xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vma.c (revision bacf743e)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <drm/drm_gem.h>
27 
28 #include "display/intel_frontbuffer.h"
29 #include "gem/i915_gem_lmem.h"
30 #include "gem/i915_gem_tiling.h"
31 #include "gt/intel_engine.h"
32 #include "gt/intel_engine_heartbeat.h"
33 #include "gt/intel_gt.h"
34 #include "gt/intel_gt_requests.h"
35 
36 #include "i915_drv.h"
37 #include "i915_gem_evict.h"
38 #include "i915_sw_fence_work.h"
39 #include "i915_trace.h"
40 #include "i915_vma.h"
41 #include "i915_vma_resource.h"
42 
43 static inline void assert_vma_held_evict(const struct i915_vma *vma)
44 {
45 	/*
46 	 * We may be forced to unbind when the vm is dead, to clean it up.
47 	 * This is the only exception to the requirement of the object lock
48 	 * being held.
49 	 */
50 	if (atomic_read(&vma->vm->open))
51 		assert_object_held_shared(vma->obj);
52 }
53 
54 static struct kmem_cache *slab_vmas;
55 
56 static struct i915_vma *i915_vma_alloc(void)
57 {
58 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
59 }
60 
61 static void i915_vma_free(struct i915_vma *vma)
62 {
63 	return kmem_cache_free(slab_vmas, vma);
64 }
65 
66 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
67 
68 #include <linux/stackdepot.h>
69 
70 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
71 {
72 	char buf[512];
73 
74 	if (!vma->node.stack) {
75 		DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
76 				 vma->node.start, vma->node.size, reason);
77 		return;
78 	}
79 
80 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
81 	DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
82 			 vma->node.start, vma->node.size, reason, buf);
83 }
84 
85 #else
86 
87 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
88 {
89 }
90 
91 #endif
92 
93 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
94 {
95 	return container_of(ref, typeof(struct i915_vma), active);
96 }
97 
98 static int __i915_vma_active(struct i915_active *ref)
99 {
100 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
101 }
102 
103 static void __i915_vma_retire(struct i915_active *ref)
104 {
105 	i915_vma_put(active_to_vma(ref));
106 }
107 
108 static struct i915_vma *
109 vma_create(struct drm_i915_gem_object *obj,
110 	   struct i915_address_space *vm,
111 	   const struct i915_ggtt_view *view)
112 {
113 	struct i915_vma *pos = ERR_PTR(-E2BIG);
114 	struct i915_vma *vma;
115 	struct rb_node *rb, **p;
116 
117 	/* The aliasing_ppgtt should never be used directly! */
118 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
119 
120 	vma = i915_vma_alloc();
121 	if (vma == NULL)
122 		return ERR_PTR(-ENOMEM);
123 
124 	kref_init(&vma->ref);
125 	vma->vm = i915_vm_get(vm);
126 	vma->ops = &vm->vma_ops;
127 	vma->obj = obj;
128 	vma->size = obj->base.size;
129 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
130 
131 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
132 
133 	/* Declare ourselves safe for use inside shrinkers */
134 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
135 		fs_reclaim_acquire(GFP_KERNEL);
136 		might_lock(&vma->active.mutex);
137 		fs_reclaim_release(GFP_KERNEL);
138 	}
139 
140 	INIT_LIST_HEAD(&vma->closed_link);
141 
142 	if (view && view->type != I915_GGTT_VIEW_NORMAL) {
143 		vma->ggtt_view = *view;
144 		if (view->type == I915_GGTT_VIEW_PARTIAL) {
145 			GEM_BUG_ON(range_overflows_t(u64,
146 						     view->partial.offset,
147 						     view->partial.size,
148 						     obj->base.size >> PAGE_SHIFT));
149 			vma->size = view->partial.size;
150 			vma->size <<= PAGE_SHIFT;
151 			GEM_BUG_ON(vma->size > obj->base.size);
152 		} else if (view->type == I915_GGTT_VIEW_ROTATED) {
153 			vma->size = intel_rotation_info_size(&view->rotated);
154 			vma->size <<= PAGE_SHIFT;
155 		} else if (view->type == I915_GGTT_VIEW_REMAPPED) {
156 			vma->size = intel_remapped_info_size(&view->remapped);
157 			vma->size <<= PAGE_SHIFT;
158 		}
159 	}
160 
161 	if (unlikely(vma->size > vm->total))
162 		goto err_vma;
163 
164 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
165 
166 	spin_lock(&obj->vma.lock);
167 
168 	if (i915_is_ggtt(vm)) {
169 		if (unlikely(overflows_type(vma->size, u32)))
170 			goto err_unlock;
171 
172 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
173 						      i915_gem_object_get_tiling(obj),
174 						      i915_gem_object_get_stride(obj));
175 		if (unlikely(vma->fence_size < vma->size || /* overflow */
176 			     vma->fence_size > vm->total))
177 			goto err_unlock;
178 
179 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
180 
181 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
182 								i915_gem_object_get_tiling(obj),
183 								i915_gem_object_get_stride(obj));
184 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
185 
186 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
187 	}
188 
189 	rb = NULL;
190 	p = &obj->vma.tree.rb_node;
191 	while (*p) {
192 		long cmp;
193 
194 		rb = *p;
195 		pos = rb_entry(rb, struct i915_vma, obj_node);
196 
197 		/*
198 		 * If the view already exists in the tree, another thread
199 		 * already created a matching vma, so return the older instance
200 		 * and dispose of ours.
201 		 */
202 		cmp = i915_vma_compare(pos, vm, view);
203 		if (cmp < 0)
204 			p = &rb->rb_right;
205 		else if (cmp > 0)
206 			p = &rb->rb_left;
207 		else
208 			goto err_unlock;
209 	}
210 	rb_link_node(&vma->obj_node, rb, p);
211 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
212 
213 	if (i915_vma_is_ggtt(vma))
214 		/*
215 		 * We put the GGTT vma at the start of the vma-list, followed
216 		 * by the ppGGTT vma. This allows us to break early when
217 		 * iterating over only the GGTT vma for an object, see
218 		 * for_each_ggtt_vma()
219 		 */
220 		list_add(&vma->obj_link, &obj->vma.list);
221 	else
222 		list_add_tail(&vma->obj_link, &obj->vma.list);
223 
224 	spin_unlock(&obj->vma.lock);
225 
226 	return vma;
227 
228 err_unlock:
229 	spin_unlock(&obj->vma.lock);
230 err_vma:
231 	i915_vm_put(vm);
232 	i915_vma_free(vma);
233 	return pos;
234 }
235 
236 static struct i915_vma *
237 i915_vma_lookup(struct drm_i915_gem_object *obj,
238 	   struct i915_address_space *vm,
239 	   const struct i915_ggtt_view *view)
240 {
241 	struct rb_node *rb;
242 
243 	rb = obj->vma.tree.rb_node;
244 	while (rb) {
245 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
246 		long cmp;
247 
248 		cmp = i915_vma_compare(vma, vm, view);
249 		if (cmp == 0)
250 			return vma;
251 
252 		if (cmp < 0)
253 			rb = rb->rb_right;
254 		else
255 			rb = rb->rb_left;
256 	}
257 
258 	return NULL;
259 }
260 
261 /**
262  * i915_vma_instance - return the singleton instance of the VMA
263  * @obj: parent &struct drm_i915_gem_object to be mapped
264  * @vm: address space in which the mapping is located
265  * @view: additional mapping requirements
266  *
267  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
268  * the same @view characteristics. If a match is not found, one is created.
269  * Once created, the VMA is kept until either the object is freed, or the
270  * address space is closed.
271  *
272  * Returns the vma, or an error pointer.
273  */
274 struct i915_vma *
275 i915_vma_instance(struct drm_i915_gem_object *obj,
276 		  struct i915_address_space *vm,
277 		  const struct i915_ggtt_view *view)
278 {
279 	struct i915_vma *vma;
280 
281 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
282 	GEM_BUG_ON(!atomic_read(&vm->open));
283 
284 	spin_lock(&obj->vma.lock);
285 	vma = i915_vma_lookup(obj, vm, view);
286 	spin_unlock(&obj->vma.lock);
287 
288 	/* vma_create() will resolve the race if another creates the vma */
289 	if (unlikely(!vma))
290 		vma = vma_create(obj, vm, view);
291 
292 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
293 	return vma;
294 }
295 
296 struct i915_vma_work {
297 	struct dma_fence_work base;
298 	struct i915_address_space *vm;
299 	struct i915_vm_pt_stash stash;
300 	struct i915_vma_resource *vma_res;
301 	struct drm_i915_gem_object *pinned;
302 	struct i915_sw_dma_fence_cb cb;
303 	enum i915_cache_level cache_level;
304 	unsigned int flags;
305 };
306 
307 static void __vma_bind(struct dma_fence_work *work)
308 {
309 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
310 	struct i915_vma_resource *vma_res = vw->vma_res;
311 
312 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
313 			       vma_res, vw->cache_level, vw->flags);
314 
315 }
316 
317 static void __vma_release(struct dma_fence_work *work)
318 {
319 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
320 
321 	if (vw->pinned)
322 		i915_gem_object_put(vw->pinned);
323 
324 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
325 	i915_vm_put(vw->vm);
326 	if (vw->vma_res)
327 		i915_vma_resource_put(vw->vma_res);
328 }
329 
330 static const struct dma_fence_work_ops bind_ops = {
331 	.name = "bind",
332 	.work = __vma_bind,
333 	.release = __vma_release,
334 };
335 
336 struct i915_vma_work *i915_vma_work(void)
337 {
338 	struct i915_vma_work *vw;
339 
340 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
341 	if (!vw)
342 		return NULL;
343 
344 	dma_fence_work_init(&vw->base, &bind_ops);
345 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
346 
347 	return vw;
348 }
349 
350 int i915_vma_wait_for_bind(struct i915_vma *vma)
351 {
352 	int err = 0;
353 
354 	if (rcu_access_pointer(vma->active.excl.fence)) {
355 		struct dma_fence *fence;
356 
357 		rcu_read_lock();
358 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
359 		rcu_read_unlock();
360 		if (fence) {
361 			err = dma_fence_wait(fence, true);
362 			dma_fence_put(fence);
363 		}
364 	}
365 
366 	return err;
367 }
368 
369 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
370 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
371 {
372 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
373 	int err;
374 
375 	if (!fence)
376 		return 0;
377 
378 	if (dma_fence_is_signaled(fence))
379 		err = fence->error;
380 	else
381 		err = -EBUSY;
382 
383 	dma_fence_put(fence);
384 
385 	return err;
386 }
387 #else
388 #define i915_vma_verify_bind_complete(_vma) 0
389 #endif
390 
391 I915_SELFTEST_EXPORT void
392 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
393 				struct i915_vma *vma)
394 {
395 	struct drm_i915_gem_object *obj = vma->obj;
396 
397 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
398 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
399 			       i915_gem_object_is_lmem(obj), obj->mm.region,
400 			       vma->ops, vma->private, vma->node.start,
401 			       vma->node.size, vma->size);
402 }
403 
404 /**
405  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
406  * @vma: VMA to map
407  * @cache_level: mapping cache level
408  * @flags: flags like global or local mapping
409  * @work: preallocated worker for allocating and binding the PTE
410  * @vma_res: pointer to a preallocated vma resource. The resource is either
411  * consumed or freed.
412  *
413  * DMA addresses are taken from the scatter-gather table of this object (or of
414  * this VMA in case of non-default GGTT views) and PTE entries set up.
415  * Note that DMA addresses are also the only part of the SG table we care about.
416  */
417 int i915_vma_bind(struct i915_vma *vma,
418 		  enum i915_cache_level cache_level,
419 		  u32 flags,
420 		  struct i915_vma_work *work,
421 		  struct i915_vma_resource *vma_res)
422 {
423 	u32 bind_flags;
424 	u32 vma_flags;
425 	int ret;
426 
427 	lockdep_assert_held(&vma->vm->mutex);
428 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
429 	GEM_BUG_ON(vma->size > vma->node.size);
430 
431 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
432 					      vma->node.size,
433 					      vma->vm->total))) {
434 		i915_vma_resource_free(vma_res);
435 		return -ENODEV;
436 	}
437 
438 	if (GEM_DEBUG_WARN_ON(!flags)) {
439 		i915_vma_resource_free(vma_res);
440 		return -EINVAL;
441 	}
442 
443 	bind_flags = flags;
444 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
445 
446 	vma_flags = atomic_read(&vma->flags);
447 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
448 
449 	bind_flags &= ~vma_flags;
450 	if (bind_flags == 0) {
451 		i915_vma_resource_free(vma_res);
452 		return 0;
453 	}
454 
455 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
456 
457 	/* Wait for or await async unbinds touching our range */
458 	if (work && bind_flags & vma->vm->bind_async_flags)
459 		ret = i915_vma_resource_bind_dep_await(vma->vm,
460 						       &work->base.chain,
461 						       vma->node.start,
462 						       vma->node.size,
463 						       true,
464 						       GFP_NOWAIT |
465 						       __GFP_RETRY_MAYFAIL |
466 						       __GFP_NOWARN);
467 	else
468 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
469 						      vma->node.size, true);
470 	if (ret) {
471 		i915_vma_resource_free(vma_res);
472 		return ret;
473 	}
474 
475 	if (vma->resource || !vma_res) {
476 		/* Rebinding with an additional I915_VMA_*_BIND */
477 		GEM_WARN_ON(!vma_flags);
478 		i915_vma_resource_free(vma_res);
479 	} else {
480 		i915_vma_resource_init_from_vma(vma_res, vma);
481 		vma->resource = vma_res;
482 	}
483 	trace_i915_vma_bind(vma, bind_flags);
484 	if (work && bind_flags & vma->vm->bind_async_flags) {
485 		struct dma_fence *prev;
486 
487 		work->vma_res = i915_vma_resource_get(vma->resource);
488 		work->cache_level = cache_level;
489 		work->flags = bind_flags;
490 
491 		/*
492 		 * Note we only want to chain up to the migration fence on
493 		 * the pages (not the object itself). As we don't track that,
494 		 * yet, we have to use the exclusive fence instead.
495 		 *
496 		 * Also note that we do not want to track the async vma as
497 		 * part of the obj->resv->excl_fence as it only affects
498 		 * execution and not content or object's backing store lifetime.
499 		 */
500 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
501 		if (prev) {
502 			__i915_sw_fence_await_dma_fence(&work->base.chain,
503 							prev,
504 							&work->cb);
505 			dma_fence_put(prev);
506 		}
507 
508 		work->base.dma.error = 0; /* enable the queue_work() */
509 
510 		/*
511 		 * If we don't have the refcounted pages list, keep a reference
512 		 * on the object to avoid waiting for the async bind to
513 		 * complete in the object destruction path.
514 		 */
515 		if (!work->vma_res->bi.pages_rsgt)
516 			work->pinned = i915_gem_object_get(vma->obj);
517 	} else {
518 		if (vma->obj) {
519 			ret = i915_gem_object_wait_moving_fence(vma->obj, true);
520 			if (ret) {
521 				i915_vma_resource_free(vma->resource);
522 				vma->resource = NULL;
523 
524 				return ret;
525 			}
526 		}
527 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
528 				   bind_flags);
529 	}
530 
531 	if (vma->obj)
532 		set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags);
533 
534 	atomic_or(bind_flags, &vma->flags);
535 	return 0;
536 }
537 
538 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
539 {
540 	void __iomem *ptr;
541 	int err;
542 
543 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
544 		return IO_ERR_PTR(-EINVAL);
545 
546 	if (!i915_gem_object_is_lmem(vma->obj)) {
547 		if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) {
548 			err = -ENODEV;
549 			goto err;
550 		}
551 	}
552 
553 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
554 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
555 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
556 
557 	ptr = READ_ONCE(vma->iomap);
558 	if (ptr == NULL) {
559 		/*
560 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
561 		 * instead, which already supports mapping non-contiguous chunks
562 		 * of pages, that way we can also drop the
563 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
564 		 */
565 		if (i915_gem_object_is_lmem(vma->obj))
566 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
567 							  vma->obj->base.size);
568 		else
569 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
570 						vma->node.start,
571 						vma->node.size);
572 		if (ptr == NULL) {
573 			err = -ENOMEM;
574 			goto err;
575 		}
576 
577 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
578 			io_mapping_unmap(ptr);
579 			ptr = vma->iomap;
580 		}
581 	}
582 
583 	__i915_vma_pin(vma);
584 
585 	err = i915_vma_pin_fence(vma);
586 	if (err)
587 		goto err_unpin;
588 
589 	i915_vma_set_ggtt_write(vma);
590 
591 	/* NB Access through the GTT requires the device to be awake. */
592 	return ptr;
593 
594 err_unpin:
595 	__i915_vma_unpin(vma);
596 err:
597 	return IO_ERR_PTR(err);
598 }
599 
600 void i915_vma_flush_writes(struct i915_vma *vma)
601 {
602 	if (i915_vma_unset_ggtt_write(vma))
603 		intel_gt_flush_ggtt_writes(vma->vm->gt);
604 }
605 
606 void i915_vma_unpin_iomap(struct i915_vma *vma)
607 {
608 	GEM_BUG_ON(vma->iomap == NULL);
609 
610 	i915_vma_flush_writes(vma);
611 
612 	i915_vma_unpin_fence(vma);
613 	i915_vma_unpin(vma);
614 }
615 
616 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
617 {
618 	struct i915_vma *vma;
619 	struct drm_i915_gem_object *obj;
620 
621 	vma = fetch_and_zero(p_vma);
622 	if (!vma)
623 		return;
624 
625 	obj = vma->obj;
626 	GEM_BUG_ON(!obj);
627 
628 	i915_vma_unpin(vma);
629 
630 	if (flags & I915_VMA_RELEASE_MAP)
631 		i915_gem_object_unpin_map(obj);
632 
633 	i915_gem_object_put(obj);
634 }
635 
636 bool i915_vma_misplaced(const struct i915_vma *vma,
637 			u64 size, u64 alignment, u64 flags)
638 {
639 	if (!drm_mm_node_allocated(&vma->node))
640 		return false;
641 
642 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
643 		return true;
644 
645 	if (vma->node.size < size)
646 		return true;
647 
648 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
649 	if (alignment && !IS_ALIGNED(vma->node.start, alignment))
650 		return true;
651 
652 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
653 		return true;
654 
655 	if (flags & PIN_OFFSET_BIAS &&
656 	    vma->node.start < (flags & PIN_OFFSET_MASK))
657 		return true;
658 
659 	if (flags & PIN_OFFSET_FIXED &&
660 	    vma->node.start != (flags & PIN_OFFSET_MASK))
661 		return true;
662 
663 	return false;
664 }
665 
666 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
667 {
668 	bool mappable, fenceable;
669 
670 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
671 	GEM_BUG_ON(!vma->fence_size);
672 
673 	fenceable = (vma->node.size >= vma->fence_size &&
674 		     IS_ALIGNED(vma->node.start, vma->fence_alignment));
675 
676 	mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
677 
678 	if (mappable && fenceable)
679 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
680 	else
681 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
682 }
683 
684 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
685 {
686 	struct drm_mm_node *node = &vma->node;
687 	struct drm_mm_node *other;
688 
689 	/*
690 	 * On some machines we have to be careful when putting differing types
691 	 * of snoopable memory together to avoid the prefetcher crossing memory
692 	 * domains and dying. During vm initialisation, we decide whether or not
693 	 * these constraints apply and set the drm_mm.color_adjust
694 	 * appropriately.
695 	 */
696 	if (!i915_vm_has_cache_coloring(vma->vm))
697 		return true;
698 
699 	/* Only valid to be called on an already inserted vma */
700 	GEM_BUG_ON(!drm_mm_node_allocated(node));
701 	GEM_BUG_ON(list_empty(&node->node_list));
702 
703 	other = list_prev_entry(node, node_list);
704 	if (i915_node_color_differs(other, color) &&
705 	    !drm_mm_hole_follows(other))
706 		return false;
707 
708 	other = list_next_entry(node, node_list);
709 	if (i915_node_color_differs(other, color) &&
710 	    !drm_mm_hole_follows(node))
711 		return false;
712 
713 	return true;
714 }
715 
716 /**
717  * i915_vma_insert - finds a slot for the vma in its address space
718  * @vma: the vma
719  * @size: requested size in bytes (can be larger than the VMA)
720  * @alignment: required alignment
721  * @flags: mask of PIN_* flags to use
722  *
723  * First we try to allocate some free space that meets the requirements for
724  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
725  * preferrably the oldest idle entry to make room for the new VMA.
726  *
727  * Returns:
728  * 0 on success, negative error code otherwise.
729  */
730 static int
731 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
732 		u64 size, u64 alignment, u64 flags)
733 {
734 	unsigned long color;
735 	u64 start, end;
736 	int ret;
737 
738 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
739 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
740 
741 	size = max(size, vma->size);
742 	alignment = max(alignment, vma->display_alignment);
743 	if (flags & PIN_MAPPABLE) {
744 		size = max_t(typeof(size), size, vma->fence_size);
745 		alignment = max_t(typeof(alignment),
746 				  alignment, vma->fence_alignment);
747 	}
748 
749 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
750 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
751 	GEM_BUG_ON(!is_power_of_2(alignment));
752 
753 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
754 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
755 
756 	end = vma->vm->total;
757 	if (flags & PIN_MAPPABLE)
758 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
759 	if (flags & PIN_ZONE_4G)
760 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
761 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
762 
763 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
764 	/*
765 	 * for compact-pt we round up the reservation to prevent
766 	 * any smaller pages being used within the same PDE
767 	 */
768 	if (NEEDS_COMPACT_PT(vma->vm->i915))
769 		size = round_up(size, alignment);
770 
771 	/* If binding the object/GGTT view requires more space than the entire
772 	 * aperture has, reject it early before evicting everything in a vain
773 	 * attempt to find space.
774 	 */
775 	if (size > end) {
776 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
777 			  size, flags & PIN_MAPPABLE ? "mappable" : "total",
778 			  end);
779 		return -ENOSPC;
780 	}
781 
782 	color = 0;
783 
784 	if (i915_vm_has_cache_coloring(vma->vm))
785 		color = vma->obj->cache_level;
786 
787 	if (flags & PIN_OFFSET_FIXED) {
788 		u64 offset = flags & PIN_OFFSET_MASK;
789 		if (!IS_ALIGNED(offset, alignment) ||
790 		    range_overflows(offset, size, end))
791 			return -EINVAL;
792 
793 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
794 					   size, offset, color,
795 					   flags);
796 		if (ret)
797 			return ret;
798 	} else {
799 		/*
800 		 * We only support huge gtt pages through the 48b PPGTT,
801 		 * however we also don't want to force any alignment for
802 		 * objects which need to be tightly packed into the low 32bits.
803 		 *
804 		 * Note that we assume that GGTT are limited to 4GiB for the
805 		 * forseeable future. See also i915_ggtt_offset().
806 		 */
807 		if (upper_32_bits(end - 1) &&
808 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
809 			/*
810 			 * We can't mix 64K and 4K PTEs in the same page-table
811 			 * (2M block), and so to avoid the ugliness and
812 			 * complexity of coloring we opt for just aligning 64K
813 			 * objects to 2M.
814 			 */
815 			u64 page_alignment =
816 				rounddown_pow_of_two(vma->page_sizes.sg |
817 						     I915_GTT_PAGE_SIZE_2M);
818 
819 			/*
820 			 * Check we don't expand for the limited Global GTT
821 			 * (mappable aperture is even more precious!). This
822 			 * also checks that we exclude the aliasing-ppgtt.
823 			 */
824 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
825 
826 			alignment = max(alignment, page_alignment);
827 
828 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
829 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
830 		}
831 
832 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
833 					  size, alignment, color,
834 					  start, end, flags);
835 		if (ret)
836 			return ret;
837 
838 		GEM_BUG_ON(vma->node.start < start);
839 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
840 	}
841 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
842 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
843 
844 	list_add_tail(&vma->vm_link, &vma->vm->bound_list);
845 
846 	return 0;
847 }
848 
849 static void
850 i915_vma_detach(struct i915_vma *vma)
851 {
852 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
853 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
854 
855 	/*
856 	 * And finally now the object is completely decoupled from this
857 	 * vma, we can drop its hold on the backing storage and allow
858 	 * it to be reaped by the shrinker.
859 	 */
860 	list_del(&vma->vm_link);
861 }
862 
863 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
864 {
865 	unsigned int bound;
866 
867 	bound = atomic_read(&vma->flags);
868 
869 	if (flags & PIN_VALIDATE) {
870 		flags &= I915_VMA_BIND_MASK;
871 
872 		return (flags & bound) == flags;
873 	}
874 
875 	/* with the lock mandatory for unbind, we don't race here */
876 	flags &= I915_VMA_BIND_MASK;
877 	do {
878 		if (unlikely(flags & ~bound))
879 			return false;
880 
881 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
882 			return false;
883 
884 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
885 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
886 
887 	return true;
888 }
889 
890 static struct scatterlist *
891 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
892 	     unsigned int width, unsigned int height,
893 	     unsigned int src_stride, unsigned int dst_stride,
894 	     struct sg_table *st, struct scatterlist *sg)
895 {
896 	unsigned int column, row;
897 	unsigned int src_idx;
898 
899 	for (column = 0; column < width; column++) {
900 		unsigned int left;
901 
902 		src_idx = src_stride * (height - 1) + column + offset;
903 		for (row = 0; row < height; row++) {
904 			st->nents++;
905 			/*
906 			 * We don't need the pages, but need to initialize
907 			 * the entries so the sg list can be happily traversed.
908 			 * The only thing we need are DMA addresses.
909 			 */
910 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
911 			sg_dma_address(sg) =
912 				i915_gem_object_get_dma_address(obj, src_idx);
913 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
914 			sg = sg_next(sg);
915 			src_idx -= src_stride;
916 		}
917 
918 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
919 
920 		if (!left)
921 			continue;
922 
923 		st->nents++;
924 
925 		/*
926 		 * The DE ignores the PTEs for the padding tiles, the sg entry
927 		 * here is just a conenience to indicate how many padding PTEs
928 		 * to insert at this spot.
929 		 */
930 		sg_set_page(sg, NULL, left, 0);
931 		sg_dma_address(sg) = 0;
932 		sg_dma_len(sg) = left;
933 		sg = sg_next(sg);
934 	}
935 
936 	return sg;
937 }
938 
939 static noinline struct sg_table *
940 intel_rotate_pages(struct intel_rotation_info *rot_info,
941 		   struct drm_i915_gem_object *obj)
942 {
943 	unsigned int size = intel_rotation_info_size(rot_info);
944 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
945 	struct sg_table *st;
946 	struct scatterlist *sg;
947 	int ret = -ENOMEM;
948 	int i;
949 
950 	/* Allocate target SG list. */
951 	st = kmalloc(sizeof(*st), GFP_KERNEL);
952 	if (!st)
953 		goto err_st_alloc;
954 
955 	ret = sg_alloc_table(st, size, GFP_KERNEL);
956 	if (ret)
957 		goto err_sg_alloc;
958 
959 	st->nents = 0;
960 	sg = st->sgl;
961 
962 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
963 		sg = rotate_pages(obj, rot_info->plane[i].offset,
964 				  rot_info->plane[i].width, rot_info->plane[i].height,
965 				  rot_info->plane[i].src_stride,
966 				  rot_info->plane[i].dst_stride,
967 				  st, sg);
968 
969 	return st;
970 
971 err_sg_alloc:
972 	kfree(st);
973 err_st_alloc:
974 
975 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
976 		obj->base.size, rot_info->plane[0].width,
977 		rot_info->plane[0].height, size);
978 
979 	return ERR_PTR(ret);
980 }
981 
982 static struct scatterlist *
983 add_padding_pages(unsigned int count,
984 		  struct sg_table *st, struct scatterlist *sg)
985 {
986 	st->nents++;
987 
988 	/*
989 	 * The DE ignores the PTEs for the padding tiles, the sg entry
990 	 * here is just a convenience to indicate how many padding PTEs
991 	 * to insert at this spot.
992 	 */
993 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
994 	sg_dma_address(sg) = 0;
995 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
996 	sg = sg_next(sg);
997 
998 	return sg;
999 }
1000 
1001 static struct scatterlist *
1002 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1003 			      unsigned int offset, unsigned int alignment_pad,
1004 			      unsigned int width, unsigned int height,
1005 			      unsigned int src_stride, unsigned int dst_stride,
1006 			      struct sg_table *st, struct scatterlist *sg,
1007 			      unsigned int *gtt_offset)
1008 {
1009 	unsigned int row;
1010 
1011 	if (!width || !height)
1012 		return sg;
1013 
1014 	if (alignment_pad)
1015 		sg = add_padding_pages(alignment_pad, st, sg);
1016 
1017 	for (row = 0; row < height; row++) {
1018 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1019 
1020 		while (left) {
1021 			dma_addr_t addr;
1022 			unsigned int length;
1023 
1024 			/*
1025 			 * We don't need the pages, but need to initialize
1026 			 * the entries so the sg list can be happily traversed.
1027 			 * The only thing we need are DMA addresses.
1028 			 */
1029 
1030 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1031 
1032 			length = min(left, length);
1033 
1034 			st->nents++;
1035 
1036 			sg_set_page(sg, NULL, length, 0);
1037 			sg_dma_address(sg) = addr;
1038 			sg_dma_len(sg) = length;
1039 			sg = sg_next(sg);
1040 
1041 			offset += length / I915_GTT_PAGE_SIZE;
1042 			left -= length;
1043 		}
1044 
1045 		offset += src_stride - width;
1046 
1047 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1048 
1049 		if (!left)
1050 			continue;
1051 
1052 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1053 	}
1054 
1055 	*gtt_offset += alignment_pad + dst_stride * height;
1056 
1057 	return sg;
1058 }
1059 
1060 static struct scatterlist *
1061 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1062 		       unsigned int obj_offset,
1063 		       unsigned int count,
1064 		       struct sg_table *st, struct scatterlist *sg)
1065 {
1066 	struct scatterlist *iter;
1067 	unsigned int offset;
1068 
1069 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1070 	GEM_BUG_ON(!iter);
1071 
1072 	do {
1073 		unsigned int len;
1074 
1075 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1076 			  count << PAGE_SHIFT);
1077 		sg_set_page(sg, NULL, len, 0);
1078 		sg_dma_address(sg) =
1079 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1080 		sg_dma_len(sg) = len;
1081 
1082 		st->nents++;
1083 		count -= len >> PAGE_SHIFT;
1084 		if (count == 0)
1085 			return sg;
1086 
1087 		sg = __sg_next(sg);
1088 		iter = __sg_next(iter);
1089 		offset = 0;
1090 	} while (1);
1091 }
1092 
1093 static struct scatterlist *
1094 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1095 			       unsigned int obj_offset, unsigned int alignment_pad,
1096 			       unsigned int size,
1097 			       struct sg_table *st, struct scatterlist *sg,
1098 			       unsigned int *gtt_offset)
1099 {
1100 	if (!size)
1101 		return sg;
1102 
1103 	if (alignment_pad)
1104 		sg = add_padding_pages(alignment_pad, st, sg);
1105 
1106 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1107 	sg = sg_next(sg);
1108 
1109 	*gtt_offset += alignment_pad + size;
1110 
1111 	return sg;
1112 }
1113 
1114 static struct scatterlist *
1115 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1116 			struct drm_i915_gem_object *obj,
1117 			int color_plane,
1118 			struct sg_table *st, struct scatterlist *sg,
1119 			unsigned int *gtt_offset)
1120 {
1121 	unsigned int alignment_pad = 0;
1122 
1123 	if (rem_info->plane_alignment)
1124 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1125 
1126 	if (rem_info->plane[color_plane].linear)
1127 		sg = remap_linear_color_plane_pages(obj,
1128 						    rem_info->plane[color_plane].offset,
1129 						    alignment_pad,
1130 						    rem_info->plane[color_plane].size,
1131 						    st, sg,
1132 						    gtt_offset);
1133 
1134 	else
1135 		sg = remap_tiled_color_plane_pages(obj,
1136 						   rem_info->plane[color_plane].offset,
1137 						   alignment_pad,
1138 						   rem_info->plane[color_plane].width,
1139 						   rem_info->plane[color_plane].height,
1140 						   rem_info->plane[color_plane].src_stride,
1141 						   rem_info->plane[color_plane].dst_stride,
1142 						   st, sg,
1143 						   gtt_offset);
1144 
1145 	return sg;
1146 }
1147 
1148 static noinline struct sg_table *
1149 intel_remap_pages(struct intel_remapped_info *rem_info,
1150 		  struct drm_i915_gem_object *obj)
1151 {
1152 	unsigned int size = intel_remapped_info_size(rem_info);
1153 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1154 	struct sg_table *st;
1155 	struct scatterlist *sg;
1156 	unsigned int gtt_offset = 0;
1157 	int ret = -ENOMEM;
1158 	int i;
1159 
1160 	/* Allocate target SG list. */
1161 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1162 	if (!st)
1163 		goto err_st_alloc;
1164 
1165 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1166 	if (ret)
1167 		goto err_sg_alloc;
1168 
1169 	st->nents = 0;
1170 	sg = st->sgl;
1171 
1172 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1173 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1174 
1175 	i915_sg_trim(st);
1176 
1177 	return st;
1178 
1179 err_sg_alloc:
1180 	kfree(st);
1181 err_st_alloc:
1182 
1183 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1184 		obj->base.size, rem_info->plane[0].width,
1185 		rem_info->plane[0].height, size);
1186 
1187 	return ERR_PTR(ret);
1188 }
1189 
1190 static noinline struct sg_table *
1191 intel_partial_pages(const struct i915_ggtt_view *view,
1192 		    struct drm_i915_gem_object *obj)
1193 {
1194 	struct sg_table *st;
1195 	struct scatterlist *sg;
1196 	unsigned int count = view->partial.size;
1197 	int ret = -ENOMEM;
1198 
1199 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1200 	if (!st)
1201 		goto err_st_alloc;
1202 
1203 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1204 	if (ret)
1205 		goto err_sg_alloc;
1206 
1207 	st->nents = 0;
1208 
1209 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1210 
1211 	sg_mark_end(sg);
1212 	i915_sg_trim(st); /* Drop any unused tail entries. */
1213 
1214 	return st;
1215 
1216 err_sg_alloc:
1217 	kfree(st);
1218 err_st_alloc:
1219 	return ERR_PTR(ret);
1220 }
1221 
1222 static int
1223 __i915_vma_get_pages(struct i915_vma *vma)
1224 {
1225 	struct sg_table *pages;
1226 
1227 	/*
1228 	 * The vma->pages are only valid within the lifespan of the borrowed
1229 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1230 	 * must be the vma->pages. A simple rule is that vma->pages must only
1231 	 * be accessed when the obj->mm.pages are pinned.
1232 	 */
1233 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1234 
1235 	switch (vma->ggtt_view.type) {
1236 	default:
1237 		GEM_BUG_ON(vma->ggtt_view.type);
1238 		fallthrough;
1239 	case I915_GGTT_VIEW_NORMAL:
1240 		pages = vma->obj->mm.pages;
1241 		break;
1242 
1243 	case I915_GGTT_VIEW_ROTATED:
1244 		pages =
1245 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1246 		break;
1247 
1248 	case I915_GGTT_VIEW_REMAPPED:
1249 		pages =
1250 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1251 		break;
1252 
1253 	case I915_GGTT_VIEW_PARTIAL:
1254 		pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1255 		break;
1256 	}
1257 
1258 	if (IS_ERR(pages)) {
1259 		drm_err(&vma->vm->i915->drm,
1260 			"Failed to get pages for VMA view type %u (%ld)!\n",
1261 			vma->ggtt_view.type, PTR_ERR(pages));
1262 		return PTR_ERR(pages);
1263 	}
1264 
1265 	vma->pages = pages;
1266 
1267 	return 0;
1268 }
1269 
1270 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1271 {
1272 	int err;
1273 
1274 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1275 		return 0;
1276 
1277 	err = i915_gem_object_pin_pages(vma->obj);
1278 	if (err)
1279 		return err;
1280 
1281 	err = __i915_vma_get_pages(vma);
1282 	if (err)
1283 		goto err_unpin;
1284 
1285 	vma->page_sizes = vma->obj->mm.page_sizes;
1286 	atomic_inc(&vma->pages_count);
1287 
1288 	return 0;
1289 
1290 err_unpin:
1291 	__i915_gem_object_unpin_pages(vma->obj);
1292 
1293 	return err;
1294 }
1295 
1296 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1297 {
1298 	/* We allocate under vma_get_pages, so beware the shrinker */
1299 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1300 
1301 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1302 		if (vma->pages != vma->obj->mm.pages) {
1303 			sg_free_table(vma->pages);
1304 			kfree(vma->pages);
1305 		}
1306 		vma->pages = NULL;
1307 
1308 		i915_gem_object_unpin_pages(vma->obj);
1309 	}
1310 }
1311 
1312 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1313 {
1314 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1315 		return;
1316 
1317 	__vma_put_pages(vma, 1);
1318 }
1319 
1320 static void vma_unbind_pages(struct i915_vma *vma)
1321 {
1322 	unsigned int count;
1323 
1324 	lockdep_assert_held(&vma->vm->mutex);
1325 
1326 	/* The upper portion of pages_count is the number of bindings */
1327 	count = atomic_read(&vma->pages_count);
1328 	count >>= I915_VMA_PAGES_BIAS;
1329 	GEM_BUG_ON(!count);
1330 
1331 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1332 }
1333 
1334 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1335 		    u64 size, u64 alignment, u64 flags)
1336 {
1337 	struct i915_vma_work *work = NULL;
1338 	struct dma_fence *moving = NULL;
1339 	struct i915_vma_resource *vma_res = NULL;
1340 	intel_wakeref_t wakeref = 0;
1341 	unsigned int bound;
1342 	int err;
1343 
1344 	assert_vma_held(vma);
1345 	GEM_BUG_ON(!ww);
1346 
1347 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1348 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1349 
1350 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1351 
1352 	/* First try and grab the pin without rebinding the vma */
1353 	if (try_qad_pin(vma, flags))
1354 		return 0;
1355 
1356 	err = i915_vma_get_pages(vma);
1357 	if (err)
1358 		return err;
1359 
1360 	if (flags & PIN_GLOBAL)
1361 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1362 
1363 	moving = vma->obj ? i915_gem_object_get_moving_fence(vma->obj) : NULL;
1364 	if (flags & vma->vm->bind_async_flags || moving) {
1365 		/* lock VM */
1366 		err = i915_vm_lock_objects(vma->vm, ww);
1367 		if (err)
1368 			goto err_rpm;
1369 
1370 		work = i915_vma_work();
1371 		if (!work) {
1372 			err = -ENOMEM;
1373 			goto err_rpm;
1374 		}
1375 
1376 		work->vm = i915_vm_get(vma->vm);
1377 
1378 		dma_fence_work_chain(&work->base, moving);
1379 
1380 		/* Allocate enough page directories to used PTE */
1381 		if (vma->vm->allocate_va_range) {
1382 			err = i915_vm_alloc_pt_stash(vma->vm,
1383 						     &work->stash,
1384 						     vma->size);
1385 			if (err)
1386 				goto err_fence;
1387 
1388 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1389 			if (err)
1390 				goto err_fence;
1391 		}
1392 	}
1393 
1394 	vma_res = i915_vma_resource_alloc();
1395 	if (IS_ERR(vma_res)) {
1396 		err = PTR_ERR(vma_res);
1397 		goto err_fence;
1398 	}
1399 
1400 	/*
1401 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1402 	 *
1403 	 * We conflate the Global GTT with the user's vma when using the
1404 	 * aliasing-ppgtt, but it is still vitally important to try and
1405 	 * keep the use cases distinct. For example, userptr objects are
1406 	 * not allowed inside the Global GTT as that will cause lock
1407 	 * inversions when we have to evict them the mmu_notifier callbacks -
1408 	 * but they are allowed to be part of the user ppGTT which can never
1409 	 * be mapped. As such we try to give the distinct users of the same
1410 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1411 	 * and i915_ppgtt separate].
1412 	 *
1413 	 * NB this may cause us to mask real lock inversions -- while the
1414 	 * code is safe today, lockdep may not be able to spot future
1415 	 * transgressions.
1416 	 */
1417 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1418 					      !(flags & PIN_GLOBAL));
1419 	if (err)
1420 		goto err_vma_res;
1421 
1422 	/* No more allocations allowed now we hold vm->mutex */
1423 
1424 	if (unlikely(i915_vma_is_closed(vma))) {
1425 		err = -ENOENT;
1426 		goto err_unlock;
1427 	}
1428 
1429 	bound = atomic_read(&vma->flags);
1430 	if (unlikely(bound & I915_VMA_ERROR)) {
1431 		err = -ENOMEM;
1432 		goto err_unlock;
1433 	}
1434 
1435 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1436 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1437 		goto err_unlock;
1438 	}
1439 
1440 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1441 		if (!(flags & PIN_VALIDATE))
1442 			__i915_vma_pin(vma);
1443 		goto err_unlock;
1444 	}
1445 
1446 	err = i915_active_acquire(&vma->active);
1447 	if (err)
1448 		goto err_unlock;
1449 
1450 	if (!(bound & I915_VMA_BIND_MASK)) {
1451 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1452 		if (err)
1453 			goto err_active;
1454 
1455 		if (i915_is_ggtt(vma->vm))
1456 			__i915_vma_set_map_and_fenceable(vma);
1457 	}
1458 
1459 	GEM_BUG_ON(!vma->pages);
1460 	err = i915_vma_bind(vma,
1461 			    vma->obj->cache_level,
1462 			    flags, work, vma_res);
1463 	vma_res = NULL;
1464 	if (err)
1465 		goto err_remove;
1466 
1467 	/* There should only be at most 2 active bindings (user, global) */
1468 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1469 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1470 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1471 
1472 	if (!(flags & PIN_VALIDATE)) {
1473 		__i915_vma_pin(vma);
1474 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1475 	}
1476 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1477 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1478 
1479 err_remove:
1480 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1481 		i915_vma_detach(vma);
1482 		drm_mm_remove_node(&vma->node);
1483 	}
1484 err_active:
1485 	i915_active_release(&vma->active);
1486 err_unlock:
1487 	mutex_unlock(&vma->vm->mutex);
1488 err_vma_res:
1489 	i915_vma_resource_free(vma_res);
1490 err_fence:
1491 	if (work)
1492 		dma_fence_work_commit_imm(&work->base);
1493 err_rpm:
1494 	if (wakeref)
1495 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1496 
1497 	if (moving)
1498 		dma_fence_put(moving);
1499 
1500 	i915_vma_put_pages(vma);
1501 	return err;
1502 }
1503 
1504 static void flush_idle_contexts(struct intel_gt *gt)
1505 {
1506 	struct intel_engine_cs *engine;
1507 	enum intel_engine_id id;
1508 
1509 	for_each_engine(engine, gt, id)
1510 		intel_engine_flush_barriers(engine);
1511 
1512 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1513 }
1514 
1515 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1516 			   u32 align, unsigned int flags)
1517 {
1518 	struct i915_address_space *vm = vma->vm;
1519 	int err;
1520 
1521 	do {
1522 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1523 
1524 		if (err != -ENOSPC) {
1525 			if (!err) {
1526 				err = i915_vma_wait_for_bind(vma);
1527 				if (err)
1528 					i915_vma_unpin(vma);
1529 			}
1530 			return err;
1531 		}
1532 
1533 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1534 		flush_idle_contexts(vm->gt);
1535 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1536 			/*
1537 			 * We pass NULL ww here, as we don't want to unbind
1538 			 * locked objects when called from execbuf when pinning
1539 			 * is removed. This would probably regress badly.
1540 			 */
1541 			i915_gem_evict_vm(vm, NULL);
1542 			mutex_unlock(&vm->mutex);
1543 		}
1544 	} while (1);
1545 }
1546 
1547 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1548 		  u32 align, unsigned int flags)
1549 {
1550 	struct i915_gem_ww_ctx _ww;
1551 	int err;
1552 
1553 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1554 
1555 	if (ww)
1556 		return __i915_ggtt_pin(vma, ww, align, flags);
1557 
1558 #ifdef CONFIG_LOCKDEP
1559 	WARN_ON(dma_resv_held(vma->obj->base.resv));
1560 #endif
1561 
1562 	for_i915_gem_ww(&_ww, err, true) {
1563 		err = i915_gem_object_lock(vma->obj, &_ww);
1564 		if (!err)
1565 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1566 	}
1567 
1568 	return err;
1569 }
1570 
1571 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1572 {
1573 	/*
1574 	 * We defer actually closing, unbinding and destroying the VMA until
1575 	 * the next idle point, or if the object is freed in the meantime. By
1576 	 * postponing the unbind, we allow for it to be resurrected by the
1577 	 * client, avoiding the work required to rebind the VMA. This is
1578 	 * advantageous for DRI, where the client/server pass objects
1579 	 * between themselves, temporarily opening a local VMA to the
1580 	 * object, and then closing it again. The same object is then reused
1581 	 * on the next frame (or two, depending on the depth of the swap queue)
1582 	 * causing us to rebind the VMA once more. This ends up being a lot
1583 	 * of wasted work for the steady state.
1584 	 */
1585 	GEM_BUG_ON(i915_vma_is_closed(vma));
1586 	list_add(&vma->closed_link, &gt->closed_vma);
1587 }
1588 
1589 void i915_vma_close(struct i915_vma *vma)
1590 {
1591 	struct intel_gt *gt = vma->vm->gt;
1592 	unsigned long flags;
1593 
1594 	if (i915_vma_is_ggtt(vma))
1595 		return;
1596 
1597 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1598 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1599 					&gt->closed_lock,
1600 					flags)) {
1601 		__vma_close(vma, gt);
1602 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1603 	}
1604 }
1605 
1606 static void __i915_vma_remove_closed(struct i915_vma *vma)
1607 {
1608 	struct intel_gt *gt = vma->vm->gt;
1609 
1610 	spin_lock_irq(&gt->closed_lock);
1611 	list_del_init(&vma->closed_link);
1612 	spin_unlock_irq(&gt->closed_lock);
1613 }
1614 
1615 void i915_vma_reopen(struct i915_vma *vma)
1616 {
1617 	if (i915_vma_is_closed(vma))
1618 		__i915_vma_remove_closed(vma);
1619 }
1620 
1621 void i915_vma_release(struct kref *ref)
1622 {
1623 	struct i915_vma *vma = container_of(ref, typeof(*vma), ref);
1624 
1625 	i915_vm_put(vma->vm);
1626 	i915_active_fini(&vma->active);
1627 	GEM_WARN_ON(vma->resource);
1628 	i915_vma_free(vma);
1629 }
1630 
1631 static void force_unbind(struct i915_vma *vma)
1632 {
1633 	if (!drm_mm_node_allocated(&vma->node))
1634 		return;
1635 
1636 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1637 	WARN_ON(__i915_vma_unbind(vma));
1638 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1639 }
1640 
1641 static void release_references(struct i915_vma *vma)
1642 {
1643 	struct drm_i915_gem_object *obj = vma->obj;
1644 
1645 	GEM_BUG_ON(i915_vma_is_active(vma));
1646 
1647 	spin_lock(&obj->vma.lock);
1648 	list_del(&vma->obj_link);
1649 	if (!RB_EMPTY_NODE(&vma->obj_node))
1650 		rb_erase(&vma->obj_node, &obj->vma.tree);
1651 	spin_unlock(&obj->vma.lock);
1652 
1653 	__i915_vma_remove_closed(vma);
1654 
1655 	__i915_vma_put(vma);
1656 }
1657 
1658 /**
1659  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1660  * the initial reference.
1661  *
1662  * This function should be called when it's decided the vma isn't needed
1663  * anymore. The caller must assure that it doesn't race with another lookup
1664  * plus destroy, typically by taking an appropriate reference.
1665  *
1666  * Current callsites are
1667  * - __i915_gem_object_pages_fini()
1668  * - __i915_vm_close() - Blocks the above function by taking a reference on
1669  * the object.
1670  * - __i915_vma_parked() - Blocks the above functions by taking an open-count on
1671  * the vm and a reference on the object.
1672  *
1673  * Because of locks taken during destruction, a vma is also guaranteed to
1674  * stay alive while the following locks are held if it was looked up while
1675  * holding one of the locks:
1676  * - vm->mutex
1677  * - obj->vma.lock
1678  * - gt->closed_lock
1679  *
1680  * A vma user can also temporarily keep the vma alive while holding a vma
1681  * reference.
1682  */
1683 void i915_vma_destroy_locked(struct i915_vma *vma)
1684 {
1685 	lockdep_assert_held(&vma->vm->mutex);
1686 
1687 	force_unbind(vma);
1688 	release_references(vma);
1689 }
1690 
1691 void i915_vma_destroy(struct i915_vma *vma)
1692 {
1693 	mutex_lock(&vma->vm->mutex);
1694 	force_unbind(vma);
1695 	mutex_unlock(&vma->vm->mutex);
1696 	release_references(vma);
1697 }
1698 
1699 void i915_vma_parked(struct intel_gt *gt)
1700 {
1701 	struct i915_vma *vma, *next;
1702 	LIST_HEAD(closed);
1703 
1704 	spin_lock_irq(&gt->closed_lock);
1705 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1706 		struct drm_i915_gem_object *obj = vma->obj;
1707 		struct i915_address_space *vm = vma->vm;
1708 
1709 		/* XXX All to avoid keeping a reference on i915_vma itself */
1710 
1711 		if (!kref_get_unless_zero(&obj->base.refcount))
1712 			continue;
1713 
1714 		if (!i915_vm_tryopen(vm)) {
1715 			i915_gem_object_put(obj);
1716 			continue;
1717 		}
1718 
1719 		list_move(&vma->closed_link, &closed);
1720 	}
1721 	spin_unlock_irq(&gt->closed_lock);
1722 
1723 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1724 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1725 		struct drm_i915_gem_object *obj = vma->obj;
1726 		struct i915_address_space *vm = vma->vm;
1727 
1728 		if (i915_gem_object_trylock(obj, NULL)) {
1729 			INIT_LIST_HEAD(&vma->closed_link);
1730 			i915_vma_destroy(vma);
1731 			i915_gem_object_unlock(obj);
1732 		} else {
1733 			/* back you go.. */
1734 			spin_lock_irq(&gt->closed_lock);
1735 			list_add(&vma->closed_link, &gt->closed_vma);
1736 			spin_unlock_irq(&gt->closed_lock);
1737 		}
1738 
1739 		i915_gem_object_put(obj);
1740 		i915_vm_close(vm);
1741 	}
1742 }
1743 
1744 static void __i915_vma_iounmap(struct i915_vma *vma)
1745 {
1746 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1747 
1748 	if (vma->iomap == NULL)
1749 		return;
1750 
1751 	io_mapping_unmap(vma->iomap);
1752 	vma->iomap = NULL;
1753 }
1754 
1755 void i915_vma_revoke_mmap(struct i915_vma *vma)
1756 {
1757 	struct drm_vma_offset_node *node;
1758 	u64 vma_offset;
1759 
1760 	if (!i915_vma_has_userfault(vma))
1761 		return;
1762 
1763 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1764 	GEM_BUG_ON(!vma->obj->userfault_count);
1765 
1766 	node = &vma->mmo->vma_node;
1767 	vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
1768 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1769 			    drm_vma_node_offset_addr(node) + vma_offset,
1770 			    vma->size,
1771 			    1);
1772 
1773 	i915_vma_unset_userfault(vma);
1774 	if (!--vma->obj->userfault_count)
1775 		list_del(&vma->obj->userfault_link);
1776 }
1777 
1778 static int
1779 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1780 {
1781 	return __i915_request_await_exclusive(rq, &vma->active);
1782 }
1783 
1784 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1785 {
1786 	int err;
1787 
1788 	/* Wait for the vma to be bound before we start! */
1789 	err = __i915_request_await_bind(rq, vma);
1790 	if (err)
1791 		return err;
1792 
1793 	return i915_active_add_request(&vma->active, rq);
1794 }
1795 
1796 int _i915_vma_move_to_active(struct i915_vma *vma,
1797 			     struct i915_request *rq,
1798 			     struct dma_fence *fence,
1799 			     unsigned int flags)
1800 {
1801 	struct drm_i915_gem_object *obj = vma->obj;
1802 	int err;
1803 
1804 	assert_object_held(obj);
1805 
1806 	GEM_BUG_ON(!vma->pages);
1807 
1808 	err = __i915_vma_move_to_active(vma, rq);
1809 	if (unlikely(err))
1810 		return err;
1811 
1812 	if (flags & EXEC_OBJECT_WRITE) {
1813 		struct intel_frontbuffer *front;
1814 
1815 		front = __intel_frontbuffer_get(obj);
1816 		if (unlikely(front)) {
1817 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1818 				i915_active_add_request(&front->write, rq);
1819 			intel_frontbuffer_put(front);
1820 		}
1821 
1822 		if (fence) {
1823 			dma_resv_add_excl_fence(vma->obj->base.resv, fence);
1824 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1825 			obj->read_domains = 0;
1826 		}
1827 	} else {
1828 		if (!(flags & __EXEC_OBJECT_NO_RESERVE)) {
1829 			err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
1830 			if (unlikely(err))
1831 				return err;
1832 		}
1833 
1834 		if (fence) {
1835 			dma_resv_add_shared_fence(vma->obj->base.resv, fence);
1836 			obj->write_domain = 0;
1837 		}
1838 	}
1839 
1840 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1841 		i915_active_add_request(&vma->fence->active, rq);
1842 
1843 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1844 	obj->mm.dirty = true;
1845 
1846 	GEM_BUG_ON(!i915_vma_is_active(vma));
1847 	return 0;
1848 }
1849 
1850 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1851 {
1852 	struct i915_vma_resource *vma_res = vma->resource;
1853 	struct dma_fence *unbind_fence;
1854 
1855 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1856 	assert_vma_held_evict(vma);
1857 
1858 	if (i915_vma_is_map_and_fenceable(vma)) {
1859 		/* Force a pagefault for domain tracking on next user access */
1860 		i915_vma_revoke_mmap(vma);
1861 
1862 		/*
1863 		 * Check that we have flushed all writes through the GGTT
1864 		 * before the unbind, other due to non-strict nature of those
1865 		 * indirect writes they may end up referencing the GGTT PTE
1866 		 * after the unbind.
1867 		 *
1868 		 * Note that we may be concurrently poking at the GGTT_WRITE
1869 		 * bit from set-domain, as we mark all GGTT vma associated
1870 		 * with an object. We know this is for another vma, as we
1871 		 * are currently unbinding this one -- so if this vma will be
1872 		 * reused, it will be refaulted and have its dirty bit set
1873 		 * before the next write.
1874 		 */
1875 		i915_vma_flush_writes(vma);
1876 
1877 		/* release the fence reg _after_ flushing */
1878 		i915_vma_revoke_fence(vma);
1879 
1880 		__i915_vma_iounmap(vma);
1881 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1882 	}
1883 	GEM_BUG_ON(vma->fence);
1884 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1885 
1886 	/* Object backend must be async capable. */
1887 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1888 
1889 	/* If vm is not open, unbind is a nop. */
1890 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1891 		atomic_read(&vma->vm->open);
1892 	trace_i915_vma_unbind(vma);
1893 
1894 	unbind_fence = i915_vma_resource_unbind(vma_res);
1895 	vma->resource = NULL;
1896 
1897 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1898 		   &vma->flags);
1899 
1900 	i915_vma_detach(vma);
1901 
1902 	if (!async && unbind_fence) {
1903 		dma_fence_wait(unbind_fence, false);
1904 		dma_fence_put(unbind_fence);
1905 		unbind_fence = NULL;
1906 	}
1907 
1908 	/*
1909 	 * Binding itself may not have completed until the unbind fence signals,
1910 	 * so don't drop the pages until that happens, unless the resource is
1911 	 * async_capable.
1912 	 */
1913 
1914 	vma_unbind_pages(vma);
1915 	return unbind_fence;
1916 }
1917 
1918 int __i915_vma_unbind(struct i915_vma *vma)
1919 {
1920 	int ret;
1921 
1922 	lockdep_assert_held(&vma->vm->mutex);
1923 	assert_vma_held_evict(vma);
1924 
1925 	if (!drm_mm_node_allocated(&vma->node))
1926 		return 0;
1927 
1928 	if (i915_vma_is_pinned(vma)) {
1929 		vma_print_allocator(vma, "is pinned");
1930 		return -EAGAIN;
1931 	}
1932 
1933 	/*
1934 	 * After confirming that no one else is pinning this vma, wait for
1935 	 * any laggards who may have crept in during the wait (through
1936 	 * a residual pin skipping the vm->mutex) to complete.
1937 	 */
1938 	ret = i915_vma_sync(vma);
1939 	if (ret)
1940 		return ret;
1941 
1942 	GEM_BUG_ON(i915_vma_is_active(vma));
1943 	__i915_vma_evict(vma, false);
1944 
1945 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
1946 	return 0;
1947 }
1948 
1949 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
1950 {
1951 	struct dma_fence *fence;
1952 
1953 	lockdep_assert_held(&vma->vm->mutex);
1954 
1955 	if (!drm_mm_node_allocated(&vma->node))
1956 		return NULL;
1957 
1958 	if (i915_vma_is_pinned(vma) ||
1959 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
1960 		return ERR_PTR(-EAGAIN);
1961 
1962 	/*
1963 	 * We probably need to replace this with awaiting the fences of the
1964 	 * object's dma_resv when the vma active goes away. When doing that
1965 	 * we need to be careful to not add the vma_resource unbind fence
1966 	 * immediately to the object's dma_resv, because then unbinding
1967 	 * the next vma from the object, in case there are many, will
1968 	 * actually await the unbinding of the previous vmas, which is
1969 	 * undesirable.
1970 	 */
1971 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
1972 				       I915_ACTIVE_AWAIT_EXCL |
1973 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
1974 		return ERR_PTR(-EBUSY);
1975 	}
1976 
1977 	fence = __i915_vma_evict(vma, true);
1978 
1979 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
1980 
1981 	return fence;
1982 }
1983 
1984 int i915_vma_unbind(struct i915_vma *vma)
1985 {
1986 	struct i915_address_space *vm = vma->vm;
1987 	intel_wakeref_t wakeref = 0;
1988 	int err;
1989 
1990 	assert_object_held_shared(vma->obj);
1991 
1992 	/* Optimistic wait before taking the mutex */
1993 	err = i915_vma_sync(vma);
1994 	if (err)
1995 		return err;
1996 
1997 	if (!drm_mm_node_allocated(&vma->node))
1998 		return 0;
1999 
2000 	if (i915_vma_is_pinned(vma)) {
2001 		vma_print_allocator(vma, "is pinned");
2002 		return -EAGAIN;
2003 	}
2004 
2005 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2006 		/* XXX not always required: nop_clear_range */
2007 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2008 
2009 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2010 	if (err)
2011 		goto out_rpm;
2012 
2013 	err = __i915_vma_unbind(vma);
2014 	mutex_unlock(&vm->mutex);
2015 
2016 out_rpm:
2017 	if (wakeref)
2018 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2019 	return err;
2020 }
2021 
2022 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2023 {
2024 	struct drm_i915_gem_object *obj = vma->obj;
2025 	struct i915_address_space *vm = vma->vm;
2026 	intel_wakeref_t wakeref = 0;
2027 	struct dma_fence *fence;
2028 	int err;
2029 
2030 	/*
2031 	 * We need the dma-resv lock since we add the
2032 	 * unbind fence to the dma-resv object.
2033 	 */
2034 	assert_object_held(obj);
2035 
2036 	if (!drm_mm_node_allocated(&vma->node))
2037 		return 0;
2038 
2039 	if (i915_vma_is_pinned(vma)) {
2040 		vma_print_allocator(vma, "is pinned");
2041 		return -EAGAIN;
2042 	}
2043 
2044 	if (!obj->mm.rsgt)
2045 		return -EBUSY;
2046 
2047 	err = dma_resv_reserve_shared(obj->base.resv, 1);
2048 	if (err)
2049 		return -EBUSY;
2050 
2051 	/*
2052 	 * It would be great if we could grab this wakeref from the
2053 	 * async unbind work if needed, but we can't because it uses
2054 	 * kmalloc and it's in the dma-fence signalling critical path.
2055 	 */
2056 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2057 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2058 
2059 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2060 		err = -EBUSY;
2061 		goto out_rpm;
2062 	} else if (!trylock_vm) {
2063 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2064 		if (err)
2065 			goto out_rpm;
2066 	}
2067 
2068 	fence = __i915_vma_unbind_async(vma);
2069 	mutex_unlock(&vm->mutex);
2070 	if (IS_ERR_OR_NULL(fence)) {
2071 		err = PTR_ERR_OR_ZERO(fence);
2072 		goto out_rpm;
2073 	}
2074 
2075 	dma_resv_add_shared_fence(obj->base.resv, fence);
2076 	dma_fence_put(fence);
2077 
2078 out_rpm:
2079 	if (wakeref)
2080 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2081 	return err;
2082 }
2083 
2084 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2085 {
2086 	int err;
2087 
2088 	i915_gem_object_lock(vma->obj, NULL);
2089 	err = i915_vma_unbind(vma);
2090 	i915_gem_object_unlock(vma->obj);
2091 
2092 	return err;
2093 }
2094 
2095 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2096 {
2097 	i915_gem_object_make_unshrinkable(vma->obj);
2098 	return vma;
2099 }
2100 
2101 void i915_vma_make_shrinkable(struct i915_vma *vma)
2102 {
2103 	i915_gem_object_make_shrinkable(vma->obj);
2104 }
2105 
2106 void i915_vma_make_purgeable(struct i915_vma *vma)
2107 {
2108 	i915_gem_object_make_purgeable(vma->obj);
2109 }
2110 
2111 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2112 #include "selftests/i915_vma.c"
2113 #endif
2114 
2115 void i915_vma_module_exit(void)
2116 {
2117 	kmem_cache_destroy(slab_vmas);
2118 }
2119 
2120 int __init i915_vma_module_init(void)
2121 {
2122 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2123 	if (!slab_vmas)
2124 		return -ENOMEM;
2125 
2126 	return 0;
2127 }
2128