1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <drm/drm_gem.h> 27 28 #include "display/intel_frontbuffer.h" 29 #include "gem/i915_gem_lmem.h" 30 #include "gem/i915_gem_tiling.h" 31 #include "gt/intel_engine.h" 32 #include "gt/intel_engine_heartbeat.h" 33 #include "gt/intel_gt.h" 34 #include "gt/intel_gt_requests.h" 35 36 #include "i915_drv.h" 37 #include "i915_gem_evict.h" 38 #include "i915_sw_fence_work.h" 39 #include "i915_trace.h" 40 #include "i915_vma.h" 41 #include "i915_vma_resource.h" 42 43 static inline void assert_vma_held_evict(const struct i915_vma *vma) 44 { 45 /* 46 * We may be forced to unbind when the vm is dead, to clean it up. 47 * This is the only exception to the requirement of the object lock 48 * being held. 49 */ 50 if (kref_read(&vma->vm->ref)) 51 assert_object_held_shared(vma->obj); 52 } 53 54 static struct kmem_cache *slab_vmas; 55 56 static struct i915_vma *i915_vma_alloc(void) 57 { 58 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL); 59 } 60 61 static void i915_vma_free(struct i915_vma *vma) 62 { 63 return kmem_cache_free(slab_vmas, vma); 64 } 65 66 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 67 68 #include <linux/stackdepot.h> 69 70 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 71 { 72 char buf[512]; 73 74 if (!vma->node.stack) { 75 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n", 76 vma->node.start, vma->node.size, reason); 77 return; 78 } 79 80 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0); 81 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n", 82 vma->node.start, vma->node.size, reason, buf); 83 } 84 85 #else 86 87 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 88 { 89 } 90 91 #endif 92 93 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 94 { 95 return container_of(ref, typeof(struct i915_vma), active); 96 } 97 98 static int __i915_vma_active(struct i915_active *ref) 99 { 100 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; 101 } 102 103 static void __i915_vma_retire(struct i915_active *ref) 104 { 105 i915_vma_put(active_to_vma(ref)); 106 } 107 108 static struct i915_vma * 109 vma_create(struct drm_i915_gem_object *obj, 110 struct i915_address_space *vm, 111 const struct i915_ggtt_view *view) 112 { 113 struct i915_vma *pos = ERR_PTR(-E2BIG); 114 struct i915_vma *vma; 115 struct rb_node *rb, **p; 116 int err; 117 118 /* The aliasing_ppgtt should never be used directly! */ 119 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 120 121 vma = i915_vma_alloc(); 122 if (vma == NULL) 123 return ERR_PTR(-ENOMEM); 124 125 vma->ops = &vm->vma_ops; 126 vma->obj = obj; 127 vma->size = obj->base.size; 128 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 129 130 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0); 131 132 /* Declare ourselves safe for use inside shrinkers */ 133 if (IS_ENABLED(CONFIG_LOCKDEP)) { 134 fs_reclaim_acquire(GFP_KERNEL); 135 might_lock(&vma->active.mutex); 136 fs_reclaim_release(GFP_KERNEL); 137 } 138 139 INIT_LIST_HEAD(&vma->closed_link); 140 INIT_LIST_HEAD(&vma->obj_link); 141 RB_CLEAR_NODE(&vma->obj_node); 142 143 if (view && view->type != I915_GGTT_VIEW_NORMAL) { 144 vma->ggtt_view = *view; 145 if (view->type == I915_GGTT_VIEW_PARTIAL) { 146 GEM_BUG_ON(range_overflows_t(u64, 147 view->partial.offset, 148 view->partial.size, 149 obj->base.size >> PAGE_SHIFT)); 150 vma->size = view->partial.size; 151 vma->size <<= PAGE_SHIFT; 152 GEM_BUG_ON(vma->size > obj->base.size); 153 } else if (view->type == I915_GGTT_VIEW_ROTATED) { 154 vma->size = intel_rotation_info_size(&view->rotated); 155 vma->size <<= PAGE_SHIFT; 156 } else if (view->type == I915_GGTT_VIEW_REMAPPED) { 157 vma->size = intel_remapped_info_size(&view->remapped); 158 vma->size <<= PAGE_SHIFT; 159 } 160 } 161 162 if (unlikely(vma->size > vm->total)) 163 goto err_vma; 164 165 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 166 167 err = mutex_lock_interruptible(&vm->mutex); 168 if (err) { 169 pos = ERR_PTR(err); 170 goto err_vma; 171 } 172 173 vma->vm = vm; 174 list_add_tail(&vma->vm_link, &vm->unbound_list); 175 176 spin_lock(&obj->vma.lock); 177 if (i915_is_ggtt(vm)) { 178 if (unlikely(overflows_type(vma->size, u32))) 179 goto err_unlock; 180 181 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 182 i915_gem_object_get_tiling(obj), 183 i915_gem_object_get_stride(obj)); 184 if (unlikely(vma->fence_size < vma->size || /* overflow */ 185 vma->fence_size > vm->total)) 186 goto err_unlock; 187 188 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 189 190 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 191 i915_gem_object_get_tiling(obj), 192 i915_gem_object_get_stride(obj)); 193 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 194 195 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 196 } 197 198 rb = NULL; 199 p = &obj->vma.tree.rb_node; 200 while (*p) { 201 long cmp; 202 203 rb = *p; 204 pos = rb_entry(rb, struct i915_vma, obj_node); 205 206 /* 207 * If the view already exists in the tree, another thread 208 * already created a matching vma, so return the older instance 209 * and dispose of ours. 210 */ 211 cmp = i915_vma_compare(pos, vm, view); 212 if (cmp < 0) 213 p = &rb->rb_right; 214 else if (cmp > 0) 215 p = &rb->rb_left; 216 else 217 goto err_unlock; 218 } 219 rb_link_node(&vma->obj_node, rb, p); 220 rb_insert_color(&vma->obj_node, &obj->vma.tree); 221 222 if (i915_vma_is_ggtt(vma)) 223 /* 224 * We put the GGTT vma at the start of the vma-list, followed 225 * by the ppGGTT vma. This allows us to break early when 226 * iterating over only the GGTT vma for an object, see 227 * for_each_ggtt_vma() 228 */ 229 list_add(&vma->obj_link, &obj->vma.list); 230 else 231 list_add_tail(&vma->obj_link, &obj->vma.list); 232 233 spin_unlock(&obj->vma.lock); 234 mutex_unlock(&vm->mutex); 235 236 return vma; 237 238 err_unlock: 239 spin_unlock(&obj->vma.lock); 240 list_del_init(&vma->vm_link); 241 mutex_unlock(&vm->mutex); 242 err_vma: 243 i915_vma_free(vma); 244 return pos; 245 } 246 247 static struct i915_vma * 248 i915_vma_lookup(struct drm_i915_gem_object *obj, 249 struct i915_address_space *vm, 250 const struct i915_ggtt_view *view) 251 { 252 struct rb_node *rb; 253 254 rb = obj->vma.tree.rb_node; 255 while (rb) { 256 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 257 long cmp; 258 259 cmp = i915_vma_compare(vma, vm, view); 260 if (cmp == 0) 261 return vma; 262 263 if (cmp < 0) 264 rb = rb->rb_right; 265 else 266 rb = rb->rb_left; 267 } 268 269 return NULL; 270 } 271 272 /** 273 * i915_vma_instance - return the singleton instance of the VMA 274 * @obj: parent &struct drm_i915_gem_object to be mapped 275 * @vm: address space in which the mapping is located 276 * @view: additional mapping requirements 277 * 278 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 279 * the same @view characteristics. If a match is not found, one is created. 280 * Once created, the VMA is kept until either the object is freed, or the 281 * address space is closed. 282 * 283 * Returns the vma, or an error pointer. 284 */ 285 struct i915_vma * 286 i915_vma_instance(struct drm_i915_gem_object *obj, 287 struct i915_address_space *vm, 288 const struct i915_ggtt_view *view) 289 { 290 struct i915_vma *vma; 291 292 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm)); 293 GEM_BUG_ON(!kref_read(&vm->ref)); 294 295 spin_lock(&obj->vma.lock); 296 vma = i915_vma_lookup(obj, vm, view); 297 spin_unlock(&obj->vma.lock); 298 299 /* vma_create() will resolve the race if another creates the vma */ 300 if (unlikely(!vma)) 301 vma = vma_create(obj, vm, view); 302 303 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 304 return vma; 305 } 306 307 struct i915_vma_work { 308 struct dma_fence_work base; 309 struct i915_address_space *vm; 310 struct i915_vm_pt_stash stash; 311 struct i915_vma_resource *vma_res; 312 struct drm_i915_gem_object *pinned; 313 struct i915_sw_dma_fence_cb cb; 314 enum i915_cache_level cache_level; 315 unsigned int flags; 316 }; 317 318 static void __vma_bind(struct dma_fence_work *work) 319 { 320 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 321 struct i915_vma_resource *vma_res = vw->vma_res; 322 323 vma_res->ops->bind_vma(vma_res->vm, &vw->stash, 324 vma_res, vw->cache_level, vw->flags); 325 326 } 327 328 static void __vma_release(struct dma_fence_work *work) 329 { 330 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 331 332 if (vw->pinned) 333 i915_gem_object_put(vw->pinned); 334 335 i915_vm_free_pt_stash(vw->vm, &vw->stash); 336 if (vw->vma_res) 337 i915_vma_resource_put(vw->vma_res); 338 } 339 340 static const struct dma_fence_work_ops bind_ops = { 341 .name = "bind", 342 .work = __vma_bind, 343 .release = __vma_release, 344 }; 345 346 struct i915_vma_work *i915_vma_work(void) 347 { 348 struct i915_vma_work *vw; 349 350 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 351 if (!vw) 352 return NULL; 353 354 dma_fence_work_init(&vw->base, &bind_ops); 355 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 356 357 return vw; 358 } 359 360 int i915_vma_wait_for_bind(struct i915_vma *vma) 361 { 362 int err = 0; 363 364 if (rcu_access_pointer(vma->active.excl.fence)) { 365 struct dma_fence *fence; 366 367 rcu_read_lock(); 368 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 369 rcu_read_unlock(); 370 if (fence) { 371 err = dma_fence_wait(fence, true); 372 dma_fence_put(fence); 373 } 374 } 375 376 return err; 377 } 378 379 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 380 static int i915_vma_verify_bind_complete(struct i915_vma *vma) 381 { 382 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl); 383 int err; 384 385 if (!fence) 386 return 0; 387 388 if (dma_fence_is_signaled(fence)) 389 err = fence->error; 390 else 391 err = -EBUSY; 392 393 dma_fence_put(fence); 394 395 return err; 396 } 397 #else 398 #define i915_vma_verify_bind_complete(_vma) 0 399 #endif 400 401 I915_SELFTEST_EXPORT void 402 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res, 403 struct i915_vma *vma) 404 { 405 struct drm_i915_gem_object *obj = vma->obj; 406 407 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes, 408 obj->mm.rsgt, i915_gem_object_is_readonly(obj), 409 i915_gem_object_is_lmem(obj), obj->mm.region, 410 vma->ops, vma->private, vma->node.start, 411 vma->node.size, vma->size); 412 } 413 414 /** 415 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 416 * @vma: VMA to map 417 * @cache_level: mapping cache level 418 * @flags: flags like global or local mapping 419 * @work: preallocated worker for allocating and binding the PTE 420 * @vma_res: pointer to a preallocated vma resource. The resource is either 421 * consumed or freed. 422 * 423 * DMA addresses are taken from the scatter-gather table of this object (or of 424 * this VMA in case of non-default GGTT views) and PTE entries set up. 425 * Note that DMA addresses are also the only part of the SG table we care about. 426 */ 427 int i915_vma_bind(struct i915_vma *vma, 428 enum i915_cache_level cache_level, 429 u32 flags, 430 struct i915_vma_work *work, 431 struct i915_vma_resource *vma_res) 432 { 433 u32 bind_flags; 434 u32 vma_flags; 435 int ret; 436 437 lockdep_assert_held(&vma->vm->mutex); 438 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 439 GEM_BUG_ON(vma->size > vma->node.size); 440 441 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 442 vma->node.size, 443 vma->vm->total))) { 444 i915_vma_resource_free(vma_res); 445 return -ENODEV; 446 } 447 448 if (GEM_DEBUG_WARN_ON(!flags)) { 449 i915_vma_resource_free(vma_res); 450 return -EINVAL; 451 } 452 453 bind_flags = flags; 454 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 455 456 vma_flags = atomic_read(&vma->flags); 457 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 458 459 bind_flags &= ~vma_flags; 460 if (bind_flags == 0) { 461 i915_vma_resource_free(vma_res); 462 return 0; 463 } 464 465 GEM_BUG_ON(!atomic_read(&vma->pages_count)); 466 467 /* Wait for or await async unbinds touching our range */ 468 if (work && bind_flags & vma->vm->bind_async_flags) 469 ret = i915_vma_resource_bind_dep_await(vma->vm, 470 &work->base.chain, 471 vma->node.start, 472 vma->node.size, 473 true, 474 GFP_NOWAIT | 475 __GFP_RETRY_MAYFAIL | 476 __GFP_NOWARN); 477 else 478 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start, 479 vma->node.size, true); 480 if (ret) { 481 i915_vma_resource_free(vma_res); 482 return ret; 483 } 484 485 if (vma->resource || !vma_res) { 486 /* Rebinding with an additional I915_VMA_*_BIND */ 487 GEM_WARN_ON(!vma_flags); 488 i915_vma_resource_free(vma_res); 489 } else { 490 i915_vma_resource_init_from_vma(vma_res, vma); 491 vma->resource = vma_res; 492 } 493 trace_i915_vma_bind(vma, bind_flags); 494 if (work && bind_flags & vma->vm->bind_async_flags) { 495 struct dma_fence *prev; 496 497 work->vma_res = i915_vma_resource_get(vma->resource); 498 work->cache_level = cache_level; 499 work->flags = bind_flags; 500 501 /* 502 * Note we only want to chain up to the migration fence on 503 * the pages (not the object itself). As we don't track that, 504 * yet, we have to use the exclusive fence instead. 505 * 506 * Also note that we do not want to track the async vma as 507 * part of the obj->resv->excl_fence as it only affects 508 * execution and not content or object's backing store lifetime. 509 */ 510 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 511 if (prev) { 512 __i915_sw_fence_await_dma_fence(&work->base.chain, 513 prev, 514 &work->cb); 515 dma_fence_put(prev); 516 } 517 518 work->base.dma.error = 0; /* enable the queue_work() */ 519 520 /* 521 * If we don't have the refcounted pages list, keep a reference 522 * on the object to avoid waiting for the async bind to 523 * complete in the object destruction path. 524 */ 525 if (!work->vma_res->bi.pages_rsgt) 526 work->pinned = i915_gem_object_get(vma->obj); 527 } else { 528 ret = i915_gem_object_wait_moving_fence(vma->obj, true); 529 if (ret) { 530 i915_vma_resource_free(vma->resource); 531 vma->resource = NULL; 532 533 return ret; 534 } 535 vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level, 536 bind_flags); 537 } 538 539 set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags); 540 541 atomic_or(bind_flags, &vma->flags); 542 return 0; 543 } 544 545 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 546 { 547 void __iomem *ptr; 548 int err; 549 550 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY)) 551 return IOMEM_ERR_PTR(-EINVAL); 552 553 if (!i915_gem_object_is_lmem(vma->obj)) { 554 if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) { 555 err = -ENODEV; 556 goto err; 557 } 558 } 559 560 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 561 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 562 GEM_BUG_ON(i915_vma_verify_bind_complete(vma)); 563 564 ptr = READ_ONCE(vma->iomap); 565 if (ptr == NULL) { 566 /* 567 * TODO: consider just using i915_gem_object_pin_map() for lmem 568 * instead, which already supports mapping non-contiguous chunks 569 * of pages, that way we can also drop the 570 * I915_BO_ALLOC_CONTIGUOUS when allocating the object. 571 */ 572 if (i915_gem_object_is_lmem(vma->obj)) 573 ptr = i915_gem_object_lmem_io_map(vma->obj, 0, 574 vma->obj->base.size); 575 else 576 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 577 vma->node.start, 578 vma->node.size); 579 if (ptr == NULL) { 580 err = -ENOMEM; 581 goto err; 582 } 583 584 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 585 io_mapping_unmap(ptr); 586 ptr = vma->iomap; 587 } 588 } 589 590 __i915_vma_pin(vma); 591 592 err = i915_vma_pin_fence(vma); 593 if (err) 594 goto err_unpin; 595 596 i915_vma_set_ggtt_write(vma); 597 598 /* NB Access through the GTT requires the device to be awake. */ 599 return ptr; 600 601 err_unpin: 602 __i915_vma_unpin(vma); 603 err: 604 return IOMEM_ERR_PTR(err); 605 } 606 607 void i915_vma_flush_writes(struct i915_vma *vma) 608 { 609 if (i915_vma_unset_ggtt_write(vma)) 610 intel_gt_flush_ggtt_writes(vma->vm->gt); 611 } 612 613 void i915_vma_unpin_iomap(struct i915_vma *vma) 614 { 615 GEM_BUG_ON(vma->iomap == NULL); 616 617 i915_vma_flush_writes(vma); 618 619 i915_vma_unpin_fence(vma); 620 i915_vma_unpin(vma); 621 } 622 623 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 624 { 625 struct i915_vma *vma; 626 struct drm_i915_gem_object *obj; 627 628 vma = fetch_and_zero(p_vma); 629 if (!vma) 630 return; 631 632 obj = vma->obj; 633 GEM_BUG_ON(!obj); 634 635 i915_vma_unpin(vma); 636 637 if (flags & I915_VMA_RELEASE_MAP) 638 i915_gem_object_unpin_map(obj); 639 640 i915_gem_object_put(obj); 641 } 642 643 bool i915_vma_misplaced(const struct i915_vma *vma, 644 u64 size, u64 alignment, u64 flags) 645 { 646 if (!drm_mm_node_allocated(&vma->node)) 647 return false; 648 649 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 650 return true; 651 652 if (vma->node.size < size) 653 return true; 654 655 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 656 if (alignment && !IS_ALIGNED(vma->node.start, alignment)) 657 return true; 658 659 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 660 return true; 661 662 if (flags & PIN_OFFSET_BIAS && 663 vma->node.start < (flags & PIN_OFFSET_MASK)) 664 return true; 665 666 if (flags & PIN_OFFSET_FIXED && 667 vma->node.start != (flags & PIN_OFFSET_MASK)) 668 return true; 669 670 return false; 671 } 672 673 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 674 { 675 bool mappable, fenceable; 676 677 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 678 GEM_BUG_ON(!vma->fence_size); 679 680 fenceable = (vma->node.size >= vma->fence_size && 681 IS_ALIGNED(vma->node.start, vma->fence_alignment)); 682 683 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; 684 685 if (mappable && fenceable) 686 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 687 else 688 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 689 } 690 691 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 692 { 693 struct drm_mm_node *node = &vma->node; 694 struct drm_mm_node *other; 695 696 /* 697 * On some machines we have to be careful when putting differing types 698 * of snoopable memory together to avoid the prefetcher crossing memory 699 * domains and dying. During vm initialisation, we decide whether or not 700 * these constraints apply and set the drm_mm.color_adjust 701 * appropriately. 702 */ 703 if (!i915_vm_has_cache_coloring(vma->vm)) 704 return true; 705 706 /* Only valid to be called on an already inserted vma */ 707 GEM_BUG_ON(!drm_mm_node_allocated(node)); 708 GEM_BUG_ON(list_empty(&node->node_list)); 709 710 other = list_prev_entry(node, node_list); 711 if (i915_node_color_differs(other, color) && 712 !drm_mm_hole_follows(other)) 713 return false; 714 715 other = list_next_entry(node, node_list); 716 if (i915_node_color_differs(other, color) && 717 !drm_mm_hole_follows(node)) 718 return false; 719 720 return true; 721 } 722 723 /** 724 * i915_vma_insert - finds a slot for the vma in its address space 725 * @vma: the vma 726 * @size: requested size in bytes (can be larger than the VMA) 727 * @alignment: required alignment 728 * @flags: mask of PIN_* flags to use 729 * 730 * First we try to allocate some free space that meets the requirements for 731 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 732 * preferrably the oldest idle entry to make room for the new VMA. 733 * 734 * Returns: 735 * 0 on success, negative error code otherwise. 736 */ 737 static int 738 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 739 u64 size, u64 alignment, u64 flags) 740 { 741 unsigned long color; 742 u64 start, end; 743 int ret; 744 745 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 746 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 747 748 size = max(size, vma->size); 749 alignment = max(alignment, vma->display_alignment); 750 if (flags & PIN_MAPPABLE) { 751 size = max_t(typeof(size), size, vma->fence_size); 752 alignment = max_t(typeof(alignment), 753 alignment, vma->fence_alignment); 754 } 755 756 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 757 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 758 GEM_BUG_ON(!is_power_of_2(alignment)); 759 760 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 761 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 762 763 end = vma->vm->total; 764 if (flags & PIN_MAPPABLE) 765 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 766 if (flags & PIN_ZONE_4G) 767 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 768 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 769 770 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj)); 771 /* 772 * for compact-pt we round up the reservation to prevent 773 * any smaller pages being used within the same PDE 774 */ 775 if (NEEDS_COMPACT_PT(vma->vm->i915)) 776 size = round_up(size, alignment); 777 778 /* If binding the object/GGTT view requires more space than the entire 779 * aperture has, reject it early before evicting everything in a vain 780 * attempt to find space. 781 */ 782 if (size > end) { 783 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 784 size, flags & PIN_MAPPABLE ? "mappable" : "total", 785 end); 786 return -ENOSPC; 787 } 788 789 color = 0; 790 791 if (i915_vm_has_cache_coloring(vma->vm)) 792 color = vma->obj->cache_level; 793 794 if (flags & PIN_OFFSET_FIXED) { 795 u64 offset = flags & PIN_OFFSET_MASK; 796 if (!IS_ALIGNED(offset, alignment) || 797 range_overflows(offset, size, end)) 798 return -EINVAL; 799 800 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node, 801 size, offset, color, 802 flags); 803 if (ret) 804 return ret; 805 } else { 806 /* 807 * We only support huge gtt pages through the 48b PPGTT, 808 * however we also don't want to force any alignment for 809 * objects which need to be tightly packed into the low 32bits. 810 * 811 * Note that we assume that GGTT are limited to 4GiB for the 812 * forseeable future. See also i915_ggtt_offset(). 813 */ 814 if (upper_32_bits(end - 1) && 815 vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 816 /* 817 * We can't mix 64K and 4K PTEs in the same page-table 818 * (2M block), and so to avoid the ugliness and 819 * complexity of coloring we opt for just aligning 64K 820 * objects to 2M. 821 */ 822 u64 page_alignment = 823 rounddown_pow_of_two(vma->page_sizes.sg | 824 I915_GTT_PAGE_SIZE_2M); 825 826 /* 827 * Check we don't expand for the limited Global GTT 828 * (mappable aperture is even more precious!). This 829 * also checks that we exclude the aliasing-ppgtt. 830 */ 831 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 832 833 alignment = max(alignment, page_alignment); 834 835 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 836 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 837 } 838 839 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node, 840 size, alignment, color, 841 start, end, flags); 842 if (ret) 843 return ret; 844 845 GEM_BUG_ON(vma->node.start < start); 846 GEM_BUG_ON(vma->node.start + vma->node.size > end); 847 } 848 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 849 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 850 851 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 852 853 return 0; 854 } 855 856 static void 857 i915_vma_detach(struct i915_vma *vma) 858 { 859 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 860 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 861 862 /* 863 * And finally now the object is completely decoupled from this 864 * vma, we can drop its hold on the backing storage and allow 865 * it to be reaped by the shrinker. 866 */ 867 list_move_tail(&vma->vm_link, &vma->vm->unbound_list); 868 } 869 870 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 871 { 872 unsigned int bound; 873 874 bound = atomic_read(&vma->flags); 875 876 if (flags & PIN_VALIDATE) { 877 flags &= I915_VMA_BIND_MASK; 878 879 return (flags & bound) == flags; 880 } 881 882 /* with the lock mandatory for unbind, we don't race here */ 883 flags &= I915_VMA_BIND_MASK; 884 do { 885 if (unlikely(flags & ~bound)) 886 return false; 887 888 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 889 return false; 890 891 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 892 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 893 894 return true; 895 } 896 897 static struct scatterlist * 898 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 899 unsigned int width, unsigned int height, 900 unsigned int src_stride, unsigned int dst_stride, 901 struct sg_table *st, struct scatterlist *sg) 902 { 903 unsigned int column, row; 904 unsigned int src_idx; 905 906 for (column = 0; column < width; column++) { 907 unsigned int left; 908 909 src_idx = src_stride * (height - 1) + column + offset; 910 for (row = 0; row < height; row++) { 911 st->nents++; 912 /* 913 * We don't need the pages, but need to initialize 914 * the entries so the sg list can be happily traversed. 915 * The only thing we need are DMA addresses. 916 */ 917 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 918 sg_dma_address(sg) = 919 i915_gem_object_get_dma_address(obj, src_idx); 920 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 921 sg = sg_next(sg); 922 src_idx -= src_stride; 923 } 924 925 left = (dst_stride - height) * I915_GTT_PAGE_SIZE; 926 927 if (!left) 928 continue; 929 930 st->nents++; 931 932 /* 933 * The DE ignores the PTEs for the padding tiles, the sg entry 934 * here is just a conenience to indicate how many padding PTEs 935 * to insert at this spot. 936 */ 937 sg_set_page(sg, NULL, left, 0); 938 sg_dma_address(sg) = 0; 939 sg_dma_len(sg) = left; 940 sg = sg_next(sg); 941 } 942 943 return sg; 944 } 945 946 static noinline struct sg_table * 947 intel_rotate_pages(struct intel_rotation_info *rot_info, 948 struct drm_i915_gem_object *obj) 949 { 950 unsigned int size = intel_rotation_info_size(rot_info); 951 struct drm_i915_private *i915 = to_i915(obj->base.dev); 952 struct sg_table *st; 953 struct scatterlist *sg; 954 int ret = -ENOMEM; 955 int i; 956 957 /* Allocate target SG list. */ 958 st = kmalloc(sizeof(*st), GFP_KERNEL); 959 if (!st) 960 goto err_st_alloc; 961 962 ret = sg_alloc_table(st, size, GFP_KERNEL); 963 if (ret) 964 goto err_sg_alloc; 965 966 st->nents = 0; 967 sg = st->sgl; 968 969 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 970 sg = rotate_pages(obj, rot_info->plane[i].offset, 971 rot_info->plane[i].width, rot_info->plane[i].height, 972 rot_info->plane[i].src_stride, 973 rot_info->plane[i].dst_stride, 974 st, sg); 975 976 return st; 977 978 err_sg_alloc: 979 kfree(st); 980 err_st_alloc: 981 982 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 983 obj->base.size, rot_info->plane[0].width, 984 rot_info->plane[0].height, size); 985 986 return ERR_PTR(ret); 987 } 988 989 static struct scatterlist * 990 add_padding_pages(unsigned int count, 991 struct sg_table *st, struct scatterlist *sg) 992 { 993 st->nents++; 994 995 /* 996 * The DE ignores the PTEs for the padding tiles, the sg entry 997 * here is just a convenience to indicate how many padding PTEs 998 * to insert at this spot. 999 */ 1000 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0); 1001 sg_dma_address(sg) = 0; 1002 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE; 1003 sg = sg_next(sg); 1004 1005 return sg; 1006 } 1007 1008 static struct scatterlist * 1009 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj, 1010 unsigned int offset, unsigned int alignment_pad, 1011 unsigned int width, unsigned int height, 1012 unsigned int src_stride, unsigned int dst_stride, 1013 struct sg_table *st, struct scatterlist *sg, 1014 unsigned int *gtt_offset) 1015 { 1016 unsigned int row; 1017 1018 if (!width || !height) 1019 return sg; 1020 1021 if (alignment_pad) 1022 sg = add_padding_pages(alignment_pad, st, sg); 1023 1024 for (row = 0; row < height; row++) { 1025 unsigned int left = width * I915_GTT_PAGE_SIZE; 1026 1027 while (left) { 1028 dma_addr_t addr; 1029 unsigned int length; 1030 1031 /* 1032 * We don't need the pages, but need to initialize 1033 * the entries so the sg list can be happily traversed. 1034 * The only thing we need are DMA addresses. 1035 */ 1036 1037 addr = i915_gem_object_get_dma_address_len(obj, offset, &length); 1038 1039 length = min(left, length); 1040 1041 st->nents++; 1042 1043 sg_set_page(sg, NULL, length, 0); 1044 sg_dma_address(sg) = addr; 1045 sg_dma_len(sg) = length; 1046 sg = sg_next(sg); 1047 1048 offset += length / I915_GTT_PAGE_SIZE; 1049 left -= length; 1050 } 1051 1052 offset += src_stride - width; 1053 1054 left = (dst_stride - width) * I915_GTT_PAGE_SIZE; 1055 1056 if (!left) 1057 continue; 1058 1059 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg); 1060 } 1061 1062 *gtt_offset += alignment_pad + dst_stride * height; 1063 1064 return sg; 1065 } 1066 1067 static struct scatterlist * 1068 remap_contiguous_pages(struct drm_i915_gem_object *obj, 1069 unsigned int obj_offset, 1070 unsigned int count, 1071 struct sg_table *st, struct scatterlist *sg) 1072 { 1073 struct scatterlist *iter; 1074 unsigned int offset; 1075 1076 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset); 1077 GEM_BUG_ON(!iter); 1078 1079 do { 1080 unsigned int len; 1081 1082 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT), 1083 count << PAGE_SHIFT); 1084 sg_set_page(sg, NULL, len, 0); 1085 sg_dma_address(sg) = 1086 sg_dma_address(iter) + (offset << PAGE_SHIFT); 1087 sg_dma_len(sg) = len; 1088 1089 st->nents++; 1090 count -= len >> PAGE_SHIFT; 1091 if (count == 0) 1092 return sg; 1093 1094 sg = __sg_next(sg); 1095 iter = __sg_next(iter); 1096 offset = 0; 1097 } while (1); 1098 } 1099 1100 static struct scatterlist * 1101 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj, 1102 unsigned int obj_offset, unsigned int alignment_pad, 1103 unsigned int size, 1104 struct sg_table *st, struct scatterlist *sg, 1105 unsigned int *gtt_offset) 1106 { 1107 if (!size) 1108 return sg; 1109 1110 if (alignment_pad) 1111 sg = add_padding_pages(alignment_pad, st, sg); 1112 1113 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg); 1114 sg = sg_next(sg); 1115 1116 *gtt_offset += alignment_pad + size; 1117 1118 return sg; 1119 } 1120 1121 static struct scatterlist * 1122 remap_color_plane_pages(const struct intel_remapped_info *rem_info, 1123 struct drm_i915_gem_object *obj, 1124 int color_plane, 1125 struct sg_table *st, struct scatterlist *sg, 1126 unsigned int *gtt_offset) 1127 { 1128 unsigned int alignment_pad = 0; 1129 1130 if (rem_info->plane_alignment) 1131 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset; 1132 1133 if (rem_info->plane[color_plane].linear) 1134 sg = remap_linear_color_plane_pages(obj, 1135 rem_info->plane[color_plane].offset, 1136 alignment_pad, 1137 rem_info->plane[color_plane].size, 1138 st, sg, 1139 gtt_offset); 1140 1141 else 1142 sg = remap_tiled_color_plane_pages(obj, 1143 rem_info->plane[color_plane].offset, 1144 alignment_pad, 1145 rem_info->plane[color_plane].width, 1146 rem_info->plane[color_plane].height, 1147 rem_info->plane[color_plane].src_stride, 1148 rem_info->plane[color_plane].dst_stride, 1149 st, sg, 1150 gtt_offset); 1151 1152 return sg; 1153 } 1154 1155 static noinline struct sg_table * 1156 intel_remap_pages(struct intel_remapped_info *rem_info, 1157 struct drm_i915_gem_object *obj) 1158 { 1159 unsigned int size = intel_remapped_info_size(rem_info); 1160 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1161 struct sg_table *st; 1162 struct scatterlist *sg; 1163 unsigned int gtt_offset = 0; 1164 int ret = -ENOMEM; 1165 int i; 1166 1167 /* Allocate target SG list. */ 1168 st = kmalloc(sizeof(*st), GFP_KERNEL); 1169 if (!st) 1170 goto err_st_alloc; 1171 1172 ret = sg_alloc_table(st, size, GFP_KERNEL); 1173 if (ret) 1174 goto err_sg_alloc; 1175 1176 st->nents = 0; 1177 sg = st->sgl; 1178 1179 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1180 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset); 1181 1182 i915_sg_trim(st); 1183 1184 return st; 1185 1186 err_sg_alloc: 1187 kfree(st); 1188 err_st_alloc: 1189 1190 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1191 obj->base.size, rem_info->plane[0].width, 1192 rem_info->plane[0].height, size); 1193 1194 return ERR_PTR(ret); 1195 } 1196 1197 static noinline struct sg_table * 1198 intel_partial_pages(const struct i915_ggtt_view *view, 1199 struct drm_i915_gem_object *obj) 1200 { 1201 struct sg_table *st; 1202 struct scatterlist *sg; 1203 unsigned int count = view->partial.size; 1204 int ret = -ENOMEM; 1205 1206 st = kmalloc(sizeof(*st), GFP_KERNEL); 1207 if (!st) 1208 goto err_st_alloc; 1209 1210 ret = sg_alloc_table(st, count, GFP_KERNEL); 1211 if (ret) 1212 goto err_sg_alloc; 1213 1214 st->nents = 0; 1215 1216 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl); 1217 1218 sg_mark_end(sg); 1219 i915_sg_trim(st); /* Drop any unused tail entries. */ 1220 1221 return st; 1222 1223 err_sg_alloc: 1224 kfree(st); 1225 err_st_alloc: 1226 return ERR_PTR(ret); 1227 } 1228 1229 static int 1230 __i915_vma_get_pages(struct i915_vma *vma) 1231 { 1232 struct sg_table *pages; 1233 1234 /* 1235 * The vma->pages are only valid within the lifespan of the borrowed 1236 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 1237 * must be the vma->pages. A simple rule is that vma->pages must only 1238 * be accessed when the obj->mm.pages are pinned. 1239 */ 1240 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 1241 1242 switch (vma->ggtt_view.type) { 1243 default: 1244 GEM_BUG_ON(vma->ggtt_view.type); 1245 fallthrough; 1246 case I915_GGTT_VIEW_NORMAL: 1247 pages = vma->obj->mm.pages; 1248 break; 1249 1250 case I915_GGTT_VIEW_ROTATED: 1251 pages = 1252 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 1253 break; 1254 1255 case I915_GGTT_VIEW_REMAPPED: 1256 pages = 1257 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj); 1258 break; 1259 1260 case I915_GGTT_VIEW_PARTIAL: 1261 pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 1262 break; 1263 } 1264 1265 if (IS_ERR(pages)) { 1266 drm_err(&vma->vm->i915->drm, 1267 "Failed to get pages for VMA view type %u (%ld)!\n", 1268 vma->ggtt_view.type, PTR_ERR(pages)); 1269 return PTR_ERR(pages); 1270 } 1271 1272 vma->pages = pages; 1273 1274 return 0; 1275 } 1276 1277 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma) 1278 { 1279 int err; 1280 1281 if (atomic_add_unless(&vma->pages_count, 1, 0)) 1282 return 0; 1283 1284 err = i915_gem_object_pin_pages(vma->obj); 1285 if (err) 1286 return err; 1287 1288 err = __i915_vma_get_pages(vma); 1289 if (err) 1290 goto err_unpin; 1291 1292 vma->page_sizes = vma->obj->mm.page_sizes; 1293 atomic_inc(&vma->pages_count); 1294 1295 return 0; 1296 1297 err_unpin: 1298 __i915_gem_object_unpin_pages(vma->obj); 1299 1300 return err; 1301 } 1302 1303 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 1304 { 1305 /* We allocate under vma_get_pages, so beware the shrinker */ 1306 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 1307 1308 if (atomic_sub_return(count, &vma->pages_count) == 0) { 1309 if (vma->pages != vma->obj->mm.pages) { 1310 sg_free_table(vma->pages); 1311 kfree(vma->pages); 1312 } 1313 vma->pages = NULL; 1314 1315 i915_gem_object_unpin_pages(vma->obj); 1316 } 1317 } 1318 1319 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma) 1320 { 1321 if (atomic_add_unless(&vma->pages_count, -1, 1)) 1322 return; 1323 1324 __vma_put_pages(vma, 1); 1325 } 1326 1327 static void vma_unbind_pages(struct i915_vma *vma) 1328 { 1329 unsigned int count; 1330 1331 lockdep_assert_held(&vma->vm->mutex); 1332 1333 /* The upper portion of pages_count is the number of bindings */ 1334 count = atomic_read(&vma->pages_count); 1335 count >>= I915_VMA_PAGES_BIAS; 1336 GEM_BUG_ON(!count); 1337 1338 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 1339 } 1340 1341 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1342 u64 size, u64 alignment, u64 flags) 1343 { 1344 struct i915_vma_work *work = NULL; 1345 struct dma_fence *moving = NULL; 1346 struct i915_vma_resource *vma_res = NULL; 1347 intel_wakeref_t wakeref = 0; 1348 unsigned int bound; 1349 int err; 1350 1351 assert_vma_held(vma); 1352 GEM_BUG_ON(!ww); 1353 1354 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 1355 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 1356 1357 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 1358 1359 /* First try and grab the pin without rebinding the vma */ 1360 if (try_qad_pin(vma, flags)) 1361 return 0; 1362 1363 err = i915_vma_get_pages(vma); 1364 if (err) 1365 return err; 1366 1367 if (flags & PIN_GLOBAL) 1368 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 1369 1370 if (flags & vma->vm->bind_async_flags) { 1371 /* lock VM */ 1372 err = i915_vm_lock_objects(vma->vm, ww); 1373 if (err) 1374 goto err_rpm; 1375 1376 work = i915_vma_work(); 1377 if (!work) { 1378 err = -ENOMEM; 1379 goto err_rpm; 1380 } 1381 1382 work->vm = vma->vm; 1383 1384 err = i915_gem_object_get_moving_fence(vma->obj, &moving); 1385 if (err) 1386 goto err_rpm; 1387 1388 dma_fence_work_chain(&work->base, moving); 1389 1390 /* Allocate enough page directories to used PTE */ 1391 if (vma->vm->allocate_va_range) { 1392 err = i915_vm_alloc_pt_stash(vma->vm, 1393 &work->stash, 1394 vma->size); 1395 if (err) 1396 goto err_fence; 1397 1398 err = i915_vm_map_pt_stash(vma->vm, &work->stash); 1399 if (err) 1400 goto err_fence; 1401 } 1402 } 1403 1404 vma_res = i915_vma_resource_alloc(); 1405 if (IS_ERR(vma_res)) { 1406 err = PTR_ERR(vma_res); 1407 goto err_fence; 1408 } 1409 1410 /* 1411 * Differentiate between user/kernel vma inside the aliasing-ppgtt. 1412 * 1413 * We conflate the Global GTT with the user's vma when using the 1414 * aliasing-ppgtt, but it is still vitally important to try and 1415 * keep the use cases distinct. For example, userptr objects are 1416 * not allowed inside the Global GTT as that will cause lock 1417 * inversions when we have to evict them the mmu_notifier callbacks - 1418 * but they are allowed to be part of the user ppGTT which can never 1419 * be mapped. As such we try to give the distinct users of the same 1420 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt 1421 * and i915_ppgtt separate]. 1422 * 1423 * NB this may cause us to mask real lock inversions -- while the 1424 * code is safe today, lockdep may not be able to spot future 1425 * transgressions. 1426 */ 1427 err = mutex_lock_interruptible_nested(&vma->vm->mutex, 1428 !(flags & PIN_GLOBAL)); 1429 if (err) 1430 goto err_vma_res; 1431 1432 /* No more allocations allowed now we hold vm->mutex */ 1433 1434 if (unlikely(i915_vma_is_closed(vma))) { 1435 err = -ENOENT; 1436 goto err_unlock; 1437 } 1438 1439 bound = atomic_read(&vma->flags); 1440 if (unlikely(bound & I915_VMA_ERROR)) { 1441 err = -ENOMEM; 1442 goto err_unlock; 1443 } 1444 1445 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 1446 err = -EAGAIN; /* pins are meant to be fairly temporary */ 1447 goto err_unlock; 1448 } 1449 1450 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 1451 if (!(flags & PIN_VALIDATE)) 1452 __i915_vma_pin(vma); 1453 goto err_unlock; 1454 } 1455 1456 err = i915_active_acquire(&vma->active); 1457 if (err) 1458 goto err_unlock; 1459 1460 if (!(bound & I915_VMA_BIND_MASK)) { 1461 err = i915_vma_insert(vma, ww, size, alignment, flags); 1462 if (err) 1463 goto err_active; 1464 1465 if (i915_is_ggtt(vma->vm)) 1466 __i915_vma_set_map_and_fenceable(vma); 1467 } 1468 1469 GEM_BUG_ON(!vma->pages); 1470 err = i915_vma_bind(vma, 1471 vma->obj->cache_level, 1472 flags, work, vma_res); 1473 vma_res = NULL; 1474 if (err) 1475 goto err_remove; 1476 1477 /* There should only be at most 2 active bindings (user, global) */ 1478 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 1479 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 1480 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 1481 1482 if (!(flags & PIN_VALIDATE)) { 1483 __i915_vma_pin(vma); 1484 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1485 } 1486 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 1487 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 1488 1489 err_remove: 1490 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 1491 i915_vma_detach(vma); 1492 drm_mm_remove_node(&vma->node); 1493 } 1494 err_active: 1495 i915_active_release(&vma->active); 1496 err_unlock: 1497 mutex_unlock(&vma->vm->mutex); 1498 err_vma_res: 1499 i915_vma_resource_free(vma_res); 1500 err_fence: 1501 if (work) 1502 dma_fence_work_commit_imm(&work->base); 1503 err_rpm: 1504 if (wakeref) 1505 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 1506 1507 if (moving) 1508 dma_fence_put(moving); 1509 1510 i915_vma_put_pages(vma); 1511 return err; 1512 } 1513 1514 static void flush_idle_contexts(struct intel_gt *gt) 1515 { 1516 struct intel_engine_cs *engine; 1517 enum intel_engine_id id; 1518 1519 for_each_engine(engine, gt, id) 1520 intel_engine_flush_barriers(engine); 1521 1522 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 1523 } 1524 1525 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1526 u32 align, unsigned int flags) 1527 { 1528 struct i915_address_space *vm = vma->vm; 1529 int err; 1530 1531 do { 1532 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); 1533 1534 if (err != -ENOSPC) { 1535 if (!err) { 1536 err = i915_vma_wait_for_bind(vma); 1537 if (err) 1538 i915_vma_unpin(vma); 1539 } 1540 return err; 1541 } 1542 1543 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1544 flush_idle_contexts(vm->gt); 1545 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1546 /* 1547 * We pass NULL ww here, as we don't want to unbind 1548 * locked objects when called from execbuf when pinning 1549 * is removed. This would probably regress badly. 1550 */ 1551 i915_gem_evict_vm(vm, NULL); 1552 mutex_unlock(&vm->mutex); 1553 } 1554 } while (1); 1555 } 1556 1557 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1558 u32 align, unsigned int flags) 1559 { 1560 struct i915_gem_ww_ctx _ww; 1561 int err; 1562 1563 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1564 1565 if (ww) 1566 return __i915_ggtt_pin(vma, ww, align, flags); 1567 1568 lockdep_assert_not_held(&vma->obj->base.resv->lock.base); 1569 1570 for_i915_gem_ww(&_ww, err, true) { 1571 err = i915_gem_object_lock(vma->obj, &_ww); 1572 if (!err) 1573 err = __i915_ggtt_pin(vma, &_ww, align, flags); 1574 } 1575 1576 return err; 1577 } 1578 1579 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) 1580 { 1581 /* 1582 * We defer actually closing, unbinding and destroying the VMA until 1583 * the next idle point, or if the object is freed in the meantime. By 1584 * postponing the unbind, we allow for it to be resurrected by the 1585 * client, avoiding the work required to rebind the VMA. This is 1586 * advantageous for DRI, where the client/server pass objects 1587 * between themselves, temporarily opening a local VMA to the 1588 * object, and then closing it again. The same object is then reused 1589 * on the next frame (or two, depending on the depth of the swap queue) 1590 * causing us to rebind the VMA once more. This ends up being a lot 1591 * of wasted work for the steady state. 1592 */ 1593 GEM_BUG_ON(i915_vma_is_closed(vma)); 1594 list_add(&vma->closed_link, >->closed_vma); 1595 } 1596 1597 void i915_vma_close(struct i915_vma *vma) 1598 { 1599 struct intel_gt *gt = vma->vm->gt; 1600 unsigned long flags; 1601 1602 if (i915_vma_is_ggtt(vma)) 1603 return; 1604 1605 GEM_BUG_ON(!atomic_read(&vma->open_count)); 1606 if (atomic_dec_and_lock_irqsave(&vma->open_count, 1607 >->closed_lock, 1608 flags)) { 1609 __vma_close(vma, gt); 1610 spin_unlock_irqrestore(>->closed_lock, flags); 1611 } 1612 } 1613 1614 static void __i915_vma_remove_closed(struct i915_vma *vma) 1615 { 1616 list_del_init(&vma->closed_link); 1617 } 1618 1619 void i915_vma_reopen(struct i915_vma *vma) 1620 { 1621 struct intel_gt *gt = vma->vm->gt; 1622 1623 spin_lock_irq(>->closed_lock); 1624 if (i915_vma_is_closed(vma)) 1625 __i915_vma_remove_closed(vma); 1626 spin_unlock_irq(>->closed_lock); 1627 } 1628 1629 static void force_unbind(struct i915_vma *vma) 1630 { 1631 if (!drm_mm_node_allocated(&vma->node)) 1632 return; 1633 1634 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1635 WARN_ON(__i915_vma_unbind(vma)); 1636 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1637 } 1638 1639 static void release_references(struct i915_vma *vma, bool vm_ddestroy) 1640 { 1641 struct drm_i915_gem_object *obj = vma->obj; 1642 struct intel_gt *gt = vma->vm->gt; 1643 1644 GEM_BUG_ON(i915_vma_is_active(vma)); 1645 1646 spin_lock(&obj->vma.lock); 1647 list_del(&vma->obj_link); 1648 if (!RB_EMPTY_NODE(&vma->obj_node)) 1649 rb_erase(&vma->obj_node, &obj->vma.tree); 1650 1651 spin_unlock(&obj->vma.lock); 1652 1653 spin_lock_irq(>->closed_lock); 1654 __i915_vma_remove_closed(vma); 1655 spin_unlock_irq(>->closed_lock); 1656 1657 if (vm_ddestroy) 1658 i915_vm_resv_put(vma->vm); 1659 1660 i915_active_fini(&vma->active); 1661 GEM_WARN_ON(vma->resource); 1662 i915_vma_free(vma); 1663 } 1664 1665 /** 1666 * i915_vma_destroy_locked - Remove all weak reference to the vma and put 1667 * the initial reference. 1668 * 1669 * This function should be called when it's decided the vma isn't needed 1670 * anymore. The caller must assure that it doesn't race with another lookup 1671 * plus destroy, typically by taking an appropriate reference. 1672 * 1673 * Current callsites are 1674 * - __i915_gem_object_pages_fini() 1675 * - __i915_vm_close() - Blocks the above function by taking a reference on 1676 * the object. 1677 * - __i915_vma_parked() - Blocks the above functions by taking a reference 1678 * on the vm and a reference on the object. Also takes the object lock so 1679 * destruction from __i915_vma_parked() can be blocked by holding the 1680 * object lock. Since the object lock is only allowed from within i915 with 1681 * an object refcount, holding the object lock also implicitly blocks the 1682 * vma freeing from __i915_gem_object_pages_fini(). 1683 * 1684 * Because of locks taken during destruction, a vma is also guaranteed to 1685 * stay alive while the following locks are held if it was looked up while 1686 * holding one of the locks: 1687 * - vm->mutex 1688 * - obj->vma.lock 1689 * - gt->closed_lock 1690 */ 1691 void i915_vma_destroy_locked(struct i915_vma *vma) 1692 { 1693 lockdep_assert_held(&vma->vm->mutex); 1694 1695 force_unbind(vma); 1696 list_del_init(&vma->vm_link); 1697 release_references(vma, false); 1698 } 1699 1700 void i915_vma_destroy(struct i915_vma *vma) 1701 { 1702 bool vm_ddestroy; 1703 1704 mutex_lock(&vma->vm->mutex); 1705 force_unbind(vma); 1706 list_del_init(&vma->vm_link); 1707 vm_ddestroy = vma->vm_ddestroy; 1708 vma->vm_ddestroy = false; 1709 mutex_unlock(&vma->vm->mutex); 1710 release_references(vma, vm_ddestroy); 1711 } 1712 1713 void i915_vma_parked(struct intel_gt *gt) 1714 { 1715 struct i915_vma *vma, *next; 1716 LIST_HEAD(closed); 1717 1718 spin_lock_irq(>->closed_lock); 1719 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1720 struct drm_i915_gem_object *obj = vma->obj; 1721 struct i915_address_space *vm = vma->vm; 1722 1723 /* XXX All to avoid keeping a reference on i915_vma itself */ 1724 1725 if (!kref_get_unless_zero(&obj->base.refcount)) 1726 continue; 1727 1728 if (!i915_vm_tryget(vm)) { 1729 i915_gem_object_put(obj); 1730 continue; 1731 } 1732 1733 list_move(&vma->closed_link, &closed); 1734 } 1735 spin_unlock_irq(>->closed_lock); 1736 1737 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1738 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1739 struct drm_i915_gem_object *obj = vma->obj; 1740 struct i915_address_space *vm = vma->vm; 1741 1742 if (i915_gem_object_trylock(obj, NULL)) { 1743 INIT_LIST_HEAD(&vma->closed_link); 1744 i915_vma_destroy(vma); 1745 i915_gem_object_unlock(obj); 1746 } else { 1747 /* back you go.. */ 1748 spin_lock_irq(>->closed_lock); 1749 list_add(&vma->closed_link, >->closed_vma); 1750 spin_unlock_irq(>->closed_lock); 1751 } 1752 1753 i915_gem_object_put(obj); 1754 i915_vm_put(vm); 1755 } 1756 } 1757 1758 static void __i915_vma_iounmap(struct i915_vma *vma) 1759 { 1760 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1761 1762 if (vma->iomap == NULL) 1763 return; 1764 1765 io_mapping_unmap(vma->iomap); 1766 vma->iomap = NULL; 1767 } 1768 1769 void i915_vma_revoke_mmap(struct i915_vma *vma) 1770 { 1771 struct drm_vma_offset_node *node; 1772 u64 vma_offset; 1773 1774 if (!i915_vma_has_userfault(vma)) 1775 return; 1776 1777 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1778 GEM_BUG_ON(!vma->obj->userfault_count); 1779 1780 node = &vma->mmo->vma_node; 1781 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 1782 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1783 drm_vma_node_offset_addr(node) + vma_offset, 1784 vma->size, 1785 1); 1786 1787 i915_vma_unset_userfault(vma); 1788 if (!--vma->obj->userfault_count) 1789 list_del(&vma->obj->userfault_link); 1790 } 1791 1792 static int 1793 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) 1794 { 1795 return __i915_request_await_exclusive(rq, &vma->active); 1796 } 1797 1798 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1799 { 1800 int err; 1801 1802 /* Wait for the vma to be bound before we start! */ 1803 err = __i915_request_await_bind(rq, vma); 1804 if (err) 1805 return err; 1806 1807 return i915_active_add_request(&vma->active, rq); 1808 } 1809 1810 int _i915_vma_move_to_active(struct i915_vma *vma, 1811 struct i915_request *rq, 1812 struct dma_fence *fence, 1813 unsigned int flags) 1814 { 1815 struct drm_i915_gem_object *obj = vma->obj; 1816 int err; 1817 1818 assert_object_held(obj); 1819 1820 GEM_BUG_ON(!vma->pages); 1821 1822 err = __i915_vma_move_to_active(vma, rq); 1823 if (unlikely(err)) 1824 return err; 1825 1826 if (flags & EXEC_OBJECT_WRITE) { 1827 struct intel_frontbuffer *front; 1828 1829 front = __intel_frontbuffer_get(obj); 1830 if (unlikely(front)) { 1831 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1832 i915_active_add_request(&front->write, rq); 1833 intel_frontbuffer_put(front); 1834 } 1835 1836 if (!(flags & __EXEC_OBJECT_NO_RESERVE)) { 1837 err = dma_resv_reserve_fences(vma->obj->base.resv, 1); 1838 if (unlikely(err)) 1839 return err; 1840 } 1841 1842 if (fence) { 1843 dma_resv_add_fence(vma->obj->base.resv, fence, 1844 DMA_RESV_USAGE_WRITE); 1845 obj->write_domain = I915_GEM_DOMAIN_RENDER; 1846 obj->read_domains = 0; 1847 } 1848 } else { 1849 if (!(flags & __EXEC_OBJECT_NO_RESERVE)) { 1850 err = dma_resv_reserve_fences(vma->obj->base.resv, 1); 1851 if (unlikely(err)) 1852 return err; 1853 } 1854 1855 if (fence) { 1856 dma_resv_add_fence(vma->obj->base.resv, fence, 1857 DMA_RESV_USAGE_READ); 1858 obj->write_domain = 0; 1859 } 1860 } 1861 1862 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) 1863 i915_active_add_request(&vma->fence->active, rq); 1864 1865 obj->read_domains |= I915_GEM_GPU_DOMAINS; 1866 obj->mm.dirty = true; 1867 1868 GEM_BUG_ON(!i915_vma_is_active(vma)); 1869 return 0; 1870 } 1871 1872 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async) 1873 { 1874 struct i915_vma_resource *vma_res = vma->resource; 1875 struct dma_fence *unbind_fence; 1876 1877 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1878 assert_vma_held_evict(vma); 1879 1880 if (i915_vma_is_map_and_fenceable(vma)) { 1881 /* Force a pagefault for domain tracking on next user access */ 1882 i915_vma_revoke_mmap(vma); 1883 1884 /* 1885 * Check that we have flushed all writes through the GGTT 1886 * before the unbind, other due to non-strict nature of those 1887 * indirect writes they may end up referencing the GGTT PTE 1888 * after the unbind. 1889 * 1890 * Note that we may be concurrently poking at the GGTT_WRITE 1891 * bit from set-domain, as we mark all GGTT vma associated 1892 * with an object. We know this is for another vma, as we 1893 * are currently unbinding this one -- so if this vma will be 1894 * reused, it will be refaulted and have its dirty bit set 1895 * before the next write. 1896 */ 1897 i915_vma_flush_writes(vma); 1898 1899 /* release the fence reg _after_ flushing */ 1900 i915_vma_revoke_fence(vma); 1901 1902 __i915_vma_iounmap(vma); 1903 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 1904 } 1905 GEM_BUG_ON(vma->fence); 1906 GEM_BUG_ON(i915_vma_has_userfault(vma)); 1907 1908 /* Object backend must be async capable. */ 1909 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt); 1910 1911 /* If vm is not open, unbind is a nop. */ 1912 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) && 1913 kref_read(&vma->vm->ref); 1914 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) || 1915 vma->vm->skip_pte_rewrite; 1916 trace_i915_vma_unbind(vma); 1917 1918 unbind_fence = i915_vma_resource_unbind(vma_res); 1919 vma->resource = NULL; 1920 1921 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 1922 &vma->flags); 1923 1924 i915_vma_detach(vma); 1925 1926 if (!async && unbind_fence) { 1927 dma_fence_wait(unbind_fence, false); 1928 dma_fence_put(unbind_fence); 1929 unbind_fence = NULL; 1930 } 1931 1932 /* 1933 * Binding itself may not have completed until the unbind fence signals, 1934 * so don't drop the pages until that happens, unless the resource is 1935 * async_capable. 1936 */ 1937 1938 vma_unbind_pages(vma); 1939 return unbind_fence; 1940 } 1941 1942 int __i915_vma_unbind(struct i915_vma *vma) 1943 { 1944 int ret; 1945 1946 lockdep_assert_held(&vma->vm->mutex); 1947 assert_vma_held_evict(vma); 1948 1949 if (!drm_mm_node_allocated(&vma->node)) 1950 return 0; 1951 1952 if (i915_vma_is_pinned(vma)) { 1953 vma_print_allocator(vma, "is pinned"); 1954 return -EAGAIN; 1955 } 1956 1957 /* 1958 * After confirming that no one else is pinning this vma, wait for 1959 * any laggards who may have crept in during the wait (through 1960 * a residual pin skipping the vm->mutex) to complete. 1961 */ 1962 ret = i915_vma_sync(vma); 1963 if (ret) 1964 return ret; 1965 1966 GEM_BUG_ON(i915_vma_is_active(vma)); 1967 __i915_vma_evict(vma, false); 1968 1969 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 1970 return 0; 1971 } 1972 1973 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma) 1974 { 1975 struct dma_fence *fence; 1976 1977 lockdep_assert_held(&vma->vm->mutex); 1978 1979 if (!drm_mm_node_allocated(&vma->node)) 1980 return NULL; 1981 1982 if (i915_vma_is_pinned(vma) || 1983 &vma->obj->mm.rsgt->table != vma->resource->bi.pages) 1984 return ERR_PTR(-EAGAIN); 1985 1986 /* 1987 * We probably need to replace this with awaiting the fences of the 1988 * object's dma_resv when the vma active goes away. When doing that 1989 * we need to be careful to not add the vma_resource unbind fence 1990 * immediately to the object's dma_resv, because then unbinding 1991 * the next vma from the object, in case there are many, will 1992 * actually await the unbinding of the previous vmas, which is 1993 * undesirable. 1994 */ 1995 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active, 1996 I915_ACTIVE_AWAIT_EXCL | 1997 I915_ACTIVE_AWAIT_ACTIVE) < 0) { 1998 return ERR_PTR(-EBUSY); 1999 } 2000 2001 fence = __i915_vma_evict(vma, true); 2002 2003 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2004 2005 return fence; 2006 } 2007 2008 int i915_vma_unbind(struct i915_vma *vma) 2009 { 2010 struct i915_address_space *vm = vma->vm; 2011 intel_wakeref_t wakeref = 0; 2012 int err; 2013 2014 assert_object_held_shared(vma->obj); 2015 2016 /* Optimistic wait before taking the mutex */ 2017 err = i915_vma_sync(vma); 2018 if (err) 2019 return err; 2020 2021 if (!drm_mm_node_allocated(&vma->node)) 2022 return 0; 2023 2024 if (i915_vma_is_pinned(vma)) { 2025 vma_print_allocator(vma, "is pinned"); 2026 return -EAGAIN; 2027 } 2028 2029 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2030 /* XXX not always required: nop_clear_range */ 2031 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2032 2033 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); 2034 if (err) 2035 goto out_rpm; 2036 2037 err = __i915_vma_unbind(vma); 2038 mutex_unlock(&vm->mutex); 2039 2040 out_rpm: 2041 if (wakeref) 2042 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2043 return err; 2044 } 2045 2046 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm) 2047 { 2048 struct drm_i915_gem_object *obj = vma->obj; 2049 struct i915_address_space *vm = vma->vm; 2050 intel_wakeref_t wakeref = 0; 2051 struct dma_fence *fence; 2052 int err; 2053 2054 /* 2055 * We need the dma-resv lock since we add the 2056 * unbind fence to the dma-resv object. 2057 */ 2058 assert_object_held(obj); 2059 2060 if (!drm_mm_node_allocated(&vma->node)) 2061 return 0; 2062 2063 if (i915_vma_is_pinned(vma)) { 2064 vma_print_allocator(vma, "is pinned"); 2065 return -EAGAIN; 2066 } 2067 2068 if (!obj->mm.rsgt) 2069 return -EBUSY; 2070 2071 err = dma_resv_reserve_fences(obj->base.resv, 1); 2072 if (err) 2073 return -EBUSY; 2074 2075 /* 2076 * It would be great if we could grab this wakeref from the 2077 * async unbind work if needed, but we can't because it uses 2078 * kmalloc and it's in the dma-fence signalling critical path. 2079 */ 2080 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2081 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2082 2083 if (trylock_vm && !mutex_trylock(&vm->mutex)) { 2084 err = -EBUSY; 2085 goto out_rpm; 2086 } else if (!trylock_vm) { 2087 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref); 2088 if (err) 2089 goto out_rpm; 2090 } 2091 2092 fence = __i915_vma_unbind_async(vma); 2093 mutex_unlock(&vm->mutex); 2094 if (IS_ERR_OR_NULL(fence)) { 2095 err = PTR_ERR_OR_ZERO(fence); 2096 goto out_rpm; 2097 } 2098 2099 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ); 2100 dma_fence_put(fence); 2101 2102 out_rpm: 2103 if (wakeref) 2104 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2105 return err; 2106 } 2107 2108 int i915_vma_unbind_unlocked(struct i915_vma *vma) 2109 { 2110 int err; 2111 2112 i915_gem_object_lock(vma->obj, NULL); 2113 err = i915_vma_unbind(vma); 2114 i915_gem_object_unlock(vma->obj); 2115 2116 return err; 2117 } 2118 2119 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 2120 { 2121 i915_gem_object_make_unshrinkable(vma->obj); 2122 return vma; 2123 } 2124 2125 void i915_vma_make_shrinkable(struct i915_vma *vma) 2126 { 2127 i915_gem_object_make_shrinkable(vma->obj); 2128 } 2129 2130 void i915_vma_make_purgeable(struct i915_vma *vma) 2131 { 2132 i915_gem_object_make_purgeable(vma->obj); 2133 } 2134 2135 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2136 #include "selftests/i915_vma.c" 2137 #endif 2138 2139 void i915_vma_module_exit(void) 2140 { 2141 kmem_cache_destroy(slab_vmas); 2142 } 2143 2144 int __init i915_vma_module_init(void) 2145 { 2146 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 2147 if (!slab_vmas) 2148 return -ENOMEM; 2149 2150 return 0; 2151 } 2152