1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <drm/drm_gem.h> 27 28 #include "display/intel_frontbuffer.h" 29 30 #include "gt/intel_engine.h" 31 #include "gt/intel_engine_heartbeat.h" 32 #include "gt/intel_gt.h" 33 #include "gt/intel_gt_requests.h" 34 35 #include "i915_drv.h" 36 #include "i915_globals.h" 37 #include "i915_sw_fence_work.h" 38 #include "i915_trace.h" 39 #include "i915_vma.h" 40 41 static struct i915_global_vma { 42 struct i915_global base; 43 struct kmem_cache *slab_vmas; 44 } global; 45 46 struct i915_vma *i915_vma_alloc(void) 47 { 48 return kmem_cache_zalloc(global.slab_vmas, GFP_KERNEL); 49 } 50 51 void i915_vma_free(struct i915_vma *vma) 52 { 53 return kmem_cache_free(global.slab_vmas, vma); 54 } 55 56 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 57 58 #include <linux/stackdepot.h> 59 60 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 61 { 62 unsigned long *entries; 63 unsigned int nr_entries; 64 char buf[512]; 65 66 if (!vma->node.stack) { 67 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n", 68 vma->node.start, vma->node.size, reason); 69 return; 70 } 71 72 nr_entries = stack_depot_fetch(vma->node.stack, &entries); 73 stack_trace_snprint(buf, sizeof(buf), entries, nr_entries, 0); 74 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n", 75 vma->node.start, vma->node.size, reason, buf); 76 } 77 78 #else 79 80 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 81 { 82 } 83 84 #endif 85 86 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 87 { 88 return container_of(ref, typeof(struct i915_vma), active); 89 } 90 91 static int __i915_vma_active(struct i915_active *ref) 92 { 93 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; 94 } 95 96 __i915_active_call 97 static void __i915_vma_retire(struct i915_active *ref) 98 { 99 i915_vma_put(active_to_vma(ref)); 100 } 101 102 static struct i915_vma * 103 vma_create(struct drm_i915_gem_object *obj, 104 struct i915_address_space *vm, 105 const struct i915_ggtt_view *view) 106 { 107 struct i915_vma *pos = ERR_PTR(-E2BIG); 108 struct i915_vma *vma; 109 struct rb_node *rb, **p; 110 111 /* The aliasing_ppgtt should never be used directly! */ 112 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 113 114 vma = i915_vma_alloc(); 115 if (vma == NULL) 116 return ERR_PTR(-ENOMEM); 117 118 kref_init(&vma->ref); 119 mutex_init(&vma->pages_mutex); 120 vma->vm = i915_vm_get(vm); 121 vma->ops = &vm->vma_ops; 122 vma->obj = obj; 123 vma->resv = obj->base.resv; 124 vma->size = obj->base.size; 125 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 126 127 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire); 128 129 /* Declare ourselves safe for use inside shrinkers */ 130 if (IS_ENABLED(CONFIG_LOCKDEP)) { 131 fs_reclaim_acquire(GFP_KERNEL); 132 might_lock(&vma->active.mutex); 133 fs_reclaim_release(GFP_KERNEL); 134 } 135 136 INIT_LIST_HEAD(&vma->closed_link); 137 138 if (view && view->type != I915_GGTT_VIEW_NORMAL) { 139 vma->ggtt_view = *view; 140 if (view->type == I915_GGTT_VIEW_PARTIAL) { 141 GEM_BUG_ON(range_overflows_t(u64, 142 view->partial.offset, 143 view->partial.size, 144 obj->base.size >> PAGE_SHIFT)); 145 vma->size = view->partial.size; 146 vma->size <<= PAGE_SHIFT; 147 GEM_BUG_ON(vma->size > obj->base.size); 148 } else if (view->type == I915_GGTT_VIEW_ROTATED) { 149 vma->size = intel_rotation_info_size(&view->rotated); 150 vma->size <<= PAGE_SHIFT; 151 } else if (view->type == I915_GGTT_VIEW_REMAPPED) { 152 vma->size = intel_remapped_info_size(&view->remapped); 153 vma->size <<= PAGE_SHIFT; 154 } 155 } 156 157 if (unlikely(vma->size > vm->total)) 158 goto err_vma; 159 160 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 161 162 spin_lock(&obj->vma.lock); 163 164 if (i915_is_ggtt(vm)) { 165 if (unlikely(overflows_type(vma->size, u32))) 166 goto err_unlock; 167 168 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 169 i915_gem_object_get_tiling(obj), 170 i915_gem_object_get_stride(obj)); 171 if (unlikely(vma->fence_size < vma->size || /* overflow */ 172 vma->fence_size > vm->total)) 173 goto err_unlock; 174 175 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 176 177 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 178 i915_gem_object_get_tiling(obj), 179 i915_gem_object_get_stride(obj)); 180 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 181 182 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 183 } 184 185 rb = NULL; 186 p = &obj->vma.tree.rb_node; 187 while (*p) { 188 long cmp; 189 190 rb = *p; 191 pos = rb_entry(rb, struct i915_vma, obj_node); 192 193 /* 194 * If the view already exists in the tree, another thread 195 * already created a matching vma, so return the older instance 196 * and dispose of ours. 197 */ 198 cmp = i915_vma_compare(pos, vm, view); 199 if (cmp < 0) 200 p = &rb->rb_right; 201 else if (cmp > 0) 202 p = &rb->rb_left; 203 else 204 goto err_unlock; 205 } 206 rb_link_node(&vma->obj_node, rb, p); 207 rb_insert_color(&vma->obj_node, &obj->vma.tree); 208 209 if (i915_vma_is_ggtt(vma)) 210 /* 211 * We put the GGTT vma at the start of the vma-list, followed 212 * by the ppGGTT vma. This allows us to break early when 213 * iterating over only the GGTT vma for an object, see 214 * for_each_ggtt_vma() 215 */ 216 list_add(&vma->obj_link, &obj->vma.list); 217 else 218 list_add_tail(&vma->obj_link, &obj->vma.list); 219 220 spin_unlock(&obj->vma.lock); 221 222 return vma; 223 224 err_unlock: 225 spin_unlock(&obj->vma.lock); 226 err_vma: 227 i915_vm_put(vm); 228 i915_vma_free(vma); 229 return pos; 230 } 231 232 static struct i915_vma * 233 vma_lookup(struct drm_i915_gem_object *obj, 234 struct i915_address_space *vm, 235 const struct i915_ggtt_view *view) 236 { 237 struct rb_node *rb; 238 239 rb = obj->vma.tree.rb_node; 240 while (rb) { 241 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 242 long cmp; 243 244 cmp = i915_vma_compare(vma, vm, view); 245 if (cmp == 0) 246 return vma; 247 248 if (cmp < 0) 249 rb = rb->rb_right; 250 else 251 rb = rb->rb_left; 252 } 253 254 return NULL; 255 } 256 257 /** 258 * i915_vma_instance - return the singleton instance of the VMA 259 * @obj: parent &struct drm_i915_gem_object to be mapped 260 * @vm: address space in which the mapping is located 261 * @view: additional mapping requirements 262 * 263 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 264 * the same @view characteristics. If a match is not found, one is created. 265 * Once created, the VMA is kept until either the object is freed, or the 266 * address space is closed. 267 * 268 * Returns the vma, or an error pointer. 269 */ 270 struct i915_vma * 271 i915_vma_instance(struct drm_i915_gem_object *obj, 272 struct i915_address_space *vm, 273 const struct i915_ggtt_view *view) 274 { 275 struct i915_vma *vma; 276 277 GEM_BUG_ON(view && !i915_is_ggtt(vm)); 278 GEM_BUG_ON(!atomic_read(&vm->open)); 279 280 spin_lock(&obj->vma.lock); 281 vma = vma_lookup(obj, vm, view); 282 spin_unlock(&obj->vma.lock); 283 284 /* vma_create() will resolve the race if another creates the vma */ 285 if (unlikely(!vma)) 286 vma = vma_create(obj, vm, view); 287 288 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 289 return vma; 290 } 291 292 struct i915_vma_work { 293 struct dma_fence_work base; 294 struct i915_address_space *vm; 295 struct i915_vm_pt_stash stash; 296 struct i915_vma *vma; 297 struct drm_i915_gem_object *pinned; 298 struct i915_sw_dma_fence_cb cb; 299 enum i915_cache_level cache_level; 300 unsigned int flags; 301 }; 302 303 static int __vma_bind(struct dma_fence_work *work) 304 { 305 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 306 struct i915_vma *vma = vw->vma; 307 308 vma->ops->bind_vma(vw->vm, &vw->stash, 309 vma, vw->cache_level, vw->flags); 310 return 0; 311 } 312 313 static void __vma_release(struct dma_fence_work *work) 314 { 315 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 316 317 if (vw->pinned) 318 __i915_gem_object_unpin_pages(vw->pinned); 319 320 i915_vm_free_pt_stash(vw->vm, &vw->stash); 321 i915_vm_put(vw->vm); 322 } 323 324 static const struct dma_fence_work_ops bind_ops = { 325 .name = "bind", 326 .work = __vma_bind, 327 .release = __vma_release, 328 }; 329 330 struct i915_vma_work *i915_vma_work(void) 331 { 332 struct i915_vma_work *vw; 333 334 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 335 if (!vw) 336 return NULL; 337 338 dma_fence_work_init(&vw->base, &bind_ops); 339 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 340 341 return vw; 342 } 343 344 int i915_vma_wait_for_bind(struct i915_vma *vma) 345 { 346 int err = 0; 347 348 if (rcu_access_pointer(vma->active.excl.fence)) { 349 struct dma_fence *fence; 350 351 rcu_read_lock(); 352 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 353 rcu_read_unlock(); 354 if (fence) { 355 err = dma_fence_wait(fence, MAX_SCHEDULE_TIMEOUT); 356 dma_fence_put(fence); 357 } 358 } 359 360 return err; 361 } 362 363 /** 364 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 365 * @vma: VMA to map 366 * @cache_level: mapping cache level 367 * @flags: flags like global or local mapping 368 * @work: preallocated worker for allocating and binding the PTE 369 * 370 * DMA addresses are taken from the scatter-gather table of this object (or of 371 * this VMA in case of non-default GGTT views) and PTE entries set up. 372 * Note that DMA addresses are also the only part of the SG table we care about. 373 */ 374 int i915_vma_bind(struct i915_vma *vma, 375 enum i915_cache_level cache_level, 376 u32 flags, 377 struct i915_vma_work *work) 378 { 379 u32 bind_flags; 380 u32 vma_flags; 381 382 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 383 GEM_BUG_ON(vma->size > vma->node.size); 384 385 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 386 vma->node.size, 387 vma->vm->total))) 388 return -ENODEV; 389 390 if (GEM_DEBUG_WARN_ON(!flags)) 391 return -EINVAL; 392 393 bind_flags = flags; 394 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 395 396 vma_flags = atomic_read(&vma->flags); 397 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 398 399 bind_flags &= ~vma_flags; 400 if (bind_flags == 0) 401 return 0; 402 403 GEM_BUG_ON(!vma->pages); 404 405 trace_i915_vma_bind(vma, bind_flags); 406 if (work && bind_flags & vma->vm->bind_async_flags) { 407 struct dma_fence *prev; 408 409 work->vma = vma; 410 work->cache_level = cache_level; 411 work->flags = bind_flags; 412 413 /* 414 * Note we only want to chain up to the migration fence on 415 * the pages (not the object itself). As we don't track that, 416 * yet, we have to use the exclusive fence instead. 417 * 418 * Also note that we do not want to track the async vma as 419 * part of the obj->resv->excl_fence as it only affects 420 * execution and not content or object's backing store lifetime. 421 */ 422 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 423 if (prev) { 424 __i915_sw_fence_await_dma_fence(&work->base.chain, 425 prev, 426 &work->cb); 427 dma_fence_put(prev); 428 } 429 430 work->base.dma.error = 0; /* enable the queue_work() */ 431 432 if (vma->obj) { 433 __i915_gem_object_pin_pages(vma->obj); 434 work->pinned = vma->obj; 435 } 436 } else { 437 vma->ops->bind_vma(vma->vm, NULL, vma, cache_level, bind_flags); 438 } 439 440 atomic_or(bind_flags, &vma->flags); 441 return 0; 442 } 443 444 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 445 { 446 void __iomem *ptr; 447 int err; 448 449 if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) { 450 err = -ENODEV; 451 goto err; 452 } 453 454 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 455 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 456 457 ptr = READ_ONCE(vma->iomap); 458 if (ptr == NULL) { 459 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 460 vma->node.start, 461 vma->node.size); 462 if (ptr == NULL) { 463 err = -ENOMEM; 464 goto err; 465 } 466 467 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 468 io_mapping_unmap(ptr); 469 ptr = vma->iomap; 470 } 471 } 472 473 __i915_vma_pin(vma); 474 475 err = i915_vma_pin_fence(vma); 476 if (err) 477 goto err_unpin; 478 479 i915_vma_set_ggtt_write(vma); 480 481 /* NB Access through the GTT requires the device to be awake. */ 482 return ptr; 483 484 err_unpin: 485 __i915_vma_unpin(vma); 486 err: 487 return IO_ERR_PTR(err); 488 } 489 490 void i915_vma_flush_writes(struct i915_vma *vma) 491 { 492 if (i915_vma_unset_ggtt_write(vma)) 493 intel_gt_flush_ggtt_writes(vma->vm->gt); 494 } 495 496 void i915_vma_unpin_iomap(struct i915_vma *vma) 497 { 498 GEM_BUG_ON(vma->iomap == NULL); 499 500 i915_vma_flush_writes(vma); 501 502 i915_vma_unpin_fence(vma); 503 i915_vma_unpin(vma); 504 } 505 506 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 507 { 508 struct i915_vma *vma; 509 struct drm_i915_gem_object *obj; 510 511 vma = fetch_and_zero(p_vma); 512 if (!vma) 513 return; 514 515 obj = vma->obj; 516 GEM_BUG_ON(!obj); 517 518 i915_vma_unpin(vma); 519 520 if (flags & I915_VMA_RELEASE_MAP) 521 i915_gem_object_unpin_map(obj); 522 523 i915_gem_object_put(obj); 524 } 525 526 bool i915_vma_misplaced(const struct i915_vma *vma, 527 u64 size, u64 alignment, u64 flags) 528 { 529 if (!drm_mm_node_allocated(&vma->node)) 530 return false; 531 532 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 533 return true; 534 535 if (vma->node.size < size) 536 return true; 537 538 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 539 if (alignment && !IS_ALIGNED(vma->node.start, alignment)) 540 return true; 541 542 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 543 return true; 544 545 if (flags & PIN_OFFSET_BIAS && 546 vma->node.start < (flags & PIN_OFFSET_MASK)) 547 return true; 548 549 if (flags & PIN_OFFSET_FIXED && 550 vma->node.start != (flags & PIN_OFFSET_MASK)) 551 return true; 552 553 return false; 554 } 555 556 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 557 { 558 bool mappable, fenceable; 559 560 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 561 GEM_BUG_ON(!vma->fence_size); 562 563 fenceable = (vma->node.size >= vma->fence_size && 564 IS_ALIGNED(vma->node.start, vma->fence_alignment)); 565 566 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; 567 568 if (mappable && fenceable) 569 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 570 else 571 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 572 } 573 574 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 575 { 576 struct drm_mm_node *node = &vma->node; 577 struct drm_mm_node *other; 578 579 /* 580 * On some machines we have to be careful when putting differing types 581 * of snoopable memory together to avoid the prefetcher crossing memory 582 * domains and dying. During vm initialisation, we decide whether or not 583 * these constraints apply and set the drm_mm.color_adjust 584 * appropriately. 585 */ 586 if (!i915_vm_has_cache_coloring(vma->vm)) 587 return true; 588 589 /* Only valid to be called on an already inserted vma */ 590 GEM_BUG_ON(!drm_mm_node_allocated(node)); 591 GEM_BUG_ON(list_empty(&node->node_list)); 592 593 other = list_prev_entry(node, node_list); 594 if (i915_node_color_differs(other, color) && 595 !drm_mm_hole_follows(other)) 596 return false; 597 598 other = list_next_entry(node, node_list); 599 if (i915_node_color_differs(other, color) && 600 !drm_mm_hole_follows(node)) 601 return false; 602 603 return true; 604 } 605 606 /** 607 * i915_vma_insert - finds a slot for the vma in its address space 608 * @vma: the vma 609 * @size: requested size in bytes (can be larger than the VMA) 610 * @alignment: required alignment 611 * @flags: mask of PIN_* flags to use 612 * 613 * First we try to allocate some free space that meets the requirements for 614 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 615 * preferrably the oldest idle entry to make room for the new VMA. 616 * 617 * Returns: 618 * 0 on success, negative error code otherwise. 619 */ 620 static int 621 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 622 { 623 unsigned long color; 624 u64 start, end; 625 int ret; 626 627 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 628 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 629 630 size = max(size, vma->size); 631 alignment = max(alignment, vma->display_alignment); 632 if (flags & PIN_MAPPABLE) { 633 size = max_t(typeof(size), size, vma->fence_size); 634 alignment = max_t(typeof(alignment), 635 alignment, vma->fence_alignment); 636 } 637 638 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 639 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 640 GEM_BUG_ON(!is_power_of_2(alignment)); 641 642 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 643 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 644 645 end = vma->vm->total; 646 if (flags & PIN_MAPPABLE) 647 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 648 if (flags & PIN_ZONE_4G) 649 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 650 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 651 652 /* If binding the object/GGTT view requires more space than the entire 653 * aperture has, reject it early before evicting everything in a vain 654 * attempt to find space. 655 */ 656 if (size > end) { 657 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 658 size, flags & PIN_MAPPABLE ? "mappable" : "total", 659 end); 660 return -ENOSPC; 661 } 662 663 color = 0; 664 if (vma->obj && i915_vm_has_cache_coloring(vma->vm)) 665 color = vma->obj->cache_level; 666 667 if (flags & PIN_OFFSET_FIXED) { 668 u64 offset = flags & PIN_OFFSET_MASK; 669 if (!IS_ALIGNED(offset, alignment) || 670 range_overflows(offset, size, end)) 671 return -EINVAL; 672 673 ret = i915_gem_gtt_reserve(vma->vm, &vma->node, 674 size, offset, color, 675 flags); 676 if (ret) 677 return ret; 678 } else { 679 /* 680 * We only support huge gtt pages through the 48b PPGTT, 681 * however we also don't want to force any alignment for 682 * objects which need to be tightly packed into the low 32bits. 683 * 684 * Note that we assume that GGTT are limited to 4GiB for the 685 * forseeable future. See also i915_ggtt_offset(). 686 */ 687 if (upper_32_bits(end - 1) && 688 vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 689 /* 690 * We can't mix 64K and 4K PTEs in the same page-table 691 * (2M block), and so to avoid the ugliness and 692 * complexity of coloring we opt for just aligning 64K 693 * objects to 2M. 694 */ 695 u64 page_alignment = 696 rounddown_pow_of_two(vma->page_sizes.sg | 697 I915_GTT_PAGE_SIZE_2M); 698 699 /* 700 * Check we don't expand for the limited Global GTT 701 * (mappable aperture is even more precious!). This 702 * also checks that we exclude the aliasing-ppgtt. 703 */ 704 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 705 706 alignment = max(alignment, page_alignment); 707 708 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 709 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 710 } 711 712 ret = i915_gem_gtt_insert(vma->vm, &vma->node, 713 size, alignment, color, 714 start, end, flags); 715 if (ret) 716 return ret; 717 718 GEM_BUG_ON(vma->node.start < start); 719 GEM_BUG_ON(vma->node.start + vma->node.size > end); 720 } 721 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 722 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 723 724 list_add_tail(&vma->vm_link, &vma->vm->bound_list); 725 726 return 0; 727 } 728 729 static void 730 i915_vma_detach(struct i915_vma *vma) 731 { 732 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 733 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 734 735 /* 736 * And finally now the object is completely decoupled from this 737 * vma, we can drop its hold on the backing storage and allow 738 * it to be reaped by the shrinker. 739 */ 740 list_del(&vma->vm_link); 741 } 742 743 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 744 { 745 unsigned int bound; 746 bool pinned = true; 747 748 bound = atomic_read(&vma->flags); 749 do { 750 if (unlikely(flags & ~bound)) 751 return false; 752 753 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 754 return false; 755 756 if (!(bound & I915_VMA_PIN_MASK)) 757 goto unpinned; 758 759 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 760 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 761 762 return true; 763 764 unpinned: 765 /* 766 * If pin_count==0, but we are bound, check under the lock to avoid 767 * racing with a concurrent i915_vma_unbind(). 768 */ 769 mutex_lock(&vma->vm->mutex); 770 do { 771 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) { 772 pinned = false; 773 break; 774 } 775 776 if (unlikely(flags & ~bound)) { 777 pinned = false; 778 break; 779 } 780 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 781 mutex_unlock(&vma->vm->mutex); 782 783 return pinned; 784 } 785 786 static int vma_get_pages(struct i915_vma *vma) 787 { 788 int err = 0; 789 790 if (atomic_add_unless(&vma->pages_count, 1, 0)) 791 return 0; 792 793 /* Allocations ahoy! */ 794 if (mutex_lock_interruptible(&vma->pages_mutex)) 795 return -EINTR; 796 797 if (!atomic_read(&vma->pages_count)) { 798 if (vma->obj) { 799 err = i915_gem_object_pin_pages(vma->obj); 800 if (err) 801 goto unlock; 802 } 803 804 err = vma->ops->set_pages(vma); 805 if (err) { 806 if (vma->obj) 807 i915_gem_object_unpin_pages(vma->obj); 808 goto unlock; 809 } 810 } 811 atomic_inc(&vma->pages_count); 812 813 unlock: 814 mutex_unlock(&vma->pages_mutex); 815 816 return err; 817 } 818 819 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 820 { 821 /* We allocate under vma_get_pages, so beware the shrinker */ 822 mutex_lock_nested(&vma->pages_mutex, SINGLE_DEPTH_NESTING); 823 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 824 if (atomic_sub_return(count, &vma->pages_count) == 0) { 825 vma->ops->clear_pages(vma); 826 GEM_BUG_ON(vma->pages); 827 if (vma->obj) 828 i915_gem_object_unpin_pages(vma->obj); 829 } 830 mutex_unlock(&vma->pages_mutex); 831 } 832 833 static void vma_put_pages(struct i915_vma *vma) 834 { 835 if (atomic_add_unless(&vma->pages_count, -1, 1)) 836 return; 837 838 __vma_put_pages(vma, 1); 839 } 840 841 static void vma_unbind_pages(struct i915_vma *vma) 842 { 843 unsigned int count; 844 845 lockdep_assert_held(&vma->vm->mutex); 846 847 /* The upper portion of pages_count is the number of bindings */ 848 count = atomic_read(&vma->pages_count); 849 count >>= I915_VMA_PAGES_BIAS; 850 GEM_BUG_ON(!count); 851 852 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 853 } 854 855 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 856 u64 size, u64 alignment, u64 flags) 857 { 858 struct i915_vma_work *work = NULL; 859 intel_wakeref_t wakeref = 0; 860 unsigned int bound; 861 int err; 862 863 #ifdef CONFIG_PROVE_LOCKING 864 if (debug_locks && lockdep_is_held(&vma->vm->i915->drm.struct_mutex)) 865 WARN_ON(!ww); 866 #endif 867 868 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 869 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 870 871 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 872 873 /* First try and grab the pin without rebinding the vma */ 874 if (try_qad_pin(vma, flags & I915_VMA_BIND_MASK)) 875 return 0; 876 877 err = vma_get_pages(vma); 878 if (err) 879 return err; 880 881 if (flags & PIN_GLOBAL) 882 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 883 884 if (flags & vma->vm->bind_async_flags) { 885 work = i915_vma_work(); 886 if (!work) { 887 err = -ENOMEM; 888 goto err_rpm; 889 } 890 891 work->vm = i915_vm_get(vma->vm); 892 893 /* Allocate enough page directories to used PTE */ 894 if (vma->vm->allocate_va_range) { 895 err = i915_vm_alloc_pt_stash(vma->vm, 896 &work->stash, 897 vma->size); 898 if (err) 899 goto err_fence; 900 901 err = i915_vm_pin_pt_stash(vma->vm, 902 &work->stash); 903 if (err) 904 goto err_fence; 905 } 906 } 907 908 /* 909 * Differentiate between user/kernel vma inside the aliasing-ppgtt. 910 * 911 * We conflate the Global GTT with the user's vma when using the 912 * aliasing-ppgtt, but it is still vitally important to try and 913 * keep the use cases distinct. For example, userptr objects are 914 * not allowed inside the Global GTT as that will cause lock 915 * inversions when we have to evict them the mmu_notifier callbacks - 916 * but they are allowed to be part of the user ppGTT which can never 917 * be mapped. As such we try to give the distinct users of the same 918 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt 919 * and i915_ppgtt separate]. 920 * 921 * NB this may cause us to mask real lock inversions -- while the 922 * code is safe today, lockdep may not be able to spot future 923 * transgressions. 924 */ 925 err = mutex_lock_interruptible_nested(&vma->vm->mutex, 926 !(flags & PIN_GLOBAL)); 927 if (err) 928 goto err_fence; 929 930 /* No more allocations allowed now we hold vm->mutex */ 931 932 if (unlikely(i915_vma_is_closed(vma))) { 933 err = -ENOENT; 934 goto err_unlock; 935 } 936 937 bound = atomic_read(&vma->flags); 938 if (unlikely(bound & I915_VMA_ERROR)) { 939 err = -ENOMEM; 940 goto err_unlock; 941 } 942 943 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 944 err = -EAGAIN; /* pins are meant to be fairly temporary */ 945 goto err_unlock; 946 } 947 948 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 949 __i915_vma_pin(vma); 950 goto err_unlock; 951 } 952 953 err = i915_active_acquire(&vma->active); 954 if (err) 955 goto err_unlock; 956 957 if (!(bound & I915_VMA_BIND_MASK)) { 958 err = i915_vma_insert(vma, size, alignment, flags); 959 if (err) 960 goto err_active; 961 962 if (i915_is_ggtt(vma->vm)) 963 __i915_vma_set_map_and_fenceable(vma); 964 } 965 966 GEM_BUG_ON(!vma->pages); 967 err = i915_vma_bind(vma, 968 vma->obj ? vma->obj->cache_level : 0, 969 flags, work); 970 if (err) 971 goto err_remove; 972 973 /* There should only be at most 2 active bindings (user, global) */ 974 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 975 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 976 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 977 978 __i915_vma_pin(vma); 979 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 980 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 981 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 982 983 err_remove: 984 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 985 i915_vma_detach(vma); 986 drm_mm_remove_node(&vma->node); 987 } 988 err_active: 989 i915_active_release(&vma->active); 990 err_unlock: 991 mutex_unlock(&vma->vm->mutex); 992 err_fence: 993 if (work) 994 dma_fence_work_commit_imm(&work->base); 995 err_rpm: 996 if (wakeref) 997 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 998 vma_put_pages(vma); 999 return err; 1000 } 1001 1002 static void flush_idle_contexts(struct intel_gt *gt) 1003 { 1004 struct intel_engine_cs *engine; 1005 enum intel_engine_id id; 1006 1007 for_each_engine(engine, gt, id) 1008 intel_engine_flush_barriers(engine); 1009 1010 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 1011 } 1012 1013 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1014 u32 align, unsigned int flags) 1015 { 1016 struct i915_address_space *vm = vma->vm; 1017 int err; 1018 1019 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1020 1021 do { 1022 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); 1023 if (err != -ENOSPC) { 1024 if (!err) { 1025 err = i915_vma_wait_for_bind(vma); 1026 if (err) 1027 i915_vma_unpin(vma); 1028 } 1029 return err; 1030 } 1031 1032 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1033 flush_idle_contexts(vm->gt); 1034 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1035 i915_gem_evict_vm(vm); 1036 mutex_unlock(&vm->mutex); 1037 } 1038 } while (1); 1039 } 1040 1041 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) 1042 { 1043 /* 1044 * We defer actually closing, unbinding and destroying the VMA until 1045 * the next idle point, or if the object is freed in the meantime. By 1046 * postponing the unbind, we allow for it to be resurrected by the 1047 * client, avoiding the work required to rebind the VMA. This is 1048 * advantageous for DRI, where the client/server pass objects 1049 * between themselves, temporarily opening a local VMA to the 1050 * object, and then closing it again. The same object is then reused 1051 * on the next frame (or two, depending on the depth of the swap queue) 1052 * causing us to rebind the VMA once more. This ends up being a lot 1053 * of wasted work for the steady state. 1054 */ 1055 GEM_BUG_ON(i915_vma_is_closed(vma)); 1056 list_add(&vma->closed_link, >->closed_vma); 1057 } 1058 1059 void i915_vma_close(struct i915_vma *vma) 1060 { 1061 struct intel_gt *gt = vma->vm->gt; 1062 unsigned long flags; 1063 1064 if (i915_vma_is_ggtt(vma)) 1065 return; 1066 1067 GEM_BUG_ON(!atomic_read(&vma->open_count)); 1068 if (atomic_dec_and_lock_irqsave(&vma->open_count, 1069 >->closed_lock, 1070 flags)) { 1071 __vma_close(vma, gt); 1072 spin_unlock_irqrestore(>->closed_lock, flags); 1073 } 1074 } 1075 1076 static void __i915_vma_remove_closed(struct i915_vma *vma) 1077 { 1078 struct intel_gt *gt = vma->vm->gt; 1079 1080 spin_lock_irq(>->closed_lock); 1081 list_del_init(&vma->closed_link); 1082 spin_unlock_irq(>->closed_lock); 1083 } 1084 1085 void i915_vma_reopen(struct i915_vma *vma) 1086 { 1087 if (i915_vma_is_closed(vma)) 1088 __i915_vma_remove_closed(vma); 1089 } 1090 1091 void i915_vma_release(struct kref *ref) 1092 { 1093 struct i915_vma *vma = container_of(ref, typeof(*vma), ref); 1094 1095 if (drm_mm_node_allocated(&vma->node)) { 1096 mutex_lock(&vma->vm->mutex); 1097 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1098 WARN_ON(__i915_vma_unbind(vma)); 1099 mutex_unlock(&vma->vm->mutex); 1100 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1101 } 1102 GEM_BUG_ON(i915_vma_is_active(vma)); 1103 1104 if (vma->obj) { 1105 struct drm_i915_gem_object *obj = vma->obj; 1106 1107 spin_lock(&obj->vma.lock); 1108 list_del(&vma->obj_link); 1109 if (!RB_EMPTY_NODE(&vma->obj_node)) 1110 rb_erase(&vma->obj_node, &obj->vma.tree); 1111 spin_unlock(&obj->vma.lock); 1112 } 1113 1114 __i915_vma_remove_closed(vma); 1115 i915_vm_put(vma->vm); 1116 1117 i915_active_fini(&vma->active); 1118 i915_vma_free(vma); 1119 } 1120 1121 void i915_vma_parked(struct intel_gt *gt) 1122 { 1123 struct i915_vma *vma, *next; 1124 LIST_HEAD(closed); 1125 1126 spin_lock_irq(>->closed_lock); 1127 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1128 struct drm_i915_gem_object *obj = vma->obj; 1129 struct i915_address_space *vm = vma->vm; 1130 1131 /* XXX All to avoid keeping a reference on i915_vma itself */ 1132 1133 if (!kref_get_unless_zero(&obj->base.refcount)) 1134 continue; 1135 1136 if (!i915_vm_tryopen(vm)) { 1137 i915_gem_object_put(obj); 1138 continue; 1139 } 1140 1141 list_move(&vma->closed_link, &closed); 1142 } 1143 spin_unlock_irq(>->closed_lock); 1144 1145 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1146 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1147 struct drm_i915_gem_object *obj = vma->obj; 1148 struct i915_address_space *vm = vma->vm; 1149 1150 INIT_LIST_HEAD(&vma->closed_link); 1151 __i915_vma_put(vma); 1152 1153 i915_gem_object_put(obj); 1154 i915_vm_close(vm); 1155 } 1156 } 1157 1158 static void __i915_vma_iounmap(struct i915_vma *vma) 1159 { 1160 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1161 1162 if (vma->iomap == NULL) 1163 return; 1164 1165 io_mapping_unmap(vma->iomap); 1166 vma->iomap = NULL; 1167 } 1168 1169 void i915_vma_revoke_mmap(struct i915_vma *vma) 1170 { 1171 struct drm_vma_offset_node *node; 1172 u64 vma_offset; 1173 1174 if (!i915_vma_has_userfault(vma)) 1175 return; 1176 1177 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1178 GEM_BUG_ON(!vma->obj->userfault_count); 1179 1180 node = &vma->mmo->vma_node; 1181 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 1182 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1183 drm_vma_node_offset_addr(node) + vma_offset, 1184 vma->size, 1185 1); 1186 1187 i915_vma_unset_userfault(vma); 1188 if (!--vma->obj->userfault_count) 1189 list_del(&vma->obj->userfault_link); 1190 } 1191 1192 static int 1193 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) 1194 { 1195 return __i915_request_await_exclusive(rq, &vma->active); 1196 } 1197 1198 int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1199 { 1200 int err; 1201 1202 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1203 1204 /* Wait for the vma to be bound before we start! */ 1205 err = __i915_request_await_bind(rq, vma); 1206 if (err) 1207 return err; 1208 1209 return i915_active_add_request(&vma->active, rq); 1210 } 1211 1212 int i915_vma_move_to_active(struct i915_vma *vma, 1213 struct i915_request *rq, 1214 unsigned int flags) 1215 { 1216 struct drm_i915_gem_object *obj = vma->obj; 1217 int err; 1218 1219 assert_object_held(obj); 1220 1221 err = __i915_vma_move_to_active(vma, rq); 1222 if (unlikely(err)) 1223 return err; 1224 1225 if (flags & EXEC_OBJECT_WRITE) { 1226 struct intel_frontbuffer *front; 1227 1228 front = __intel_frontbuffer_get(obj); 1229 if (unlikely(front)) { 1230 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1231 i915_active_add_request(&front->write, rq); 1232 intel_frontbuffer_put(front); 1233 } 1234 1235 dma_resv_add_excl_fence(vma->resv, &rq->fence); 1236 obj->write_domain = I915_GEM_DOMAIN_RENDER; 1237 obj->read_domains = 0; 1238 } else { 1239 err = dma_resv_reserve_shared(vma->resv, 1); 1240 if (unlikely(err)) 1241 return err; 1242 1243 dma_resv_add_shared_fence(vma->resv, &rq->fence); 1244 obj->write_domain = 0; 1245 } 1246 1247 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) 1248 i915_active_add_request(&vma->fence->active, rq); 1249 1250 obj->read_domains |= I915_GEM_GPU_DOMAINS; 1251 obj->mm.dirty = true; 1252 1253 GEM_BUG_ON(!i915_vma_is_active(vma)); 1254 return 0; 1255 } 1256 1257 void __i915_vma_evict(struct i915_vma *vma) 1258 { 1259 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1260 1261 if (i915_vma_is_map_and_fenceable(vma)) { 1262 /* Force a pagefault for domain tracking on next user access */ 1263 i915_vma_revoke_mmap(vma); 1264 1265 /* 1266 * Check that we have flushed all writes through the GGTT 1267 * before the unbind, other due to non-strict nature of those 1268 * indirect writes they may end up referencing the GGTT PTE 1269 * after the unbind. 1270 * 1271 * Note that we may be concurrently poking at the GGTT_WRITE 1272 * bit from set-domain, as we mark all GGTT vma associated 1273 * with an object. We know this is for another vma, as we 1274 * are currently unbinding this one -- so if this vma will be 1275 * reused, it will be refaulted and have its dirty bit set 1276 * before the next write. 1277 */ 1278 i915_vma_flush_writes(vma); 1279 1280 /* release the fence reg _after_ flushing */ 1281 i915_vma_revoke_fence(vma); 1282 1283 __i915_vma_iounmap(vma); 1284 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 1285 } 1286 GEM_BUG_ON(vma->fence); 1287 GEM_BUG_ON(i915_vma_has_userfault(vma)); 1288 1289 if (likely(atomic_read(&vma->vm->open))) { 1290 trace_i915_vma_unbind(vma); 1291 vma->ops->unbind_vma(vma->vm, vma); 1292 } 1293 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 1294 &vma->flags); 1295 1296 i915_vma_detach(vma); 1297 vma_unbind_pages(vma); 1298 } 1299 1300 int __i915_vma_unbind(struct i915_vma *vma) 1301 { 1302 int ret; 1303 1304 lockdep_assert_held(&vma->vm->mutex); 1305 1306 if (!drm_mm_node_allocated(&vma->node)) 1307 return 0; 1308 1309 if (i915_vma_is_pinned(vma)) { 1310 vma_print_allocator(vma, "is pinned"); 1311 return -EAGAIN; 1312 } 1313 1314 /* 1315 * After confirming that no one else is pinning this vma, wait for 1316 * any laggards who may have crept in during the wait (through 1317 * a residual pin skipping the vm->mutex) to complete. 1318 */ 1319 ret = i915_vma_sync(vma); 1320 if (ret) 1321 return ret; 1322 1323 GEM_BUG_ON(i915_vma_is_active(vma)); 1324 __i915_vma_evict(vma); 1325 1326 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 1327 return 0; 1328 } 1329 1330 int i915_vma_unbind(struct i915_vma *vma) 1331 { 1332 struct i915_address_space *vm = vma->vm; 1333 intel_wakeref_t wakeref = 0; 1334 int err; 1335 1336 /* Optimistic wait before taking the mutex */ 1337 err = i915_vma_sync(vma); 1338 if (err) 1339 return err; 1340 1341 if (!drm_mm_node_allocated(&vma->node)) 1342 return 0; 1343 1344 if (i915_vma_is_pinned(vma)) { 1345 vma_print_allocator(vma, "is pinned"); 1346 return -EAGAIN; 1347 } 1348 1349 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 1350 /* XXX not always required: nop_clear_range */ 1351 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 1352 1353 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); 1354 if (err) 1355 goto out_rpm; 1356 1357 err = __i915_vma_unbind(vma); 1358 mutex_unlock(&vm->mutex); 1359 1360 out_rpm: 1361 if (wakeref) 1362 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 1363 return err; 1364 } 1365 1366 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 1367 { 1368 i915_gem_object_make_unshrinkable(vma->obj); 1369 return vma; 1370 } 1371 1372 void i915_vma_make_shrinkable(struct i915_vma *vma) 1373 { 1374 i915_gem_object_make_shrinkable(vma->obj); 1375 } 1376 1377 void i915_vma_make_purgeable(struct i915_vma *vma) 1378 { 1379 i915_gem_object_make_purgeable(vma->obj); 1380 } 1381 1382 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1383 #include "selftests/i915_vma.c" 1384 #endif 1385 1386 static void i915_global_vma_shrink(void) 1387 { 1388 kmem_cache_shrink(global.slab_vmas); 1389 } 1390 1391 static void i915_global_vma_exit(void) 1392 { 1393 kmem_cache_destroy(global.slab_vmas); 1394 } 1395 1396 static struct i915_global_vma global = { { 1397 .shrink = i915_global_vma_shrink, 1398 .exit = i915_global_vma_exit, 1399 } }; 1400 1401 int __init i915_global_vma_init(void) 1402 { 1403 global.slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 1404 if (!global.slab_vmas) 1405 return -ENOMEM; 1406 1407 i915_global_register(&global.base); 1408 return 0; 1409 } 1410