; 689 690 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 691 if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment)) 692 return true; 693 694 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 695 return true; 696 697 if (flags & PIN_OFFSET_BIAS && 698 i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK)) 699 return true; 700 701 if (flags & PIN_OFFSET_FIXED && 702 i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK)) 703 return true; 704 705 if (flags & PIN_OFFSET_GUARD && 706 vma->guard < (flags & PIN_OFFSET_MASK)) 707 return true; 708 709 return false; 710 } 711 712 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 713 { 714 bool mappable, fenceable; 715 716 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 717 GEM_BUG_ON(!vma->fence_size); 718 719 fenceable = (i915_vma_size(vma) >= vma->fence_size && 720 IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment)); 721 722 mappable = i915_ggtt_offset(vma) + vma->fence_size <= 723 i915_vm_to_ggtt(vma->vm)->mappable_end; 724 725 if (mappable && fenceable) 726 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 727 else 728 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 729 } 730 731 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 732 { 733 struct drm_mm_node *node = &vma->node; 734 struct drm_mm_node *other; 735 736 /* 737 * On some machines we have to be careful when putting differing types 738 * of snoopable memory together to avoid the prefetcher crossing memory 739 * domains and dying. During vm initialisation, we decide whether or not 740 * these constraints apply and set the drm_mm.color_adjust 741 * appropriately. 742 */ 743 if (!i915_vm_has_cache_coloring(vma->vm)) 744 return true; 745 746 /* Only valid to be called on an already inserted vma */ 747 GEM_BUG_ON(!drm_mm_node_allocated(node)); 748 GEM_BUG_ON(list_empty(&node->node_list)); 749 750 other = list_prev_entry(node, node_list); 751 if (i915_node_color_differs(other, color) && 752 !drm_mm_hole_follows(other)) 753 return false; 754 755 other = list_next_entry(node, node_list); 756 if (i915_node_color_differs(other, color) && 757 !drm_mm_hole_follows(node)) 758 return false; 759 760 return true; 761 } 762 763 /** 764 * i915_vma_insert - finds a slot for the vma in its address space 765 * @vma: the vma 766 * @ww: An optional struct i915_gem_ww_ctx 767 * @size: requested size in bytes (can be larger than the VMA) 768 * @alignment: required alignment 769 * @flags: mask of PIN_* flags to use 770 * 771 * First we try to allocate some free space that meets the requirements for 772 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 773 * preferrably the oldest idle entry to make room for the new VMA. 774 * 775 * Returns: 776 * 0 on success, negative error code otherwise. 777 */ 778 static int 779 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 780 u64 size, u64 alignment, u64 flags) 781 { 782 unsigned long color, guard; 783 u64 start, end; 784 int ret; 785 786 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 787 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 788 GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1); 789 790 size = max(size, vma->size); 791 alignment = max_t(typeof(alignment), alignment, vma->display_alignment); 792 if (flags & PIN_MAPPABLE) { 793 size = max_t(typeof(size), size, vma->fence_size); 794 alignment = max_t(typeof(alignment), 795 alignment, vma->fence_alignment); 796 } 797 798 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 799 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 800 GEM_BUG_ON(!is_power_of_2(alignment)); 801 802 guard = vma->guard; /* retain guard across rebinds */ 803 if (flags & PIN_OFFSET_GUARD) { 804 GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32)); 805 guard = max_t(u32, guard, flags & PIN_OFFSET_MASK); 806 } 807 /* 808 * As we align the node upon insertion, but the hardware gets 809 * node.start + guard, the easiest way to make that work is 810 * to make the guard a multiple of the alignment size. 811 */ 812 guard = ALIGN(guard, alignment); 813 814 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 815 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 816 817 end = vma->vm->total; 818 if (flags & PIN_MAPPABLE) 819 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 820 if (flags & PIN_ZONE_4G) 821 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 822 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 823 824 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj)); 825 826 /* 827 * If binding the object/GGTT view requires more space than the entire 828 * aperture has, reject it early before evicting everything in a vain 829 * attempt to find space. 830 */ 831 if (size > end - 2 * guard) { 832 drm_dbg(vma->obj->base.dev, 833 "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 834 size, flags & PIN_MAPPABLE ? "mappable" : "total", end); 835 return -ENOSPC; 836 } 837 838 color = 0; 839 840 if (i915_vm_has_cache_coloring(vma->vm)) 841 color = vma->obj->pat_index; 842 843 if (flags & PIN_OFFSET_FIXED) { 844 u64 offset = flags & PIN_OFFSET_MASK; 845 if (!IS_ALIGNED(offset, alignment) || 846 range_overflows(offset, size, end)) 847 return -EINVAL; 848 /* 849 * The caller knows not of the guard added by others and 850 * requests for the offset of the start of its buffer 851 * to be fixed, which may not be the same as the position 852 * of the vma->node due to the guard pages. 853 */ 854 if (offset < guard || offset + size > end - guard) 855 return -ENOSPC; 856 857 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node, 858 size + 2 * guard, 859 offset - guard, 860 color, flags); 861 if (ret) 862 return ret; 863 } else { 864 size += 2 * guard; 865 /* 866 * We only support huge gtt pages through the 48b PPGTT, 867 * however we also don't want to force any alignment for 868 * objects which need to be tightly packed into the low 32bits. 869 * 870 * Note that we assume that GGTT are limited to 4GiB for the 871 * forseeable future. See also i915_ggtt_offset(). 872 */ 873 if (upper_32_bits(end - 1) && 874 vma->page_sizes.sg > I915_GTT_PAGE_SIZE && 875 !HAS_64K_PAGES(vma->vm->i915)) { 876 /* 877 * We can't mix 64K and 4K PTEs in the same page-table 878 * (2M block), and so to avoid the ugliness and 879 * complexity of coloring we opt for just aligning 64K 880 * objects to 2M. 881 */ 882 u64 page_alignment = 883 rounddown_pow_of_two(vma->page_sizes.sg | 884 I915_GTT_PAGE_SIZE_2M); 885 886 /* 887 * Check we don't expand for the limited Global GTT 888 * (mappable aperture is even more precious!). This 889 * also checks that we exclude the aliasing-ppgtt. 890 */ 891 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 892 893 alignment = max(alignment, page_alignment); 894 895 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 896 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 897 } 898 899 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node, 900 size, alignment, color, 901 start, end, flags); 902 if (ret) 903 return ret; 904 905 GEM_BUG_ON(vma->node.start < start); 906 GEM_BUG_ON(vma->node.start + vma->node.size > end); 907 } 908 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 909 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 910 911 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 912 vma->guard = guard; 913 914 return 0; 915 } 916 917 static void 918 i915_vma_detach(struct i915_vma *vma) 919 { 920 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 921 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 922 923 /* 924 * And finally now the object is completely decoupled from this 925 * vma, we can drop its hold on the backing storage and allow 926 * it to be reaped by the shrinker. 927 */ 928 list_move_tail(&vma->vm_link, &vma->vm->unbound_list); 929 } 930 931 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 932 { 933 unsigned int bound; 934 935 bound = atomic_read(&vma->flags); 936 937 if (flags & PIN_VALIDATE) { 938 flags &= I915_VMA_BIND_MASK; 939 940 return (flags & bound) == flags; 941 } 942 943 /* with the lock mandatory for unbind, we don't race here */ 944 flags &= I915_VMA_BIND_MASK; 945 do { 946 if (unlikely(flags & ~bound)) 947 return false; 948 949 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 950 return false; 951 952 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 953 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 954 955 return true; 956 } 957 958 static struct scatterlist * 959 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 960 unsigned int width, unsigned int height, 961 unsigned int src_stride, unsigned int dst_stride, 962 struct sg_table *st, struct scatterlist *sg) 963 { 964 unsigned int column, row; 965 pgoff_t src_idx; 966 967 for (column = 0; column < width; column++) { 968 unsigned int left; 969 970 src_idx = src_stride * (height - 1) + column + offset; 971 for (row = 0; row < height; row++) { 972 st->nents++; 973 /* 974 * We don't need the pages, but need to initialize 975 * the entries so the sg list can be happily traversed. 976 * The only thing we need are DMA addresses. 977 */ 978 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 979 sg_dma_address(sg) = 980 i915_gem_object_get_dma_address(obj, src_idx); 981 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 982 sg = sg_next(sg); 983 src_idx -= src_stride; 984 } 985 986 left = (dst_stride - height) * I915_GTT_PAGE_SIZE; 987 988 if (!left) 989 continue; 990 991 st->nents++; 992 993 /* 994 * The DE ignores the PTEs for the padding tiles, the sg entry 995 * here is just a conenience to indicate how many padding PTEs 996 * to insert at this spot. 997 */ 998 sg_set_page(sg, NULL, left, 0); 999 sg_dma_address(sg) = 0; 1000 sg_dma_len(sg) = left; 1001 sg = sg_next(sg); 1002 } 1003 1004 return sg; 1005 } 1006 1007 static noinline struct sg_table * 1008 intel_rotate_pages(struct intel_rotation_info *rot_info, 1009 struct drm_i915_gem_object *obj) 1010 { 1011 unsigned int size = intel_rotation_info_size(rot_info); 1012 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1013 struct sg_table *st; 1014 struct scatterlist *sg; 1015 int ret = -ENOMEM; 1016 int i; 1017 1018 /* Allocate target SG list. */ 1019 st = kmalloc(sizeof(*st), GFP_KERNEL); 1020 if (!st) 1021 goto err_st_alloc; 1022 1023 ret = sg_alloc_table(st, size, GFP_KERNEL); 1024 if (ret) 1025 goto err_sg_alloc; 1026 1027 st->nents = 0; 1028 sg = st->sgl; 1029 1030 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1031 sg = rotate_pages(obj, rot_info->plane[i].offset, 1032 rot_info->plane[i].width, rot_info->plane[i].height, 1033 rot_info->plane[i].src_stride, 1034 rot_info->plane[i].dst_stride, 1035 st, sg); 1036 1037 return st; 1038 1039 err_sg_alloc: 1040 kfree(st); 1041 err_st_alloc: 1042 1043 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1044 obj->base.size, rot_info->plane[0].width, 1045 rot_info->plane[0].height, size); 1046 1047 return ERR_PTR(ret); 1048 } 1049 1050 static struct scatterlist * 1051 add_padding_pages(unsigned int count, 1052 struct sg_table *st, struct scatterlist *sg) 1053 { 1054 st->nents++; 1055 1056 /* 1057 * The DE ignores the PTEs for the padding tiles, the sg entry 1058 * here is just a convenience to indicate how many padding PTEs 1059 * to insert at this spot. 1060 */ 1061 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0); 1062 sg_dma_address(sg) = 0; 1063 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE; 1064 sg = sg_next(sg); 1065 1066 return sg; 1067 } 1068 1069 static struct scatterlist * 1070 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj, 1071 unsigned long offset, unsigned int alignment_pad, 1072 unsigned int width, unsigned int height, 1073 unsigned int src_stride, unsigned int dst_stride, 1074 struct sg_table *st, struct scatterlist *sg, 1075 unsigned int *gtt_offset) 1076 { 1077 unsigned int row; 1078 1079 if (!width || !height) 1080 return sg; 1081 1082 if (alignment_pad) 1083 sg = add_padding_pages(alignment_pad, st, sg); 1084 1085 for (row = 0; row < height; row++) { 1086 unsigned int left = width * I915_GTT_PAGE_SIZE; 1087 1088 while (left) { 1089 dma_addr_t addr; 1090 unsigned int length; 1091 1092 /* 1093 * We don't need the pages, but need to initialize 1094 * the entries so the sg list can be happily traversed. 1095 * The only thing we need are DMA addresses. 1096 */ 1097 1098 addr = i915_gem_object_get_dma_address_len(obj, offset, &length); 1099 1100 length = min(left, length); 1101 1102 st->nents++; 1103 1104 sg_set_page(sg, NULL, length, 0); 1105 sg_dma_address(sg) = addr; 1106 sg_dma_len(sg) = length; 1107 sg = sg_next(sg); 1108 1109 offset += length / I915_GTT_PAGE_SIZE; 1110 left -= length; 1111 } 1112 1113 offset += src_stride - width; 1114 1115 left = (dst_stride - width) * I915_GTT_PAGE_SIZE; 1116 1117 if (!left) 1118 continue; 1119 1120 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg); 1121 } 1122 1123 *gtt_offset += alignment_pad + dst_stride * height; 1124 1125 return sg; 1126 } 1127 1128 static struct scatterlist * 1129 remap_contiguous_pages(struct drm_i915_gem_object *obj, 1130 pgoff_t obj_offset, 1131 unsigned int count, 1132 struct sg_table *st, struct scatterlist *sg) 1133 { 1134 struct scatterlist *iter; 1135 unsigned int offset; 1136 1137 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset); 1138 GEM_BUG_ON(!iter); 1139 1140 do { 1141 unsigned int len; 1142 1143 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT), 1144 count << PAGE_SHIFT); 1145 sg_set_page(sg, NULL, len, 0); 1146 sg_dma_address(sg) = 1147 sg_dma_address(iter) + (offset << PAGE_SHIFT); 1148 sg_dma_len(sg) = len; 1149 1150 st->nents++; 1151 count -= len >> PAGE_SHIFT; 1152 if (count == 0) 1153 return sg; 1154 1155 sg = __sg_next(sg); 1156 iter = __sg_next(iter); 1157 offset = 0; 1158 } while (1); 1159 } 1160 1161 static struct scatterlist * 1162 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj, 1163 pgoff_t obj_offset, unsigned int alignment_pad, 1164 unsigned int size, 1165 struct sg_table *st, struct scatterlist *sg, 1166 unsigned int *gtt_offset) 1167 { 1168 if (!size) 1169 return sg; 1170 1171 if (alignment_pad) 1172 sg = add_padding_pages(alignment_pad, st, sg); 1173 1174 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg); 1175 sg = sg_next(sg); 1176 1177 *gtt_offset += alignment_pad + size; 1178 1179 return sg; 1180 } 1181 1182 static struct scatterlist * 1183 remap_color_plane_pages(const struct intel_remapped_info *rem_info, 1184 struct drm_i915_gem_object *obj, 1185 int color_plane, 1186 struct sg_table *st, struct scatterlist *sg, 1187 unsigned int *gtt_offset) 1188 { 1189 unsigned int alignment_pad = 0; 1190 1191 if (rem_info->plane_alignment) 1192 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset; 1193 1194 if (rem_info->plane[color_plane].linear) 1195 sg = remap_linear_color_plane_pages(obj, 1196 rem_info->plane[color_plane].offset, 1197 alignment_pad, 1198 rem_info->plane[color_plane].size, 1199 st, sg, 1200 gtt_offset); 1201 1202 else 1203 sg = remap_tiled_color_plane_pages(obj, 1204 rem_info->plane[color_plane].offset, 1205 alignment_pad, 1206 rem_info->plane[color_plane].width, 1207 rem_info->plane[color_plane].height, 1208 rem_info->plane[color_plane].src_stride, 1209 rem_info->plane[color_plane].dst_stride, 1210 st, sg, 1211 gtt_offset); 1212 1213 return sg; 1214 } 1215 1216 static noinline struct sg_table * 1217 intel_remap_pages(struct intel_remapped_info *rem_info, 1218 struct drm_i915_gem_object *obj) 1219 { 1220 unsigned int size = intel_remapped_info_size(rem_info); 1221 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1222 struct sg_table *st; 1223 struct scatterlist *sg; 1224 unsigned int gtt_offset = 0; 1225 int ret = -ENOMEM; 1226 int i; 1227 1228 /* Allocate target SG list. */ 1229 st = kmalloc(sizeof(*st), GFP_KERNEL); 1230 if (!st) 1231 goto err_st_alloc; 1232 1233 ret = sg_alloc_table(st, size, GFP_KERNEL); 1234 if (ret) 1235 goto err_sg_alloc; 1236 1237 st->nents = 0; 1238 sg = st->sgl; 1239 1240 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1241 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset); 1242 1243 i915_sg_trim(st); 1244 1245 return st; 1246 1247 err_sg_alloc: 1248 kfree(st); 1249 err_st_alloc: 1250 1251 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1252 obj->base.size, rem_info->plane[0].width, 1253 rem_info->plane[0].height, size); 1254 1255 return ERR_PTR(ret); 1256 } 1257 1258 static noinline struct sg_table * 1259 intel_partial_pages(const struct i915_gtt_view *view, 1260 struct drm_i915_gem_object *obj) 1261 { 1262 struct sg_table *st; 1263 struct scatterlist *sg; 1264 unsigned int count = view->partial.size; 1265 int ret = -ENOMEM; 1266 1267 st = kmalloc(sizeof(*st), GFP_KERNEL); 1268 if (!st) 1269 goto err_st_alloc; 1270 1271 ret = sg_alloc_table(st, count, GFP_KERNEL); 1272 if (ret) 1273 goto err_sg_alloc; 1274 1275 st->nents = 0; 1276 1277 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl); 1278 1279 sg_mark_end(sg); 1280 i915_sg_trim(st); /* Drop any unused tail entries. */ 1281 1282 return st; 1283 1284 err_sg_alloc: 1285 kfree(st); 1286 err_st_alloc: 1287 return ERR_PTR(ret); 1288 } 1289 1290 static int 1291 __i915_vma_get_pages(struct i915_vma *vma) 1292 { 1293 struct sg_table *pages; 1294 1295 /* 1296 * The vma->pages are only valid within the lifespan of the borrowed 1297 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 1298 * must be the vma->pages. A simple rule is that vma->pages must only 1299 * be accessed when the obj->mm.pages are pinned. 1300 */ 1301 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 1302 1303 switch (vma->gtt_view.type) { 1304 default: 1305 GEM_BUG_ON(vma->gtt_view.type); 1306 fallthrough; 1307 case I915_GTT_VIEW_NORMAL: 1308 pages = vma->obj->mm.pages; 1309 break; 1310 1311 case I915_GTT_VIEW_ROTATED: 1312 pages = 1313 intel_rotate_pages(&vma->gtt_view.rotated, vma->obj); 1314 break; 1315 1316 case I915_GTT_VIEW_REMAPPED: 1317 pages = 1318 intel_remap_pages(&vma->gtt_view.remapped, vma->obj); 1319 break; 1320 1321 case I915_GTT_VIEW_PARTIAL: 1322 pages = intel_partial_pages(&vma->gtt_view, vma->obj); 1323 break; 1324 } 1325 1326 if (IS_ERR(pages)) { 1327 drm_err(&vma->vm->i915->drm, 1328 "Failed to get pages for VMA view type %u (%ld)!\n", 1329 vma->gtt_view.type, PTR_ERR(pages)); 1330 return PTR_ERR(pages); 1331 } 1332 1333 vma->pages = pages; 1334 1335 return 0; 1336 } 1337 1338 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma) 1339 { 1340 int err; 1341 1342 if (atomic_add_unless(&vma->pages_count, 1, 0)) 1343 return 0; 1344 1345 err = i915_gem_object_pin_pages(vma->obj); 1346 if (err) 1347 return err; 1348 1349 err = __i915_vma_get_pages(vma); 1350 if (err) 1351 goto err_unpin; 1352 1353 vma->page_sizes = vma->obj->mm.page_sizes; 1354 atomic_inc(&vma->pages_count); 1355 1356 return 0; 1357 1358 err_unpin: 1359 __i915_gem_object_unpin_pages(vma->obj); 1360 1361 return err; 1362 } 1363 1364 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb) 1365 { 1366 struct intel_gt *gt; 1367 int id; 1368 1369 if (!tlb) 1370 return; 1371 1372 /* 1373 * Before we release the pages that were bound by this vma, we 1374 * must invalidate all the TLBs that may still have a reference 1375 * back to our physical address. It only needs to be done once, 1376 * so after updating the PTE to point away from the pages, record 1377 * the most recent TLB invalidation seqno, and if we have not yet 1378 * flushed the TLBs upon release, perform a full invalidation. 1379 */ 1380 for_each_gt(gt, vm->i915, id) 1381 WRITE_ONCE(tlb[id], 1382 intel_gt_next_invalidate_tlb_full(gt)); 1383 } 1384 1385 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 1386 { 1387 /* We allocate under vma_get_pages, so beware the shrinker */ 1388 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 1389 1390 if (atomic_sub_return(count, &vma->pages_count) == 0) { 1391 if (vma->pages != vma->obj->mm.pages) { 1392 sg_free_table(vma->pages); 1393 kfree(vma->pages); 1394 } 1395 vma->pages = NULL; 1396 1397 i915_gem_object_unpin_pages(vma->obj); 1398 } 1399 } 1400 1401 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma) 1402 { 1403 if (atomic_add_unless(&vma->pages_count, -1, 1)) 1404 return; 1405 1406 __vma_put_pages(vma, 1); 1407 } 1408 1409 static void vma_unbind_pages(struct i915_vma *vma) 1410 { 1411 unsigned int count; 1412 1413 lockdep_assert_held(&vma->vm->mutex); 1414 1415 /* The upper portion of pages_count is the number of bindings */ 1416 count = atomic_read(&vma->pages_count); 1417 count >>= I915_VMA_PAGES_BIAS; 1418 GEM_BUG_ON(!count); 1419 1420 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 1421 } 1422 1423 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1424 u64 size, u64 alignment, u64 flags) 1425 { 1426 struct i915_vma_work *work = NULL; 1427 struct dma_fence *moving = NULL; 1428 struct i915_vma_resource *vma_res = NULL; 1429 intel_wakeref_t wakeref; 1430 unsigned int bound; 1431 int err; 1432 1433 assert_vma_held(vma); 1434 GEM_BUG_ON(!ww); 1435 1436 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 1437 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 1438 1439 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 1440 1441 /* First try and grab the pin without rebinding the vma */ 1442 if (try_qad_pin(vma, flags)) 1443 return 0; 1444 1445 err = i915_vma_get_pages(vma); 1446 if (err) 1447 return err; 1448 1449 /* 1450 * In case of a global GTT, we must hold a runtime-pm wakeref 1451 * while global PTEs are updated. In other cases, we hold 1452 * the rpm reference while the VMA is active. Since runtime 1453 * resume may require allocations, which are forbidden inside 1454 * vm->mutex, get the first rpm wakeref outside of the mutex. 1455 */ 1456 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 1457 1458 if (flags & vma->vm->bind_async_flags) { 1459 /* lock VM */ 1460 err = i915_vm_lock_objects(vma->vm, ww); 1461 if (err) 1462 goto err_rpm; 1463 1464 work = i915_vma_work(); 1465 if (!work) { 1466 err = -ENOMEM; 1467 goto err_rpm; 1468 } 1469 1470 work->vm = vma->vm; 1471 1472 err = i915_gem_object_get_moving_fence(vma->obj, &moving); 1473 if (err) 1474 goto err_rpm; 1475 1476 dma_fence_work_chain(&work->base, moving); 1477 1478 /* Allocate enough page directories to used PTE */ 1479 if (vma->vm->allocate_va_range) { 1480 err = i915_vm_alloc_pt_stash(vma->vm, 1481 &work->stash, 1482 vma->size); 1483 if (err) 1484 goto err_fence; 1485 1486 err = i915_vm_map_pt_stash(vma->vm, &work->stash); 1487 if (err) 1488 goto err_fence; 1489 } 1490 } 1491 1492 vma_res = i915_vma_resource_alloc(); 1493 if (IS_ERR(vma_res)) { 1494 err = PTR_ERR(vma_res); 1495 goto err_fence; 1496 } 1497 1498 /* 1499 * Differentiate between user/kernel vma inside the aliasing-ppgtt. 1500 * 1501 * We conflate the Global GTT with the user's vma when using the 1502 * aliasing-ppgtt, but it is still vitally important to try and 1503 * keep the use cases distinct. For example, userptr objects are 1504 * not allowed inside the Global GTT as that will cause lock 1505 * inversions when we have to evict them the mmu_notifier callbacks - 1506 * but they are allowed to be part of the user ppGTT which can never 1507 * be mapped. As such we try to give the distinct users of the same 1508 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt 1509 * and i915_ppgtt separate]. 1510 * 1511 * NB this may cause us to mask real lock inversions -- while the 1512 * code is safe today, lockdep may not be able to spot future 1513 * transgressions. 1514 */ 1515 err = mutex_lock_interruptible_nested(&vma->vm->mutex, 1516 !(flags & PIN_GLOBAL)); 1517 if (err) 1518 goto err_vma_res; 1519 1520 /* No more allocations allowed now we hold vm->mutex */ 1521 1522 if (unlikely(i915_vma_is_closed(vma))) { 1523 err = -ENOENT; 1524 goto err_unlock; 1525 } 1526 1527 bound = atomic_read(&vma->flags); 1528 if (unlikely(bound & I915_VMA_ERROR)) { 1529 err = -ENOMEM; 1530 goto err_unlock; 1531 } 1532 1533 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 1534 err = -EAGAIN; /* pins are meant to be fairly temporary */ 1535 goto err_unlock; 1536 } 1537 1538 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 1539 if (!(flags & PIN_VALIDATE)) 1540 __i915_vma_pin(vma); 1541 goto err_unlock; 1542 } 1543 1544 err = i915_active_acquire(&vma->active); 1545 if (err) 1546 goto err_unlock; 1547 1548 if (!(bound & I915_VMA_BIND_MASK)) { 1549 err = i915_vma_insert(vma, ww, size, alignment, flags); 1550 if (err) 1551 goto err_active; 1552 1553 if (i915_is_ggtt(vma->vm)) 1554 __i915_vma_set_map_and_fenceable(vma); 1555 } 1556 1557 GEM_BUG_ON(!vma->pages); 1558 err = i915_vma_bind(vma, 1559 vma->obj->pat_index, 1560 flags, work, vma_res); 1561 vma_res = NULL; 1562 if (err) 1563 goto err_remove; 1564 1565 /* There should only be at most 2 active bindings (user, global) */ 1566 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 1567 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 1568 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 1569 1570 if (!(flags & PIN_VALIDATE)) { 1571 __i915_vma_pin(vma); 1572 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1573 } 1574 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 1575 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 1576 1577 err_remove: 1578 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 1579 i915_vma_detach(vma); 1580 drm_mm_remove_node(&vma->node); 1581 } 1582 err_active: 1583 i915_active_release(&vma->active); 1584 err_unlock: 1585 mutex_unlock(&vma->vm->mutex); 1586 err_vma_res: 1587 i915_vma_resource_free(vma_res); 1588 err_fence: 1589 if (work) 1590 dma_fence_work_commit_imm(&work->base); 1591 err_rpm: 1592 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 1593 1594 if (moving) 1595 dma_fence_put(moving); 1596 1597 i915_vma_put_pages(vma); 1598 return err; 1599 } 1600 1601 static void flush_idle_contexts(struct intel_gt *gt) 1602 { 1603 struct intel_engine_cs *engine; 1604 enum intel_engine_id id; 1605 1606 for_each_engine(engine, gt, id) 1607 intel_engine_flush_barriers(engine); 1608 1609 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 1610 } 1611 1612 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1613 u32 align, unsigned int flags) 1614 { 1615 struct i915_address_space *vm = vma->vm; 1616 struct intel_gt *gt; 1617 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 1618 int err; 1619 1620 do { 1621 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); 1622 1623 if (err != -ENOSPC) { 1624 if (!err) { 1625 err = i915_vma_wait_for_bind(vma); 1626 if (err) 1627 i915_vma_unpin(vma); 1628 } 1629 return err; 1630 } 1631 1632 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1633 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1634 flush_idle_contexts(gt); 1635 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1636 /* 1637 * We pass NULL ww here, as we don't want to unbind 1638 * locked objects when called from execbuf when pinning 1639 * is removed. This would probably regress badly. 1640 */ 1641 i915_gem_evict_vm(vm, NULL, NULL); 1642 mutex_unlock(&vm->mutex); 1643 } 1644 } while (1); 1645 } 1646 1647 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1648 u32 align, unsigned int flags) 1649 { 1650 struct i915_gem_ww_ctx _ww; 1651 int err; 1652 1653 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1654 1655 if (ww) 1656 return __i915_ggtt_pin(vma, ww, align, flags); 1657 1658 lockdep_assert_not_held(&vma->obj->base.resv->lock.base); 1659 1660 for_i915_gem_ww(&_ww, err, true) { 1661 err = i915_gem_object_lock(vma->obj, &_ww); 1662 if (!err) 1663 err = __i915_ggtt_pin(vma, &_ww, align, flags); 1664 } 1665 1666 return err; 1667 } 1668 1669 /** 1670 * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas 1671 * @obj: i915 GEM object 1672 * This function clears scanout flags for objects ggtt vmas. These flags are set 1673 * when object is pinned for display use and this function to clear them all is 1674 * targeted to be called by frontbuffer tracking code when the frontbuffer is 1675 * about to be released. 1676 */ 1677 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj) 1678 { 1679 struct i915_vma *vma; 1680 1681 spin_lock(&obj->vma.lock); 1682 for_each_ggtt_vma(vma, obj) { 1683 i915_vma_clear_scanout(vma); 1684 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 1685 } 1686 spin_unlock(&obj->vma.lock); 1687 } 1688 1689 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) 1690 { 1691 /* 1692 * We defer actually closing, unbinding and destroying the VMA until 1693 * the next idle point, or if the object is freed in the meantime. By 1694 * postponing the unbind, we allow for it to be resurrected by the 1695 * client, avoiding the work required to rebind the VMA. This is 1696 * advantageous for DRI, where the client/server pass objects 1697 * between themselves, temporarily opening a local VMA to the 1698 * object, and then closing it again. The same object is then reused 1699 * on the next frame (or two, depending on the depth of the swap queue) 1700 * causing us to rebind the VMA once more. This ends up being a lot 1701 * of wasted work for the steady state. 1702 */ 1703 GEM_BUG_ON(i915_vma_is_closed(vma)); 1704 list_add(&vma->closed_link, >->closed_vma); 1705 } 1706 1707 void i915_vma_close(struct i915_vma *vma) 1708 { 1709 struct intel_gt *gt = vma->vm->gt; 1710 unsigned long flags; 1711 1712 if (i915_vma_is_ggtt(vma)) 1713 return; 1714 1715 GEM_BUG_ON(!atomic_read(&vma->open_count)); 1716 if (atomic_dec_and_lock_irqsave(&vma->open_count, 1717 >->closed_lock, 1718 flags)) { 1719 __vma_close(vma, gt); 1720 spin_unlock_irqrestore(>->closed_lock, flags); 1721 } 1722 } 1723 1724 static void __i915_vma_remove_closed(struct i915_vma *vma) 1725 { 1726 list_del_init(&vma->closed_link); 1727 } 1728 1729 void i915_vma_reopen(struct i915_vma *vma) 1730 { 1731 struct intel_gt *gt = vma->vm->gt; 1732 1733 spin_lock_irq(>->closed_lock); 1734 if (i915_vma_is_closed(vma)) 1735 __i915_vma_remove_closed(vma); 1736 spin_unlock_irq(>->closed_lock); 1737 } 1738 1739 static void force_unbind(struct i915_vma *vma) 1740 { 1741 if (!drm_mm_node_allocated(&vma->node)) 1742 return; 1743 1744 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1745 WARN_ON(__i915_vma_unbind(vma)); 1746 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1747 } 1748 1749 static void release_references(struct i915_vma *vma, struct intel_gt *gt, 1750 bool vm_ddestroy) 1751 { 1752 struct drm_i915_gem_object *obj = vma->obj; 1753 1754 GEM_BUG_ON(i915_vma_is_active(vma)); 1755 1756 spin_lock(&obj->vma.lock); 1757 list_del(&vma->obj_link); 1758 if (!RB_EMPTY_NODE(&vma->obj_node)) 1759 rb_erase(&vma->obj_node, &obj->vma.tree); 1760 1761 spin_unlock(&obj->vma.lock); 1762 1763 spin_lock_irq(>->closed_lock); 1764 __i915_vma_remove_closed(vma); 1765 spin_unlock_irq(>->closed_lock); 1766 1767 if (vm_ddestroy) 1768 i915_vm_resv_put(vma->vm); 1769 1770 /* Wait for async active retire */ 1771 i915_active_wait(&vma->active); 1772 i915_active_fini(&vma->active); 1773 GEM_WARN_ON(vma->resource); 1774 i915_vma_free(vma); 1775 } 1776 1777 /* 1778 * i915_vma_destroy_locked - Remove all weak reference to the vma and put 1779 * the initial reference. 1780 * 1781 * This function should be called when it's decided the vma isn't needed 1782 * anymore. The caller must assure that it doesn't race with another lookup 1783 * plus destroy, typically by taking an appropriate reference. 1784 * 1785 * Current callsites are 1786 * - __i915_gem_object_pages_fini() 1787 * - __i915_vm_close() - Blocks the above function by taking a reference on 1788 * the object. 1789 * - __i915_vma_parked() - Blocks the above functions by taking a reference 1790 * on the vm and a reference on the object. Also takes the object lock so 1791 * destruction from __i915_vma_parked() can be blocked by holding the 1792 * object lock. Since the object lock is only allowed from within i915 with 1793 * an object refcount, holding the object lock also implicitly blocks the 1794 * vma freeing from __i915_gem_object_pages_fini(). 1795 * 1796 * Because of locks taken during destruction, a vma is also guaranteed to 1797 * stay alive while the following locks are held if it was looked up while 1798 * holding one of the locks: 1799 * - vm->mutex 1800 * - obj->vma.lock 1801 * - gt->closed_lock 1802 */ 1803 void i915_vma_destroy_locked(struct i915_vma *vma) 1804 { 1805 lockdep_assert_held(&vma->vm->mutex); 1806 1807 force_unbind(vma); 1808 list_del_init(&vma->vm_link); 1809 release_references(vma, vma->vm->gt, false); 1810 } 1811 1812 void i915_vma_destroy(struct i915_vma *vma) 1813 { 1814 struct intel_gt *gt; 1815 bool vm_ddestroy; 1816 1817 mutex_lock(&vma->vm->mutex); 1818 force_unbind(vma); 1819 list_del_init(&vma->vm_link); 1820 vm_ddestroy = vma->vm_ddestroy; 1821 vma->vm_ddestroy = false; 1822 1823 /* vma->vm may be freed when releasing vma->vm->mutex. */ 1824 gt = vma->vm->gt; 1825 mutex_unlock(&vma->vm->mutex); 1826 release_references(vma, gt, vm_ddestroy); 1827 } 1828 1829 void i915_vma_parked(struct intel_gt *gt) 1830 { 1831 struct i915_vma *vma, *next; 1832 LIST_HEAD(closed); 1833 1834 spin_lock_irq(>->closed_lock); 1835 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1836 struct drm_i915_gem_object *obj = vma->obj; 1837 struct i915_address_space *vm = vma->vm; 1838 1839 /* XXX All to avoid keeping a reference on i915_vma itself */ 1840 1841 if (!kref_get_unless_zero(&obj->base.refcount)) 1842 continue; 1843 1844 if (!i915_vm_tryget(vm)) { 1845 i915_gem_object_put(obj); 1846 continue; 1847 } 1848 1849 list_move(&vma->closed_link, &closed); 1850 } 1851 spin_unlock_irq(>->closed_lock); 1852 1853 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1854 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1855 struct drm_i915_gem_object *obj = vma->obj; 1856 struct i915_address_space *vm = vma->vm; 1857 1858 if (i915_gem_object_trylock(obj, NULL)) { 1859 INIT_LIST_HEAD(&vma->closed_link); 1860 i915_vma_destroy(vma); 1861 i915_gem_object_unlock(obj); 1862 } else { 1863 /* back you go.. */ 1864 spin_lock_irq(>->closed_lock); 1865 list_add(&vma->closed_link, >->closed_vma); 1866 spin_unlock_irq(>->closed_lock); 1867 } 1868 1869 i915_gem_object_put(obj); 1870 i915_vm_put(vm); 1871 } 1872 } 1873 1874 static void __i915_vma_iounmap(struct i915_vma *vma) 1875 { 1876 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1877 1878 if (vma->iomap == NULL) 1879 return; 1880 1881 if (page_unmask_bits(vma->iomap)) 1882 __i915_gem_object_release_map(vma->obj); 1883 else 1884 io_mapping_unmap(vma->iomap); 1885 vma->iomap = NULL; 1886 } 1887 1888 void i915_vma_revoke_mmap(struct i915_vma *vma) 1889 { 1890 struct drm_vma_offset_node *node; 1891 u64 vma_offset; 1892 1893 if (!i915_vma_has_userfault(vma)) 1894 return; 1895 1896 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1897 GEM_BUG_ON(!vma->obj->userfault_count); 1898 1899 node = &vma->mmo->vma_node; 1900 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 1901 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1902 drm_vma_node_offset_addr(node) + vma_offset, 1903 vma->size, 1904 1); 1905 1906 i915_vma_unset_userfault(vma); 1907 if (!--vma->obj->userfault_count) 1908 list_del(&vma->obj->userfault_link); 1909 } 1910 1911 static int 1912 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) 1913 { 1914 return __i915_request_await_exclusive(rq, &vma->active); 1915 } 1916 1917 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1918 { 1919 int err; 1920 1921 /* Wait for the vma to be bound before we start! */ 1922 err = __i915_request_await_bind(rq, vma); 1923 if (err) 1924 return err; 1925 1926 return i915_active_add_request(&vma->active, rq); 1927 } 1928 1929 int _i915_vma_move_to_active(struct i915_vma *vma, 1930 struct i915_request *rq, 1931 struct dma_fence *fence, 1932 unsigned int flags) 1933 { 1934 struct drm_i915_gem_object *obj = vma->obj; 1935 int err; 1936 1937 assert_object_held(obj); 1938 1939 GEM_BUG_ON(!vma->pages); 1940 1941 if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) { 1942 err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE); 1943 if (unlikely(err)) 1944 return err; 1945 } 1946 err = __i915_vma_move_to_active(vma, rq); 1947 if (unlikely(err)) 1948 return err; 1949 1950 /* 1951 * Reserve fences slot early to prevent an allocation after preparing 1952 * the workload and associating fences with dma_resv. 1953 */ 1954 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) { 1955 struct dma_fence *curr; 1956 int idx; 1957 1958 dma_fence_array_for_each(curr, idx, fence) 1959 ; 1960 err = dma_resv_reserve_fences(vma->obj->base.resv, idx); 1961 if (unlikely(err)) 1962 return err; 1963 } 1964 1965 if (flags & EXEC_OBJECT_WRITE) { 1966 struct intel_frontbuffer *front; 1967 1968 front = i915_gem_object_get_frontbuffer(obj); 1969 if (unlikely(front)) { 1970 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1971 i915_active_add_request(&front->write, rq); 1972 intel_frontbuffer_put(front); 1973 } 1974 } 1975 1976 if (fence) { 1977 struct dma_fence *curr; 1978 enum dma_resv_usage usage; 1979 int idx; 1980 1981 if (flags & EXEC_OBJECT_WRITE) { 1982 usage = DMA_RESV_USAGE_WRITE; 1983 obj->write_domain = I915_GEM_DOMAIN_RENDER; 1984 obj->read_domains = 0; 1985 } else { 1986 usage = DMA_RESV_USAGE_READ; 1987 obj->write_domain = 0; 1988 } 1989 1990 dma_fence_array_for_each(curr, idx, fence) 1991 dma_resv_add_fence(vma->obj->base.resv, curr, usage); 1992 } 1993 1994 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) 1995 i915_active_add_request(&vma->fence->active, rq); 1996 1997 obj->read_domains |= I915_GEM_GPU_DOMAINS; 1998 obj->mm.dirty = true; 1999 2000 GEM_BUG_ON(!i915_vma_is_active(vma)); 2001 return 0; 2002 } 2003 2004 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async) 2005 { 2006 struct i915_vma_resource *vma_res = vma->resource; 2007 struct dma_fence *unbind_fence; 2008 2009 GEM_BUG_ON(i915_vma_is_pinned(vma)); 2010 assert_vma_held_evict(vma); 2011 2012 if (i915_vma_is_map_and_fenceable(vma)) { 2013 /* Force a pagefault for domain tracking on next user access */ 2014 i915_vma_revoke_mmap(vma); 2015 2016 /* 2017 * Check that we have flushed all writes through the GGTT 2018 * before the unbind, other due to non-strict nature of those 2019 * indirect writes they may end up referencing the GGTT PTE 2020 * after the unbind. 2021 * 2022 * Note that we may be concurrently poking at the GGTT_WRITE 2023 * bit from set-domain, as we mark all GGTT vma associated 2024 * with an object. We know this is for another vma, as we 2025 * are currently unbinding this one -- so if this vma will be 2026 * reused, it will be refaulted and have its dirty bit set 2027 * before the next write. 2028 */ 2029 i915_vma_flush_writes(vma); 2030 2031 /* release the fence reg _after_ flushing */ 2032 i915_vma_revoke_fence(vma); 2033 2034 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 2035 } 2036 2037 __i915_vma_iounmap(vma); 2038 2039 GEM_BUG_ON(vma->fence); 2040 GEM_BUG_ON(i915_vma_has_userfault(vma)); 2041 2042 /* Object backend must be async capable. */ 2043 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt); 2044 2045 /* If vm is not open, unbind is a nop. */ 2046 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) && 2047 kref_read(&vma->vm->ref); 2048 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) || 2049 vma->vm->skip_pte_rewrite; 2050 trace_i915_vma_unbind(vma); 2051 2052 if (async) 2053 unbind_fence = i915_vma_resource_unbind(vma_res, 2054 vma->obj->mm.tlb); 2055 else 2056 unbind_fence = i915_vma_resource_unbind(vma_res, NULL); 2057 2058 vma->resource = NULL; 2059 2060 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 2061 &vma->flags); 2062 2063 i915_vma_detach(vma); 2064 2065 if (!async) { 2066 if (unbind_fence) { 2067 dma_fence_wait(unbind_fence, false); 2068 dma_fence_put(unbind_fence); 2069 unbind_fence = NULL; 2070 } 2071 vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb); 2072 } 2073 2074 /* 2075 * Binding itself may not have completed until the unbind fence signals, 2076 * so don't drop the pages until that happens, unless the resource is 2077 * async_capable. 2078 */ 2079 2080 vma_unbind_pages(vma); 2081 return unbind_fence; 2082 } 2083 2084 int __i915_vma_unbind(struct i915_vma *vma) 2085 { 2086 int ret; 2087 2088 lockdep_assert_held(&vma->vm->mutex); 2089 assert_vma_held_evict(vma); 2090 2091 if (!drm_mm_node_allocated(&vma->node)) 2092 return 0; 2093 2094 if (i915_vma_is_pinned(vma)) { 2095 vma_print_allocator(vma, "is pinned"); 2096 return -EAGAIN; 2097 } 2098 2099 /* 2100 * After confirming that no one else is pinning this vma, wait for 2101 * any laggards who may have crept in during the wait (through 2102 * a residual pin skipping the vm->mutex) to complete. 2103 */ 2104 ret = i915_vma_sync(vma); 2105 if (ret) 2106 return ret; 2107 2108 GEM_BUG_ON(i915_vma_is_active(vma)); 2109 __i915_vma_evict(vma, false); 2110 2111 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2112 return 0; 2113 } 2114 2115 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma) 2116 { 2117 struct dma_fence *fence; 2118 2119 lockdep_assert_held(&vma->vm->mutex); 2120 2121 if (!drm_mm_node_allocated(&vma->node)) 2122 return NULL; 2123 2124 if (i915_vma_is_pinned(vma) || 2125 &vma->obj->mm.rsgt->table != vma->resource->bi.pages) 2126 return ERR_PTR(-EAGAIN); 2127 2128 /* 2129 * We probably need to replace this with awaiting the fences of the 2130 * object's dma_resv when the vma active goes away. When doing that 2131 * we need to be careful to not add the vma_resource unbind fence 2132 * immediately to the object's dma_resv, because then unbinding 2133 * the next vma from the object, in case there are many, will 2134 * actually await the unbinding of the previous vmas, which is 2135 * undesirable. 2136 */ 2137 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active, 2138 I915_ACTIVE_AWAIT_EXCL | 2139 I915_ACTIVE_AWAIT_ACTIVE) < 0) { 2140 return ERR_PTR(-EBUSY); 2141 } 2142 2143 fence = __i915_vma_evict(vma, true); 2144 2145 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2146 2147 return fence; 2148 } 2149 2150 int i915_vma_unbind(struct i915_vma *vma) 2151 { 2152 struct i915_address_space *vm = vma->vm; 2153 intel_wakeref_t wakeref = 0; 2154 int err; 2155 2156 assert_object_held_shared(vma->obj); 2157 2158 /* Optimistic wait before taking the mutex */ 2159 err = i915_vma_sync(vma); 2160 if (err) 2161 return err; 2162 2163 if (!drm_mm_node_allocated(&vma->node)) 2164 return 0; 2165 2166 if (i915_vma_is_pinned(vma)) { 2167 vma_print_allocator(vma, "is pinned"); 2168 return -EAGAIN; 2169 } 2170 2171 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2172 /* XXX not always required: nop_clear_range */ 2173 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2174 2175 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); 2176 if (err) 2177 goto out_rpm; 2178 2179 err = __i915_vma_unbind(vma); 2180 mutex_unlock(&vm->mutex); 2181 2182 out_rpm: 2183 if (wakeref) 2184 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2185 return err; 2186 } 2187 2188 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm) 2189 { 2190 struct drm_i915_gem_object *obj = vma->obj; 2191 struct i915_address_space *vm = vma->vm; 2192 intel_wakeref_t wakeref = 0; 2193 struct dma_fence *fence; 2194 int err; 2195 2196 /* 2197 * We need the dma-resv lock since we add the 2198 * unbind fence to the dma-resv object. 2199 */ 2200 assert_object_held(obj); 2201 2202 if (!drm_mm_node_allocated(&vma->node)) 2203 return 0; 2204 2205 if (i915_vma_is_pinned(vma)) { 2206 vma_print_allocator(vma, "is pinned"); 2207 return -EAGAIN; 2208 } 2209 2210 if (!obj->mm.rsgt) 2211 return -EBUSY; 2212 2213 err = dma_resv_reserve_fences(obj->base.resv, 2); 2214 if (err) 2215 return -EBUSY; 2216 2217 /* 2218 * It would be great if we could grab this wakeref from the 2219 * async unbind work if needed, but we can't because it uses 2220 * kmalloc and it's in the dma-fence signalling critical path. 2221 */ 2222 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2223 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2224 2225 if (trylock_vm && !mutex_trylock(&vm->mutex)) { 2226 err = -EBUSY; 2227 goto out_rpm; 2228 } else if (!trylock_vm) { 2229 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref); 2230 if (err) 2231 goto out_rpm; 2232 } 2233 2234 fence = __i915_vma_unbind_async(vma); 2235 mutex_unlock(&vm->mutex); 2236 if (IS_ERR_OR_NULL(fence)) { 2237 err = PTR_ERR_OR_ZERO(fence); 2238 goto out_rpm; 2239 } 2240 2241 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ); 2242 dma_fence_put(fence); 2243 2244 out_rpm: 2245 if (wakeref) 2246 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2247 return err; 2248 } 2249 2250 int i915_vma_unbind_unlocked(struct i915_vma *vma) 2251 { 2252 int err; 2253 2254 i915_gem_object_lock(vma->obj, NULL); 2255 err = i915_vma_unbind(vma); 2256 i915_gem_object_unlock(vma->obj); 2257 2258 return err; 2259 } 2260 2261 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 2262 { 2263 i915_gem_object_make_unshrinkable(vma->obj); 2264 return vma; 2265 } 2266 2267 void i915_vma_make_shrinkable(struct i915_vma *vma) 2268 { 2269 i915_gem_object_make_shrinkable(vma->obj); 2270 } 2271 2272 void i915_vma_make_purgeable(struct i915_vma *vma) 2273 { 2274 i915_gem_object_make_purgeable(vma->obj); 2275 } 2276 2277 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2278 #include "selftests/i915_vma.c" 2279 #endif 2280 2281 void i915_vma_module_exit(void) 2282 { 2283 kmem_cache_destroy(slab_vmas); 2284 } 2285 2286 int __init i915_vma_module_init(void) 2287 { 2288 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 2289 if (!slab_vmas) 2290 return -ENOMEM; 2291 2292 return 0; 2293 } 2294