xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vma.c (revision c358f538)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_frontbuffer.h"
30 #include "gem/i915_gem_lmem.h"
31 #include "gem/i915_gem_tiling.h"
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_gt.h"
35 #include "gt/intel_gt_requests.h"
36 
37 #include "i915_drv.h"
38 #include "i915_gem_evict.h"
39 #include "i915_sw_fence_work.h"
40 #include "i915_trace.h"
41 #include "i915_vma.h"
42 #include "i915_vma_resource.h"
43 
44 static inline void assert_vma_held_evict(const struct i915_vma *vma)
45 {
46 	/*
47 	 * We may be forced to unbind when the vm is dead, to clean it up.
48 	 * This is the only exception to the requirement of the object lock
49 	 * being held.
50 	 */
51 	if (kref_read(&vma->vm->ref))
52 		assert_object_held_shared(vma->obj);
53 }
54 
55 static struct kmem_cache *slab_vmas;
56 
57 static struct i915_vma *i915_vma_alloc(void)
58 {
59 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
60 }
61 
62 static void i915_vma_free(struct i915_vma *vma)
63 {
64 	return kmem_cache_free(slab_vmas, vma);
65 }
66 
67 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
68 
69 #include <linux/stackdepot.h>
70 
71 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
72 {
73 	char buf[512];
74 
75 	if (!vma->node.stack) {
76 		DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
77 				 vma->node.start, vma->node.size, reason);
78 		return;
79 	}
80 
81 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
82 	DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
83 			 vma->node.start, vma->node.size, reason, buf);
84 }
85 
86 #else
87 
88 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
89 {
90 }
91 
92 #endif
93 
94 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
95 {
96 	return container_of(ref, typeof(struct i915_vma), active);
97 }
98 
99 static int __i915_vma_active(struct i915_active *ref)
100 {
101 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
102 }
103 
104 static void __i915_vma_retire(struct i915_active *ref)
105 {
106 	i915_vma_put(active_to_vma(ref));
107 }
108 
109 static struct i915_vma *
110 vma_create(struct drm_i915_gem_object *obj,
111 	   struct i915_address_space *vm,
112 	   const struct i915_gtt_view *view)
113 {
114 	struct i915_vma *pos = ERR_PTR(-E2BIG);
115 	struct i915_vma *vma;
116 	struct rb_node *rb, **p;
117 	int err;
118 
119 	/* The aliasing_ppgtt should never be used directly! */
120 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
121 
122 	vma = i915_vma_alloc();
123 	if (vma == NULL)
124 		return ERR_PTR(-ENOMEM);
125 
126 	vma->ops = &vm->vma_ops;
127 	vma->obj = obj;
128 	vma->size = obj->base.size;
129 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
130 
131 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
132 
133 	/* Declare ourselves safe for use inside shrinkers */
134 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
135 		fs_reclaim_acquire(GFP_KERNEL);
136 		might_lock(&vma->active.mutex);
137 		fs_reclaim_release(GFP_KERNEL);
138 	}
139 
140 	INIT_LIST_HEAD(&vma->closed_link);
141 	INIT_LIST_HEAD(&vma->obj_link);
142 	RB_CLEAR_NODE(&vma->obj_node);
143 
144 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
145 		vma->gtt_view = *view;
146 		if (view->type == I915_GTT_VIEW_PARTIAL) {
147 			GEM_BUG_ON(range_overflows_t(u64,
148 						     view->partial.offset,
149 						     view->partial.size,
150 						     obj->base.size >> PAGE_SHIFT));
151 			vma->size = view->partial.size;
152 			vma->size <<= PAGE_SHIFT;
153 			GEM_BUG_ON(vma->size > obj->base.size);
154 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
155 			vma->size = intel_rotation_info_size(&view->rotated);
156 			vma->size <<= PAGE_SHIFT;
157 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
158 			vma->size = intel_remapped_info_size(&view->remapped);
159 			vma->size <<= PAGE_SHIFT;
160 		}
161 	}
162 
163 	if (unlikely(vma->size > vm->total))
164 		goto err_vma;
165 
166 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
167 
168 	err = mutex_lock_interruptible(&vm->mutex);
169 	if (err) {
170 		pos = ERR_PTR(err);
171 		goto err_vma;
172 	}
173 
174 	vma->vm = vm;
175 	list_add_tail(&vma->vm_link, &vm->unbound_list);
176 
177 	spin_lock(&obj->vma.lock);
178 	if (i915_is_ggtt(vm)) {
179 		if (unlikely(overflows_type(vma->size, u32)))
180 			goto err_unlock;
181 
182 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
183 						      i915_gem_object_get_tiling(obj),
184 						      i915_gem_object_get_stride(obj));
185 		if (unlikely(vma->fence_size < vma->size || /* overflow */
186 			     vma->fence_size > vm->total))
187 			goto err_unlock;
188 
189 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
190 
191 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
192 								i915_gem_object_get_tiling(obj),
193 								i915_gem_object_get_stride(obj));
194 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
195 
196 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
197 	}
198 
199 	rb = NULL;
200 	p = &obj->vma.tree.rb_node;
201 	while (*p) {
202 		long cmp;
203 
204 		rb = *p;
205 		pos = rb_entry(rb, struct i915_vma, obj_node);
206 
207 		/*
208 		 * If the view already exists in the tree, another thread
209 		 * already created a matching vma, so return the older instance
210 		 * and dispose of ours.
211 		 */
212 		cmp = i915_vma_compare(pos, vm, view);
213 		if (cmp < 0)
214 			p = &rb->rb_right;
215 		else if (cmp > 0)
216 			p = &rb->rb_left;
217 		else
218 			goto err_unlock;
219 	}
220 	rb_link_node(&vma->obj_node, rb, p);
221 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
222 
223 	if (i915_vma_is_ggtt(vma))
224 		/*
225 		 * We put the GGTT vma at the start of the vma-list, followed
226 		 * by the ppGGTT vma. This allows us to break early when
227 		 * iterating over only the GGTT vma for an object, see
228 		 * for_each_ggtt_vma()
229 		 */
230 		list_add(&vma->obj_link, &obj->vma.list);
231 	else
232 		list_add_tail(&vma->obj_link, &obj->vma.list);
233 
234 	spin_unlock(&obj->vma.lock);
235 	mutex_unlock(&vm->mutex);
236 
237 	return vma;
238 
239 err_unlock:
240 	spin_unlock(&obj->vma.lock);
241 	list_del_init(&vma->vm_link);
242 	mutex_unlock(&vm->mutex);
243 err_vma:
244 	i915_vma_free(vma);
245 	return pos;
246 }
247 
248 static struct i915_vma *
249 i915_vma_lookup(struct drm_i915_gem_object *obj,
250 	   struct i915_address_space *vm,
251 	   const struct i915_gtt_view *view)
252 {
253 	struct rb_node *rb;
254 
255 	rb = obj->vma.tree.rb_node;
256 	while (rb) {
257 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
258 		long cmp;
259 
260 		cmp = i915_vma_compare(vma, vm, view);
261 		if (cmp == 0)
262 			return vma;
263 
264 		if (cmp < 0)
265 			rb = rb->rb_right;
266 		else
267 			rb = rb->rb_left;
268 	}
269 
270 	return NULL;
271 }
272 
273 /**
274  * i915_vma_instance - return the singleton instance of the VMA
275  * @obj: parent &struct drm_i915_gem_object to be mapped
276  * @vm: address space in which the mapping is located
277  * @view: additional mapping requirements
278  *
279  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
280  * the same @view characteristics. If a match is not found, one is created.
281  * Once created, the VMA is kept until either the object is freed, or the
282  * address space is closed.
283  *
284  * Returns the vma, or an error pointer.
285  */
286 struct i915_vma *
287 i915_vma_instance(struct drm_i915_gem_object *obj,
288 		  struct i915_address_space *vm,
289 		  const struct i915_gtt_view *view)
290 {
291 	struct i915_vma *vma;
292 
293 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
294 	GEM_BUG_ON(!kref_read(&vm->ref));
295 
296 	spin_lock(&obj->vma.lock);
297 	vma = i915_vma_lookup(obj, vm, view);
298 	spin_unlock(&obj->vma.lock);
299 
300 	/* vma_create() will resolve the race if another creates the vma */
301 	if (unlikely(!vma))
302 		vma = vma_create(obj, vm, view);
303 
304 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
305 	return vma;
306 }
307 
308 struct i915_vma_work {
309 	struct dma_fence_work base;
310 	struct i915_address_space *vm;
311 	struct i915_vm_pt_stash stash;
312 	struct i915_vma_resource *vma_res;
313 	struct drm_i915_gem_object *obj;
314 	struct i915_sw_dma_fence_cb cb;
315 	enum i915_cache_level cache_level;
316 	unsigned int flags;
317 };
318 
319 static void __vma_bind(struct dma_fence_work *work)
320 {
321 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
322 	struct i915_vma_resource *vma_res = vw->vma_res;
323 
324 	/*
325 	 * We are about the bind the object, which must mean we have already
326 	 * signaled the work to potentially clear/move the pages underneath. If
327 	 * something went wrong at that stage then the object should have
328 	 * unknown_state set, in which case we need to skip the bind.
329 	 */
330 	if (i915_gem_object_has_unknown_state(vw->obj))
331 		return;
332 
333 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
334 			       vma_res, vw->cache_level, vw->flags);
335 }
336 
337 static void __vma_release(struct dma_fence_work *work)
338 {
339 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
340 
341 	if (vw->obj)
342 		i915_gem_object_put(vw->obj);
343 
344 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
345 	if (vw->vma_res)
346 		i915_vma_resource_put(vw->vma_res);
347 }
348 
349 static const struct dma_fence_work_ops bind_ops = {
350 	.name = "bind",
351 	.work = __vma_bind,
352 	.release = __vma_release,
353 };
354 
355 struct i915_vma_work *i915_vma_work(void)
356 {
357 	struct i915_vma_work *vw;
358 
359 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
360 	if (!vw)
361 		return NULL;
362 
363 	dma_fence_work_init(&vw->base, &bind_ops);
364 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
365 
366 	return vw;
367 }
368 
369 int i915_vma_wait_for_bind(struct i915_vma *vma)
370 {
371 	int err = 0;
372 
373 	if (rcu_access_pointer(vma->active.excl.fence)) {
374 		struct dma_fence *fence;
375 
376 		rcu_read_lock();
377 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
378 		rcu_read_unlock();
379 		if (fence) {
380 			err = dma_fence_wait(fence, true);
381 			dma_fence_put(fence);
382 		}
383 	}
384 
385 	return err;
386 }
387 
388 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
389 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
390 {
391 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
392 	int err;
393 
394 	if (!fence)
395 		return 0;
396 
397 	if (dma_fence_is_signaled(fence))
398 		err = fence->error;
399 	else
400 		err = -EBUSY;
401 
402 	dma_fence_put(fence);
403 
404 	return err;
405 }
406 #else
407 #define i915_vma_verify_bind_complete(_vma) 0
408 #endif
409 
410 I915_SELFTEST_EXPORT void
411 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
412 				struct i915_vma *vma)
413 {
414 	struct drm_i915_gem_object *obj = vma->obj;
415 
416 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
417 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
418 			       i915_gem_object_is_lmem(obj), obj->mm.region,
419 			       vma->ops, vma->private, vma->node.start,
420 			       vma->node.size, vma->size);
421 }
422 
423 /**
424  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
425  * @vma: VMA to map
426  * @cache_level: mapping cache level
427  * @flags: flags like global or local mapping
428  * @work: preallocated worker for allocating and binding the PTE
429  * @vma_res: pointer to a preallocated vma resource. The resource is either
430  * consumed or freed.
431  *
432  * DMA addresses are taken from the scatter-gather table of this object (or of
433  * this VMA in case of non-default GGTT views) and PTE entries set up.
434  * Note that DMA addresses are also the only part of the SG table we care about.
435  */
436 int i915_vma_bind(struct i915_vma *vma,
437 		  enum i915_cache_level cache_level,
438 		  u32 flags,
439 		  struct i915_vma_work *work,
440 		  struct i915_vma_resource *vma_res)
441 {
442 	u32 bind_flags;
443 	u32 vma_flags;
444 	int ret;
445 
446 	lockdep_assert_held(&vma->vm->mutex);
447 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
448 	GEM_BUG_ON(vma->size > vma->node.size);
449 
450 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
451 					      vma->node.size,
452 					      vma->vm->total))) {
453 		i915_vma_resource_free(vma_res);
454 		return -ENODEV;
455 	}
456 
457 	if (GEM_DEBUG_WARN_ON(!flags)) {
458 		i915_vma_resource_free(vma_res);
459 		return -EINVAL;
460 	}
461 
462 	bind_flags = flags;
463 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
464 
465 	vma_flags = atomic_read(&vma->flags);
466 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
467 
468 	bind_flags &= ~vma_flags;
469 	if (bind_flags == 0) {
470 		i915_vma_resource_free(vma_res);
471 		return 0;
472 	}
473 
474 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
475 
476 	/* Wait for or await async unbinds touching our range */
477 	if (work && bind_flags & vma->vm->bind_async_flags)
478 		ret = i915_vma_resource_bind_dep_await(vma->vm,
479 						       &work->base.chain,
480 						       vma->node.start,
481 						       vma->node.size,
482 						       true,
483 						       GFP_NOWAIT |
484 						       __GFP_RETRY_MAYFAIL |
485 						       __GFP_NOWARN);
486 	else
487 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
488 						      vma->node.size, true);
489 	if (ret) {
490 		i915_vma_resource_free(vma_res);
491 		return ret;
492 	}
493 
494 	if (vma->resource || !vma_res) {
495 		/* Rebinding with an additional I915_VMA_*_BIND */
496 		GEM_WARN_ON(!vma_flags);
497 		i915_vma_resource_free(vma_res);
498 	} else {
499 		i915_vma_resource_init_from_vma(vma_res, vma);
500 		vma->resource = vma_res;
501 	}
502 	trace_i915_vma_bind(vma, bind_flags);
503 	if (work && bind_flags & vma->vm->bind_async_flags) {
504 		struct dma_fence *prev;
505 
506 		work->vma_res = i915_vma_resource_get(vma->resource);
507 		work->cache_level = cache_level;
508 		work->flags = bind_flags;
509 
510 		/*
511 		 * Note we only want to chain up to the migration fence on
512 		 * the pages (not the object itself). As we don't track that,
513 		 * yet, we have to use the exclusive fence instead.
514 		 *
515 		 * Also note that we do not want to track the async vma as
516 		 * part of the obj->resv->excl_fence as it only affects
517 		 * execution and not content or object's backing store lifetime.
518 		 */
519 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
520 		if (prev) {
521 			__i915_sw_fence_await_dma_fence(&work->base.chain,
522 							prev,
523 							&work->cb);
524 			dma_fence_put(prev);
525 		}
526 
527 		work->base.dma.error = 0; /* enable the queue_work() */
528 		work->obj = i915_gem_object_get(vma->obj);
529 	} else {
530 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
531 		if (ret) {
532 			i915_vma_resource_free(vma->resource);
533 			vma->resource = NULL;
534 
535 			return ret;
536 		}
537 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
538 				   bind_flags);
539 	}
540 
541 	atomic_or(bind_flags, &vma->flags);
542 	return 0;
543 }
544 
545 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
546 {
547 	void __iomem *ptr;
548 	int err;
549 
550 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
551 		return IOMEM_ERR_PTR(-EINVAL);
552 
553 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
554 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
555 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
556 
557 	ptr = READ_ONCE(vma->iomap);
558 	if (ptr == NULL) {
559 		/*
560 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
561 		 * instead, which already supports mapping non-contiguous chunks
562 		 * of pages, that way we can also drop the
563 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
564 		 */
565 		if (i915_gem_object_is_lmem(vma->obj)) {
566 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
567 							  vma->obj->base.size);
568 		} else if (i915_vma_is_map_and_fenceable(vma)) {
569 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
570 						vma->node.start,
571 						vma->node.size);
572 		} else {
573 			ptr = (void __iomem *)
574 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
575 			if (IS_ERR(ptr)) {
576 				err = PTR_ERR(ptr);
577 				goto err;
578 			}
579 			ptr = page_pack_bits(ptr, 1);
580 		}
581 
582 		if (ptr == NULL) {
583 			err = -ENOMEM;
584 			goto err;
585 		}
586 
587 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
588 			if (page_unmask_bits(ptr))
589 				__i915_gem_object_release_map(vma->obj);
590 			else
591 				io_mapping_unmap(ptr);
592 			ptr = vma->iomap;
593 		}
594 	}
595 
596 	__i915_vma_pin(vma);
597 
598 	err = i915_vma_pin_fence(vma);
599 	if (err)
600 		goto err_unpin;
601 
602 	i915_vma_set_ggtt_write(vma);
603 
604 	/* NB Access through the GTT requires the device to be awake. */
605 	return page_mask_bits(ptr);
606 
607 err_unpin:
608 	__i915_vma_unpin(vma);
609 err:
610 	return IOMEM_ERR_PTR(err);
611 }
612 
613 void i915_vma_flush_writes(struct i915_vma *vma)
614 {
615 	if (i915_vma_unset_ggtt_write(vma))
616 		intel_gt_flush_ggtt_writes(vma->vm->gt);
617 }
618 
619 void i915_vma_unpin_iomap(struct i915_vma *vma)
620 {
621 	GEM_BUG_ON(vma->iomap == NULL);
622 
623 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
624 
625 	i915_vma_flush_writes(vma);
626 
627 	i915_vma_unpin_fence(vma);
628 	i915_vma_unpin(vma);
629 }
630 
631 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
632 {
633 	struct i915_vma *vma;
634 	struct drm_i915_gem_object *obj;
635 
636 	vma = fetch_and_zero(p_vma);
637 	if (!vma)
638 		return;
639 
640 	obj = vma->obj;
641 	GEM_BUG_ON(!obj);
642 
643 	i915_vma_unpin(vma);
644 
645 	if (flags & I915_VMA_RELEASE_MAP)
646 		i915_gem_object_unpin_map(obj);
647 
648 	i915_gem_object_put(obj);
649 }
650 
651 bool i915_vma_misplaced(const struct i915_vma *vma,
652 			u64 size, u64 alignment, u64 flags)
653 {
654 	if (!drm_mm_node_allocated(&vma->node))
655 		return false;
656 
657 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
658 		return true;
659 
660 	if (vma->node.size < size)
661 		return true;
662 
663 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
664 	if (alignment && !IS_ALIGNED(vma->node.start, alignment))
665 		return true;
666 
667 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
668 		return true;
669 
670 	if (flags & PIN_OFFSET_BIAS &&
671 	    vma->node.start < (flags & PIN_OFFSET_MASK))
672 		return true;
673 
674 	if (flags & PIN_OFFSET_FIXED &&
675 	    vma->node.start != (flags & PIN_OFFSET_MASK))
676 		return true;
677 
678 	return false;
679 }
680 
681 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
682 {
683 	bool mappable, fenceable;
684 
685 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
686 	GEM_BUG_ON(!vma->fence_size);
687 
688 	fenceable = (vma->node.size >= vma->fence_size &&
689 		     IS_ALIGNED(vma->node.start, vma->fence_alignment));
690 
691 	mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
692 
693 	if (mappable && fenceable)
694 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
695 	else
696 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
697 }
698 
699 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
700 {
701 	struct drm_mm_node *node = &vma->node;
702 	struct drm_mm_node *other;
703 
704 	/*
705 	 * On some machines we have to be careful when putting differing types
706 	 * of snoopable memory together to avoid the prefetcher crossing memory
707 	 * domains and dying. During vm initialisation, we decide whether or not
708 	 * these constraints apply and set the drm_mm.color_adjust
709 	 * appropriately.
710 	 */
711 	if (!i915_vm_has_cache_coloring(vma->vm))
712 		return true;
713 
714 	/* Only valid to be called on an already inserted vma */
715 	GEM_BUG_ON(!drm_mm_node_allocated(node));
716 	GEM_BUG_ON(list_empty(&node->node_list));
717 
718 	other = list_prev_entry(node, node_list);
719 	if (i915_node_color_differs(other, color) &&
720 	    !drm_mm_hole_follows(other))
721 		return false;
722 
723 	other = list_next_entry(node, node_list);
724 	if (i915_node_color_differs(other, color) &&
725 	    !drm_mm_hole_follows(node))
726 		return false;
727 
728 	return true;
729 }
730 
731 /**
732  * i915_vma_insert - finds a slot for the vma in its address space
733  * @vma: the vma
734  * @size: requested size in bytes (can be larger than the VMA)
735  * @alignment: required alignment
736  * @flags: mask of PIN_* flags to use
737  *
738  * First we try to allocate some free space that meets the requirements for
739  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
740  * preferrably the oldest idle entry to make room for the new VMA.
741  *
742  * Returns:
743  * 0 on success, negative error code otherwise.
744  */
745 static int
746 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
747 		u64 size, u64 alignment, u64 flags)
748 {
749 	unsigned long color;
750 	u64 start, end;
751 	int ret;
752 
753 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
754 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
755 
756 	size = max(size, vma->size);
757 	alignment = max(alignment, vma->display_alignment);
758 	if (flags & PIN_MAPPABLE) {
759 		size = max_t(typeof(size), size, vma->fence_size);
760 		alignment = max_t(typeof(alignment),
761 				  alignment, vma->fence_alignment);
762 	}
763 
764 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
765 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
766 	GEM_BUG_ON(!is_power_of_2(alignment));
767 
768 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
769 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
770 
771 	end = vma->vm->total;
772 	if (flags & PIN_MAPPABLE)
773 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
774 	if (flags & PIN_ZONE_4G)
775 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
776 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
777 
778 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
779 
780 	/* If binding the object/GGTT view requires more space than the entire
781 	 * aperture has, reject it early before evicting everything in a vain
782 	 * attempt to find space.
783 	 */
784 	if (size > end) {
785 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
786 			  size, flags & PIN_MAPPABLE ? "mappable" : "total",
787 			  end);
788 		return -ENOSPC;
789 	}
790 
791 	color = 0;
792 
793 	if (i915_vm_has_cache_coloring(vma->vm))
794 		color = vma->obj->cache_level;
795 
796 	if (flags & PIN_OFFSET_FIXED) {
797 		u64 offset = flags & PIN_OFFSET_MASK;
798 		if (!IS_ALIGNED(offset, alignment) ||
799 		    range_overflows(offset, size, end))
800 			return -EINVAL;
801 
802 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
803 					   size, offset, color,
804 					   flags);
805 		if (ret)
806 			return ret;
807 	} else {
808 		/*
809 		 * We only support huge gtt pages through the 48b PPGTT,
810 		 * however we also don't want to force any alignment for
811 		 * objects which need to be tightly packed into the low 32bits.
812 		 *
813 		 * Note that we assume that GGTT are limited to 4GiB for the
814 		 * forseeable future. See also i915_ggtt_offset().
815 		 */
816 		if (upper_32_bits(end - 1) &&
817 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
818 		    !HAS_64K_PAGES(vma->vm->i915)) {
819 			/*
820 			 * We can't mix 64K and 4K PTEs in the same page-table
821 			 * (2M block), and so to avoid the ugliness and
822 			 * complexity of coloring we opt for just aligning 64K
823 			 * objects to 2M.
824 			 */
825 			u64 page_alignment =
826 				rounddown_pow_of_two(vma->page_sizes.sg |
827 						     I915_GTT_PAGE_SIZE_2M);
828 
829 			/*
830 			 * Check we don't expand for the limited Global GTT
831 			 * (mappable aperture is even more precious!). This
832 			 * also checks that we exclude the aliasing-ppgtt.
833 			 */
834 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
835 
836 			alignment = max(alignment, page_alignment);
837 
838 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
839 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
840 		}
841 
842 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
843 					  size, alignment, color,
844 					  start, end, flags);
845 		if (ret)
846 			return ret;
847 
848 		GEM_BUG_ON(vma->node.start < start);
849 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
850 	}
851 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
852 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
853 
854 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
855 
856 	return 0;
857 }
858 
859 static void
860 i915_vma_detach(struct i915_vma *vma)
861 {
862 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
863 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
864 
865 	/*
866 	 * And finally now the object is completely decoupled from this
867 	 * vma, we can drop its hold on the backing storage and allow
868 	 * it to be reaped by the shrinker.
869 	 */
870 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
871 }
872 
873 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
874 {
875 	unsigned int bound;
876 
877 	bound = atomic_read(&vma->flags);
878 
879 	if (flags & PIN_VALIDATE) {
880 		flags &= I915_VMA_BIND_MASK;
881 
882 		return (flags & bound) == flags;
883 	}
884 
885 	/* with the lock mandatory for unbind, we don't race here */
886 	flags &= I915_VMA_BIND_MASK;
887 	do {
888 		if (unlikely(flags & ~bound))
889 			return false;
890 
891 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
892 			return false;
893 
894 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
895 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
896 
897 	return true;
898 }
899 
900 static struct scatterlist *
901 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
902 	     unsigned int width, unsigned int height,
903 	     unsigned int src_stride, unsigned int dst_stride,
904 	     struct sg_table *st, struct scatterlist *sg)
905 {
906 	unsigned int column, row;
907 	unsigned int src_idx;
908 
909 	for (column = 0; column < width; column++) {
910 		unsigned int left;
911 
912 		src_idx = src_stride * (height - 1) + column + offset;
913 		for (row = 0; row < height; row++) {
914 			st->nents++;
915 			/*
916 			 * We don't need the pages, but need to initialize
917 			 * the entries so the sg list can be happily traversed.
918 			 * The only thing we need are DMA addresses.
919 			 */
920 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
921 			sg_dma_address(sg) =
922 				i915_gem_object_get_dma_address(obj, src_idx);
923 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
924 			sg = sg_next(sg);
925 			src_idx -= src_stride;
926 		}
927 
928 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
929 
930 		if (!left)
931 			continue;
932 
933 		st->nents++;
934 
935 		/*
936 		 * The DE ignores the PTEs for the padding tiles, the sg entry
937 		 * here is just a conenience to indicate how many padding PTEs
938 		 * to insert at this spot.
939 		 */
940 		sg_set_page(sg, NULL, left, 0);
941 		sg_dma_address(sg) = 0;
942 		sg_dma_len(sg) = left;
943 		sg = sg_next(sg);
944 	}
945 
946 	return sg;
947 }
948 
949 static noinline struct sg_table *
950 intel_rotate_pages(struct intel_rotation_info *rot_info,
951 		   struct drm_i915_gem_object *obj)
952 {
953 	unsigned int size = intel_rotation_info_size(rot_info);
954 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
955 	struct sg_table *st;
956 	struct scatterlist *sg;
957 	int ret = -ENOMEM;
958 	int i;
959 
960 	/* Allocate target SG list. */
961 	st = kmalloc(sizeof(*st), GFP_KERNEL);
962 	if (!st)
963 		goto err_st_alloc;
964 
965 	ret = sg_alloc_table(st, size, GFP_KERNEL);
966 	if (ret)
967 		goto err_sg_alloc;
968 
969 	st->nents = 0;
970 	sg = st->sgl;
971 
972 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
973 		sg = rotate_pages(obj, rot_info->plane[i].offset,
974 				  rot_info->plane[i].width, rot_info->plane[i].height,
975 				  rot_info->plane[i].src_stride,
976 				  rot_info->plane[i].dst_stride,
977 				  st, sg);
978 
979 	return st;
980 
981 err_sg_alloc:
982 	kfree(st);
983 err_st_alloc:
984 
985 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
986 		obj->base.size, rot_info->plane[0].width,
987 		rot_info->plane[0].height, size);
988 
989 	return ERR_PTR(ret);
990 }
991 
992 static struct scatterlist *
993 add_padding_pages(unsigned int count,
994 		  struct sg_table *st, struct scatterlist *sg)
995 {
996 	st->nents++;
997 
998 	/*
999 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1000 	 * here is just a convenience to indicate how many padding PTEs
1001 	 * to insert at this spot.
1002 	 */
1003 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1004 	sg_dma_address(sg) = 0;
1005 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1006 	sg = sg_next(sg);
1007 
1008 	return sg;
1009 }
1010 
1011 static struct scatterlist *
1012 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1013 			      unsigned int offset, unsigned int alignment_pad,
1014 			      unsigned int width, unsigned int height,
1015 			      unsigned int src_stride, unsigned int dst_stride,
1016 			      struct sg_table *st, struct scatterlist *sg,
1017 			      unsigned int *gtt_offset)
1018 {
1019 	unsigned int row;
1020 
1021 	if (!width || !height)
1022 		return sg;
1023 
1024 	if (alignment_pad)
1025 		sg = add_padding_pages(alignment_pad, st, sg);
1026 
1027 	for (row = 0; row < height; row++) {
1028 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1029 
1030 		while (left) {
1031 			dma_addr_t addr;
1032 			unsigned int length;
1033 
1034 			/*
1035 			 * We don't need the pages, but need to initialize
1036 			 * the entries so the sg list can be happily traversed.
1037 			 * The only thing we need are DMA addresses.
1038 			 */
1039 
1040 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1041 
1042 			length = min(left, length);
1043 
1044 			st->nents++;
1045 
1046 			sg_set_page(sg, NULL, length, 0);
1047 			sg_dma_address(sg) = addr;
1048 			sg_dma_len(sg) = length;
1049 			sg = sg_next(sg);
1050 
1051 			offset += length / I915_GTT_PAGE_SIZE;
1052 			left -= length;
1053 		}
1054 
1055 		offset += src_stride - width;
1056 
1057 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1058 
1059 		if (!left)
1060 			continue;
1061 
1062 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1063 	}
1064 
1065 	*gtt_offset += alignment_pad + dst_stride * height;
1066 
1067 	return sg;
1068 }
1069 
1070 static struct scatterlist *
1071 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1072 		       unsigned int obj_offset,
1073 		       unsigned int count,
1074 		       struct sg_table *st, struct scatterlist *sg)
1075 {
1076 	struct scatterlist *iter;
1077 	unsigned int offset;
1078 
1079 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1080 	GEM_BUG_ON(!iter);
1081 
1082 	do {
1083 		unsigned int len;
1084 
1085 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1086 			  count << PAGE_SHIFT);
1087 		sg_set_page(sg, NULL, len, 0);
1088 		sg_dma_address(sg) =
1089 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1090 		sg_dma_len(sg) = len;
1091 
1092 		st->nents++;
1093 		count -= len >> PAGE_SHIFT;
1094 		if (count == 0)
1095 			return sg;
1096 
1097 		sg = __sg_next(sg);
1098 		iter = __sg_next(iter);
1099 		offset = 0;
1100 	} while (1);
1101 }
1102 
1103 static struct scatterlist *
1104 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1105 			       unsigned int obj_offset, unsigned int alignment_pad,
1106 			       unsigned int size,
1107 			       struct sg_table *st, struct scatterlist *sg,
1108 			       unsigned int *gtt_offset)
1109 {
1110 	if (!size)
1111 		return sg;
1112 
1113 	if (alignment_pad)
1114 		sg = add_padding_pages(alignment_pad, st, sg);
1115 
1116 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1117 	sg = sg_next(sg);
1118 
1119 	*gtt_offset += alignment_pad + size;
1120 
1121 	return sg;
1122 }
1123 
1124 static struct scatterlist *
1125 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1126 			struct drm_i915_gem_object *obj,
1127 			int color_plane,
1128 			struct sg_table *st, struct scatterlist *sg,
1129 			unsigned int *gtt_offset)
1130 {
1131 	unsigned int alignment_pad = 0;
1132 
1133 	if (rem_info->plane_alignment)
1134 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1135 
1136 	if (rem_info->plane[color_plane].linear)
1137 		sg = remap_linear_color_plane_pages(obj,
1138 						    rem_info->plane[color_plane].offset,
1139 						    alignment_pad,
1140 						    rem_info->plane[color_plane].size,
1141 						    st, sg,
1142 						    gtt_offset);
1143 
1144 	else
1145 		sg = remap_tiled_color_plane_pages(obj,
1146 						   rem_info->plane[color_plane].offset,
1147 						   alignment_pad,
1148 						   rem_info->plane[color_plane].width,
1149 						   rem_info->plane[color_plane].height,
1150 						   rem_info->plane[color_plane].src_stride,
1151 						   rem_info->plane[color_plane].dst_stride,
1152 						   st, sg,
1153 						   gtt_offset);
1154 
1155 	return sg;
1156 }
1157 
1158 static noinline struct sg_table *
1159 intel_remap_pages(struct intel_remapped_info *rem_info,
1160 		  struct drm_i915_gem_object *obj)
1161 {
1162 	unsigned int size = intel_remapped_info_size(rem_info);
1163 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1164 	struct sg_table *st;
1165 	struct scatterlist *sg;
1166 	unsigned int gtt_offset = 0;
1167 	int ret = -ENOMEM;
1168 	int i;
1169 
1170 	/* Allocate target SG list. */
1171 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1172 	if (!st)
1173 		goto err_st_alloc;
1174 
1175 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1176 	if (ret)
1177 		goto err_sg_alloc;
1178 
1179 	st->nents = 0;
1180 	sg = st->sgl;
1181 
1182 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1183 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1184 
1185 	i915_sg_trim(st);
1186 
1187 	return st;
1188 
1189 err_sg_alloc:
1190 	kfree(st);
1191 err_st_alloc:
1192 
1193 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1194 		obj->base.size, rem_info->plane[0].width,
1195 		rem_info->plane[0].height, size);
1196 
1197 	return ERR_PTR(ret);
1198 }
1199 
1200 static noinline struct sg_table *
1201 intel_partial_pages(const struct i915_gtt_view *view,
1202 		    struct drm_i915_gem_object *obj)
1203 {
1204 	struct sg_table *st;
1205 	struct scatterlist *sg;
1206 	unsigned int count = view->partial.size;
1207 	int ret = -ENOMEM;
1208 
1209 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1210 	if (!st)
1211 		goto err_st_alloc;
1212 
1213 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1214 	if (ret)
1215 		goto err_sg_alloc;
1216 
1217 	st->nents = 0;
1218 
1219 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1220 
1221 	sg_mark_end(sg);
1222 	i915_sg_trim(st); /* Drop any unused tail entries. */
1223 
1224 	return st;
1225 
1226 err_sg_alloc:
1227 	kfree(st);
1228 err_st_alloc:
1229 	return ERR_PTR(ret);
1230 }
1231 
1232 static int
1233 __i915_vma_get_pages(struct i915_vma *vma)
1234 {
1235 	struct sg_table *pages;
1236 
1237 	/*
1238 	 * The vma->pages are only valid within the lifespan of the borrowed
1239 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1240 	 * must be the vma->pages. A simple rule is that vma->pages must only
1241 	 * be accessed when the obj->mm.pages are pinned.
1242 	 */
1243 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1244 
1245 	switch (vma->gtt_view.type) {
1246 	default:
1247 		GEM_BUG_ON(vma->gtt_view.type);
1248 		fallthrough;
1249 	case I915_GTT_VIEW_NORMAL:
1250 		pages = vma->obj->mm.pages;
1251 		break;
1252 
1253 	case I915_GTT_VIEW_ROTATED:
1254 		pages =
1255 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1256 		break;
1257 
1258 	case I915_GTT_VIEW_REMAPPED:
1259 		pages =
1260 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1261 		break;
1262 
1263 	case I915_GTT_VIEW_PARTIAL:
1264 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1265 		break;
1266 	}
1267 
1268 	if (IS_ERR(pages)) {
1269 		drm_err(&vma->vm->i915->drm,
1270 			"Failed to get pages for VMA view type %u (%ld)!\n",
1271 			vma->gtt_view.type, PTR_ERR(pages));
1272 		return PTR_ERR(pages);
1273 	}
1274 
1275 	vma->pages = pages;
1276 
1277 	return 0;
1278 }
1279 
1280 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1281 {
1282 	int err;
1283 
1284 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1285 		return 0;
1286 
1287 	err = i915_gem_object_pin_pages(vma->obj);
1288 	if (err)
1289 		return err;
1290 
1291 	err = __i915_vma_get_pages(vma);
1292 	if (err)
1293 		goto err_unpin;
1294 
1295 	vma->page_sizes = vma->obj->mm.page_sizes;
1296 	atomic_inc(&vma->pages_count);
1297 
1298 	return 0;
1299 
1300 err_unpin:
1301 	__i915_gem_object_unpin_pages(vma->obj);
1302 
1303 	return err;
1304 }
1305 
1306 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1307 {
1308 	/*
1309 	 * Before we release the pages that were bound by this vma, we
1310 	 * must invalidate all the TLBs that may still have a reference
1311 	 * back to our physical address. It only needs to be done once,
1312 	 * so after updating the PTE to point away from the pages, record
1313 	 * the most recent TLB invalidation seqno, and if we have not yet
1314 	 * flushed the TLBs upon release, perform a full invalidation.
1315 	 */
1316 	WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt));
1317 }
1318 
1319 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1320 {
1321 	/* We allocate under vma_get_pages, so beware the shrinker */
1322 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1323 
1324 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1325 		if (vma->pages != vma->obj->mm.pages) {
1326 			sg_free_table(vma->pages);
1327 			kfree(vma->pages);
1328 		}
1329 		vma->pages = NULL;
1330 
1331 		i915_gem_object_unpin_pages(vma->obj);
1332 	}
1333 }
1334 
1335 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1336 {
1337 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1338 		return;
1339 
1340 	__vma_put_pages(vma, 1);
1341 }
1342 
1343 static void vma_unbind_pages(struct i915_vma *vma)
1344 {
1345 	unsigned int count;
1346 
1347 	lockdep_assert_held(&vma->vm->mutex);
1348 
1349 	/* The upper portion of pages_count is the number of bindings */
1350 	count = atomic_read(&vma->pages_count);
1351 	count >>= I915_VMA_PAGES_BIAS;
1352 	GEM_BUG_ON(!count);
1353 
1354 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1355 }
1356 
1357 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1358 		    u64 size, u64 alignment, u64 flags)
1359 {
1360 	struct i915_vma_work *work = NULL;
1361 	struct dma_fence *moving = NULL;
1362 	struct i915_vma_resource *vma_res = NULL;
1363 	intel_wakeref_t wakeref = 0;
1364 	unsigned int bound;
1365 	int err;
1366 
1367 	assert_vma_held(vma);
1368 	GEM_BUG_ON(!ww);
1369 
1370 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1371 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1372 
1373 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1374 
1375 	/* First try and grab the pin without rebinding the vma */
1376 	if (try_qad_pin(vma, flags))
1377 		return 0;
1378 
1379 	err = i915_vma_get_pages(vma);
1380 	if (err)
1381 		return err;
1382 
1383 	if (flags & PIN_GLOBAL)
1384 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1385 
1386 	if (flags & vma->vm->bind_async_flags) {
1387 		/* lock VM */
1388 		err = i915_vm_lock_objects(vma->vm, ww);
1389 		if (err)
1390 			goto err_rpm;
1391 
1392 		work = i915_vma_work();
1393 		if (!work) {
1394 			err = -ENOMEM;
1395 			goto err_rpm;
1396 		}
1397 
1398 		work->vm = vma->vm;
1399 
1400 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1401 		if (err)
1402 			goto err_rpm;
1403 
1404 		dma_fence_work_chain(&work->base, moving);
1405 
1406 		/* Allocate enough page directories to used PTE */
1407 		if (vma->vm->allocate_va_range) {
1408 			err = i915_vm_alloc_pt_stash(vma->vm,
1409 						     &work->stash,
1410 						     vma->size);
1411 			if (err)
1412 				goto err_fence;
1413 
1414 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1415 			if (err)
1416 				goto err_fence;
1417 		}
1418 	}
1419 
1420 	vma_res = i915_vma_resource_alloc();
1421 	if (IS_ERR(vma_res)) {
1422 		err = PTR_ERR(vma_res);
1423 		goto err_fence;
1424 	}
1425 
1426 	/*
1427 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1428 	 *
1429 	 * We conflate the Global GTT with the user's vma when using the
1430 	 * aliasing-ppgtt, but it is still vitally important to try and
1431 	 * keep the use cases distinct. For example, userptr objects are
1432 	 * not allowed inside the Global GTT as that will cause lock
1433 	 * inversions when we have to evict them the mmu_notifier callbacks -
1434 	 * but they are allowed to be part of the user ppGTT which can never
1435 	 * be mapped. As such we try to give the distinct users of the same
1436 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1437 	 * and i915_ppgtt separate].
1438 	 *
1439 	 * NB this may cause us to mask real lock inversions -- while the
1440 	 * code is safe today, lockdep may not be able to spot future
1441 	 * transgressions.
1442 	 */
1443 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1444 					      !(flags & PIN_GLOBAL));
1445 	if (err)
1446 		goto err_vma_res;
1447 
1448 	/* No more allocations allowed now we hold vm->mutex */
1449 
1450 	if (unlikely(i915_vma_is_closed(vma))) {
1451 		err = -ENOENT;
1452 		goto err_unlock;
1453 	}
1454 
1455 	bound = atomic_read(&vma->flags);
1456 	if (unlikely(bound & I915_VMA_ERROR)) {
1457 		err = -ENOMEM;
1458 		goto err_unlock;
1459 	}
1460 
1461 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1462 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1463 		goto err_unlock;
1464 	}
1465 
1466 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1467 		if (!(flags & PIN_VALIDATE))
1468 			__i915_vma_pin(vma);
1469 		goto err_unlock;
1470 	}
1471 
1472 	err = i915_active_acquire(&vma->active);
1473 	if (err)
1474 		goto err_unlock;
1475 
1476 	if (!(bound & I915_VMA_BIND_MASK)) {
1477 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1478 		if (err)
1479 			goto err_active;
1480 
1481 		if (i915_is_ggtt(vma->vm))
1482 			__i915_vma_set_map_and_fenceable(vma);
1483 	}
1484 
1485 	GEM_BUG_ON(!vma->pages);
1486 	err = i915_vma_bind(vma,
1487 			    vma->obj->cache_level,
1488 			    flags, work, vma_res);
1489 	vma_res = NULL;
1490 	if (err)
1491 		goto err_remove;
1492 
1493 	/* There should only be at most 2 active bindings (user, global) */
1494 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1495 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1496 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1497 
1498 	if (!(flags & PIN_VALIDATE)) {
1499 		__i915_vma_pin(vma);
1500 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1501 	}
1502 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1503 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1504 
1505 err_remove:
1506 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1507 		i915_vma_detach(vma);
1508 		drm_mm_remove_node(&vma->node);
1509 	}
1510 err_active:
1511 	i915_active_release(&vma->active);
1512 err_unlock:
1513 	mutex_unlock(&vma->vm->mutex);
1514 err_vma_res:
1515 	i915_vma_resource_free(vma_res);
1516 err_fence:
1517 	if (work)
1518 		dma_fence_work_commit_imm(&work->base);
1519 err_rpm:
1520 	if (wakeref)
1521 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1522 
1523 	if (moving)
1524 		dma_fence_put(moving);
1525 
1526 	i915_vma_put_pages(vma);
1527 	return err;
1528 }
1529 
1530 static void flush_idle_contexts(struct intel_gt *gt)
1531 {
1532 	struct intel_engine_cs *engine;
1533 	enum intel_engine_id id;
1534 
1535 	for_each_engine(engine, gt, id)
1536 		intel_engine_flush_barriers(engine);
1537 
1538 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1539 }
1540 
1541 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1542 			   u32 align, unsigned int flags)
1543 {
1544 	struct i915_address_space *vm = vma->vm;
1545 	int err;
1546 
1547 	do {
1548 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1549 
1550 		if (err != -ENOSPC) {
1551 			if (!err) {
1552 				err = i915_vma_wait_for_bind(vma);
1553 				if (err)
1554 					i915_vma_unpin(vma);
1555 			}
1556 			return err;
1557 		}
1558 
1559 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1560 		flush_idle_contexts(vm->gt);
1561 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1562 			/*
1563 			 * We pass NULL ww here, as we don't want to unbind
1564 			 * locked objects when called from execbuf when pinning
1565 			 * is removed. This would probably regress badly.
1566 			 */
1567 			i915_gem_evict_vm(vm, NULL);
1568 			mutex_unlock(&vm->mutex);
1569 		}
1570 	} while (1);
1571 }
1572 
1573 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1574 		  u32 align, unsigned int flags)
1575 {
1576 	struct i915_gem_ww_ctx _ww;
1577 	int err;
1578 
1579 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1580 
1581 	if (ww)
1582 		return __i915_ggtt_pin(vma, ww, align, flags);
1583 
1584 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1585 
1586 	for_i915_gem_ww(&_ww, err, true) {
1587 		err = i915_gem_object_lock(vma->obj, &_ww);
1588 		if (!err)
1589 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1590 	}
1591 
1592 	return err;
1593 }
1594 
1595 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1596 {
1597 	/*
1598 	 * We defer actually closing, unbinding and destroying the VMA until
1599 	 * the next idle point, or if the object is freed in the meantime. By
1600 	 * postponing the unbind, we allow for it to be resurrected by the
1601 	 * client, avoiding the work required to rebind the VMA. This is
1602 	 * advantageous for DRI, where the client/server pass objects
1603 	 * between themselves, temporarily opening a local VMA to the
1604 	 * object, and then closing it again. The same object is then reused
1605 	 * on the next frame (or two, depending on the depth of the swap queue)
1606 	 * causing us to rebind the VMA once more. This ends up being a lot
1607 	 * of wasted work for the steady state.
1608 	 */
1609 	GEM_BUG_ON(i915_vma_is_closed(vma));
1610 	list_add(&vma->closed_link, &gt->closed_vma);
1611 }
1612 
1613 void i915_vma_close(struct i915_vma *vma)
1614 {
1615 	struct intel_gt *gt = vma->vm->gt;
1616 	unsigned long flags;
1617 
1618 	if (i915_vma_is_ggtt(vma))
1619 		return;
1620 
1621 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1622 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1623 					&gt->closed_lock,
1624 					flags)) {
1625 		__vma_close(vma, gt);
1626 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1627 	}
1628 }
1629 
1630 static void __i915_vma_remove_closed(struct i915_vma *vma)
1631 {
1632 	list_del_init(&vma->closed_link);
1633 }
1634 
1635 void i915_vma_reopen(struct i915_vma *vma)
1636 {
1637 	struct intel_gt *gt = vma->vm->gt;
1638 
1639 	spin_lock_irq(&gt->closed_lock);
1640 	if (i915_vma_is_closed(vma))
1641 		__i915_vma_remove_closed(vma);
1642 	spin_unlock_irq(&gt->closed_lock);
1643 }
1644 
1645 static void force_unbind(struct i915_vma *vma)
1646 {
1647 	if (!drm_mm_node_allocated(&vma->node))
1648 		return;
1649 
1650 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1651 	WARN_ON(__i915_vma_unbind(vma));
1652 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1653 }
1654 
1655 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1656 			       bool vm_ddestroy)
1657 {
1658 	struct drm_i915_gem_object *obj = vma->obj;
1659 
1660 	GEM_BUG_ON(i915_vma_is_active(vma));
1661 
1662 	spin_lock(&obj->vma.lock);
1663 	list_del(&vma->obj_link);
1664 	if (!RB_EMPTY_NODE(&vma->obj_node))
1665 		rb_erase(&vma->obj_node, &obj->vma.tree);
1666 
1667 	spin_unlock(&obj->vma.lock);
1668 
1669 	spin_lock_irq(&gt->closed_lock);
1670 	__i915_vma_remove_closed(vma);
1671 	spin_unlock_irq(&gt->closed_lock);
1672 
1673 	if (vm_ddestroy)
1674 		i915_vm_resv_put(vma->vm);
1675 
1676 	i915_active_fini(&vma->active);
1677 	GEM_WARN_ON(vma->resource);
1678 	i915_vma_free(vma);
1679 }
1680 
1681 /**
1682  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1683  * the initial reference.
1684  *
1685  * This function should be called when it's decided the vma isn't needed
1686  * anymore. The caller must assure that it doesn't race with another lookup
1687  * plus destroy, typically by taking an appropriate reference.
1688  *
1689  * Current callsites are
1690  * - __i915_gem_object_pages_fini()
1691  * - __i915_vm_close() - Blocks the above function by taking a reference on
1692  * the object.
1693  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1694  * on the vm and a reference on the object. Also takes the object lock so
1695  * destruction from __i915_vma_parked() can be blocked by holding the
1696  * object lock. Since the object lock is only allowed from within i915 with
1697  * an object refcount, holding the object lock also implicitly blocks the
1698  * vma freeing from __i915_gem_object_pages_fini().
1699  *
1700  * Because of locks taken during destruction, a vma is also guaranteed to
1701  * stay alive while the following locks are held if it was looked up while
1702  * holding one of the locks:
1703  * - vm->mutex
1704  * - obj->vma.lock
1705  * - gt->closed_lock
1706  */
1707 void i915_vma_destroy_locked(struct i915_vma *vma)
1708 {
1709 	lockdep_assert_held(&vma->vm->mutex);
1710 
1711 	force_unbind(vma);
1712 	list_del_init(&vma->vm_link);
1713 	release_references(vma, vma->vm->gt, false);
1714 }
1715 
1716 void i915_vma_destroy(struct i915_vma *vma)
1717 {
1718 	struct intel_gt *gt;
1719 	bool vm_ddestroy;
1720 
1721 	mutex_lock(&vma->vm->mutex);
1722 	force_unbind(vma);
1723 	list_del_init(&vma->vm_link);
1724 	vm_ddestroy = vma->vm_ddestroy;
1725 	vma->vm_ddestroy = false;
1726 
1727 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1728 	gt = vma->vm->gt;
1729 	mutex_unlock(&vma->vm->mutex);
1730 	release_references(vma, gt, vm_ddestroy);
1731 }
1732 
1733 void i915_vma_parked(struct intel_gt *gt)
1734 {
1735 	struct i915_vma *vma, *next;
1736 	LIST_HEAD(closed);
1737 
1738 	spin_lock_irq(&gt->closed_lock);
1739 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1740 		struct drm_i915_gem_object *obj = vma->obj;
1741 		struct i915_address_space *vm = vma->vm;
1742 
1743 		/* XXX All to avoid keeping a reference on i915_vma itself */
1744 
1745 		if (!kref_get_unless_zero(&obj->base.refcount))
1746 			continue;
1747 
1748 		if (!i915_vm_tryget(vm)) {
1749 			i915_gem_object_put(obj);
1750 			continue;
1751 		}
1752 
1753 		list_move(&vma->closed_link, &closed);
1754 	}
1755 	spin_unlock_irq(&gt->closed_lock);
1756 
1757 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1758 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1759 		struct drm_i915_gem_object *obj = vma->obj;
1760 		struct i915_address_space *vm = vma->vm;
1761 
1762 		if (i915_gem_object_trylock(obj, NULL)) {
1763 			INIT_LIST_HEAD(&vma->closed_link);
1764 			i915_vma_destroy(vma);
1765 			i915_gem_object_unlock(obj);
1766 		} else {
1767 			/* back you go.. */
1768 			spin_lock_irq(&gt->closed_lock);
1769 			list_add(&vma->closed_link, &gt->closed_vma);
1770 			spin_unlock_irq(&gt->closed_lock);
1771 		}
1772 
1773 		i915_gem_object_put(obj);
1774 		i915_vm_put(vm);
1775 	}
1776 }
1777 
1778 static void __i915_vma_iounmap(struct i915_vma *vma)
1779 {
1780 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1781 
1782 	if (vma->iomap == NULL)
1783 		return;
1784 
1785 	if (page_unmask_bits(vma->iomap))
1786 		__i915_gem_object_release_map(vma->obj);
1787 	else
1788 		io_mapping_unmap(vma->iomap);
1789 	vma->iomap = NULL;
1790 }
1791 
1792 void i915_vma_revoke_mmap(struct i915_vma *vma)
1793 {
1794 	struct drm_vma_offset_node *node;
1795 	u64 vma_offset;
1796 
1797 	if (!i915_vma_has_userfault(vma))
1798 		return;
1799 
1800 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1801 	GEM_BUG_ON(!vma->obj->userfault_count);
1802 
1803 	node = &vma->mmo->vma_node;
1804 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1805 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1806 			    drm_vma_node_offset_addr(node) + vma_offset,
1807 			    vma->size,
1808 			    1);
1809 
1810 	i915_vma_unset_userfault(vma);
1811 	if (!--vma->obj->userfault_count)
1812 		list_del(&vma->obj->userfault_link);
1813 }
1814 
1815 static int
1816 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1817 {
1818 	return __i915_request_await_exclusive(rq, &vma->active);
1819 }
1820 
1821 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1822 {
1823 	int err;
1824 
1825 	/* Wait for the vma to be bound before we start! */
1826 	err = __i915_request_await_bind(rq, vma);
1827 	if (err)
1828 		return err;
1829 
1830 	return i915_active_add_request(&vma->active, rq);
1831 }
1832 
1833 int _i915_vma_move_to_active(struct i915_vma *vma,
1834 			     struct i915_request *rq,
1835 			     struct dma_fence *fence,
1836 			     unsigned int flags)
1837 {
1838 	struct drm_i915_gem_object *obj = vma->obj;
1839 	int err;
1840 
1841 	assert_object_held(obj);
1842 
1843 	GEM_BUG_ON(!vma->pages);
1844 
1845 	err = __i915_vma_move_to_active(vma, rq);
1846 	if (unlikely(err))
1847 		return err;
1848 
1849 	/*
1850 	 * Reserve fences slot early to prevent an allocation after preparing
1851 	 * the workload and associating fences with dma_resv.
1852 	 */
1853 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1854 		struct dma_fence *curr;
1855 		int idx;
1856 
1857 		dma_fence_array_for_each(curr, idx, fence)
1858 			;
1859 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1860 		if (unlikely(err))
1861 			return err;
1862 	}
1863 
1864 	if (flags & EXEC_OBJECT_WRITE) {
1865 		struct intel_frontbuffer *front;
1866 
1867 		front = __intel_frontbuffer_get(obj);
1868 		if (unlikely(front)) {
1869 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1870 				i915_active_add_request(&front->write, rq);
1871 			intel_frontbuffer_put(front);
1872 		}
1873 	}
1874 
1875 	if (fence) {
1876 		struct dma_fence *curr;
1877 		enum dma_resv_usage usage;
1878 		int idx;
1879 
1880 		if (flags & EXEC_OBJECT_WRITE) {
1881 			usage = DMA_RESV_USAGE_WRITE;
1882 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1883 			obj->read_domains = 0;
1884 		} else {
1885 			usage = DMA_RESV_USAGE_READ;
1886 			obj->write_domain = 0;
1887 		}
1888 
1889 		dma_fence_array_for_each(curr, idx, fence)
1890 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1891 	}
1892 
1893 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1894 		i915_active_add_request(&vma->fence->active, rq);
1895 
1896 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1897 	obj->mm.dirty = true;
1898 
1899 	GEM_BUG_ON(!i915_vma_is_active(vma));
1900 	return 0;
1901 }
1902 
1903 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1904 {
1905 	struct i915_vma_resource *vma_res = vma->resource;
1906 	struct dma_fence *unbind_fence;
1907 
1908 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1909 	assert_vma_held_evict(vma);
1910 
1911 	if (i915_vma_is_map_and_fenceable(vma)) {
1912 		/* Force a pagefault for domain tracking on next user access */
1913 		i915_vma_revoke_mmap(vma);
1914 
1915 		/*
1916 		 * Check that we have flushed all writes through the GGTT
1917 		 * before the unbind, other due to non-strict nature of those
1918 		 * indirect writes they may end up referencing the GGTT PTE
1919 		 * after the unbind.
1920 		 *
1921 		 * Note that we may be concurrently poking at the GGTT_WRITE
1922 		 * bit from set-domain, as we mark all GGTT vma associated
1923 		 * with an object. We know this is for another vma, as we
1924 		 * are currently unbinding this one -- so if this vma will be
1925 		 * reused, it will be refaulted and have its dirty bit set
1926 		 * before the next write.
1927 		 */
1928 		i915_vma_flush_writes(vma);
1929 
1930 		/* release the fence reg _after_ flushing */
1931 		i915_vma_revoke_fence(vma);
1932 
1933 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1934 	}
1935 
1936 	__i915_vma_iounmap(vma);
1937 
1938 	GEM_BUG_ON(vma->fence);
1939 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1940 
1941 	/* Object backend must be async capable. */
1942 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1943 
1944 	/* If vm is not open, unbind is a nop. */
1945 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1946 		kref_read(&vma->vm->ref);
1947 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1948 		vma->vm->skip_pte_rewrite;
1949 	trace_i915_vma_unbind(vma);
1950 
1951 	if (async)
1952 		unbind_fence = i915_vma_resource_unbind(vma_res,
1953 							&vma->obj->mm.tlb);
1954 	else
1955 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
1956 
1957 	vma->resource = NULL;
1958 
1959 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1960 		   &vma->flags);
1961 
1962 	i915_vma_detach(vma);
1963 
1964 	if (!async) {
1965 		if (unbind_fence) {
1966 			dma_fence_wait(unbind_fence, false);
1967 			dma_fence_put(unbind_fence);
1968 			unbind_fence = NULL;
1969 		}
1970 		vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb);
1971 	}
1972 
1973 	/*
1974 	 * Binding itself may not have completed until the unbind fence signals,
1975 	 * so don't drop the pages until that happens, unless the resource is
1976 	 * async_capable.
1977 	 */
1978 
1979 	vma_unbind_pages(vma);
1980 	return unbind_fence;
1981 }
1982 
1983 int __i915_vma_unbind(struct i915_vma *vma)
1984 {
1985 	int ret;
1986 
1987 	lockdep_assert_held(&vma->vm->mutex);
1988 	assert_vma_held_evict(vma);
1989 
1990 	if (!drm_mm_node_allocated(&vma->node))
1991 		return 0;
1992 
1993 	if (i915_vma_is_pinned(vma)) {
1994 		vma_print_allocator(vma, "is pinned");
1995 		return -EAGAIN;
1996 	}
1997 
1998 	/*
1999 	 * After confirming that no one else is pinning this vma, wait for
2000 	 * any laggards who may have crept in during the wait (through
2001 	 * a residual pin skipping the vm->mutex) to complete.
2002 	 */
2003 	ret = i915_vma_sync(vma);
2004 	if (ret)
2005 		return ret;
2006 
2007 	GEM_BUG_ON(i915_vma_is_active(vma));
2008 	__i915_vma_evict(vma, false);
2009 
2010 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2011 	return 0;
2012 }
2013 
2014 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2015 {
2016 	struct dma_fence *fence;
2017 
2018 	lockdep_assert_held(&vma->vm->mutex);
2019 
2020 	if (!drm_mm_node_allocated(&vma->node))
2021 		return NULL;
2022 
2023 	if (i915_vma_is_pinned(vma) ||
2024 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2025 		return ERR_PTR(-EAGAIN);
2026 
2027 	/*
2028 	 * We probably need to replace this with awaiting the fences of the
2029 	 * object's dma_resv when the vma active goes away. When doing that
2030 	 * we need to be careful to not add the vma_resource unbind fence
2031 	 * immediately to the object's dma_resv, because then unbinding
2032 	 * the next vma from the object, in case there are many, will
2033 	 * actually await the unbinding of the previous vmas, which is
2034 	 * undesirable.
2035 	 */
2036 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2037 				       I915_ACTIVE_AWAIT_EXCL |
2038 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2039 		return ERR_PTR(-EBUSY);
2040 	}
2041 
2042 	fence = __i915_vma_evict(vma, true);
2043 
2044 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2045 
2046 	return fence;
2047 }
2048 
2049 int i915_vma_unbind(struct i915_vma *vma)
2050 {
2051 	struct i915_address_space *vm = vma->vm;
2052 	intel_wakeref_t wakeref = 0;
2053 	int err;
2054 
2055 	assert_object_held_shared(vma->obj);
2056 
2057 	/* Optimistic wait before taking the mutex */
2058 	err = i915_vma_sync(vma);
2059 	if (err)
2060 		return err;
2061 
2062 	if (!drm_mm_node_allocated(&vma->node))
2063 		return 0;
2064 
2065 	if (i915_vma_is_pinned(vma)) {
2066 		vma_print_allocator(vma, "is pinned");
2067 		return -EAGAIN;
2068 	}
2069 
2070 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2071 		/* XXX not always required: nop_clear_range */
2072 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2073 
2074 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2075 	if (err)
2076 		goto out_rpm;
2077 
2078 	err = __i915_vma_unbind(vma);
2079 	mutex_unlock(&vm->mutex);
2080 
2081 out_rpm:
2082 	if (wakeref)
2083 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2084 	return err;
2085 }
2086 
2087 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2088 {
2089 	struct drm_i915_gem_object *obj = vma->obj;
2090 	struct i915_address_space *vm = vma->vm;
2091 	intel_wakeref_t wakeref = 0;
2092 	struct dma_fence *fence;
2093 	int err;
2094 
2095 	/*
2096 	 * We need the dma-resv lock since we add the
2097 	 * unbind fence to the dma-resv object.
2098 	 */
2099 	assert_object_held(obj);
2100 
2101 	if (!drm_mm_node_allocated(&vma->node))
2102 		return 0;
2103 
2104 	if (i915_vma_is_pinned(vma)) {
2105 		vma_print_allocator(vma, "is pinned");
2106 		return -EAGAIN;
2107 	}
2108 
2109 	if (!obj->mm.rsgt)
2110 		return -EBUSY;
2111 
2112 	err = dma_resv_reserve_fences(obj->base.resv, 1);
2113 	if (err)
2114 		return -EBUSY;
2115 
2116 	/*
2117 	 * It would be great if we could grab this wakeref from the
2118 	 * async unbind work if needed, but we can't because it uses
2119 	 * kmalloc and it's in the dma-fence signalling critical path.
2120 	 */
2121 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2122 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2123 
2124 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2125 		err = -EBUSY;
2126 		goto out_rpm;
2127 	} else if (!trylock_vm) {
2128 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2129 		if (err)
2130 			goto out_rpm;
2131 	}
2132 
2133 	fence = __i915_vma_unbind_async(vma);
2134 	mutex_unlock(&vm->mutex);
2135 	if (IS_ERR_OR_NULL(fence)) {
2136 		err = PTR_ERR_OR_ZERO(fence);
2137 		goto out_rpm;
2138 	}
2139 
2140 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2141 	dma_fence_put(fence);
2142 
2143 out_rpm:
2144 	if (wakeref)
2145 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2146 	return err;
2147 }
2148 
2149 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2150 {
2151 	int err;
2152 
2153 	i915_gem_object_lock(vma->obj, NULL);
2154 	err = i915_vma_unbind(vma);
2155 	i915_gem_object_unlock(vma->obj);
2156 
2157 	return err;
2158 }
2159 
2160 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2161 {
2162 	i915_gem_object_make_unshrinkable(vma->obj);
2163 	return vma;
2164 }
2165 
2166 void i915_vma_make_shrinkable(struct i915_vma *vma)
2167 {
2168 	i915_gem_object_make_shrinkable(vma->obj);
2169 }
2170 
2171 void i915_vma_make_purgeable(struct i915_vma *vma)
2172 {
2173 	i915_gem_object_make_purgeable(vma->obj);
2174 }
2175 
2176 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2177 #include "selftests/i915_vma.c"
2178 #endif
2179 
2180 void i915_vma_module_exit(void)
2181 {
2182 	kmem_cache_destroy(slab_vmas);
2183 }
2184 
2185 int __init i915_vma_module_init(void)
2186 {
2187 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2188 	if (!slab_vmas)
2189 		return -ENOMEM;
2190 
2191 	return 0;
2192 }
2193