xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vma.c (revision a594525c)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <drm/drm_gem.h>
27 
28 #include "display/intel_frontbuffer.h"
29 
30 #include "gem/i915_gem_lmem.h"
31 #include "gt/intel_engine.h"
32 #include "gt/intel_engine_heartbeat.h"
33 #include "gt/intel_gt.h"
34 #include "gt/intel_gt_requests.h"
35 
36 #include "i915_drv.h"
37 #include "i915_sw_fence_work.h"
38 #include "i915_trace.h"
39 #include "i915_vma.h"
40 #include "i915_vma_resource.h"
41 
42 static inline void assert_vma_held_evict(const struct i915_vma *vma)
43 {
44 	/*
45 	 * We may be forced to unbind when the vm is dead, to clean it up.
46 	 * This is the only exception to the requirement of the object lock
47 	 * being held.
48 	 */
49 	if (atomic_read(&vma->vm->open))
50 		assert_object_held_shared(vma->obj);
51 }
52 
53 static struct kmem_cache *slab_vmas;
54 
55 static struct i915_vma *i915_vma_alloc(void)
56 {
57 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
58 }
59 
60 static void i915_vma_free(struct i915_vma *vma)
61 {
62 	return kmem_cache_free(slab_vmas, vma);
63 }
64 
65 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
66 
67 #include <linux/stackdepot.h>
68 
69 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
70 {
71 	char buf[512];
72 
73 	if (!vma->node.stack) {
74 		DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
75 				 vma->node.start, vma->node.size, reason);
76 		return;
77 	}
78 
79 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
80 	DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
81 			 vma->node.start, vma->node.size, reason, buf);
82 }
83 
84 #else
85 
86 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
87 {
88 }
89 
90 #endif
91 
92 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
93 {
94 	return container_of(ref, typeof(struct i915_vma), active);
95 }
96 
97 static int __i915_vma_active(struct i915_active *ref)
98 {
99 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
100 }
101 
102 static void __i915_vma_retire(struct i915_active *ref)
103 {
104 	i915_vma_put(active_to_vma(ref));
105 }
106 
107 static struct i915_vma *
108 vma_create(struct drm_i915_gem_object *obj,
109 	   struct i915_address_space *vm,
110 	   const struct i915_ggtt_view *view)
111 {
112 	struct i915_vma *pos = ERR_PTR(-E2BIG);
113 	struct i915_vma *vma;
114 	struct rb_node *rb, **p;
115 
116 	/* The aliasing_ppgtt should never be used directly! */
117 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
118 
119 	vma = i915_vma_alloc();
120 	if (vma == NULL)
121 		return ERR_PTR(-ENOMEM);
122 
123 	kref_init(&vma->ref);
124 	vma->vm = i915_vm_get(vm);
125 	vma->ops = &vm->vma_ops;
126 	vma->obj = obj;
127 	vma->size = obj->base.size;
128 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
129 
130 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
131 
132 	/* Declare ourselves safe for use inside shrinkers */
133 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
134 		fs_reclaim_acquire(GFP_KERNEL);
135 		might_lock(&vma->active.mutex);
136 		fs_reclaim_release(GFP_KERNEL);
137 	}
138 
139 	INIT_LIST_HEAD(&vma->closed_link);
140 
141 	if (view && view->type != I915_GGTT_VIEW_NORMAL) {
142 		vma->ggtt_view = *view;
143 		if (view->type == I915_GGTT_VIEW_PARTIAL) {
144 			GEM_BUG_ON(range_overflows_t(u64,
145 						     view->partial.offset,
146 						     view->partial.size,
147 						     obj->base.size >> PAGE_SHIFT));
148 			vma->size = view->partial.size;
149 			vma->size <<= PAGE_SHIFT;
150 			GEM_BUG_ON(vma->size > obj->base.size);
151 		} else if (view->type == I915_GGTT_VIEW_ROTATED) {
152 			vma->size = intel_rotation_info_size(&view->rotated);
153 			vma->size <<= PAGE_SHIFT;
154 		} else if (view->type == I915_GGTT_VIEW_REMAPPED) {
155 			vma->size = intel_remapped_info_size(&view->remapped);
156 			vma->size <<= PAGE_SHIFT;
157 		}
158 	}
159 
160 	if (unlikely(vma->size > vm->total))
161 		goto err_vma;
162 
163 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
164 
165 	spin_lock(&obj->vma.lock);
166 
167 	if (i915_is_ggtt(vm)) {
168 		if (unlikely(overflows_type(vma->size, u32)))
169 			goto err_unlock;
170 
171 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
172 						      i915_gem_object_get_tiling(obj),
173 						      i915_gem_object_get_stride(obj));
174 		if (unlikely(vma->fence_size < vma->size || /* overflow */
175 			     vma->fence_size > vm->total))
176 			goto err_unlock;
177 
178 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
179 
180 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
181 								i915_gem_object_get_tiling(obj),
182 								i915_gem_object_get_stride(obj));
183 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
184 
185 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
186 	}
187 
188 	rb = NULL;
189 	p = &obj->vma.tree.rb_node;
190 	while (*p) {
191 		long cmp;
192 
193 		rb = *p;
194 		pos = rb_entry(rb, struct i915_vma, obj_node);
195 
196 		/*
197 		 * If the view already exists in the tree, another thread
198 		 * already created a matching vma, so return the older instance
199 		 * and dispose of ours.
200 		 */
201 		cmp = i915_vma_compare(pos, vm, view);
202 		if (cmp < 0)
203 			p = &rb->rb_right;
204 		else if (cmp > 0)
205 			p = &rb->rb_left;
206 		else
207 			goto err_unlock;
208 	}
209 	rb_link_node(&vma->obj_node, rb, p);
210 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
211 
212 	if (i915_vma_is_ggtt(vma))
213 		/*
214 		 * We put the GGTT vma at the start of the vma-list, followed
215 		 * by the ppGGTT vma. This allows us to break early when
216 		 * iterating over only the GGTT vma for an object, see
217 		 * for_each_ggtt_vma()
218 		 */
219 		list_add(&vma->obj_link, &obj->vma.list);
220 	else
221 		list_add_tail(&vma->obj_link, &obj->vma.list);
222 
223 	spin_unlock(&obj->vma.lock);
224 
225 	return vma;
226 
227 err_unlock:
228 	spin_unlock(&obj->vma.lock);
229 err_vma:
230 	i915_vm_put(vm);
231 	i915_vma_free(vma);
232 	return pos;
233 }
234 
235 static struct i915_vma *
236 i915_vma_lookup(struct drm_i915_gem_object *obj,
237 	   struct i915_address_space *vm,
238 	   const struct i915_ggtt_view *view)
239 {
240 	struct rb_node *rb;
241 
242 	rb = obj->vma.tree.rb_node;
243 	while (rb) {
244 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
245 		long cmp;
246 
247 		cmp = i915_vma_compare(vma, vm, view);
248 		if (cmp == 0)
249 			return vma;
250 
251 		if (cmp < 0)
252 			rb = rb->rb_right;
253 		else
254 			rb = rb->rb_left;
255 	}
256 
257 	return NULL;
258 }
259 
260 /**
261  * i915_vma_instance - return the singleton instance of the VMA
262  * @obj: parent &struct drm_i915_gem_object to be mapped
263  * @vm: address space in which the mapping is located
264  * @view: additional mapping requirements
265  *
266  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
267  * the same @view characteristics. If a match is not found, one is created.
268  * Once created, the VMA is kept until either the object is freed, or the
269  * address space is closed.
270  *
271  * Returns the vma, or an error pointer.
272  */
273 struct i915_vma *
274 i915_vma_instance(struct drm_i915_gem_object *obj,
275 		  struct i915_address_space *vm,
276 		  const struct i915_ggtt_view *view)
277 {
278 	struct i915_vma *vma;
279 
280 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
281 	GEM_BUG_ON(!atomic_read(&vm->open));
282 
283 	spin_lock(&obj->vma.lock);
284 	vma = i915_vma_lookup(obj, vm, view);
285 	spin_unlock(&obj->vma.lock);
286 
287 	/* vma_create() will resolve the race if another creates the vma */
288 	if (unlikely(!vma))
289 		vma = vma_create(obj, vm, view);
290 
291 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
292 	return vma;
293 }
294 
295 struct i915_vma_work {
296 	struct dma_fence_work base;
297 	struct i915_address_space *vm;
298 	struct i915_vm_pt_stash stash;
299 	struct i915_vma_resource *vma_res;
300 	struct drm_i915_gem_object *pinned;
301 	struct i915_sw_dma_fence_cb cb;
302 	enum i915_cache_level cache_level;
303 	unsigned int flags;
304 };
305 
306 static void __vma_bind(struct dma_fence_work *work)
307 {
308 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
309 	struct i915_vma_resource *vma_res = vw->vma_res;
310 
311 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
312 			       vma_res, vw->cache_level, vw->flags);
313 
314 }
315 
316 static void __vma_release(struct dma_fence_work *work)
317 {
318 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
319 
320 	if (vw->pinned)
321 		i915_gem_object_put(vw->pinned);
322 
323 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
324 	i915_vm_put(vw->vm);
325 	if (vw->vma_res)
326 		i915_vma_resource_put(vw->vma_res);
327 }
328 
329 static const struct dma_fence_work_ops bind_ops = {
330 	.name = "bind",
331 	.work = __vma_bind,
332 	.release = __vma_release,
333 };
334 
335 struct i915_vma_work *i915_vma_work(void)
336 {
337 	struct i915_vma_work *vw;
338 
339 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
340 	if (!vw)
341 		return NULL;
342 
343 	dma_fence_work_init(&vw->base, &bind_ops);
344 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
345 
346 	return vw;
347 }
348 
349 int i915_vma_wait_for_bind(struct i915_vma *vma)
350 {
351 	int err = 0;
352 
353 	if (rcu_access_pointer(vma->active.excl.fence)) {
354 		struct dma_fence *fence;
355 
356 		rcu_read_lock();
357 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
358 		rcu_read_unlock();
359 		if (fence) {
360 			err = dma_fence_wait(fence, true);
361 			dma_fence_put(fence);
362 		}
363 	}
364 
365 	return err;
366 }
367 
368 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
369 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
370 {
371 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
372 	int err;
373 
374 	if (!fence)
375 		return 0;
376 
377 	if (dma_fence_is_signaled(fence))
378 		err = fence->error;
379 	else
380 		err = -EBUSY;
381 
382 	dma_fence_put(fence);
383 
384 	return err;
385 }
386 #else
387 #define i915_vma_verify_bind_complete(_vma) 0
388 #endif
389 
390 I915_SELFTEST_EXPORT void
391 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
392 				struct i915_vma *vma)
393 {
394 	struct drm_i915_gem_object *obj = vma->obj;
395 
396 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
397 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
398 			       i915_gem_object_is_lmem(obj), obj->mm.region,
399 			       vma->ops, vma->private, vma->node.start,
400 			       vma->node.size, vma->size);
401 }
402 
403 /**
404  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
405  * @vma: VMA to map
406  * @cache_level: mapping cache level
407  * @flags: flags like global or local mapping
408  * @work: preallocated worker for allocating and binding the PTE
409  * @vma_res: pointer to a preallocated vma resource. The resource is either
410  * consumed or freed.
411  *
412  * DMA addresses are taken from the scatter-gather table of this object (or of
413  * this VMA in case of non-default GGTT views) and PTE entries set up.
414  * Note that DMA addresses are also the only part of the SG table we care about.
415  */
416 int i915_vma_bind(struct i915_vma *vma,
417 		  enum i915_cache_level cache_level,
418 		  u32 flags,
419 		  struct i915_vma_work *work,
420 		  struct i915_vma_resource *vma_res)
421 {
422 	u32 bind_flags;
423 	u32 vma_flags;
424 	int ret;
425 
426 	lockdep_assert_held(&vma->vm->mutex);
427 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
428 	GEM_BUG_ON(vma->size > vma->node.size);
429 
430 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
431 					      vma->node.size,
432 					      vma->vm->total))) {
433 		i915_vma_resource_free(vma_res);
434 		return -ENODEV;
435 	}
436 
437 	if (GEM_DEBUG_WARN_ON(!flags)) {
438 		i915_vma_resource_free(vma_res);
439 		return -EINVAL;
440 	}
441 
442 	bind_flags = flags;
443 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
444 
445 	vma_flags = atomic_read(&vma->flags);
446 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
447 
448 	bind_flags &= ~vma_flags;
449 	if (bind_flags == 0) {
450 		i915_vma_resource_free(vma_res);
451 		return 0;
452 	}
453 
454 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
455 
456 	/* Wait for or await async unbinds touching our range */
457 	if (work && bind_flags & vma->vm->bind_async_flags)
458 		ret = i915_vma_resource_bind_dep_await(vma->vm,
459 						       &work->base.chain,
460 						       vma->node.start,
461 						       vma->node.size,
462 						       true,
463 						       GFP_NOWAIT |
464 						       __GFP_RETRY_MAYFAIL |
465 						       __GFP_NOWARN);
466 	else
467 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
468 						      vma->node.size, true);
469 	if (ret) {
470 		i915_vma_resource_free(vma_res);
471 		return ret;
472 	}
473 
474 	if (vma->resource || !vma_res) {
475 		/* Rebinding with an additional I915_VMA_*_BIND */
476 		GEM_WARN_ON(!vma_flags);
477 		i915_vma_resource_free(vma_res);
478 	} else {
479 		i915_vma_resource_init_from_vma(vma_res, vma);
480 		vma->resource = vma_res;
481 	}
482 	trace_i915_vma_bind(vma, bind_flags);
483 	if (work && bind_flags & vma->vm->bind_async_flags) {
484 		struct dma_fence *prev;
485 
486 		work->vma_res = i915_vma_resource_get(vma->resource);
487 		work->cache_level = cache_level;
488 		work->flags = bind_flags;
489 
490 		/*
491 		 * Note we only want to chain up to the migration fence on
492 		 * the pages (not the object itself). As we don't track that,
493 		 * yet, we have to use the exclusive fence instead.
494 		 *
495 		 * Also note that we do not want to track the async vma as
496 		 * part of the obj->resv->excl_fence as it only affects
497 		 * execution and not content or object's backing store lifetime.
498 		 */
499 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
500 		if (prev) {
501 			__i915_sw_fence_await_dma_fence(&work->base.chain,
502 							prev,
503 							&work->cb);
504 			dma_fence_put(prev);
505 		}
506 
507 		work->base.dma.error = 0; /* enable the queue_work() */
508 
509 		/*
510 		 * If we don't have the refcounted pages list, keep a reference
511 		 * on the object to avoid waiting for the async bind to
512 		 * complete in the object destruction path.
513 		 */
514 		if (!work->vma_res->bi.pages_rsgt)
515 			work->pinned = i915_gem_object_get(vma->obj);
516 	} else {
517 		if (vma->obj) {
518 			ret = i915_gem_object_wait_moving_fence(vma->obj, true);
519 			if (ret) {
520 				i915_vma_resource_free(vma->resource);
521 				vma->resource = NULL;
522 
523 				return ret;
524 			}
525 		}
526 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
527 				   bind_flags);
528 	}
529 
530 	atomic_or(bind_flags, &vma->flags);
531 	return 0;
532 }
533 
534 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
535 {
536 	void __iomem *ptr;
537 	int err;
538 
539 	if (!i915_gem_object_is_lmem(vma->obj)) {
540 		if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) {
541 			err = -ENODEV;
542 			goto err;
543 		}
544 	}
545 
546 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
547 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
548 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
549 
550 	ptr = READ_ONCE(vma->iomap);
551 	if (ptr == NULL) {
552 		/*
553 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
554 		 * instead, which already supports mapping non-contiguous chunks
555 		 * of pages, that way we can also drop the
556 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
557 		 */
558 		if (i915_gem_object_is_lmem(vma->obj))
559 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
560 							  vma->obj->base.size);
561 		else
562 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
563 						vma->node.start,
564 						vma->node.size);
565 		if (ptr == NULL) {
566 			err = -ENOMEM;
567 			goto err;
568 		}
569 
570 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
571 			io_mapping_unmap(ptr);
572 			ptr = vma->iomap;
573 		}
574 	}
575 
576 	__i915_vma_pin(vma);
577 
578 	err = i915_vma_pin_fence(vma);
579 	if (err)
580 		goto err_unpin;
581 
582 	i915_vma_set_ggtt_write(vma);
583 
584 	/* NB Access through the GTT requires the device to be awake. */
585 	return ptr;
586 
587 err_unpin:
588 	__i915_vma_unpin(vma);
589 err:
590 	return IO_ERR_PTR(err);
591 }
592 
593 void i915_vma_flush_writes(struct i915_vma *vma)
594 {
595 	if (i915_vma_unset_ggtt_write(vma))
596 		intel_gt_flush_ggtt_writes(vma->vm->gt);
597 }
598 
599 void i915_vma_unpin_iomap(struct i915_vma *vma)
600 {
601 	GEM_BUG_ON(vma->iomap == NULL);
602 
603 	i915_vma_flush_writes(vma);
604 
605 	i915_vma_unpin_fence(vma);
606 	i915_vma_unpin(vma);
607 }
608 
609 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
610 {
611 	struct i915_vma *vma;
612 	struct drm_i915_gem_object *obj;
613 
614 	vma = fetch_and_zero(p_vma);
615 	if (!vma)
616 		return;
617 
618 	obj = vma->obj;
619 	GEM_BUG_ON(!obj);
620 
621 	i915_vma_unpin(vma);
622 
623 	if (flags & I915_VMA_RELEASE_MAP)
624 		i915_gem_object_unpin_map(obj);
625 
626 	i915_gem_object_put(obj);
627 }
628 
629 bool i915_vma_misplaced(const struct i915_vma *vma,
630 			u64 size, u64 alignment, u64 flags)
631 {
632 	if (!drm_mm_node_allocated(&vma->node))
633 		return false;
634 
635 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
636 		return true;
637 
638 	if (vma->node.size < size)
639 		return true;
640 
641 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
642 	if (alignment && !IS_ALIGNED(vma->node.start, alignment))
643 		return true;
644 
645 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
646 		return true;
647 
648 	if (flags & PIN_OFFSET_BIAS &&
649 	    vma->node.start < (flags & PIN_OFFSET_MASK))
650 		return true;
651 
652 	if (flags & PIN_OFFSET_FIXED &&
653 	    vma->node.start != (flags & PIN_OFFSET_MASK))
654 		return true;
655 
656 	return false;
657 }
658 
659 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
660 {
661 	bool mappable, fenceable;
662 
663 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
664 	GEM_BUG_ON(!vma->fence_size);
665 
666 	fenceable = (vma->node.size >= vma->fence_size &&
667 		     IS_ALIGNED(vma->node.start, vma->fence_alignment));
668 
669 	mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
670 
671 	if (mappable && fenceable)
672 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
673 	else
674 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
675 }
676 
677 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
678 {
679 	struct drm_mm_node *node = &vma->node;
680 	struct drm_mm_node *other;
681 
682 	/*
683 	 * On some machines we have to be careful when putting differing types
684 	 * of snoopable memory together to avoid the prefetcher crossing memory
685 	 * domains and dying. During vm initialisation, we decide whether or not
686 	 * these constraints apply and set the drm_mm.color_adjust
687 	 * appropriately.
688 	 */
689 	if (!i915_vm_has_cache_coloring(vma->vm))
690 		return true;
691 
692 	/* Only valid to be called on an already inserted vma */
693 	GEM_BUG_ON(!drm_mm_node_allocated(node));
694 	GEM_BUG_ON(list_empty(&node->node_list));
695 
696 	other = list_prev_entry(node, node_list);
697 	if (i915_node_color_differs(other, color) &&
698 	    !drm_mm_hole_follows(other))
699 		return false;
700 
701 	other = list_next_entry(node, node_list);
702 	if (i915_node_color_differs(other, color) &&
703 	    !drm_mm_hole_follows(node))
704 		return false;
705 
706 	return true;
707 }
708 
709 /**
710  * i915_vma_insert - finds a slot for the vma in its address space
711  * @vma: the vma
712  * @size: requested size in bytes (can be larger than the VMA)
713  * @alignment: required alignment
714  * @flags: mask of PIN_* flags to use
715  *
716  * First we try to allocate some free space that meets the requirements for
717  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
718  * preferrably the oldest idle entry to make room for the new VMA.
719  *
720  * Returns:
721  * 0 on success, negative error code otherwise.
722  */
723 static int
724 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
725 		u64 size, u64 alignment, u64 flags)
726 {
727 	unsigned long color;
728 	u64 start, end;
729 	int ret;
730 
731 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
732 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
733 
734 	size = max(size, vma->size);
735 	alignment = max(alignment, vma->display_alignment);
736 	if (flags & PIN_MAPPABLE) {
737 		size = max_t(typeof(size), size, vma->fence_size);
738 		alignment = max_t(typeof(alignment),
739 				  alignment, vma->fence_alignment);
740 	}
741 
742 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
743 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
744 	GEM_BUG_ON(!is_power_of_2(alignment));
745 
746 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
747 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
748 
749 	end = vma->vm->total;
750 	if (flags & PIN_MAPPABLE)
751 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
752 	if (flags & PIN_ZONE_4G)
753 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
754 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
755 
756 	/* If binding the object/GGTT view requires more space than the entire
757 	 * aperture has, reject it early before evicting everything in a vain
758 	 * attempt to find space.
759 	 */
760 	if (size > end) {
761 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
762 			  size, flags & PIN_MAPPABLE ? "mappable" : "total",
763 			  end);
764 		return -ENOSPC;
765 	}
766 
767 	color = 0;
768 	if (i915_vm_has_cache_coloring(vma->vm))
769 		color = vma->obj->cache_level;
770 
771 	if (flags & PIN_OFFSET_FIXED) {
772 		u64 offset = flags & PIN_OFFSET_MASK;
773 		if (!IS_ALIGNED(offset, alignment) ||
774 		    range_overflows(offset, size, end))
775 			return -EINVAL;
776 
777 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
778 					   size, offset, color,
779 					   flags);
780 		if (ret)
781 			return ret;
782 	} else {
783 		/*
784 		 * We only support huge gtt pages through the 48b PPGTT,
785 		 * however we also don't want to force any alignment for
786 		 * objects which need to be tightly packed into the low 32bits.
787 		 *
788 		 * Note that we assume that GGTT are limited to 4GiB for the
789 		 * forseeable future. See also i915_ggtt_offset().
790 		 */
791 		if (upper_32_bits(end - 1) &&
792 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
793 			/*
794 			 * We can't mix 64K and 4K PTEs in the same page-table
795 			 * (2M block), and so to avoid the ugliness and
796 			 * complexity of coloring we opt for just aligning 64K
797 			 * objects to 2M.
798 			 */
799 			u64 page_alignment =
800 				rounddown_pow_of_two(vma->page_sizes.sg |
801 						     I915_GTT_PAGE_SIZE_2M);
802 
803 			/*
804 			 * Check we don't expand for the limited Global GTT
805 			 * (mappable aperture is even more precious!). This
806 			 * also checks that we exclude the aliasing-ppgtt.
807 			 */
808 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
809 
810 			alignment = max(alignment, page_alignment);
811 
812 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
813 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
814 		}
815 
816 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
817 					  size, alignment, color,
818 					  start, end, flags);
819 		if (ret)
820 			return ret;
821 
822 		GEM_BUG_ON(vma->node.start < start);
823 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
824 	}
825 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
826 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
827 
828 	list_add_tail(&vma->vm_link, &vma->vm->bound_list);
829 
830 	return 0;
831 }
832 
833 static void
834 i915_vma_detach(struct i915_vma *vma)
835 {
836 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
837 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
838 
839 	/*
840 	 * And finally now the object is completely decoupled from this
841 	 * vma, we can drop its hold on the backing storage and allow
842 	 * it to be reaped by the shrinker.
843 	 */
844 	list_del(&vma->vm_link);
845 }
846 
847 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
848 {
849 	unsigned int bound;
850 
851 	bound = atomic_read(&vma->flags);
852 
853 	if (flags & PIN_VALIDATE) {
854 		flags &= I915_VMA_BIND_MASK;
855 
856 		return (flags & bound) == flags;
857 	}
858 
859 	/* with the lock mandatory for unbind, we don't race here */
860 	flags &= I915_VMA_BIND_MASK;
861 	do {
862 		if (unlikely(flags & ~bound))
863 			return false;
864 
865 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
866 			return false;
867 
868 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
869 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
870 
871 	return true;
872 }
873 
874 static struct scatterlist *
875 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
876 	     unsigned int width, unsigned int height,
877 	     unsigned int src_stride, unsigned int dst_stride,
878 	     struct sg_table *st, struct scatterlist *sg)
879 {
880 	unsigned int column, row;
881 	unsigned int src_idx;
882 
883 	for (column = 0; column < width; column++) {
884 		unsigned int left;
885 
886 		src_idx = src_stride * (height - 1) + column + offset;
887 		for (row = 0; row < height; row++) {
888 			st->nents++;
889 			/*
890 			 * We don't need the pages, but need to initialize
891 			 * the entries so the sg list can be happily traversed.
892 			 * The only thing we need are DMA addresses.
893 			 */
894 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
895 			sg_dma_address(sg) =
896 				i915_gem_object_get_dma_address(obj, src_idx);
897 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
898 			sg = sg_next(sg);
899 			src_idx -= src_stride;
900 		}
901 
902 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
903 
904 		if (!left)
905 			continue;
906 
907 		st->nents++;
908 
909 		/*
910 		 * The DE ignores the PTEs for the padding tiles, the sg entry
911 		 * here is just a conenience to indicate how many padding PTEs
912 		 * to insert at this spot.
913 		 */
914 		sg_set_page(sg, NULL, left, 0);
915 		sg_dma_address(sg) = 0;
916 		sg_dma_len(sg) = left;
917 		sg = sg_next(sg);
918 	}
919 
920 	return sg;
921 }
922 
923 static noinline struct sg_table *
924 intel_rotate_pages(struct intel_rotation_info *rot_info,
925 		   struct drm_i915_gem_object *obj)
926 {
927 	unsigned int size = intel_rotation_info_size(rot_info);
928 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
929 	struct sg_table *st;
930 	struct scatterlist *sg;
931 	int ret = -ENOMEM;
932 	int i;
933 
934 	/* Allocate target SG list. */
935 	st = kmalloc(sizeof(*st), GFP_KERNEL);
936 	if (!st)
937 		goto err_st_alloc;
938 
939 	ret = sg_alloc_table(st, size, GFP_KERNEL);
940 	if (ret)
941 		goto err_sg_alloc;
942 
943 	st->nents = 0;
944 	sg = st->sgl;
945 
946 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
947 		sg = rotate_pages(obj, rot_info->plane[i].offset,
948 				  rot_info->plane[i].width, rot_info->plane[i].height,
949 				  rot_info->plane[i].src_stride,
950 				  rot_info->plane[i].dst_stride,
951 				  st, sg);
952 
953 	return st;
954 
955 err_sg_alloc:
956 	kfree(st);
957 err_st_alloc:
958 
959 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
960 		obj->base.size, rot_info->plane[0].width,
961 		rot_info->plane[0].height, size);
962 
963 	return ERR_PTR(ret);
964 }
965 
966 static struct scatterlist *
967 remap_pages(struct drm_i915_gem_object *obj,
968 	    unsigned int offset, unsigned int alignment_pad,
969 	    unsigned int width, unsigned int height,
970 	    unsigned int src_stride, unsigned int dst_stride,
971 	    struct sg_table *st, struct scatterlist *sg)
972 {
973 	unsigned int row;
974 
975 	if (!width || !height)
976 		return sg;
977 
978 	if (alignment_pad) {
979 		st->nents++;
980 
981 		/*
982 		 * The DE ignores the PTEs for the padding tiles, the sg entry
983 		 * here is just a convenience to indicate how many padding PTEs
984 		 * to insert at this spot.
985 		 */
986 		sg_set_page(sg, NULL, alignment_pad * 4096, 0);
987 		sg_dma_address(sg) = 0;
988 		sg_dma_len(sg) = alignment_pad * 4096;
989 		sg = sg_next(sg);
990 	}
991 
992 	for (row = 0; row < height; row++) {
993 		unsigned int left = width * I915_GTT_PAGE_SIZE;
994 
995 		while (left) {
996 			dma_addr_t addr;
997 			unsigned int length;
998 
999 			/*
1000 			 * We don't need the pages, but need to initialize
1001 			 * the entries so the sg list can be happily traversed.
1002 			 * The only thing we need are DMA addresses.
1003 			 */
1004 
1005 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1006 
1007 			length = min(left, length);
1008 
1009 			st->nents++;
1010 
1011 			sg_set_page(sg, NULL, length, 0);
1012 			sg_dma_address(sg) = addr;
1013 			sg_dma_len(sg) = length;
1014 			sg = sg_next(sg);
1015 
1016 			offset += length / I915_GTT_PAGE_SIZE;
1017 			left -= length;
1018 		}
1019 
1020 		offset += src_stride - width;
1021 
1022 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1023 
1024 		if (!left)
1025 			continue;
1026 
1027 		st->nents++;
1028 
1029 		/*
1030 		 * The DE ignores the PTEs for the padding tiles, the sg entry
1031 		 * here is just a conenience to indicate how many padding PTEs
1032 		 * to insert at this spot.
1033 		 */
1034 		sg_set_page(sg, NULL, left, 0);
1035 		sg_dma_address(sg) = 0;
1036 		sg_dma_len(sg) = left;
1037 		sg = sg_next(sg);
1038 	}
1039 
1040 	return sg;
1041 }
1042 
1043 static noinline struct sg_table *
1044 intel_remap_pages(struct intel_remapped_info *rem_info,
1045 		  struct drm_i915_gem_object *obj)
1046 {
1047 	unsigned int size = intel_remapped_info_size(rem_info);
1048 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1049 	struct sg_table *st;
1050 	struct scatterlist *sg;
1051 	unsigned int gtt_offset = 0;
1052 	int ret = -ENOMEM;
1053 	int i;
1054 
1055 	/* Allocate target SG list. */
1056 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1057 	if (!st)
1058 		goto err_st_alloc;
1059 
1060 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1061 	if (ret)
1062 		goto err_sg_alloc;
1063 
1064 	st->nents = 0;
1065 	sg = st->sgl;
1066 
1067 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1068 		unsigned int alignment_pad = 0;
1069 
1070 		if (rem_info->plane_alignment)
1071 			alignment_pad = ALIGN(gtt_offset, rem_info->plane_alignment) - gtt_offset;
1072 
1073 		sg = remap_pages(obj,
1074 				 rem_info->plane[i].offset, alignment_pad,
1075 				 rem_info->plane[i].width, rem_info->plane[i].height,
1076 				 rem_info->plane[i].src_stride, rem_info->plane[i].dst_stride,
1077 				 st, sg);
1078 
1079 		gtt_offset += alignment_pad +
1080 			      rem_info->plane[i].dst_stride * rem_info->plane[i].height;
1081 	}
1082 
1083 	i915_sg_trim(st);
1084 
1085 	return st;
1086 
1087 err_sg_alloc:
1088 	kfree(st);
1089 err_st_alloc:
1090 
1091 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1092 		obj->base.size, rem_info->plane[0].width,
1093 		rem_info->plane[0].height, size);
1094 
1095 	return ERR_PTR(ret);
1096 }
1097 
1098 static noinline struct sg_table *
1099 intel_partial_pages(const struct i915_ggtt_view *view,
1100 		    struct drm_i915_gem_object *obj)
1101 {
1102 	struct sg_table *st;
1103 	struct scatterlist *sg, *iter;
1104 	unsigned int count = view->partial.size;
1105 	unsigned int offset;
1106 	int ret = -ENOMEM;
1107 
1108 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1109 	if (!st)
1110 		goto err_st_alloc;
1111 
1112 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1113 	if (ret)
1114 		goto err_sg_alloc;
1115 
1116 	iter = i915_gem_object_get_sg_dma(obj, view->partial.offset, &offset);
1117 	GEM_BUG_ON(!iter);
1118 
1119 	sg = st->sgl;
1120 	st->nents = 0;
1121 	do {
1122 		unsigned int len;
1123 
1124 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1125 			  count << PAGE_SHIFT);
1126 		sg_set_page(sg, NULL, len, 0);
1127 		sg_dma_address(sg) =
1128 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1129 		sg_dma_len(sg) = len;
1130 
1131 		st->nents++;
1132 		count -= len >> PAGE_SHIFT;
1133 		if (count == 0) {
1134 			sg_mark_end(sg);
1135 			i915_sg_trim(st); /* Drop any unused tail entries. */
1136 
1137 			return st;
1138 		}
1139 
1140 		sg = __sg_next(sg);
1141 		iter = __sg_next(iter);
1142 		offset = 0;
1143 	} while (1);
1144 
1145 err_sg_alloc:
1146 	kfree(st);
1147 err_st_alloc:
1148 	return ERR_PTR(ret);
1149 }
1150 
1151 static int
1152 __i915_vma_get_pages(struct i915_vma *vma)
1153 {
1154 	struct sg_table *pages;
1155 
1156 	/*
1157 	 * The vma->pages are only valid within the lifespan of the borrowed
1158 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1159 	 * must be the vma->pages. A simple rule is that vma->pages must only
1160 	 * be accessed when the obj->mm.pages are pinned.
1161 	 */
1162 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1163 
1164 	switch (vma->ggtt_view.type) {
1165 	default:
1166 		GEM_BUG_ON(vma->ggtt_view.type);
1167 		fallthrough;
1168 	case I915_GGTT_VIEW_NORMAL:
1169 		pages = vma->obj->mm.pages;
1170 		break;
1171 
1172 	case I915_GGTT_VIEW_ROTATED:
1173 		pages =
1174 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1175 		break;
1176 
1177 	case I915_GGTT_VIEW_REMAPPED:
1178 		pages =
1179 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1180 		break;
1181 
1182 	case I915_GGTT_VIEW_PARTIAL:
1183 		pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1184 		break;
1185 	}
1186 
1187 	if (IS_ERR(pages)) {
1188 		drm_err(&vma->vm->i915->drm,
1189 			"Failed to get pages for VMA view type %u (%ld)!\n",
1190 			vma->ggtt_view.type, PTR_ERR(pages));
1191 		return PTR_ERR(pages);
1192 	}
1193 
1194 	vma->pages = pages;
1195 
1196 	return 0;
1197 }
1198 
1199 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1200 {
1201 	int err;
1202 
1203 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1204 		return 0;
1205 
1206 	err = i915_gem_object_pin_pages(vma->obj);
1207 	if (err)
1208 		return err;
1209 
1210 	err = __i915_vma_get_pages(vma);
1211 	if (err)
1212 		goto err_unpin;
1213 
1214 	vma->page_sizes = vma->obj->mm.page_sizes;
1215 	atomic_inc(&vma->pages_count);
1216 
1217 	return 0;
1218 
1219 err_unpin:
1220 	__i915_gem_object_unpin_pages(vma->obj);
1221 
1222 	return err;
1223 }
1224 
1225 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1226 {
1227 	/* We allocate under vma_get_pages, so beware the shrinker */
1228 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1229 
1230 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1231 		if (vma->pages != vma->obj->mm.pages) {
1232 			sg_free_table(vma->pages);
1233 			kfree(vma->pages);
1234 		}
1235 		vma->pages = NULL;
1236 
1237 		i915_gem_object_unpin_pages(vma->obj);
1238 	}
1239 }
1240 
1241 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1242 {
1243 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1244 		return;
1245 
1246 	__vma_put_pages(vma, 1);
1247 }
1248 
1249 static void vma_unbind_pages(struct i915_vma *vma)
1250 {
1251 	unsigned int count;
1252 
1253 	lockdep_assert_held(&vma->vm->mutex);
1254 
1255 	/* The upper portion of pages_count is the number of bindings */
1256 	count = atomic_read(&vma->pages_count);
1257 	count >>= I915_VMA_PAGES_BIAS;
1258 	GEM_BUG_ON(!count);
1259 
1260 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1261 }
1262 
1263 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1264 		    u64 size, u64 alignment, u64 flags)
1265 {
1266 	struct i915_vma_work *work = NULL;
1267 	struct dma_fence *moving = NULL;
1268 	struct i915_vma_resource *vma_res = NULL;
1269 	intel_wakeref_t wakeref = 0;
1270 	unsigned int bound;
1271 	int err;
1272 
1273 	assert_vma_held(vma);
1274 	GEM_BUG_ON(!ww);
1275 
1276 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1277 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1278 
1279 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1280 
1281 	/* First try and grab the pin without rebinding the vma */
1282 	if (try_qad_pin(vma, flags))
1283 		return 0;
1284 
1285 	err = i915_vma_get_pages(vma);
1286 	if (err)
1287 		return err;
1288 
1289 	if (flags & PIN_GLOBAL)
1290 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1291 
1292 	moving = vma->obj ? i915_gem_object_get_moving_fence(vma->obj) : NULL;
1293 	if (flags & vma->vm->bind_async_flags || moving) {
1294 		/* lock VM */
1295 		err = i915_vm_lock_objects(vma->vm, ww);
1296 		if (err)
1297 			goto err_rpm;
1298 
1299 		work = i915_vma_work();
1300 		if (!work) {
1301 			err = -ENOMEM;
1302 			goto err_rpm;
1303 		}
1304 
1305 		work->vm = i915_vm_get(vma->vm);
1306 
1307 		dma_fence_work_chain(&work->base, moving);
1308 
1309 		/* Allocate enough page directories to used PTE */
1310 		if (vma->vm->allocate_va_range) {
1311 			err = i915_vm_alloc_pt_stash(vma->vm,
1312 						     &work->stash,
1313 						     vma->size);
1314 			if (err)
1315 				goto err_fence;
1316 
1317 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1318 			if (err)
1319 				goto err_fence;
1320 		}
1321 	}
1322 
1323 	vma_res = i915_vma_resource_alloc();
1324 	if (IS_ERR(vma_res)) {
1325 		err = PTR_ERR(vma_res);
1326 		goto err_fence;
1327 	}
1328 
1329 	/*
1330 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1331 	 *
1332 	 * We conflate the Global GTT with the user's vma when using the
1333 	 * aliasing-ppgtt, but it is still vitally important to try and
1334 	 * keep the use cases distinct. For example, userptr objects are
1335 	 * not allowed inside the Global GTT as that will cause lock
1336 	 * inversions when we have to evict them the mmu_notifier callbacks -
1337 	 * but they are allowed to be part of the user ppGTT which can never
1338 	 * be mapped. As such we try to give the distinct users of the same
1339 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1340 	 * and i915_ppgtt separate].
1341 	 *
1342 	 * NB this may cause us to mask real lock inversions -- while the
1343 	 * code is safe today, lockdep may not be able to spot future
1344 	 * transgressions.
1345 	 */
1346 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1347 					      !(flags & PIN_GLOBAL));
1348 	if (err)
1349 		goto err_vma_res;
1350 
1351 	/* No more allocations allowed now we hold vm->mutex */
1352 
1353 	if (unlikely(i915_vma_is_closed(vma))) {
1354 		err = -ENOENT;
1355 		goto err_unlock;
1356 	}
1357 
1358 	bound = atomic_read(&vma->flags);
1359 	if (unlikely(bound & I915_VMA_ERROR)) {
1360 		err = -ENOMEM;
1361 		goto err_unlock;
1362 	}
1363 
1364 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1365 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1366 		goto err_unlock;
1367 	}
1368 
1369 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1370 		if (!(flags & PIN_VALIDATE))
1371 			__i915_vma_pin(vma);
1372 		goto err_unlock;
1373 	}
1374 
1375 	err = i915_active_acquire(&vma->active);
1376 	if (err)
1377 		goto err_unlock;
1378 
1379 	if (!(bound & I915_VMA_BIND_MASK)) {
1380 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1381 		if (err)
1382 			goto err_active;
1383 
1384 		if (i915_is_ggtt(vma->vm))
1385 			__i915_vma_set_map_and_fenceable(vma);
1386 	}
1387 
1388 	GEM_BUG_ON(!vma->pages);
1389 	err = i915_vma_bind(vma,
1390 			    vma->obj->cache_level,
1391 			    flags, work, vma_res);
1392 	vma_res = NULL;
1393 	if (err)
1394 		goto err_remove;
1395 
1396 	/* There should only be at most 2 active bindings (user, global) */
1397 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1398 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1399 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1400 
1401 	if (!(flags & PIN_VALIDATE)) {
1402 		__i915_vma_pin(vma);
1403 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1404 	}
1405 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1406 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1407 
1408 err_remove:
1409 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1410 		i915_vma_detach(vma);
1411 		drm_mm_remove_node(&vma->node);
1412 	}
1413 err_active:
1414 	i915_active_release(&vma->active);
1415 err_unlock:
1416 	mutex_unlock(&vma->vm->mutex);
1417 err_vma_res:
1418 	i915_vma_resource_free(vma_res);
1419 err_fence:
1420 	if (work)
1421 		dma_fence_work_commit_imm(&work->base);
1422 err_rpm:
1423 	if (wakeref)
1424 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1425 
1426 	if (moving)
1427 		dma_fence_put(moving);
1428 
1429 	i915_vma_put_pages(vma);
1430 	return err;
1431 }
1432 
1433 static void flush_idle_contexts(struct intel_gt *gt)
1434 {
1435 	struct intel_engine_cs *engine;
1436 	enum intel_engine_id id;
1437 
1438 	for_each_engine(engine, gt, id)
1439 		intel_engine_flush_barriers(engine);
1440 
1441 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1442 }
1443 
1444 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1445 			   u32 align, unsigned int flags)
1446 {
1447 	struct i915_address_space *vm = vma->vm;
1448 	int err;
1449 
1450 	do {
1451 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1452 
1453 		if (err != -ENOSPC) {
1454 			if (!err) {
1455 				err = i915_vma_wait_for_bind(vma);
1456 				if (err)
1457 					i915_vma_unpin(vma);
1458 			}
1459 			return err;
1460 		}
1461 
1462 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1463 		flush_idle_contexts(vm->gt);
1464 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1465 			/*
1466 			 * We pass NULL ww here, as we don't want to unbind
1467 			 * locked objects when called from execbuf when pinning
1468 			 * is removed. This would probably regress badly.
1469 			 */
1470 			i915_gem_evict_vm(vm, NULL);
1471 			mutex_unlock(&vm->mutex);
1472 		}
1473 	} while (1);
1474 }
1475 
1476 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1477 		  u32 align, unsigned int flags)
1478 {
1479 	struct i915_gem_ww_ctx _ww;
1480 	int err;
1481 
1482 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1483 
1484 	if (ww)
1485 		return __i915_ggtt_pin(vma, ww, align, flags);
1486 
1487 #ifdef CONFIG_LOCKDEP
1488 	WARN_ON(dma_resv_held(vma->obj->base.resv));
1489 #endif
1490 
1491 	for_i915_gem_ww(&_ww, err, true) {
1492 		err = i915_gem_object_lock(vma->obj, &_ww);
1493 		if (!err)
1494 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1495 	}
1496 
1497 	return err;
1498 }
1499 
1500 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1501 {
1502 	/*
1503 	 * We defer actually closing, unbinding and destroying the VMA until
1504 	 * the next idle point, or if the object is freed in the meantime. By
1505 	 * postponing the unbind, we allow for it to be resurrected by the
1506 	 * client, avoiding the work required to rebind the VMA. This is
1507 	 * advantageous for DRI, where the client/server pass objects
1508 	 * between themselves, temporarily opening a local VMA to the
1509 	 * object, and then closing it again. The same object is then reused
1510 	 * on the next frame (or two, depending on the depth of the swap queue)
1511 	 * causing us to rebind the VMA once more. This ends up being a lot
1512 	 * of wasted work for the steady state.
1513 	 */
1514 	GEM_BUG_ON(i915_vma_is_closed(vma));
1515 	list_add(&vma->closed_link, &gt->closed_vma);
1516 }
1517 
1518 void i915_vma_close(struct i915_vma *vma)
1519 {
1520 	struct intel_gt *gt = vma->vm->gt;
1521 	unsigned long flags;
1522 
1523 	if (i915_vma_is_ggtt(vma))
1524 		return;
1525 
1526 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1527 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1528 					&gt->closed_lock,
1529 					flags)) {
1530 		__vma_close(vma, gt);
1531 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1532 	}
1533 }
1534 
1535 static void __i915_vma_remove_closed(struct i915_vma *vma)
1536 {
1537 	struct intel_gt *gt = vma->vm->gt;
1538 
1539 	spin_lock_irq(&gt->closed_lock);
1540 	list_del_init(&vma->closed_link);
1541 	spin_unlock_irq(&gt->closed_lock);
1542 }
1543 
1544 void i915_vma_reopen(struct i915_vma *vma)
1545 {
1546 	if (i915_vma_is_closed(vma))
1547 		__i915_vma_remove_closed(vma);
1548 }
1549 
1550 void i915_vma_release(struct kref *ref)
1551 {
1552 	struct i915_vma *vma = container_of(ref, typeof(*vma), ref);
1553 	struct drm_i915_gem_object *obj = vma->obj;
1554 
1555 	if (drm_mm_node_allocated(&vma->node)) {
1556 		mutex_lock(&vma->vm->mutex);
1557 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1558 		WARN_ON(__i915_vma_unbind(vma));
1559 		mutex_unlock(&vma->vm->mutex);
1560 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1561 	}
1562 	GEM_BUG_ON(i915_vma_is_active(vma));
1563 
1564 	spin_lock(&obj->vma.lock);
1565 	list_del(&vma->obj_link);
1566 	if (!RB_EMPTY_NODE(&vma->obj_node))
1567 		rb_erase(&vma->obj_node, &obj->vma.tree);
1568 	spin_unlock(&obj->vma.lock);
1569 
1570 	__i915_vma_remove_closed(vma);
1571 	i915_vm_put(vma->vm);
1572 
1573 	i915_active_fini(&vma->active);
1574 	GEM_WARN_ON(vma->resource);
1575 	i915_vma_free(vma);
1576 }
1577 
1578 void i915_vma_parked(struct intel_gt *gt)
1579 {
1580 	struct i915_vma *vma, *next;
1581 	LIST_HEAD(closed);
1582 
1583 	spin_lock_irq(&gt->closed_lock);
1584 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1585 		struct drm_i915_gem_object *obj = vma->obj;
1586 		struct i915_address_space *vm = vma->vm;
1587 
1588 		/* XXX All to avoid keeping a reference on i915_vma itself */
1589 
1590 		if (!kref_get_unless_zero(&obj->base.refcount))
1591 			continue;
1592 
1593 		if (!i915_vm_tryopen(vm)) {
1594 			i915_gem_object_put(obj);
1595 			continue;
1596 		}
1597 
1598 		list_move(&vma->closed_link, &closed);
1599 	}
1600 	spin_unlock_irq(&gt->closed_lock);
1601 
1602 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1603 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1604 		struct drm_i915_gem_object *obj = vma->obj;
1605 		struct i915_address_space *vm = vma->vm;
1606 
1607 		if (i915_gem_object_trylock(obj, NULL)) {
1608 			INIT_LIST_HEAD(&vma->closed_link);
1609 			__i915_vma_put(vma);
1610 			i915_gem_object_unlock(obj);
1611 		} else {
1612 			/* back you go.. */
1613 			spin_lock_irq(&gt->closed_lock);
1614 			list_add(&vma->closed_link, &gt->closed_vma);
1615 			spin_unlock_irq(&gt->closed_lock);
1616 		}
1617 
1618 		i915_gem_object_put(obj);
1619 		i915_vm_close(vm);
1620 	}
1621 }
1622 
1623 static void __i915_vma_iounmap(struct i915_vma *vma)
1624 {
1625 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1626 
1627 	if (vma->iomap == NULL)
1628 		return;
1629 
1630 	io_mapping_unmap(vma->iomap);
1631 	vma->iomap = NULL;
1632 }
1633 
1634 void i915_vma_revoke_mmap(struct i915_vma *vma)
1635 {
1636 	struct drm_vma_offset_node *node;
1637 	u64 vma_offset;
1638 
1639 	if (!i915_vma_has_userfault(vma))
1640 		return;
1641 
1642 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1643 	GEM_BUG_ON(!vma->obj->userfault_count);
1644 
1645 	node = &vma->mmo->vma_node;
1646 	vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
1647 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1648 			    drm_vma_node_offset_addr(node) + vma_offset,
1649 			    vma->size,
1650 			    1);
1651 
1652 	i915_vma_unset_userfault(vma);
1653 	if (!--vma->obj->userfault_count)
1654 		list_del(&vma->obj->userfault_link);
1655 }
1656 
1657 static int
1658 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1659 {
1660 	return __i915_request_await_exclusive(rq, &vma->active);
1661 }
1662 
1663 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1664 {
1665 	int err;
1666 
1667 	/* Wait for the vma to be bound before we start! */
1668 	err = __i915_request_await_bind(rq, vma);
1669 	if (err)
1670 		return err;
1671 
1672 	return i915_active_add_request(&vma->active, rq);
1673 }
1674 
1675 int _i915_vma_move_to_active(struct i915_vma *vma,
1676 			     struct i915_request *rq,
1677 			     struct dma_fence *fence,
1678 			     unsigned int flags)
1679 {
1680 	struct drm_i915_gem_object *obj = vma->obj;
1681 	int err;
1682 
1683 	assert_object_held(obj);
1684 
1685 	GEM_BUG_ON(!vma->pages);
1686 
1687 	err = __i915_vma_move_to_active(vma, rq);
1688 	if (unlikely(err))
1689 		return err;
1690 
1691 	if (flags & EXEC_OBJECT_WRITE) {
1692 		struct intel_frontbuffer *front;
1693 
1694 		front = __intel_frontbuffer_get(obj);
1695 		if (unlikely(front)) {
1696 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1697 				i915_active_add_request(&front->write, rq);
1698 			intel_frontbuffer_put(front);
1699 		}
1700 
1701 		if (fence) {
1702 			dma_resv_add_excl_fence(vma->obj->base.resv, fence);
1703 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1704 			obj->read_domains = 0;
1705 		}
1706 	} else {
1707 		if (!(flags & __EXEC_OBJECT_NO_RESERVE)) {
1708 			err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
1709 			if (unlikely(err))
1710 				return err;
1711 		}
1712 
1713 		if (fence) {
1714 			dma_resv_add_shared_fence(vma->obj->base.resv, fence);
1715 			obj->write_domain = 0;
1716 		}
1717 	}
1718 
1719 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1720 		i915_active_add_request(&vma->fence->active, rq);
1721 
1722 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1723 	obj->mm.dirty = true;
1724 
1725 	GEM_BUG_ON(!i915_vma_is_active(vma));
1726 	return 0;
1727 }
1728 
1729 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1730 {
1731 	struct i915_vma_resource *vma_res = vma->resource;
1732 	struct dma_fence *unbind_fence;
1733 
1734 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1735 	assert_vma_held_evict(vma);
1736 
1737 	if (i915_vma_is_map_and_fenceable(vma)) {
1738 		/* Force a pagefault for domain tracking on next user access */
1739 		i915_vma_revoke_mmap(vma);
1740 
1741 		/*
1742 		 * Check that we have flushed all writes through the GGTT
1743 		 * before the unbind, other due to non-strict nature of those
1744 		 * indirect writes they may end up referencing the GGTT PTE
1745 		 * after the unbind.
1746 		 *
1747 		 * Note that we may be concurrently poking at the GGTT_WRITE
1748 		 * bit from set-domain, as we mark all GGTT vma associated
1749 		 * with an object. We know this is for another vma, as we
1750 		 * are currently unbinding this one -- so if this vma will be
1751 		 * reused, it will be refaulted and have its dirty bit set
1752 		 * before the next write.
1753 		 */
1754 		i915_vma_flush_writes(vma);
1755 
1756 		/* release the fence reg _after_ flushing */
1757 		i915_vma_revoke_fence(vma);
1758 
1759 		__i915_vma_iounmap(vma);
1760 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1761 	}
1762 	GEM_BUG_ON(vma->fence);
1763 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1764 
1765 	/* Object backend must be async capable. */
1766 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1767 
1768 	/* If vm is not open, unbind is a nop. */
1769 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1770 		atomic_read(&vma->vm->open);
1771 	trace_i915_vma_unbind(vma);
1772 
1773 	unbind_fence = i915_vma_resource_unbind(vma_res);
1774 	vma->resource = NULL;
1775 
1776 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1777 		   &vma->flags);
1778 
1779 	i915_vma_detach(vma);
1780 
1781 	if (!async && unbind_fence) {
1782 		dma_fence_wait(unbind_fence, false);
1783 		dma_fence_put(unbind_fence);
1784 		unbind_fence = NULL;
1785 	}
1786 
1787 	/*
1788 	 * Binding itself may not have completed until the unbind fence signals,
1789 	 * so don't drop the pages until that happens, unless the resource is
1790 	 * async_capable.
1791 	 */
1792 
1793 	vma_unbind_pages(vma);
1794 	return unbind_fence;
1795 }
1796 
1797 int __i915_vma_unbind(struct i915_vma *vma)
1798 {
1799 	int ret;
1800 
1801 	lockdep_assert_held(&vma->vm->mutex);
1802 	assert_vma_held_evict(vma);
1803 
1804 	if (!drm_mm_node_allocated(&vma->node))
1805 		return 0;
1806 
1807 	if (i915_vma_is_pinned(vma)) {
1808 		vma_print_allocator(vma, "is pinned");
1809 		return -EAGAIN;
1810 	}
1811 
1812 	/*
1813 	 * After confirming that no one else is pinning this vma, wait for
1814 	 * any laggards who may have crept in during the wait (through
1815 	 * a residual pin skipping the vm->mutex) to complete.
1816 	 */
1817 	ret = i915_vma_sync(vma);
1818 	if (ret)
1819 		return ret;
1820 
1821 	GEM_BUG_ON(i915_vma_is_active(vma));
1822 	__i915_vma_evict(vma, false);
1823 
1824 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
1825 	return 0;
1826 }
1827 
1828 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
1829 {
1830 	struct dma_fence *fence;
1831 
1832 	lockdep_assert_held(&vma->vm->mutex);
1833 
1834 	if (!drm_mm_node_allocated(&vma->node))
1835 		return NULL;
1836 
1837 	if (i915_vma_is_pinned(vma) ||
1838 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
1839 		return ERR_PTR(-EAGAIN);
1840 
1841 	/*
1842 	 * We probably need to replace this with awaiting the fences of the
1843 	 * object's dma_resv when the vma active goes away. When doing that
1844 	 * we need to be careful to not add the vma_resource unbind fence
1845 	 * immediately to the object's dma_resv, because then unbinding
1846 	 * the next vma from the object, in case there are many, will
1847 	 * actually await the unbinding of the previous vmas, which is
1848 	 * undesirable.
1849 	 */
1850 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
1851 				       I915_ACTIVE_AWAIT_EXCL |
1852 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
1853 		return ERR_PTR(-EBUSY);
1854 	}
1855 
1856 	fence = __i915_vma_evict(vma, true);
1857 
1858 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
1859 
1860 	return fence;
1861 }
1862 
1863 int i915_vma_unbind(struct i915_vma *vma)
1864 {
1865 	struct i915_address_space *vm = vma->vm;
1866 	intel_wakeref_t wakeref = 0;
1867 	int err;
1868 
1869 	assert_object_held_shared(vma->obj);
1870 
1871 	/* Optimistic wait before taking the mutex */
1872 	err = i915_vma_sync(vma);
1873 	if (err)
1874 		return err;
1875 
1876 	if (!drm_mm_node_allocated(&vma->node))
1877 		return 0;
1878 
1879 	if (i915_vma_is_pinned(vma)) {
1880 		vma_print_allocator(vma, "is pinned");
1881 		return -EAGAIN;
1882 	}
1883 
1884 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
1885 		/* XXX not always required: nop_clear_range */
1886 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1887 
1888 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
1889 	if (err)
1890 		goto out_rpm;
1891 
1892 	err = __i915_vma_unbind(vma);
1893 	mutex_unlock(&vm->mutex);
1894 
1895 out_rpm:
1896 	if (wakeref)
1897 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1898 	return err;
1899 }
1900 
1901 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
1902 {
1903 	struct drm_i915_gem_object *obj = vma->obj;
1904 	struct i915_address_space *vm = vma->vm;
1905 	intel_wakeref_t wakeref = 0;
1906 	struct dma_fence *fence;
1907 	int err;
1908 
1909 	/*
1910 	 * We need the dma-resv lock since we add the
1911 	 * unbind fence to the dma-resv object.
1912 	 */
1913 	assert_object_held(obj);
1914 
1915 	if (!drm_mm_node_allocated(&vma->node))
1916 		return 0;
1917 
1918 	if (i915_vma_is_pinned(vma)) {
1919 		vma_print_allocator(vma, "is pinned");
1920 		return -EAGAIN;
1921 	}
1922 
1923 	if (!obj->mm.rsgt)
1924 		return -EBUSY;
1925 
1926 	err = dma_resv_reserve_shared(obj->base.resv, 1);
1927 	if (err)
1928 		return -EBUSY;
1929 
1930 	/*
1931 	 * It would be great if we could grab this wakeref from the
1932 	 * async unbind work if needed, but we can't because it uses
1933 	 * kmalloc and it's in the dma-fence signalling critical path.
1934 	 */
1935 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
1936 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1937 
1938 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
1939 		err = -EBUSY;
1940 		goto out_rpm;
1941 	} else if (!trylock_vm) {
1942 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
1943 		if (err)
1944 			goto out_rpm;
1945 	}
1946 
1947 	fence = __i915_vma_unbind_async(vma);
1948 	mutex_unlock(&vm->mutex);
1949 	if (IS_ERR_OR_NULL(fence)) {
1950 		err = PTR_ERR_OR_ZERO(fence);
1951 		goto out_rpm;
1952 	}
1953 
1954 	dma_resv_add_shared_fence(obj->base.resv, fence);
1955 	dma_fence_put(fence);
1956 
1957 out_rpm:
1958 	if (wakeref)
1959 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1960 	return err;
1961 }
1962 
1963 int i915_vma_unbind_unlocked(struct i915_vma *vma)
1964 {
1965 	int err;
1966 
1967 	i915_gem_object_lock(vma->obj, NULL);
1968 	err = i915_vma_unbind(vma);
1969 	i915_gem_object_unlock(vma->obj);
1970 
1971 	return err;
1972 }
1973 
1974 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
1975 {
1976 	i915_gem_object_make_unshrinkable(vma->obj);
1977 	return vma;
1978 }
1979 
1980 void i915_vma_make_shrinkable(struct i915_vma *vma)
1981 {
1982 	i915_gem_object_make_shrinkable(vma->obj);
1983 }
1984 
1985 void i915_vma_make_purgeable(struct i915_vma *vma)
1986 {
1987 	i915_gem_object_make_purgeable(vma->obj);
1988 }
1989 
1990 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1991 #include "selftests/i915_vma.c"
1992 #endif
1993 
1994 void i915_vma_module_exit(void)
1995 {
1996 	kmem_cache_destroy(slab_vmas);
1997 }
1998 
1999 int __init i915_vma_module_init(void)
2000 {
2001 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2002 	if (!slab_vmas)
2003 		return -ENOMEM;
2004 
2005 	return 0;
2006 }
2007