1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <drm/drm_gem.h> 27 28 #include "display/intel_frontbuffer.h" 29 30 #include "gt/intel_engine.h" 31 #include "gt/intel_engine_heartbeat.h" 32 #include "gt/intel_gt.h" 33 #include "gt/intel_gt_requests.h" 34 35 #include "i915_drv.h" 36 #include "i915_globals.h" 37 #include "i915_sw_fence_work.h" 38 #include "i915_trace.h" 39 #include "i915_vma.h" 40 41 static struct i915_global_vma { 42 struct i915_global base; 43 struct kmem_cache *slab_vmas; 44 } global; 45 46 struct i915_vma *i915_vma_alloc(void) 47 { 48 return kmem_cache_zalloc(global.slab_vmas, GFP_KERNEL); 49 } 50 51 void i915_vma_free(struct i915_vma *vma) 52 { 53 return kmem_cache_free(global.slab_vmas, vma); 54 } 55 56 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 57 58 #include <linux/stackdepot.h> 59 60 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 61 { 62 unsigned long *entries; 63 unsigned int nr_entries; 64 char buf[512]; 65 66 if (!vma->node.stack) { 67 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n", 68 vma->node.start, vma->node.size, reason); 69 return; 70 } 71 72 nr_entries = stack_depot_fetch(vma->node.stack, &entries); 73 stack_trace_snprint(buf, sizeof(buf), entries, nr_entries, 0); 74 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n", 75 vma->node.start, vma->node.size, reason, buf); 76 } 77 78 #else 79 80 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 81 { 82 } 83 84 #endif 85 86 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 87 { 88 return container_of(ref, typeof(struct i915_vma), active); 89 } 90 91 static int __i915_vma_active(struct i915_active *ref) 92 { 93 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; 94 } 95 96 __i915_active_call 97 static void __i915_vma_retire(struct i915_active *ref) 98 { 99 i915_vma_put(active_to_vma(ref)); 100 } 101 102 static struct i915_vma * 103 vma_create(struct drm_i915_gem_object *obj, 104 struct i915_address_space *vm, 105 const struct i915_ggtt_view *view) 106 { 107 struct i915_vma *vma; 108 struct rb_node *rb, **p; 109 110 /* The aliasing_ppgtt should never be used directly! */ 111 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 112 113 vma = i915_vma_alloc(); 114 if (vma == NULL) 115 return ERR_PTR(-ENOMEM); 116 117 kref_init(&vma->ref); 118 mutex_init(&vma->pages_mutex); 119 vma->vm = i915_vm_get(vm); 120 vma->ops = &vm->vma_ops; 121 vma->obj = obj; 122 vma->resv = obj->base.resv; 123 vma->size = obj->base.size; 124 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 125 126 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire); 127 128 /* Declare ourselves safe for use inside shrinkers */ 129 if (IS_ENABLED(CONFIG_LOCKDEP)) { 130 fs_reclaim_acquire(GFP_KERNEL); 131 might_lock(&vma->active.mutex); 132 fs_reclaim_release(GFP_KERNEL); 133 } 134 135 INIT_LIST_HEAD(&vma->closed_link); 136 137 if (view && view->type != I915_GGTT_VIEW_NORMAL) { 138 vma->ggtt_view = *view; 139 if (view->type == I915_GGTT_VIEW_PARTIAL) { 140 GEM_BUG_ON(range_overflows_t(u64, 141 view->partial.offset, 142 view->partial.size, 143 obj->base.size >> PAGE_SHIFT)); 144 vma->size = view->partial.size; 145 vma->size <<= PAGE_SHIFT; 146 GEM_BUG_ON(vma->size > obj->base.size); 147 } else if (view->type == I915_GGTT_VIEW_ROTATED) { 148 vma->size = intel_rotation_info_size(&view->rotated); 149 vma->size <<= PAGE_SHIFT; 150 } else if (view->type == I915_GGTT_VIEW_REMAPPED) { 151 vma->size = intel_remapped_info_size(&view->remapped); 152 vma->size <<= PAGE_SHIFT; 153 } 154 } 155 156 if (unlikely(vma->size > vm->total)) 157 goto err_vma; 158 159 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 160 161 if (i915_is_ggtt(vm)) { 162 if (unlikely(overflows_type(vma->size, u32))) 163 goto err_vma; 164 165 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 166 i915_gem_object_get_tiling(obj), 167 i915_gem_object_get_stride(obj)); 168 if (unlikely(vma->fence_size < vma->size || /* overflow */ 169 vma->fence_size > vm->total)) 170 goto err_vma; 171 172 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 173 174 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 175 i915_gem_object_get_tiling(obj), 176 i915_gem_object_get_stride(obj)); 177 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 178 179 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 180 } 181 182 spin_lock(&obj->vma.lock); 183 184 rb = NULL; 185 p = &obj->vma.tree.rb_node; 186 while (*p) { 187 struct i915_vma *pos; 188 long cmp; 189 190 rb = *p; 191 pos = rb_entry(rb, struct i915_vma, obj_node); 192 193 /* 194 * If the view already exists in the tree, another thread 195 * already created a matching vma, so return the older instance 196 * and dispose of ours. 197 */ 198 cmp = i915_vma_compare(pos, vm, view); 199 if (cmp == 0) { 200 spin_unlock(&obj->vma.lock); 201 i915_vma_free(vma); 202 return pos; 203 } 204 205 if (cmp < 0) 206 p = &rb->rb_right; 207 else 208 p = &rb->rb_left; 209 } 210 rb_link_node(&vma->obj_node, rb, p); 211 rb_insert_color(&vma->obj_node, &obj->vma.tree); 212 213 if (i915_vma_is_ggtt(vma)) 214 /* 215 * We put the GGTT vma at the start of the vma-list, followed 216 * by the ppGGTT vma. This allows us to break early when 217 * iterating over only the GGTT vma for an object, see 218 * for_each_ggtt_vma() 219 */ 220 list_add(&vma->obj_link, &obj->vma.list); 221 else 222 list_add_tail(&vma->obj_link, &obj->vma.list); 223 224 spin_unlock(&obj->vma.lock); 225 226 return vma; 227 228 err_vma: 229 i915_vma_free(vma); 230 return ERR_PTR(-E2BIG); 231 } 232 233 static struct i915_vma * 234 vma_lookup(struct drm_i915_gem_object *obj, 235 struct i915_address_space *vm, 236 const struct i915_ggtt_view *view) 237 { 238 struct rb_node *rb; 239 240 rb = obj->vma.tree.rb_node; 241 while (rb) { 242 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 243 long cmp; 244 245 cmp = i915_vma_compare(vma, vm, view); 246 if (cmp == 0) 247 return vma; 248 249 if (cmp < 0) 250 rb = rb->rb_right; 251 else 252 rb = rb->rb_left; 253 } 254 255 return NULL; 256 } 257 258 /** 259 * i915_vma_instance - return the singleton instance of the VMA 260 * @obj: parent &struct drm_i915_gem_object to be mapped 261 * @vm: address space in which the mapping is located 262 * @view: additional mapping requirements 263 * 264 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 265 * the same @view characteristics. If a match is not found, one is created. 266 * Once created, the VMA is kept until either the object is freed, or the 267 * address space is closed. 268 * 269 * Returns the vma, or an error pointer. 270 */ 271 struct i915_vma * 272 i915_vma_instance(struct drm_i915_gem_object *obj, 273 struct i915_address_space *vm, 274 const struct i915_ggtt_view *view) 275 { 276 struct i915_vma *vma; 277 278 GEM_BUG_ON(view && !i915_is_ggtt(vm)); 279 GEM_BUG_ON(!atomic_read(&vm->open)); 280 281 spin_lock(&obj->vma.lock); 282 vma = vma_lookup(obj, vm, view); 283 spin_unlock(&obj->vma.lock); 284 285 /* vma_create() will resolve the race if another creates the vma */ 286 if (unlikely(!vma)) 287 vma = vma_create(obj, vm, view); 288 289 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 290 return vma; 291 } 292 293 struct i915_vma_work { 294 struct dma_fence_work base; 295 struct i915_vma *vma; 296 struct drm_i915_gem_object *pinned; 297 struct i915_sw_dma_fence_cb cb; 298 enum i915_cache_level cache_level; 299 unsigned int flags; 300 }; 301 302 static int __vma_bind(struct dma_fence_work *work) 303 { 304 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 305 struct i915_vma *vma = vw->vma; 306 int err; 307 308 err = vma->ops->bind_vma(vma, vw->cache_level, vw->flags); 309 if (err) 310 atomic_or(I915_VMA_ERROR, &vma->flags); 311 312 return err; 313 } 314 315 static void __vma_release(struct dma_fence_work *work) 316 { 317 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 318 319 if (vw->pinned) 320 __i915_gem_object_unpin_pages(vw->pinned); 321 } 322 323 static const struct dma_fence_work_ops bind_ops = { 324 .name = "bind", 325 .work = __vma_bind, 326 .release = __vma_release, 327 }; 328 329 struct i915_vma_work *i915_vma_work(void) 330 { 331 struct i915_vma_work *vw; 332 333 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 334 if (!vw) 335 return NULL; 336 337 dma_fence_work_init(&vw->base, &bind_ops); 338 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 339 340 return vw; 341 } 342 343 int i915_vma_wait_for_bind(struct i915_vma *vma) 344 { 345 int err = 0; 346 347 if (rcu_access_pointer(vma->active.excl.fence)) { 348 struct dma_fence *fence; 349 350 rcu_read_lock(); 351 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 352 rcu_read_unlock(); 353 if (fence) { 354 err = dma_fence_wait(fence, MAX_SCHEDULE_TIMEOUT); 355 dma_fence_put(fence); 356 } 357 } 358 359 return err; 360 } 361 362 /** 363 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 364 * @vma: VMA to map 365 * @cache_level: mapping cache level 366 * @flags: flags like global or local mapping 367 * @work: preallocated worker for allocating and binding the PTE 368 * 369 * DMA addresses are taken from the scatter-gather table of this object (or of 370 * this VMA in case of non-default GGTT views) and PTE entries set up. 371 * Note that DMA addresses are also the only part of the SG table we care about. 372 */ 373 int i915_vma_bind(struct i915_vma *vma, 374 enum i915_cache_level cache_level, 375 u32 flags, 376 struct i915_vma_work *work) 377 { 378 u32 bind_flags; 379 u32 vma_flags; 380 int ret; 381 382 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 383 GEM_BUG_ON(vma->size > vma->node.size); 384 385 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 386 vma->node.size, 387 vma->vm->total))) 388 return -ENODEV; 389 390 if (GEM_DEBUG_WARN_ON(!flags)) 391 return -EINVAL; 392 393 bind_flags = flags; 394 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 395 396 vma_flags = atomic_read(&vma->flags); 397 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 398 if (flags & PIN_UPDATE) 399 bind_flags |= vma_flags; 400 else 401 bind_flags &= ~vma_flags; 402 if (bind_flags == 0) 403 return 0; 404 405 GEM_BUG_ON(!vma->pages); 406 407 trace_i915_vma_bind(vma, bind_flags); 408 if (work && (bind_flags & ~vma_flags) & vma->vm->bind_async_flags) { 409 struct dma_fence *prev; 410 411 work->vma = vma; 412 work->cache_level = cache_level; 413 work->flags = bind_flags | I915_VMA_ALLOC; 414 415 /* 416 * Note we only want to chain up to the migration fence on 417 * the pages (not the object itself). As we don't track that, 418 * yet, we have to use the exclusive fence instead. 419 * 420 * Also note that we do not want to track the async vma as 421 * part of the obj->resv->excl_fence as it only affects 422 * execution and not content or object's backing store lifetime. 423 */ 424 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 425 if (prev) { 426 __i915_sw_fence_await_dma_fence(&work->base.chain, 427 prev, 428 &work->cb); 429 dma_fence_put(prev); 430 } 431 432 work->base.dma.error = 0; /* enable the queue_work() */ 433 434 if (vma->obj) { 435 __i915_gem_object_pin_pages(vma->obj); 436 work->pinned = vma->obj; 437 } 438 } else { 439 ret = vma->ops->bind_vma(vma, cache_level, bind_flags); 440 if (ret) 441 return ret; 442 } 443 444 atomic_or(bind_flags, &vma->flags); 445 return 0; 446 } 447 448 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 449 { 450 void __iomem *ptr; 451 int err; 452 453 if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) { 454 err = -ENODEV; 455 goto err; 456 } 457 458 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 459 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 460 461 ptr = READ_ONCE(vma->iomap); 462 if (ptr == NULL) { 463 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 464 vma->node.start, 465 vma->node.size); 466 if (ptr == NULL) { 467 err = -ENOMEM; 468 goto err; 469 } 470 471 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 472 io_mapping_unmap(ptr); 473 ptr = vma->iomap; 474 } 475 } 476 477 __i915_vma_pin(vma); 478 479 err = i915_vma_pin_fence(vma); 480 if (err) 481 goto err_unpin; 482 483 i915_vma_set_ggtt_write(vma); 484 485 /* NB Access through the GTT requires the device to be awake. */ 486 return ptr; 487 488 err_unpin: 489 __i915_vma_unpin(vma); 490 err: 491 return IO_ERR_PTR(err); 492 } 493 494 void i915_vma_flush_writes(struct i915_vma *vma) 495 { 496 if (i915_vma_unset_ggtt_write(vma)) 497 intel_gt_flush_ggtt_writes(vma->vm->gt); 498 } 499 500 void i915_vma_unpin_iomap(struct i915_vma *vma) 501 { 502 GEM_BUG_ON(vma->iomap == NULL); 503 504 i915_vma_flush_writes(vma); 505 506 i915_vma_unpin_fence(vma); 507 i915_vma_unpin(vma); 508 } 509 510 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 511 { 512 struct i915_vma *vma; 513 struct drm_i915_gem_object *obj; 514 515 vma = fetch_and_zero(p_vma); 516 if (!vma) 517 return; 518 519 obj = vma->obj; 520 GEM_BUG_ON(!obj); 521 522 i915_vma_unpin(vma); 523 i915_vma_close(vma); 524 525 if (flags & I915_VMA_RELEASE_MAP) 526 i915_gem_object_unpin_map(obj); 527 528 i915_gem_object_put(obj); 529 } 530 531 bool i915_vma_misplaced(const struct i915_vma *vma, 532 u64 size, u64 alignment, u64 flags) 533 { 534 if (!drm_mm_node_allocated(&vma->node)) 535 return false; 536 537 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 538 return true; 539 540 if (vma->node.size < size) 541 return true; 542 543 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 544 if (alignment && !IS_ALIGNED(vma->node.start, alignment)) 545 return true; 546 547 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 548 return true; 549 550 if (flags & PIN_OFFSET_BIAS && 551 vma->node.start < (flags & PIN_OFFSET_MASK)) 552 return true; 553 554 if (flags & PIN_OFFSET_FIXED && 555 vma->node.start != (flags & PIN_OFFSET_MASK)) 556 return true; 557 558 return false; 559 } 560 561 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 562 { 563 bool mappable, fenceable; 564 565 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 566 GEM_BUG_ON(!vma->fence_size); 567 568 fenceable = (vma->node.size >= vma->fence_size && 569 IS_ALIGNED(vma->node.start, vma->fence_alignment)); 570 571 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; 572 573 if (mappable && fenceable) 574 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 575 else 576 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 577 } 578 579 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 580 { 581 struct drm_mm_node *node = &vma->node; 582 struct drm_mm_node *other; 583 584 /* 585 * On some machines we have to be careful when putting differing types 586 * of snoopable memory together to avoid the prefetcher crossing memory 587 * domains and dying. During vm initialisation, we decide whether or not 588 * these constraints apply and set the drm_mm.color_adjust 589 * appropriately. 590 */ 591 if (!i915_vm_has_cache_coloring(vma->vm)) 592 return true; 593 594 /* Only valid to be called on an already inserted vma */ 595 GEM_BUG_ON(!drm_mm_node_allocated(node)); 596 GEM_BUG_ON(list_empty(&node->node_list)); 597 598 other = list_prev_entry(node, node_list); 599 if (i915_node_color_differs(other, color) && 600 !drm_mm_hole_follows(other)) 601 return false; 602 603 other = list_next_entry(node, node_list); 604 if (i915_node_color_differs(other, color) && 605 !drm_mm_hole_follows(node)) 606 return false; 607 608 return true; 609 } 610 611 static void assert_bind_count(const struct drm_i915_gem_object *obj) 612 { 613 /* 614 * Combine the assertion that the object is bound and that we have 615 * pinned its pages. But we should never have bound the object 616 * more than we have pinned its pages. (For complete accuracy, we 617 * assume that no else is pinning the pages, but as a rough assertion 618 * that we will not run into problems later, this will do!) 619 */ 620 GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count) < atomic_read(&obj->bind_count)); 621 } 622 623 /** 624 * i915_vma_insert - finds a slot for the vma in its address space 625 * @vma: the vma 626 * @size: requested size in bytes (can be larger than the VMA) 627 * @alignment: required alignment 628 * @flags: mask of PIN_* flags to use 629 * 630 * First we try to allocate some free space that meets the requirements for 631 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 632 * preferrably the oldest idle entry to make room for the new VMA. 633 * 634 * Returns: 635 * 0 on success, negative error code otherwise. 636 */ 637 static int 638 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 639 { 640 unsigned long color; 641 u64 start, end; 642 int ret; 643 644 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 645 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 646 647 size = max(size, vma->size); 648 alignment = max(alignment, vma->display_alignment); 649 if (flags & PIN_MAPPABLE) { 650 size = max_t(typeof(size), size, vma->fence_size); 651 alignment = max_t(typeof(alignment), 652 alignment, vma->fence_alignment); 653 } 654 655 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 656 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 657 GEM_BUG_ON(!is_power_of_2(alignment)); 658 659 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 660 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 661 662 end = vma->vm->total; 663 if (flags & PIN_MAPPABLE) 664 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 665 if (flags & PIN_ZONE_4G) 666 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 667 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 668 669 /* If binding the object/GGTT view requires more space than the entire 670 * aperture has, reject it early before evicting everything in a vain 671 * attempt to find space. 672 */ 673 if (size > end) { 674 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 675 size, flags & PIN_MAPPABLE ? "mappable" : "total", 676 end); 677 return -ENOSPC; 678 } 679 680 color = 0; 681 if (vma->obj && i915_vm_has_cache_coloring(vma->vm)) 682 color = vma->obj->cache_level; 683 684 if (flags & PIN_OFFSET_FIXED) { 685 u64 offset = flags & PIN_OFFSET_MASK; 686 if (!IS_ALIGNED(offset, alignment) || 687 range_overflows(offset, size, end)) 688 return -EINVAL; 689 690 ret = i915_gem_gtt_reserve(vma->vm, &vma->node, 691 size, offset, color, 692 flags); 693 if (ret) 694 return ret; 695 } else { 696 /* 697 * We only support huge gtt pages through the 48b PPGTT, 698 * however we also don't want to force any alignment for 699 * objects which need to be tightly packed into the low 32bits. 700 * 701 * Note that we assume that GGTT are limited to 4GiB for the 702 * forseeable future. See also i915_ggtt_offset(). 703 */ 704 if (upper_32_bits(end - 1) && 705 vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 706 /* 707 * We can't mix 64K and 4K PTEs in the same page-table 708 * (2M block), and so to avoid the ugliness and 709 * complexity of coloring we opt for just aligning 64K 710 * objects to 2M. 711 */ 712 u64 page_alignment = 713 rounddown_pow_of_two(vma->page_sizes.sg | 714 I915_GTT_PAGE_SIZE_2M); 715 716 /* 717 * Check we don't expand for the limited Global GTT 718 * (mappable aperture is even more precious!). This 719 * also checks that we exclude the aliasing-ppgtt. 720 */ 721 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 722 723 alignment = max(alignment, page_alignment); 724 725 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 726 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 727 } 728 729 ret = i915_gem_gtt_insert(vma->vm, &vma->node, 730 size, alignment, color, 731 start, end, flags); 732 if (ret) 733 return ret; 734 735 GEM_BUG_ON(vma->node.start < start); 736 GEM_BUG_ON(vma->node.start + vma->node.size > end); 737 } 738 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 739 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 740 741 if (vma->obj) { 742 struct drm_i915_gem_object *obj = vma->obj; 743 744 atomic_inc(&obj->bind_count); 745 assert_bind_count(obj); 746 } 747 list_add_tail(&vma->vm_link, &vma->vm->bound_list); 748 749 return 0; 750 } 751 752 static void 753 i915_vma_detach(struct i915_vma *vma) 754 { 755 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 756 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 757 758 /* 759 * And finally now the object is completely decoupled from this 760 * vma, we can drop its hold on the backing storage and allow 761 * it to be reaped by the shrinker. 762 */ 763 list_del(&vma->vm_link); 764 if (vma->obj) { 765 struct drm_i915_gem_object *obj = vma->obj; 766 767 assert_bind_count(obj); 768 atomic_dec(&obj->bind_count); 769 } 770 } 771 772 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 773 { 774 unsigned int bound; 775 bool pinned = true; 776 777 bound = atomic_read(&vma->flags); 778 do { 779 if (unlikely(flags & ~bound)) 780 return false; 781 782 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 783 return false; 784 785 if (!(bound & I915_VMA_PIN_MASK)) 786 goto unpinned; 787 788 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 789 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 790 791 return true; 792 793 unpinned: 794 /* 795 * If pin_count==0, but we are bound, check under the lock to avoid 796 * racing with a concurrent i915_vma_unbind(). 797 */ 798 mutex_lock(&vma->vm->mutex); 799 do { 800 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) { 801 pinned = false; 802 break; 803 } 804 805 if (unlikely(flags & ~bound)) { 806 pinned = false; 807 break; 808 } 809 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 810 mutex_unlock(&vma->vm->mutex); 811 812 return pinned; 813 } 814 815 static int vma_get_pages(struct i915_vma *vma) 816 { 817 int err = 0; 818 819 if (atomic_add_unless(&vma->pages_count, 1, 0)) 820 return 0; 821 822 /* Allocations ahoy! */ 823 if (mutex_lock_interruptible(&vma->pages_mutex)) 824 return -EINTR; 825 826 if (!atomic_read(&vma->pages_count)) { 827 if (vma->obj) { 828 err = i915_gem_object_pin_pages(vma->obj); 829 if (err) 830 goto unlock; 831 } 832 833 err = vma->ops->set_pages(vma); 834 if (err) { 835 if (vma->obj) 836 i915_gem_object_unpin_pages(vma->obj); 837 goto unlock; 838 } 839 } 840 atomic_inc(&vma->pages_count); 841 842 unlock: 843 mutex_unlock(&vma->pages_mutex); 844 845 return err; 846 } 847 848 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 849 { 850 /* We allocate under vma_get_pages, so beware the shrinker */ 851 mutex_lock_nested(&vma->pages_mutex, SINGLE_DEPTH_NESTING); 852 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 853 if (atomic_sub_return(count, &vma->pages_count) == 0) { 854 vma->ops->clear_pages(vma); 855 GEM_BUG_ON(vma->pages); 856 if (vma->obj) 857 i915_gem_object_unpin_pages(vma->obj); 858 } 859 mutex_unlock(&vma->pages_mutex); 860 } 861 862 static void vma_put_pages(struct i915_vma *vma) 863 { 864 if (atomic_add_unless(&vma->pages_count, -1, 1)) 865 return; 866 867 __vma_put_pages(vma, 1); 868 } 869 870 static void vma_unbind_pages(struct i915_vma *vma) 871 { 872 unsigned int count; 873 874 lockdep_assert_held(&vma->vm->mutex); 875 876 /* The upper portion of pages_count is the number of bindings */ 877 count = atomic_read(&vma->pages_count); 878 count >>= I915_VMA_PAGES_BIAS; 879 GEM_BUG_ON(!count); 880 881 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 882 } 883 884 int i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 885 { 886 struct i915_vma_work *work = NULL; 887 intel_wakeref_t wakeref = 0; 888 unsigned int bound; 889 int err; 890 891 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 892 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 893 894 GEM_BUG_ON(flags & PIN_UPDATE); 895 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 896 897 /* First try and grab the pin without rebinding the vma */ 898 if (try_qad_pin(vma, flags & I915_VMA_BIND_MASK)) 899 return 0; 900 901 err = vma_get_pages(vma); 902 if (err) 903 return err; 904 905 if (flags & vma->vm->bind_async_flags) { 906 work = i915_vma_work(); 907 if (!work) { 908 err = -ENOMEM; 909 goto err_pages; 910 } 911 } 912 913 if (flags & PIN_GLOBAL) 914 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 915 916 /* No more allocations allowed once we hold vm->mutex */ 917 err = mutex_lock_interruptible(&vma->vm->mutex); 918 if (err) 919 goto err_fence; 920 921 if (unlikely(i915_vma_is_closed(vma))) { 922 err = -ENOENT; 923 goto err_unlock; 924 } 925 926 bound = atomic_read(&vma->flags); 927 if (unlikely(bound & I915_VMA_ERROR)) { 928 err = -ENOMEM; 929 goto err_unlock; 930 } 931 932 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 933 err = -EAGAIN; /* pins are meant to be fairly temporary */ 934 goto err_unlock; 935 } 936 937 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 938 __i915_vma_pin(vma); 939 goto err_unlock; 940 } 941 942 err = i915_active_acquire(&vma->active); 943 if (err) 944 goto err_unlock; 945 946 if (!(bound & I915_VMA_BIND_MASK)) { 947 err = i915_vma_insert(vma, size, alignment, flags); 948 if (err) 949 goto err_active; 950 951 if (i915_is_ggtt(vma->vm)) 952 __i915_vma_set_map_and_fenceable(vma); 953 } 954 955 GEM_BUG_ON(!vma->pages); 956 err = i915_vma_bind(vma, 957 vma->obj ? vma->obj->cache_level : 0, 958 flags, work); 959 if (err) 960 goto err_remove; 961 962 /* There should only be at most 2 active bindings (user, global) */ 963 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 964 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 965 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 966 967 __i915_vma_pin(vma); 968 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 969 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 970 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 971 972 err_remove: 973 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 974 i915_vma_detach(vma); 975 drm_mm_remove_node(&vma->node); 976 } 977 err_active: 978 i915_active_release(&vma->active); 979 err_unlock: 980 mutex_unlock(&vma->vm->mutex); 981 err_fence: 982 if (work) 983 dma_fence_work_commit(&work->base); 984 if (wakeref) 985 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 986 err_pages: 987 vma_put_pages(vma); 988 return err; 989 } 990 991 static void flush_idle_contexts(struct intel_gt *gt) 992 { 993 struct intel_engine_cs *engine; 994 enum intel_engine_id id; 995 996 for_each_engine(engine, gt, id) 997 intel_engine_flush_barriers(engine); 998 999 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 1000 } 1001 1002 int i915_ggtt_pin(struct i915_vma *vma, u32 align, unsigned int flags) 1003 { 1004 struct i915_address_space *vm = vma->vm; 1005 int err; 1006 1007 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1008 1009 do { 1010 err = i915_vma_pin(vma, 0, align, flags | PIN_GLOBAL); 1011 if (err != -ENOSPC) { 1012 if (!err) { 1013 err = i915_vma_wait_for_bind(vma); 1014 if (err) 1015 i915_vma_unpin(vma); 1016 } 1017 return err; 1018 } 1019 1020 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1021 flush_idle_contexts(vm->gt); 1022 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1023 i915_gem_evict_vm(vm); 1024 mutex_unlock(&vm->mutex); 1025 } 1026 } while (1); 1027 } 1028 1029 void i915_vma_close(struct i915_vma *vma) 1030 { 1031 struct intel_gt *gt = vma->vm->gt; 1032 unsigned long flags; 1033 1034 GEM_BUG_ON(i915_vma_is_closed(vma)); 1035 1036 /* 1037 * We defer actually closing, unbinding and destroying the VMA until 1038 * the next idle point, or if the object is freed in the meantime. By 1039 * postponing the unbind, we allow for it to be resurrected by the 1040 * client, avoiding the work required to rebind the VMA. This is 1041 * advantageous for DRI, where the client/server pass objects 1042 * between themselves, temporarily opening a local VMA to the 1043 * object, and then closing it again. The same object is then reused 1044 * on the next frame (or two, depending on the depth of the swap queue) 1045 * causing us to rebind the VMA once more. This ends up being a lot 1046 * of wasted work for the steady state. 1047 */ 1048 spin_lock_irqsave(>->closed_lock, flags); 1049 list_add(&vma->closed_link, >->closed_vma); 1050 spin_unlock_irqrestore(>->closed_lock, flags); 1051 } 1052 1053 static void __i915_vma_remove_closed(struct i915_vma *vma) 1054 { 1055 struct intel_gt *gt = vma->vm->gt; 1056 1057 spin_lock_irq(>->closed_lock); 1058 list_del_init(&vma->closed_link); 1059 spin_unlock_irq(>->closed_lock); 1060 } 1061 1062 void i915_vma_reopen(struct i915_vma *vma) 1063 { 1064 if (i915_vma_is_closed(vma)) 1065 __i915_vma_remove_closed(vma); 1066 } 1067 1068 void i915_vma_release(struct kref *ref) 1069 { 1070 struct i915_vma *vma = container_of(ref, typeof(*vma), ref); 1071 1072 if (drm_mm_node_allocated(&vma->node)) { 1073 mutex_lock(&vma->vm->mutex); 1074 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1075 WARN_ON(__i915_vma_unbind(vma)); 1076 mutex_unlock(&vma->vm->mutex); 1077 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1078 } 1079 GEM_BUG_ON(i915_vma_is_active(vma)); 1080 1081 if (vma->obj) { 1082 struct drm_i915_gem_object *obj = vma->obj; 1083 1084 spin_lock(&obj->vma.lock); 1085 list_del(&vma->obj_link); 1086 rb_erase(&vma->obj_node, &obj->vma.tree); 1087 spin_unlock(&obj->vma.lock); 1088 } 1089 1090 __i915_vma_remove_closed(vma); 1091 i915_vm_put(vma->vm); 1092 1093 i915_active_fini(&vma->active); 1094 i915_vma_free(vma); 1095 } 1096 1097 void i915_vma_parked(struct intel_gt *gt) 1098 { 1099 struct i915_vma *vma, *next; 1100 LIST_HEAD(closed); 1101 1102 spin_lock_irq(>->closed_lock); 1103 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1104 struct drm_i915_gem_object *obj = vma->obj; 1105 struct i915_address_space *vm = vma->vm; 1106 1107 /* XXX All to avoid keeping a reference on i915_vma itself */ 1108 1109 if (!kref_get_unless_zero(&obj->base.refcount)) 1110 continue; 1111 1112 if (!i915_vm_tryopen(vm)) { 1113 i915_gem_object_put(obj); 1114 continue; 1115 } 1116 1117 list_move(&vma->closed_link, &closed); 1118 } 1119 spin_unlock_irq(>->closed_lock); 1120 1121 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1122 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1123 struct drm_i915_gem_object *obj = vma->obj; 1124 struct i915_address_space *vm = vma->vm; 1125 1126 INIT_LIST_HEAD(&vma->closed_link); 1127 __i915_vma_put(vma); 1128 1129 i915_gem_object_put(obj); 1130 i915_vm_close(vm); 1131 } 1132 } 1133 1134 static void __i915_vma_iounmap(struct i915_vma *vma) 1135 { 1136 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1137 1138 if (vma->iomap == NULL) 1139 return; 1140 1141 io_mapping_unmap(vma->iomap); 1142 vma->iomap = NULL; 1143 } 1144 1145 void i915_vma_revoke_mmap(struct i915_vma *vma) 1146 { 1147 struct drm_vma_offset_node *node; 1148 u64 vma_offset; 1149 1150 if (!i915_vma_has_userfault(vma)) 1151 return; 1152 1153 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1154 GEM_BUG_ON(!vma->obj->userfault_count); 1155 1156 node = &vma->mmo->vma_node; 1157 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 1158 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1159 drm_vma_node_offset_addr(node) + vma_offset, 1160 vma->size, 1161 1); 1162 1163 i915_vma_unset_userfault(vma); 1164 if (!--vma->obj->userfault_count) 1165 list_del(&vma->obj->userfault_link); 1166 } 1167 1168 int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1169 { 1170 int err; 1171 1172 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1173 1174 /* Wait for the vma to be bound before we start! */ 1175 err = i915_request_await_active(rq, &vma->active, 0); 1176 if (err) 1177 return err; 1178 1179 return i915_active_add_request(&vma->active, rq); 1180 } 1181 1182 int i915_vma_move_to_active(struct i915_vma *vma, 1183 struct i915_request *rq, 1184 unsigned int flags) 1185 { 1186 struct drm_i915_gem_object *obj = vma->obj; 1187 int err; 1188 1189 assert_object_held(obj); 1190 1191 err = __i915_vma_move_to_active(vma, rq); 1192 if (unlikely(err)) 1193 return err; 1194 1195 if (flags & EXEC_OBJECT_WRITE) { 1196 struct intel_frontbuffer *front; 1197 1198 front = __intel_frontbuffer_get(obj); 1199 if (unlikely(front)) { 1200 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1201 i915_active_add_request(&front->write, rq); 1202 intel_frontbuffer_put(front); 1203 } 1204 1205 dma_resv_add_excl_fence(vma->resv, &rq->fence); 1206 obj->write_domain = I915_GEM_DOMAIN_RENDER; 1207 obj->read_domains = 0; 1208 } else { 1209 err = dma_resv_reserve_shared(vma->resv, 1); 1210 if (unlikely(err)) 1211 return err; 1212 1213 dma_resv_add_shared_fence(vma->resv, &rq->fence); 1214 obj->write_domain = 0; 1215 } 1216 obj->read_domains |= I915_GEM_GPU_DOMAINS; 1217 obj->mm.dirty = true; 1218 1219 GEM_BUG_ON(!i915_vma_is_active(vma)); 1220 return 0; 1221 } 1222 1223 int __i915_vma_unbind(struct i915_vma *vma) 1224 { 1225 int ret; 1226 1227 lockdep_assert_held(&vma->vm->mutex); 1228 1229 /* 1230 * First wait upon any activity as retiring the request may 1231 * have side-effects such as unpinning or even unbinding this vma. 1232 * 1233 * XXX Actually waiting under the vm->mutex is a hinderance and 1234 * should be pipelined wherever possible. In cases where that is 1235 * unavoidable, we should lift the wait to before the mutex. 1236 */ 1237 ret = i915_vma_sync(vma); 1238 if (ret) 1239 return ret; 1240 1241 if (i915_vma_is_pinned(vma)) { 1242 vma_print_allocator(vma, "is pinned"); 1243 return -EAGAIN; 1244 } 1245 1246 /* 1247 * After confirming that no one else is pinning this vma, wait for 1248 * any laggards who may have crept in during the wait (through 1249 * a residual pin skipping the vm->mutex) to complete. 1250 */ 1251 ret = i915_vma_sync(vma); 1252 if (ret) 1253 return ret; 1254 1255 if (!drm_mm_node_allocated(&vma->node)) 1256 return 0; 1257 1258 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1259 GEM_BUG_ON(i915_vma_is_active(vma)); 1260 1261 if (i915_vma_is_map_and_fenceable(vma)) { 1262 /* 1263 * Check that we have flushed all writes through the GGTT 1264 * before the unbind, other due to non-strict nature of those 1265 * indirect writes they may end up referencing the GGTT PTE 1266 * after the unbind. 1267 * 1268 * Note that we may be concurrently poking at the GGTT_WRITE 1269 * bit from set-domain, as we mark all GGTT vma associated 1270 * with an object. We know this is for another vma, as we 1271 * are currently unbinding this one -- so if this vma will be 1272 * reused, it will be refaulted and have its dirty bit set 1273 * before the next write. 1274 */ 1275 i915_vma_flush_writes(vma); 1276 1277 /* release the fence reg _after_ flushing */ 1278 ret = i915_vma_revoke_fence(vma); 1279 if (ret) 1280 return ret; 1281 1282 /* Force a pagefault for domain tracking on next user access */ 1283 i915_vma_revoke_mmap(vma); 1284 1285 __i915_vma_iounmap(vma); 1286 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 1287 } 1288 GEM_BUG_ON(vma->fence); 1289 GEM_BUG_ON(i915_vma_has_userfault(vma)); 1290 1291 if (likely(atomic_read(&vma->vm->open))) { 1292 trace_i915_vma_unbind(vma); 1293 vma->ops->unbind_vma(vma); 1294 } 1295 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 1296 &vma->flags); 1297 1298 i915_vma_detach(vma); 1299 vma_unbind_pages(vma); 1300 1301 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 1302 return 0; 1303 } 1304 1305 int i915_vma_unbind(struct i915_vma *vma) 1306 { 1307 struct i915_address_space *vm = vma->vm; 1308 intel_wakeref_t wakeref = 0; 1309 int err; 1310 1311 if (!drm_mm_node_allocated(&vma->node)) 1312 return 0; 1313 1314 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 1315 /* XXX not always required: nop_clear_range */ 1316 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 1317 1318 /* Optimistic wait before taking the mutex */ 1319 err = i915_vma_sync(vma); 1320 if (err) 1321 goto out_rpm; 1322 1323 err = mutex_lock_interruptible(&vm->mutex); 1324 if (err) 1325 goto out_rpm; 1326 1327 err = __i915_vma_unbind(vma); 1328 mutex_unlock(&vm->mutex); 1329 1330 out_rpm: 1331 if (wakeref) 1332 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 1333 return err; 1334 } 1335 1336 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 1337 { 1338 i915_gem_object_make_unshrinkable(vma->obj); 1339 return vma; 1340 } 1341 1342 void i915_vma_make_shrinkable(struct i915_vma *vma) 1343 { 1344 i915_gem_object_make_shrinkable(vma->obj); 1345 } 1346 1347 void i915_vma_make_purgeable(struct i915_vma *vma) 1348 { 1349 i915_gem_object_make_purgeable(vma->obj); 1350 } 1351 1352 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1353 #include "selftests/i915_vma.c" 1354 #endif 1355 1356 static void i915_global_vma_shrink(void) 1357 { 1358 kmem_cache_shrink(global.slab_vmas); 1359 } 1360 1361 static void i915_global_vma_exit(void) 1362 { 1363 kmem_cache_destroy(global.slab_vmas); 1364 } 1365 1366 static struct i915_global_vma global = { { 1367 .shrink = i915_global_vma_shrink, 1368 .exit = i915_global_vma_exit, 1369 } }; 1370 1371 int __init i915_global_vma_init(void) 1372 { 1373 global.slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 1374 if (!global.slab_vmas) 1375 return -ENOMEM; 1376 1377 i915_global_register(&global.base); 1378 return 0; 1379 } 1380