xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vma.c (revision 7effbd18)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_tiling.h"
33 #include "gt/intel_engine.h"
34 #include "gt/intel_engine_heartbeat.h"
35 #include "gt/intel_gt.h"
36 #include "gt/intel_gt_requests.h"
37 
38 #include "i915_drv.h"
39 #include "i915_gem_evict.h"
40 #include "i915_sw_fence_work.h"
41 #include "i915_trace.h"
42 #include "i915_vma.h"
43 #include "i915_vma_resource.h"
44 
45 static inline void assert_vma_held_evict(const struct i915_vma *vma)
46 {
47 	/*
48 	 * We may be forced to unbind when the vm is dead, to clean it up.
49 	 * This is the only exception to the requirement of the object lock
50 	 * being held.
51 	 */
52 	if (kref_read(&vma->vm->ref))
53 		assert_object_held_shared(vma->obj);
54 }
55 
56 static struct kmem_cache *slab_vmas;
57 
58 static struct i915_vma *i915_vma_alloc(void)
59 {
60 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
61 }
62 
63 static void i915_vma_free(struct i915_vma *vma)
64 {
65 	return kmem_cache_free(slab_vmas, vma);
66 }
67 
68 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
69 
70 #include <linux/stackdepot.h>
71 
72 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
73 {
74 	char buf[512];
75 
76 	if (!vma->node.stack) {
77 		drm_dbg(&to_i915(vma->obj->base.dev)->drm,
78 			"vma.node [%08llx + %08llx] %s: unknown owner\n",
79 			vma->node.start, vma->node.size, reason);
80 		return;
81 	}
82 
83 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
84 	drm_dbg(&to_i915(vma->obj->base.dev)->drm,
85 		"vma.node [%08llx + %08llx] %s: inserted at %s\n",
86 		vma->node.start, vma->node.size, reason, buf);
87 }
88 
89 #else
90 
91 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
92 {
93 }
94 
95 #endif
96 
97 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
98 {
99 	return container_of(ref, typeof(struct i915_vma), active);
100 }
101 
102 static int __i915_vma_active(struct i915_active *ref)
103 {
104 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
105 }
106 
107 static void __i915_vma_retire(struct i915_active *ref)
108 {
109 	i915_vma_put(active_to_vma(ref));
110 }
111 
112 static struct i915_vma *
113 vma_create(struct drm_i915_gem_object *obj,
114 	   struct i915_address_space *vm,
115 	   const struct i915_gtt_view *view)
116 {
117 	struct i915_vma *pos = ERR_PTR(-E2BIG);
118 	struct i915_vma *vma;
119 	struct rb_node *rb, **p;
120 	int err;
121 
122 	/* The aliasing_ppgtt should never be used directly! */
123 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
124 
125 	vma = i915_vma_alloc();
126 	if (vma == NULL)
127 		return ERR_PTR(-ENOMEM);
128 
129 	vma->ops = &vm->vma_ops;
130 	vma->obj = obj;
131 	vma->size = obj->base.size;
132 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
133 
134 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
135 
136 	/* Declare ourselves safe for use inside shrinkers */
137 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
138 		fs_reclaim_acquire(GFP_KERNEL);
139 		might_lock(&vma->active.mutex);
140 		fs_reclaim_release(GFP_KERNEL);
141 	}
142 
143 	INIT_LIST_HEAD(&vma->closed_link);
144 	INIT_LIST_HEAD(&vma->obj_link);
145 	RB_CLEAR_NODE(&vma->obj_node);
146 
147 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
148 		vma->gtt_view = *view;
149 		if (view->type == I915_GTT_VIEW_PARTIAL) {
150 			GEM_BUG_ON(range_overflows_t(u64,
151 						     view->partial.offset,
152 						     view->partial.size,
153 						     obj->base.size >> PAGE_SHIFT));
154 			vma->size = view->partial.size;
155 			vma->size <<= PAGE_SHIFT;
156 			GEM_BUG_ON(vma->size > obj->base.size);
157 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
158 			vma->size = intel_rotation_info_size(&view->rotated);
159 			vma->size <<= PAGE_SHIFT;
160 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
161 			vma->size = intel_remapped_info_size(&view->remapped);
162 			vma->size <<= PAGE_SHIFT;
163 		}
164 	}
165 
166 	if (unlikely(vma->size > vm->total))
167 		goto err_vma;
168 
169 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
170 
171 	err = mutex_lock_interruptible(&vm->mutex);
172 	if (err) {
173 		pos = ERR_PTR(err);
174 		goto err_vma;
175 	}
176 
177 	vma->vm = vm;
178 	list_add_tail(&vma->vm_link, &vm->unbound_list);
179 
180 	spin_lock(&obj->vma.lock);
181 	if (i915_is_ggtt(vm)) {
182 		if (unlikely(overflows_type(vma->size, u32)))
183 			goto err_unlock;
184 
185 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
186 						      i915_gem_object_get_tiling(obj),
187 						      i915_gem_object_get_stride(obj));
188 		if (unlikely(vma->fence_size < vma->size || /* overflow */
189 			     vma->fence_size > vm->total))
190 			goto err_unlock;
191 
192 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
193 
194 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
195 								i915_gem_object_get_tiling(obj),
196 								i915_gem_object_get_stride(obj));
197 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
198 
199 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
200 	}
201 
202 	rb = NULL;
203 	p = &obj->vma.tree.rb_node;
204 	while (*p) {
205 		long cmp;
206 
207 		rb = *p;
208 		pos = rb_entry(rb, struct i915_vma, obj_node);
209 
210 		/*
211 		 * If the view already exists in the tree, another thread
212 		 * already created a matching vma, so return the older instance
213 		 * and dispose of ours.
214 		 */
215 		cmp = i915_vma_compare(pos, vm, view);
216 		if (cmp < 0)
217 			p = &rb->rb_right;
218 		else if (cmp > 0)
219 			p = &rb->rb_left;
220 		else
221 			goto err_unlock;
222 	}
223 	rb_link_node(&vma->obj_node, rb, p);
224 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
225 
226 	if (i915_vma_is_ggtt(vma))
227 		/*
228 		 * We put the GGTT vma at the start of the vma-list, followed
229 		 * by the ppGGTT vma. This allows us to break early when
230 		 * iterating over only the GGTT vma for an object, see
231 		 * for_each_ggtt_vma()
232 		 */
233 		list_add(&vma->obj_link, &obj->vma.list);
234 	else
235 		list_add_tail(&vma->obj_link, &obj->vma.list);
236 
237 	spin_unlock(&obj->vma.lock);
238 	mutex_unlock(&vm->mutex);
239 
240 	return vma;
241 
242 err_unlock:
243 	spin_unlock(&obj->vma.lock);
244 	list_del_init(&vma->vm_link);
245 	mutex_unlock(&vm->mutex);
246 err_vma:
247 	i915_vma_free(vma);
248 	return pos;
249 }
250 
251 static struct i915_vma *
252 i915_vma_lookup(struct drm_i915_gem_object *obj,
253 	   struct i915_address_space *vm,
254 	   const struct i915_gtt_view *view)
255 {
256 	struct rb_node *rb;
257 
258 	rb = obj->vma.tree.rb_node;
259 	while (rb) {
260 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
261 		long cmp;
262 
263 		cmp = i915_vma_compare(vma, vm, view);
264 		if (cmp == 0)
265 			return vma;
266 
267 		if (cmp < 0)
268 			rb = rb->rb_right;
269 		else
270 			rb = rb->rb_left;
271 	}
272 
273 	return NULL;
274 }
275 
276 /**
277  * i915_vma_instance - return the singleton instance of the VMA
278  * @obj: parent &struct drm_i915_gem_object to be mapped
279  * @vm: address space in which the mapping is located
280  * @view: additional mapping requirements
281  *
282  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
283  * the same @view characteristics. If a match is not found, one is created.
284  * Once created, the VMA is kept until either the object is freed, or the
285  * address space is closed.
286  *
287  * Returns the vma, or an error pointer.
288  */
289 struct i915_vma *
290 i915_vma_instance(struct drm_i915_gem_object *obj,
291 		  struct i915_address_space *vm,
292 		  const struct i915_gtt_view *view)
293 {
294 	struct i915_vma *vma;
295 
296 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
297 	GEM_BUG_ON(!kref_read(&vm->ref));
298 
299 	spin_lock(&obj->vma.lock);
300 	vma = i915_vma_lookup(obj, vm, view);
301 	spin_unlock(&obj->vma.lock);
302 
303 	/* vma_create() will resolve the race if another creates the vma */
304 	if (unlikely(!vma))
305 		vma = vma_create(obj, vm, view);
306 
307 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
308 	return vma;
309 }
310 
311 struct i915_vma_work {
312 	struct dma_fence_work base;
313 	struct i915_address_space *vm;
314 	struct i915_vm_pt_stash stash;
315 	struct i915_vma_resource *vma_res;
316 	struct drm_i915_gem_object *obj;
317 	struct i915_sw_dma_fence_cb cb;
318 	enum i915_cache_level cache_level;
319 	unsigned int flags;
320 };
321 
322 static void __vma_bind(struct dma_fence_work *work)
323 {
324 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
325 	struct i915_vma_resource *vma_res = vw->vma_res;
326 
327 	/*
328 	 * We are about the bind the object, which must mean we have already
329 	 * signaled the work to potentially clear/move the pages underneath. If
330 	 * something went wrong at that stage then the object should have
331 	 * unknown_state set, in which case we need to skip the bind.
332 	 */
333 	if (i915_gem_object_has_unknown_state(vw->obj))
334 		return;
335 
336 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
337 			       vma_res, vw->cache_level, vw->flags);
338 }
339 
340 static void __vma_release(struct dma_fence_work *work)
341 {
342 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
343 
344 	if (vw->obj)
345 		i915_gem_object_put(vw->obj);
346 
347 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
348 	if (vw->vma_res)
349 		i915_vma_resource_put(vw->vma_res);
350 }
351 
352 static const struct dma_fence_work_ops bind_ops = {
353 	.name = "bind",
354 	.work = __vma_bind,
355 	.release = __vma_release,
356 };
357 
358 struct i915_vma_work *i915_vma_work(void)
359 {
360 	struct i915_vma_work *vw;
361 
362 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
363 	if (!vw)
364 		return NULL;
365 
366 	dma_fence_work_init(&vw->base, &bind_ops);
367 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
368 
369 	return vw;
370 }
371 
372 int i915_vma_wait_for_bind(struct i915_vma *vma)
373 {
374 	int err = 0;
375 
376 	if (rcu_access_pointer(vma->active.excl.fence)) {
377 		struct dma_fence *fence;
378 
379 		rcu_read_lock();
380 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
381 		rcu_read_unlock();
382 		if (fence) {
383 			err = dma_fence_wait(fence, true);
384 			dma_fence_put(fence);
385 		}
386 	}
387 
388 	return err;
389 }
390 
391 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
392 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
393 {
394 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
395 	int err;
396 
397 	if (!fence)
398 		return 0;
399 
400 	if (dma_fence_is_signaled(fence))
401 		err = fence->error;
402 	else
403 		err = -EBUSY;
404 
405 	dma_fence_put(fence);
406 
407 	return err;
408 }
409 #else
410 #define i915_vma_verify_bind_complete(_vma) 0
411 #endif
412 
413 I915_SELFTEST_EXPORT void
414 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
415 				struct i915_vma *vma)
416 {
417 	struct drm_i915_gem_object *obj = vma->obj;
418 
419 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
420 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
421 			       i915_gem_object_is_lmem(obj), obj->mm.region,
422 			       vma->ops, vma->private, __i915_vma_offset(vma),
423 			       __i915_vma_size(vma), vma->size, vma->guard);
424 }
425 
426 /**
427  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
428  * @vma: VMA to map
429  * @cache_level: mapping cache level
430  * @flags: flags like global or local mapping
431  * @work: preallocated worker for allocating and binding the PTE
432  * @vma_res: pointer to a preallocated vma resource. The resource is either
433  * consumed or freed.
434  *
435  * DMA addresses are taken from the scatter-gather table of this object (or of
436  * this VMA in case of non-default GGTT views) and PTE entries set up.
437  * Note that DMA addresses are also the only part of the SG table we care about.
438  */
439 int i915_vma_bind(struct i915_vma *vma,
440 		  enum i915_cache_level cache_level,
441 		  u32 flags,
442 		  struct i915_vma_work *work,
443 		  struct i915_vma_resource *vma_res)
444 {
445 	u32 bind_flags;
446 	u32 vma_flags;
447 	int ret;
448 
449 	lockdep_assert_held(&vma->vm->mutex);
450 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
451 	GEM_BUG_ON(vma->size > i915_vma_size(vma));
452 
453 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
454 					      vma->node.size,
455 					      vma->vm->total))) {
456 		i915_vma_resource_free(vma_res);
457 		return -ENODEV;
458 	}
459 
460 	if (GEM_DEBUG_WARN_ON(!flags)) {
461 		i915_vma_resource_free(vma_res);
462 		return -EINVAL;
463 	}
464 
465 	bind_flags = flags;
466 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
467 
468 	vma_flags = atomic_read(&vma->flags);
469 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
470 
471 	bind_flags &= ~vma_flags;
472 	if (bind_flags == 0) {
473 		i915_vma_resource_free(vma_res);
474 		return 0;
475 	}
476 
477 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
478 
479 	/* Wait for or await async unbinds touching our range */
480 	if (work && bind_flags & vma->vm->bind_async_flags)
481 		ret = i915_vma_resource_bind_dep_await(vma->vm,
482 						       &work->base.chain,
483 						       vma->node.start,
484 						       vma->node.size,
485 						       true,
486 						       GFP_NOWAIT |
487 						       __GFP_RETRY_MAYFAIL |
488 						       __GFP_NOWARN);
489 	else
490 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
491 						      vma->node.size, true);
492 	if (ret) {
493 		i915_vma_resource_free(vma_res);
494 		return ret;
495 	}
496 
497 	if (vma->resource || !vma_res) {
498 		/* Rebinding with an additional I915_VMA_*_BIND */
499 		GEM_WARN_ON(!vma_flags);
500 		i915_vma_resource_free(vma_res);
501 	} else {
502 		i915_vma_resource_init_from_vma(vma_res, vma);
503 		vma->resource = vma_res;
504 	}
505 	trace_i915_vma_bind(vma, bind_flags);
506 	if (work && bind_flags & vma->vm->bind_async_flags) {
507 		struct dma_fence *prev;
508 
509 		work->vma_res = i915_vma_resource_get(vma->resource);
510 		work->cache_level = cache_level;
511 		work->flags = bind_flags;
512 
513 		/*
514 		 * Note we only want to chain up to the migration fence on
515 		 * the pages (not the object itself). As we don't track that,
516 		 * yet, we have to use the exclusive fence instead.
517 		 *
518 		 * Also note that we do not want to track the async vma as
519 		 * part of the obj->resv->excl_fence as it only affects
520 		 * execution and not content or object's backing store lifetime.
521 		 */
522 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
523 		if (prev) {
524 			__i915_sw_fence_await_dma_fence(&work->base.chain,
525 							prev,
526 							&work->cb);
527 			dma_fence_put(prev);
528 		}
529 
530 		work->base.dma.error = 0; /* enable the queue_work() */
531 		work->obj = i915_gem_object_get(vma->obj);
532 	} else {
533 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
534 		if (ret) {
535 			i915_vma_resource_free(vma->resource);
536 			vma->resource = NULL;
537 
538 			return ret;
539 		}
540 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
541 				   bind_flags);
542 	}
543 
544 	atomic_or(bind_flags, &vma->flags);
545 	return 0;
546 }
547 
548 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
549 {
550 	void __iomem *ptr;
551 	int err;
552 
553 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
554 		return IOMEM_ERR_PTR(-EINVAL);
555 
556 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
557 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
558 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
559 
560 	ptr = READ_ONCE(vma->iomap);
561 	if (ptr == NULL) {
562 		/*
563 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
564 		 * instead, which already supports mapping non-contiguous chunks
565 		 * of pages, that way we can also drop the
566 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
567 		 */
568 		if (i915_gem_object_is_lmem(vma->obj)) {
569 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
570 							  vma->obj->base.size);
571 		} else if (i915_vma_is_map_and_fenceable(vma)) {
572 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
573 						i915_vma_offset(vma),
574 						i915_vma_size(vma));
575 		} else {
576 			ptr = (void __iomem *)
577 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
578 			if (IS_ERR(ptr)) {
579 				err = PTR_ERR(ptr);
580 				goto err;
581 			}
582 			ptr = page_pack_bits(ptr, 1);
583 		}
584 
585 		if (ptr == NULL) {
586 			err = -ENOMEM;
587 			goto err;
588 		}
589 
590 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
591 			if (page_unmask_bits(ptr))
592 				__i915_gem_object_release_map(vma->obj);
593 			else
594 				io_mapping_unmap(ptr);
595 			ptr = vma->iomap;
596 		}
597 	}
598 
599 	__i915_vma_pin(vma);
600 
601 	err = i915_vma_pin_fence(vma);
602 	if (err)
603 		goto err_unpin;
604 
605 	i915_vma_set_ggtt_write(vma);
606 
607 	/* NB Access through the GTT requires the device to be awake. */
608 	return page_mask_bits(ptr);
609 
610 err_unpin:
611 	__i915_vma_unpin(vma);
612 err:
613 	return IOMEM_ERR_PTR(err);
614 }
615 
616 void i915_vma_flush_writes(struct i915_vma *vma)
617 {
618 	if (i915_vma_unset_ggtt_write(vma))
619 		intel_gt_flush_ggtt_writes(vma->vm->gt);
620 }
621 
622 void i915_vma_unpin_iomap(struct i915_vma *vma)
623 {
624 	GEM_BUG_ON(vma->iomap == NULL);
625 
626 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
627 
628 	i915_vma_flush_writes(vma);
629 
630 	i915_vma_unpin_fence(vma);
631 	i915_vma_unpin(vma);
632 }
633 
634 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
635 {
636 	struct i915_vma *vma;
637 	struct drm_i915_gem_object *obj;
638 
639 	vma = fetch_and_zero(p_vma);
640 	if (!vma)
641 		return;
642 
643 	obj = vma->obj;
644 	GEM_BUG_ON(!obj);
645 
646 	i915_vma_unpin(vma);
647 
648 	if (flags & I915_VMA_RELEASE_MAP)
649 		i915_gem_object_unpin_map(obj);
650 
651 	i915_gem_object_put(obj);
652 }
653 
654 bool i915_vma_misplaced(const struct i915_vma *vma,
655 			u64 size, u64 alignment, u64 flags)
656 {
657 	if (!drm_mm_node_allocated(&vma->node))
658 		return false;
659 
660 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
661 		return true;
662 
663 	if (i915_vma_size(vma) < size)
664 		return true;
665 
666 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
667 	if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
668 		return true;
669 
670 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
671 		return true;
672 
673 	if (flags & PIN_OFFSET_BIAS &&
674 	    i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
675 		return true;
676 
677 	if (flags & PIN_OFFSET_FIXED &&
678 	    i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
679 		return true;
680 
681 	if (flags & PIN_OFFSET_GUARD &&
682 	    vma->guard < (flags & PIN_OFFSET_MASK))
683 		return true;
684 
685 	return false;
686 }
687 
688 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
689 {
690 	bool mappable, fenceable;
691 
692 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
693 	GEM_BUG_ON(!vma->fence_size);
694 
695 	fenceable = (i915_vma_size(vma) >= vma->fence_size &&
696 		     IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
697 
698 	mappable = i915_ggtt_offset(vma) + vma->fence_size <=
699 		   i915_vm_to_ggtt(vma->vm)->mappable_end;
700 
701 	if (mappable && fenceable)
702 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
703 	else
704 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
705 }
706 
707 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
708 {
709 	struct drm_mm_node *node = &vma->node;
710 	struct drm_mm_node *other;
711 
712 	/*
713 	 * On some machines we have to be careful when putting differing types
714 	 * of snoopable memory together to avoid the prefetcher crossing memory
715 	 * domains and dying. During vm initialisation, we decide whether or not
716 	 * these constraints apply and set the drm_mm.color_adjust
717 	 * appropriately.
718 	 */
719 	if (!i915_vm_has_cache_coloring(vma->vm))
720 		return true;
721 
722 	/* Only valid to be called on an already inserted vma */
723 	GEM_BUG_ON(!drm_mm_node_allocated(node));
724 	GEM_BUG_ON(list_empty(&node->node_list));
725 
726 	other = list_prev_entry(node, node_list);
727 	if (i915_node_color_differs(other, color) &&
728 	    !drm_mm_hole_follows(other))
729 		return false;
730 
731 	other = list_next_entry(node, node_list);
732 	if (i915_node_color_differs(other, color) &&
733 	    !drm_mm_hole_follows(node))
734 		return false;
735 
736 	return true;
737 }
738 
739 /**
740  * i915_vma_insert - finds a slot for the vma in its address space
741  * @vma: the vma
742  * @size: requested size in bytes (can be larger than the VMA)
743  * @alignment: required alignment
744  * @flags: mask of PIN_* flags to use
745  *
746  * First we try to allocate some free space that meets the requirements for
747  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
748  * preferrably the oldest idle entry to make room for the new VMA.
749  *
750  * Returns:
751  * 0 on success, negative error code otherwise.
752  */
753 static int
754 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
755 		u64 size, u64 alignment, u64 flags)
756 {
757 	unsigned long color, guard;
758 	u64 start, end;
759 	int ret;
760 
761 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
762 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
763 	GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
764 
765 	size = max(size, vma->size);
766 	alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
767 	if (flags & PIN_MAPPABLE) {
768 		size = max_t(typeof(size), size, vma->fence_size);
769 		alignment = max_t(typeof(alignment),
770 				  alignment, vma->fence_alignment);
771 	}
772 
773 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
774 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
775 	GEM_BUG_ON(!is_power_of_2(alignment));
776 
777 	guard = vma->guard; /* retain guard across rebinds */
778 	if (flags & PIN_OFFSET_GUARD) {
779 		GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
780 		guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
781 	}
782 	/*
783 	 * As we align the node upon insertion, but the hardware gets
784 	 * node.start + guard, the easiest way to make that work is
785 	 * to make the guard a multiple of the alignment size.
786 	 */
787 	guard = ALIGN(guard, alignment);
788 
789 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
790 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
791 
792 	end = vma->vm->total;
793 	if (flags & PIN_MAPPABLE)
794 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
795 	if (flags & PIN_ZONE_4G)
796 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
797 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
798 
799 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
800 
801 	/*
802 	 * If binding the object/GGTT view requires more space than the entire
803 	 * aperture has, reject it early before evicting everything in a vain
804 	 * attempt to find space.
805 	 */
806 	if (size > end - 2 * guard) {
807 		drm_dbg(&to_i915(vma->obj->base.dev)->drm,
808 			"Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
809 			size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
810 		return -ENOSPC;
811 	}
812 
813 	color = 0;
814 
815 	if (i915_vm_has_cache_coloring(vma->vm))
816 		color = vma->obj->cache_level;
817 
818 	if (flags & PIN_OFFSET_FIXED) {
819 		u64 offset = flags & PIN_OFFSET_MASK;
820 		if (!IS_ALIGNED(offset, alignment) ||
821 		    range_overflows(offset, size, end))
822 			return -EINVAL;
823 		/*
824 		 * The caller knows not of the guard added by others and
825 		 * requests for the offset of the start of its buffer
826 		 * to be fixed, which may not be the same as the position
827 		 * of the vma->node due to the guard pages.
828 		 */
829 		if (offset < guard || offset + size > end - guard)
830 			return -ENOSPC;
831 
832 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
833 					   size + 2 * guard,
834 					   offset - guard,
835 					   color, flags);
836 		if (ret)
837 			return ret;
838 	} else {
839 		size += 2 * guard;
840 		/*
841 		 * We only support huge gtt pages through the 48b PPGTT,
842 		 * however we also don't want to force any alignment for
843 		 * objects which need to be tightly packed into the low 32bits.
844 		 *
845 		 * Note that we assume that GGTT are limited to 4GiB for the
846 		 * forseeable future. See also i915_ggtt_offset().
847 		 */
848 		if (upper_32_bits(end - 1) &&
849 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
850 		    !HAS_64K_PAGES(vma->vm->i915)) {
851 			/*
852 			 * We can't mix 64K and 4K PTEs in the same page-table
853 			 * (2M block), and so to avoid the ugliness and
854 			 * complexity of coloring we opt for just aligning 64K
855 			 * objects to 2M.
856 			 */
857 			u64 page_alignment =
858 				rounddown_pow_of_two(vma->page_sizes.sg |
859 						     I915_GTT_PAGE_SIZE_2M);
860 
861 			/*
862 			 * Check we don't expand for the limited Global GTT
863 			 * (mappable aperture is even more precious!). This
864 			 * also checks that we exclude the aliasing-ppgtt.
865 			 */
866 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
867 
868 			alignment = max(alignment, page_alignment);
869 
870 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
871 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
872 		}
873 
874 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
875 					  size, alignment, color,
876 					  start, end, flags);
877 		if (ret)
878 			return ret;
879 
880 		GEM_BUG_ON(vma->node.start < start);
881 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
882 	}
883 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
884 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
885 
886 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
887 	vma->guard = guard;
888 
889 	return 0;
890 }
891 
892 static void
893 i915_vma_detach(struct i915_vma *vma)
894 {
895 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
896 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
897 
898 	/*
899 	 * And finally now the object is completely decoupled from this
900 	 * vma, we can drop its hold on the backing storage and allow
901 	 * it to be reaped by the shrinker.
902 	 */
903 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
904 }
905 
906 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
907 {
908 	unsigned int bound;
909 
910 	bound = atomic_read(&vma->flags);
911 
912 	if (flags & PIN_VALIDATE) {
913 		flags &= I915_VMA_BIND_MASK;
914 
915 		return (flags & bound) == flags;
916 	}
917 
918 	/* with the lock mandatory for unbind, we don't race here */
919 	flags &= I915_VMA_BIND_MASK;
920 	do {
921 		if (unlikely(flags & ~bound))
922 			return false;
923 
924 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
925 			return false;
926 
927 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
928 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
929 
930 	return true;
931 }
932 
933 static struct scatterlist *
934 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
935 	     unsigned int width, unsigned int height,
936 	     unsigned int src_stride, unsigned int dst_stride,
937 	     struct sg_table *st, struct scatterlist *sg)
938 {
939 	unsigned int column, row;
940 	pgoff_t src_idx;
941 
942 	for (column = 0; column < width; column++) {
943 		unsigned int left;
944 
945 		src_idx = src_stride * (height - 1) + column + offset;
946 		for (row = 0; row < height; row++) {
947 			st->nents++;
948 			/*
949 			 * We don't need the pages, but need to initialize
950 			 * the entries so the sg list can be happily traversed.
951 			 * The only thing we need are DMA addresses.
952 			 */
953 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
954 			sg_dma_address(sg) =
955 				i915_gem_object_get_dma_address(obj, src_idx);
956 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
957 			sg = sg_next(sg);
958 			src_idx -= src_stride;
959 		}
960 
961 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
962 
963 		if (!left)
964 			continue;
965 
966 		st->nents++;
967 
968 		/*
969 		 * The DE ignores the PTEs for the padding tiles, the sg entry
970 		 * here is just a conenience to indicate how many padding PTEs
971 		 * to insert at this spot.
972 		 */
973 		sg_set_page(sg, NULL, left, 0);
974 		sg_dma_address(sg) = 0;
975 		sg_dma_len(sg) = left;
976 		sg = sg_next(sg);
977 	}
978 
979 	return sg;
980 }
981 
982 static noinline struct sg_table *
983 intel_rotate_pages(struct intel_rotation_info *rot_info,
984 		   struct drm_i915_gem_object *obj)
985 {
986 	unsigned int size = intel_rotation_info_size(rot_info);
987 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
988 	struct sg_table *st;
989 	struct scatterlist *sg;
990 	int ret = -ENOMEM;
991 	int i;
992 
993 	/* Allocate target SG list. */
994 	st = kmalloc(sizeof(*st), GFP_KERNEL);
995 	if (!st)
996 		goto err_st_alloc;
997 
998 	ret = sg_alloc_table(st, size, GFP_KERNEL);
999 	if (ret)
1000 		goto err_sg_alloc;
1001 
1002 	st->nents = 0;
1003 	sg = st->sgl;
1004 
1005 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1006 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1007 				  rot_info->plane[i].width, rot_info->plane[i].height,
1008 				  rot_info->plane[i].src_stride,
1009 				  rot_info->plane[i].dst_stride,
1010 				  st, sg);
1011 
1012 	return st;
1013 
1014 err_sg_alloc:
1015 	kfree(st);
1016 err_st_alloc:
1017 
1018 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1019 		obj->base.size, rot_info->plane[0].width,
1020 		rot_info->plane[0].height, size);
1021 
1022 	return ERR_PTR(ret);
1023 }
1024 
1025 static struct scatterlist *
1026 add_padding_pages(unsigned int count,
1027 		  struct sg_table *st, struct scatterlist *sg)
1028 {
1029 	st->nents++;
1030 
1031 	/*
1032 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1033 	 * here is just a convenience to indicate how many padding PTEs
1034 	 * to insert at this spot.
1035 	 */
1036 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1037 	sg_dma_address(sg) = 0;
1038 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1039 	sg = sg_next(sg);
1040 
1041 	return sg;
1042 }
1043 
1044 static struct scatterlist *
1045 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1046 			      unsigned long offset, unsigned int alignment_pad,
1047 			      unsigned int width, unsigned int height,
1048 			      unsigned int src_stride, unsigned int dst_stride,
1049 			      struct sg_table *st, struct scatterlist *sg,
1050 			      unsigned int *gtt_offset)
1051 {
1052 	unsigned int row;
1053 
1054 	if (!width || !height)
1055 		return sg;
1056 
1057 	if (alignment_pad)
1058 		sg = add_padding_pages(alignment_pad, st, sg);
1059 
1060 	for (row = 0; row < height; row++) {
1061 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1062 
1063 		while (left) {
1064 			dma_addr_t addr;
1065 			unsigned int length;
1066 
1067 			/*
1068 			 * We don't need the pages, but need to initialize
1069 			 * the entries so the sg list can be happily traversed.
1070 			 * The only thing we need are DMA addresses.
1071 			 */
1072 
1073 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1074 
1075 			length = min(left, length);
1076 
1077 			st->nents++;
1078 
1079 			sg_set_page(sg, NULL, length, 0);
1080 			sg_dma_address(sg) = addr;
1081 			sg_dma_len(sg) = length;
1082 			sg = sg_next(sg);
1083 
1084 			offset += length / I915_GTT_PAGE_SIZE;
1085 			left -= length;
1086 		}
1087 
1088 		offset += src_stride - width;
1089 
1090 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1091 
1092 		if (!left)
1093 			continue;
1094 
1095 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1096 	}
1097 
1098 	*gtt_offset += alignment_pad + dst_stride * height;
1099 
1100 	return sg;
1101 }
1102 
1103 static struct scatterlist *
1104 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1105 		       pgoff_t obj_offset,
1106 		       unsigned int count,
1107 		       struct sg_table *st, struct scatterlist *sg)
1108 {
1109 	struct scatterlist *iter;
1110 	unsigned int offset;
1111 
1112 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1113 	GEM_BUG_ON(!iter);
1114 
1115 	do {
1116 		unsigned int len;
1117 
1118 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1119 			  count << PAGE_SHIFT);
1120 		sg_set_page(sg, NULL, len, 0);
1121 		sg_dma_address(sg) =
1122 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1123 		sg_dma_len(sg) = len;
1124 
1125 		st->nents++;
1126 		count -= len >> PAGE_SHIFT;
1127 		if (count == 0)
1128 			return sg;
1129 
1130 		sg = __sg_next(sg);
1131 		iter = __sg_next(iter);
1132 		offset = 0;
1133 	} while (1);
1134 }
1135 
1136 static struct scatterlist *
1137 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1138 			       pgoff_t obj_offset, unsigned int alignment_pad,
1139 			       unsigned int size,
1140 			       struct sg_table *st, struct scatterlist *sg,
1141 			       unsigned int *gtt_offset)
1142 {
1143 	if (!size)
1144 		return sg;
1145 
1146 	if (alignment_pad)
1147 		sg = add_padding_pages(alignment_pad, st, sg);
1148 
1149 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1150 	sg = sg_next(sg);
1151 
1152 	*gtt_offset += alignment_pad + size;
1153 
1154 	return sg;
1155 }
1156 
1157 static struct scatterlist *
1158 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1159 			struct drm_i915_gem_object *obj,
1160 			int color_plane,
1161 			struct sg_table *st, struct scatterlist *sg,
1162 			unsigned int *gtt_offset)
1163 {
1164 	unsigned int alignment_pad = 0;
1165 
1166 	if (rem_info->plane_alignment)
1167 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1168 
1169 	if (rem_info->plane[color_plane].linear)
1170 		sg = remap_linear_color_plane_pages(obj,
1171 						    rem_info->plane[color_plane].offset,
1172 						    alignment_pad,
1173 						    rem_info->plane[color_plane].size,
1174 						    st, sg,
1175 						    gtt_offset);
1176 
1177 	else
1178 		sg = remap_tiled_color_plane_pages(obj,
1179 						   rem_info->plane[color_plane].offset,
1180 						   alignment_pad,
1181 						   rem_info->plane[color_plane].width,
1182 						   rem_info->plane[color_plane].height,
1183 						   rem_info->plane[color_plane].src_stride,
1184 						   rem_info->plane[color_plane].dst_stride,
1185 						   st, sg,
1186 						   gtt_offset);
1187 
1188 	return sg;
1189 }
1190 
1191 static noinline struct sg_table *
1192 intel_remap_pages(struct intel_remapped_info *rem_info,
1193 		  struct drm_i915_gem_object *obj)
1194 {
1195 	unsigned int size = intel_remapped_info_size(rem_info);
1196 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1197 	struct sg_table *st;
1198 	struct scatterlist *sg;
1199 	unsigned int gtt_offset = 0;
1200 	int ret = -ENOMEM;
1201 	int i;
1202 
1203 	/* Allocate target SG list. */
1204 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1205 	if (!st)
1206 		goto err_st_alloc;
1207 
1208 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1209 	if (ret)
1210 		goto err_sg_alloc;
1211 
1212 	st->nents = 0;
1213 	sg = st->sgl;
1214 
1215 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1216 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1217 
1218 	i915_sg_trim(st);
1219 
1220 	return st;
1221 
1222 err_sg_alloc:
1223 	kfree(st);
1224 err_st_alloc:
1225 
1226 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1227 		obj->base.size, rem_info->plane[0].width,
1228 		rem_info->plane[0].height, size);
1229 
1230 	return ERR_PTR(ret);
1231 }
1232 
1233 static noinline struct sg_table *
1234 intel_partial_pages(const struct i915_gtt_view *view,
1235 		    struct drm_i915_gem_object *obj)
1236 {
1237 	struct sg_table *st;
1238 	struct scatterlist *sg;
1239 	unsigned int count = view->partial.size;
1240 	int ret = -ENOMEM;
1241 
1242 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1243 	if (!st)
1244 		goto err_st_alloc;
1245 
1246 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1247 	if (ret)
1248 		goto err_sg_alloc;
1249 
1250 	st->nents = 0;
1251 
1252 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1253 
1254 	sg_mark_end(sg);
1255 	i915_sg_trim(st); /* Drop any unused tail entries. */
1256 
1257 	return st;
1258 
1259 err_sg_alloc:
1260 	kfree(st);
1261 err_st_alloc:
1262 	return ERR_PTR(ret);
1263 }
1264 
1265 static int
1266 __i915_vma_get_pages(struct i915_vma *vma)
1267 {
1268 	struct sg_table *pages;
1269 
1270 	/*
1271 	 * The vma->pages are only valid within the lifespan of the borrowed
1272 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1273 	 * must be the vma->pages. A simple rule is that vma->pages must only
1274 	 * be accessed when the obj->mm.pages are pinned.
1275 	 */
1276 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1277 
1278 	switch (vma->gtt_view.type) {
1279 	default:
1280 		GEM_BUG_ON(vma->gtt_view.type);
1281 		fallthrough;
1282 	case I915_GTT_VIEW_NORMAL:
1283 		pages = vma->obj->mm.pages;
1284 		break;
1285 
1286 	case I915_GTT_VIEW_ROTATED:
1287 		pages =
1288 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1289 		break;
1290 
1291 	case I915_GTT_VIEW_REMAPPED:
1292 		pages =
1293 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1294 		break;
1295 
1296 	case I915_GTT_VIEW_PARTIAL:
1297 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1298 		break;
1299 	}
1300 
1301 	if (IS_ERR(pages)) {
1302 		drm_err(&vma->vm->i915->drm,
1303 			"Failed to get pages for VMA view type %u (%ld)!\n",
1304 			vma->gtt_view.type, PTR_ERR(pages));
1305 		return PTR_ERR(pages);
1306 	}
1307 
1308 	vma->pages = pages;
1309 
1310 	return 0;
1311 }
1312 
1313 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1314 {
1315 	int err;
1316 
1317 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1318 		return 0;
1319 
1320 	err = i915_gem_object_pin_pages(vma->obj);
1321 	if (err)
1322 		return err;
1323 
1324 	err = __i915_vma_get_pages(vma);
1325 	if (err)
1326 		goto err_unpin;
1327 
1328 	vma->page_sizes = vma->obj->mm.page_sizes;
1329 	atomic_inc(&vma->pages_count);
1330 
1331 	return 0;
1332 
1333 err_unpin:
1334 	__i915_gem_object_unpin_pages(vma->obj);
1335 
1336 	return err;
1337 }
1338 
1339 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1340 {
1341 	/*
1342 	 * Before we release the pages that were bound by this vma, we
1343 	 * must invalidate all the TLBs that may still have a reference
1344 	 * back to our physical address. It only needs to be done once,
1345 	 * so after updating the PTE to point away from the pages, record
1346 	 * the most recent TLB invalidation seqno, and if we have not yet
1347 	 * flushed the TLBs upon release, perform a full invalidation.
1348 	 */
1349 	WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt));
1350 }
1351 
1352 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1353 {
1354 	/* We allocate under vma_get_pages, so beware the shrinker */
1355 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1356 
1357 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1358 		if (vma->pages != vma->obj->mm.pages) {
1359 			sg_free_table(vma->pages);
1360 			kfree(vma->pages);
1361 		}
1362 		vma->pages = NULL;
1363 
1364 		i915_gem_object_unpin_pages(vma->obj);
1365 	}
1366 }
1367 
1368 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1369 {
1370 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1371 		return;
1372 
1373 	__vma_put_pages(vma, 1);
1374 }
1375 
1376 static void vma_unbind_pages(struct i915_vma *vma)
1377 {
1378 	unsigned int count;
1379 
1380 	lockdep_assert_held(&vma->vm->mutex);
1381 
1382 	/* The upper portion of pages_count is the number of bindings */
1383 	count = atomic_read(&vma->pages_count);
1384 	count >>= I915_VMA_PAGES_BIAS;
1385 	GEM_BUG_ON(!count);
1386 
1387 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1388 }
1389 
1390 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1391 		    u64 size, u64 alignment, u64 flags)
1392 {
1393 	struct i915_vma_work *work = NULL;
1394 	struct dma_fence *moving = NULL;
1395 	struct i915_vma_resource *vma_res = NULL;
1396 	intel_wakeref_t wakeref = 0;
1397 	unsigned int bound;
1398 	int err;
1399 
1400 	assert_vma_held(vma);
1401 	GEM_BUG_ON(!ww);
1402 
1403 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1404 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1405 
1406 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1407 
1408 	/* First try and grab the pin without rebinding the vma */
1409 	if (try_qad_pin(vma, flags))
1410 		return 0;
1411 
1412 	err = i915_vma_get_pages(vma);
1413 	if (err)
1414 		return err;
1415 
1416 	if (flags & PIN_GLOBAL)
1417 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1418 
1419 	if (flags & vma->vm->bind_async_flags) {
1420 		/* lock VM */
1421 		err = i915_vm_lock_objects(vma->vm, ww);
1422 		if (err)
1423 			goto err_rpm;
1424 
1425 		work = i915_vma_work();
1426 		if (!work) {
1427 			err = -ENOMEM;
1428 			goto err_rpm;
1429 		}
1430 
1431 		work->vm = vma->vm;
1432 
1433 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1434 		if (err)
1435 			goto err_rpm;
1436 
1437 		dma_fence_work_chain(&work->base, moving);
1438 
1439 		/* Allocate enough page directories to used PTE */
1440 		if (vma->vm->allocate_va_range) {
1441 			err = i915_vm_alloc_pt_stash(vma->vm,
1442 						     &work->stash,
1443 						     vma->size);
1444 			if (err)
1445 				goto err_fence;
1446 
1447 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1448 			if (err)
1449 				goto err_fence;
1450 		}
1451 	}
1452 
1453 	vma_res = i915_vma_resource_alloc();
1454 	if (IS_ERR(vma_res)) {
1455 		err = PTR_ERR(vma_res);
1456 		goto err_fence;
1457 	}
1458 
1459 	/*
1460 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1461 	 *
1462 	 * We conflate the Global GTT with the user's vma when using the
1463 	 * aliasing-ppgtt, but it is still vitally important to try and
1464 	 * keep the use cases distinct. For example, userptr objects are
1465 	 * not allowed inside the Global GTT as that will cause lock
1466 	 * inversions when we have to evict them the mmu_notifier callbacks -
1467 	 * but they are allowed to be part of the user ppGTT which can never
1468 	 * be mapped. As such we try to give the distinct users of the same
1469 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1470 	 * and i915_ppgtt separate].
1471 	 *
1472 	 * NB this may cause us to mask real lock inversions -- while the
1473 	 * code is safe today, lockdep may not be able to spot future
1474 	 * transgressions.
1475 	 */
1476 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1477 					      !(flags & PIN_GLOBAL));
1478 	if (err)
1479 		goto err_vma_res;
1480 
1481 	/* No more allocations allowed now we hold vm->mutex */
1482 
1483 	if (unlikely(i915_vma_is_closed(vma))) {
1484 		err = -ENOENT;
1485 		goto err_unlock;
1486 	}
1487 
1488 	bound = atomic_read(&vma->flags);
1489 	if (unlikely(bound & I915_VMA_ERROR)) {
1490 		err = -ENOMEM;
1491 		goto err_unlock;
1492 	}
1493 
1494 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1495 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1496 		goto err_unlock;
1497 	}
1498 
1499 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1500 		if (!(flags & PIN_VALIDATE))
1501 			__i915_vma_pin(vma);
1502 		goto err_unlock;
1503 	}
1504 
1505 	err = i915_active_acquire(&vma->active);
1506 	if (err)
1507 		goto err_unlock;
1508 
1509 	if (!(bound & I915_VMA_BIND_MASK)) {
1510 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1511 		if (err)
1512 			goto err_active;
1513 
1514 		if (i915_is_ggtt(vma->vm))
1515 			__i915_vma_set_map_and_fenceable(vma);
1516 	}
1517 
1518 	GEM_BUG_ON(!vma->pages);
1519 	err = i915_vma_bind(vma,
1520 			    vma->obj->cache_level,
1521 			    flags, work, vma_res);
1522 	vma_res = NULL;
1523 	if (err)
1524 		goto err_remove;
1525 
1526 	/* There should only be at most 2 active bindings (user, global) */
1527 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1528 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1529 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1530 
1531 	if (!(flags & PIN_VALIDATE)) {
1532 		__i915_vma_pin(vma);
1533 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1534 	}
1535 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1536 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1537 
1538 err_remove:
1539 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1540 		i915_vma_detach(vma);
1541 		drm_mm_remove_node(&vma->node);
1542 	}
1543 err_active:
1544 	i915_active_release(&vma->active);
1545 err_unlock:
1546 	mutex_unlock(&vma->vm->mutex);
1547 err_vma_res:
1548 	i915_vma_resource_free(vma_res);
1549 err_fence:
1550 	if (work)
1551 		dma_fence_work_commit_imm(&work->base);
1552 err_rpm:
1553 	if (wakeref)
1554 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1555 
1556 	if (moving)
1557 		dma_fence_put(moving);
1558 
1559 	i915_vma_put_pages(vma);
1560 	return err;
1561 }
1562 
1563 static void flush_idle_contexts(struct intel_gt *gt)
1564 {
1565 	struct intel_engine_cs *engine;
1566 	enum intel_engine_id id;
1567 
1568 	for_each_engine(engine, gt, id)
1569 		intel_engine_flush_barriers(engine);
1570 
1571 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1572 }
1573 
1574 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1575 			   u32 align, unsigned int flags)
1576 {
1577 	struct i915_address_space *vm = vma->vm;
1578 	struct intel_gt *gt;
1579 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1580 	int err;
1581 
1582 	do {
1583 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1584 
1585 		if (err != -ENOSPC) {
1586 			if (!err) {
1587 				err = i915_vma_wait_for_bind(vma);
1588 				if (err)
1589 					i915_vma_unpin(vma);
1590 			}
1591 			return err;
1592 		}
1593 
1594 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1595 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1596 			flush_idle_contexts(gt);
1597 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1598 			/*
1599 			 * We pass NULL ww here, as we don't want to unbind
1600 			 * locked objects when called from execbuf when pinning
1601 			 * is removed. This would probably regress badly.
1602 			 */
1603 			i915_gem_evict_vm(vm, NULL, NULL);
1604 			mutex_unlock(&vm->mutex);
1605 		}
1606 	} while (1);
1607 }
1608 
1609 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1610 		  u32 align, unsigned int flags)
1611 {
1612 	struct i915_gem_ww_ctx _ww;
1613 	int err;
1614 
1615 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1616 
1617 	if (ww)
1618 		return __i915_ggtt_pin(vma, ww, align, flags);
1619 
1620 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1621 
1622 	for_i915_gem_ww(&_ww, err, true) {
1623 		err = i915_gem_object_lock(vma->obj, &_ww);
1624 		if (!err)
1625 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1626 	}
1627 
1628 	return err;
1629 }
1630 
1631 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1632 {
1633 	/*
1634 	 * We defer actually closing, unbinding and destroying the VMA until
1635 	 * the next idle point, or if the object is freed in the meantime. By
1636 	 * postponing the unbind, we allow for it to be resurrected by the
1637 	 * client, avoiding the work required to rebind the VMA. This is
1638 	 * advantageous for DRI, where the client/server pass objects
1639 	 * between themselves, temporarily opening a local VMA to the
1640 	 * object, and then closing it again. The same object is then reused
1641 	 * on the next frame (or two, depending on the depth of the swap queue)
1642 	 * causing us to rebind the VMA once more. This ends up being a lot
1643 	 * of wasted work for the steady state.
1644 	 */
1645 	GEM_BUG_ON(i915_vma_is_closed(vma));
1646 	list_add(&vma->closed_link, &gt->closed_vma);
1647 }
1648 
1649 void i915_vma_close(struct i915_vma *vma)
1650 {
1651 	struct intel_gt *gt = vma->vm->gt;
1652 	unsigned long flags;
1653 
1654 	if (i915_vma_is_ggtt(vma))
1655 		return;
1656 
1657 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1658 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1659 					&gt->closed_lock,
1660 					flags)) {
1661 		__vma_close(vma, gt);
1662 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1663 	}
1664 }
1665 
1666 static void __i915_vma_remove_closed(struct i915_vma *vma)
1667 {
1668 	list_del_init(&vma->closed_link);
1669 }
1670 
1671 void i915_vma_reopen(struct i915_vma *vma)
1672 {
1673 	struct intel_gt *gt = vma->vm->gt;
1674 
1675 	spin_lock_irq(&gt->closed_lock);
1676 	if (i915_vma_is_closed(vma))
1677 		__i915_vma_remove_closed(vma);
1678 	spin_unlock_irq(&gt->closed_lock);
1679 }
1680 
1681 static void force_unbind(struct i915_vma *vma)
1682 {
1683 	if (!drm_mm_node_allocated(&vma->node))
1684 		return;
1685 
1686 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1687 	WARN_ON(__i915_vma_unbind(vma));
1688 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1689 }
1690 
1691 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1692 			       bool vm_ddestroy)
1693 {
1694 	struct drm_i915_gem_object *obj = vma->obj;
1695 
1696 	GEM_BUG_ON(i915_vma_is_active(vma));
1697 
1698 	spin_lock(&obj->vma.lock);
1699 	list_del(&vma->obj_link);
1700 	if (!RB_EMPTY_NODE(&vma->obj_node))
1701 		rb_erase(&vma->obj_node, &obj->vma.tree);
1702 
1703 	spin_unlock(&obj->vma.lock);
1704 
1705 	spin_lock_irq(&gt->closed_lock);
1706 	__i915_vma_remove_closed(vma);
1707 	spin_unlock_irq(&gt->closed_lock);
1708 
1709 	if (vm_ddestroy)
1710 		i915_vm_resv_put(vma->vm);
1711 
1712 	i915_active_fini(&vma->active);
1713 	GEM_WARN_ON(vma->resource);
1714 	i915_vma_free(vma);
1715 }
1716 
1717 /**
1718  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1719  * the initial reference.
1720  *
1721  * This function should be called when it's decided the vma isn't needed
1722  * anymore. The caller must assure that it doesn't race with another lookup
1723  * plus destroy, typically by taking an appropriate reference.
1724  *
1725  * Current callsites are
1726  * - __i915_gem_object_pages_fini()
1727  * - __i915_vm_close() - Blocks the above function by taking a reference on
1728  * the object.
1729  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1730  * on the vm and a reference on the object. Also takes the object lock so
1731  * destruction from __i915_vma_parked() can be blocked by holding the
1732  * object lock. Since the object lock is only allowed from within i915 with
1733  * an object refcount, holding the object lock also implicitly blocks the
1734  * vma freeing from __i915_gem_object_pages_fini().
1735  *
1736  * Because of locks taken during destruction, a vma is also guaranteed to
1737  * stay alive while the following locks are held if it was looked up while
1738  * holding one of the locks:
1739  * - vm->mutex
1740  * - obj->vma.lock
1741  * - gt->closed_lock
1742  */
1743 void i915_vma_destroy_locked(struct i915_vma *vma)
1744 {
1745 	lockdep_assert_held(&vma->vm->mutex);
1746 
1747 	force_unbind(vma);
1748 	list_del_init(&vma->vm_link);
1749 	release_references(vma, vma->vm->gt, false);
1750 }
1751 
1752 void i915_vma_destroy(struct i915_vma *vma)
1753 {
1754 	struct intel_gt *gt;
1755 	bool vm_ddestroy;
1756 
1757 	mutex_lock(&vma->vm->mutex);
1758 	force_unbind(vma);
1759 	list_del_init(&vma->vm_link);
1760 	vm_ddestroy = vma->vm_ddestroy;
1761 	vma->vm_ddestroy = false;
1762 
1763 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1764 	gt = vma->vm->gt;
1765 	mutex_unlock(&vma->vm->mutex);
1766 	release_references(vma, gt, vm_ddestroy);
1767 }
1768 
1769 void i915_vma_parked(struct intel_gt *gt)
1770 {
1771 	struct i915_vma *vma, *next;
1772 	LIST_HEAD(closed);
1773 
1774 	spin_lock_irq(&gt->closed_lock);
1775 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1776 		struct drm_i915_gem_object *obj = vma->obj;
1777 		struct i915_address_space *vm = vma->vm;
1778 
1779 		/* XXX All to avoid keeping a reference on i915_vma itself */
1780 
1781 		if (!kref_get_unless_zero(&obj->base.refcount))
1782 			continue;
1783 
1784 		if (!i915_vm_tryget(vm)) {
1785 			i915_gem_object_put(obj);
1786 			continue;
1787 		}
1788 
1789 		list_move(&vma->closed_link, &closed);
1790 	}
1791 	spin_unlock_irq(&gt->closed_lock);
1792 
1793 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1794 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1795 		struct drm_i915_gem_object *obj = vma->obj;
1796 		struct i915_address_space *vm = vma->vm;
1797 
1798 		if (i915_gem_object_trylock(obj, NULL)) {
1799 			INIT_LIST_HEAD(&vma->closed_link);
1800 			i915_vma_destroy(vma);
1801 			i915_gem_object_unlock(obj);
1802 		} else {
1803 			/* back you go.. */
1804 			spin_lock_irq(&gt->closed_lock);
1805 			list_add(&vma->closed_link, &gt->closed_vma);
1806 			spin_unlock_irq(&gt->closed_lock);
1807 		}
1808 
1809 		i915_gem_object_put(obj);
1810 		i915_vm_put(vm);
1811 	}
1812 }
1813 
1814 static void __i915_vma_iounmap(struct i915_vma *vma)
1815 {
1816 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1817 
1818 	if (vma->iomap == NULL)
1819 		return;
1820 
1821 	if (page_unmask_bits(vma->iomap))
1822 		__i915_gem_object_release_map(vma->obj);
1823 	else
1824 		io_mapping_unmap(vma->iomap);
1825 	vma->iomap = NULL;
1826 }
1827 
1828 void i915_vma_revoke_mmap(struct i915_vma *vma)
1829 {
1830 	struct drm_vma_offset_node *node;
1831 	u64 vma_offset;
1832 
1833 	if (!i915_vma_has_userfault(vma))
1834 		return;
1835 
1836 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1837 	GEM_BUG_ON(!vma->obj->userfault_count);
1838 
1839 	node = &vma->mmo->vma_node;
1840 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1841 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1842 			    drm_vma_node_offset_addr(node) + vma_offset,
1843 			    vma->size,
1844 			    1);
1845 
1846 	i915_vma_unset_userfault(vma);
1847 	if (!--vma->obj->userfault_count)
1848 		list_del(&vma->obj->userfault_link);
1849 }
1850 
1851 static int
1852 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1853 {
1854 	return __i915_request_await_exclusive(rq, &vma->active);
1855 }
1856 
1857 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1858 {
1859 	int err;
1860 
1861 	/* Wait for the vma to be bound before we start! */
1862 	err = __i915_request_await_bind(rq, vma);
1863 	if (err)
1864 		return err;
1865 
1866 	return i915_active_add_request(&vma->active, rq);
1867 }
1868 
1869 int _i915_vma_move_to_active(struct i915_vma *vma,
1870 			     struct i915_request *rq,
1871 			     struct dma_fence *fence,
1872 			     unsigned int flags)
1873 {
1874 	struct drm_i915_gem_object *obj = vma->obj;
1875 	int err;
1876 
1877 	assert_object_held(obj);
1878 
1879 	GEM_BUG_ON(!vma->pages);
1880 
1881 	if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1882 		err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1883 		if (unlikely(err))
1884 			return err;
1885 	}
1886 	err = __i915_vma_move_to_active(vma, rq);
1887 	if (unlikely(err))
1888 		return err;
1889 
1890 	/*
1891 	 * Reserve fences slot early to prevent an allocation after preparing
1892 	 * the workload and associating fences with dma_resv.
1893 	 */
1894 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1895 		struct dma_fence *curr;
1896 		int idx;
1897 
1898 		dma_fence_array_for_each(curr, idx, fence)
1899 			;
1900 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1901 		if (unlikely(err))
1902 			return err;
1903 	}
1904 
1905 	if (flags & EXEC_OBJECT_WRITE) {
1906 		struct intel_frontbuffer *front;
1907 
1908 		front = __intel_frontbuffer_get(obj);
1909 		if (unlikely(front)) {
1910 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1911 				i915_active_add_request(&front->write, rq);
1912 			intel_frontbuffer_put(front);
1913 		}
1914 	}
1915 
1916 	if (fence) {
1917 		struct dma_fence *curr;
1918 		enum dma_resv_usage usage;
1919 		int idx;
1920 
1921 		if (flags & EXEC_OBJECT_WRITE) {
1922 			usage = DMA_RESV_USAGE_WRITE;
1923 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1924 			obj->read_domains = 0;
1925 		} else {
1926 			usage = DMA_RESV_USAGE_READ;
1927 			obj->write_domain = 0;
1928 		}
1929 
1930 		dma_fence_array_for_each(curr, idx, fence)
1931 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1932 	}
1933 
1934 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1935 		i915_active_add_request(&vma->fence->active, rq);
1936 
1937 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1938 	obj->mm.dirty = true;
1939 
1940 	GEM_BUG_ON(!i915_vma_is_active(vma));
1941 	return 0;
1942 }
1943 
1944 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1945 {
1946 	struct i915_vma_resource *vma_res = vma->resource;
1947 	struct dma_fence *unbind_fence;
1948 
1949 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1950 	assert_vma_held_evict(vma);
1951 
1952 	if (i915_vma_is_map_and_fenceable(vma)) {
1953 		/* Force a pagefault for domain tracking on next user access */
1954 		i915_vma_revoke_mmap(vma);
1955 
1956 		/*
1957 		 * Check that we have flushed all writes through the GGTT
1958 		 * before the unbind, other due to non-strict nature of those
1959 		 * indirect writes they may end up referencing the GGTT PTE
1960 		 * after the unbind.
1961 		 *
1962 		 * Note that we may be concurrently poking at the GGTT_WRITE
1963 		 * bit from set-domain, as we mark all GGTT vma associated
1964 		 * with an object. We know this is for another vma, as we
1965 		 * are currently unbinding this one -- so if this vma will be
1966 		 * reused, it will be refaulted and have its dirty bit set
1967 		 * before the next write.
1968 		 */
1969 		i915_vma_flush_writes(vma);
1970 
1971 		/* release the fence reg _after_ flushing */
1972 		i915_vma_revoke_fence(vma);
1973 
1974 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1975 	}
1976 
1977 	__i915_vma_iounmap(vma);
1978 
1979 	GEM_BUG_ON(vma->fence);
1980 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1981 
1982 	/* Object backend must be async capable. */
1983 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1984 
1985 	/* If vm is not open, unbind is a nop. */
1986 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1987 		kref_read(&vma->vm->ref);
1988 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1989 		vma->vm->skip_pte_rewrite;
1990 	trace_i915_vma_unbind(vma);
1991 
1992 	if (async)
1993 		unbind_fence = i915_vma_resource_unbind(vma_res,
1994 							&vma->obj->mm.tlb);
1995 	else
1996 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
1997 
1998 	vma->resource = NULL;
1999 
2000 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2001 		   &vma->flags);
2002 
2003 	i915_vma_detach(vma);
2004 
2005 	if (!async) {
2006 		if (unbind_fence) {
2007 			dma_fence_wait(unbind_fence, false);
2008 			dma_fence_put(unbind_fence);
2009 			unbind_fence = NULL;
2010 		}
2011 		vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb);
2012 	}
2013 
2014 	/*
2015 	 * Binding itself may not have completed until the unbind fence signals,
2016 	 * so don't drop the pages until that happens, unless the resource is
2017 	 * async_capable.
2018 	 */
2019 
2020 	vma_unbind_pages(vma);
2021 	return unbind_fence;
2022 }
2023 
2024 int __i915_vma_unbind(struct i915_vma *vma)
2025 {
2026 	int ret;
2027 
2028 	lockdep_assert_held(&vma->vm->mutex);
2029 	assert_vma_held_evict(vma);
2030 
2031 	if (!drm_mm_node_allocated(&vma->node))
2032 		return 0;
2033 
2034 	if (i915_vma_is_pinned(vma)) {
2035 		vma_print_allocator(vma, "is pinned");
2036 		return -EAGAIN;
2037 	}
2038 
2039 	/*
2040 	 * After confirming that no one else is pinning this vma, wait for
2041 	 * any laggards who may have crept in during the wait (through
2042 	 * a residual pin skipping the vm->mutex) to complete.
2043 	 */
2044 	ret = i915_vma_sync(vma);
2045 	if (ret)
2046 		return ret;
2047 
2048 	GEM_BUG_ON(i915_vma_is_active(vma));
2049 	__i915_vma_evict(vma, false);
2050 
2051 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2052 	return 0;
2053 }
2054 
2055 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2056 {
2057 	struct dma_fence *fence;
2058 
2059 	lockdep_assert_held(&vma->vm->mutex);
2060 
2061 	if (!drm_mm_node_allocated(&vma->node))
2062 		return NULL;
2063 
2064 	if (i915_vma_is_pinned(vma) ||
2065 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2066 		return ERR_PTR(-EAGAIN);
2067 
2068 	/*
2069 	 * We probably need to replace this with awaiting the fences of the
2070 	 * object's dma_resv when the vma active goes away. When doing that
2071 	 * we need to be careful to not add the vma_resource unbind fence
2072 	 * immediately to the object's dma_resv, because then unbinding
2073 	 * the next vma from the object, in case there are many, will
2074 	 * actually await the unbinding of the previous vmas, which is
2075 	 * undesirable.
2076 	 */
2077 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2078 				       I915_ACTIVE_AWAIT_EXCL |
2079 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2080 		return ERR_PTR(-EBUSY);
2081 	}
2082 
2083 	fence = __i915_vma_evict(vma, true);
2084 
2085 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2086 
2087 	return fence;
2088 }
2089 
2090 int i915_vma_unbind(struct i915_vma *vma)
2091 {
2092 	struct i915_address_space *vm = vma->vm;
2093 	intel_wakeref_t wakeref = 0;
2094 	int err;
2095 
2096 	assert_object_held_shared(vma->obj);
2097 
2098 	/* Optimistic wait before taking the mutex */
2099 	err = i915_vma_sync(vma);
2100 	if (err)
2101 		return err;
2102 
2103 	if (!drm_mm_node_allocated(&vma->node))
2104 		return 0;
2105 
2106 	if (i915_vma_is_pinned(vma)) {
2107 		vma_print_allocator(vma, "is pinned");
2108 		return -EAGAIN;
2109 	}
2110 
2111 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2112 		/* XXX not always required: nop_clear_range */
2113 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2114 
2115 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2116 	if (err)
2117 		goto out_rpm;
2118 
2119 	err = __i915_vma_unbind(vma);
2120 	mutex_unlock(&vm->mutex);
2121 
2122 out_rpm:
2123 	if (wakeref)
2124 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2125 	return err;
2126 }
2127 
2128 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2129 {
2130 	struct drm_i915_gem_object *obj = vma->obj;
2131 	struct i915_address_space *vm = vma->vm;
2132 	intel_wakeref_t wakeref = 0;
2133 	struct dma_fence *fence;
2134 	int err;
2135 
2136 	/*
2137 	 * We need the dma-resv lock since we add the
2138 	 * unbind fence to the dma-resv object.
2139 	 */
2140 	assert_object_held(obj);
2141 
2142 	if (!drm_mm_node_allocated(&vma->node))
2143 		return 0;
2144 
2145 	if (i915_vma_is_pinned(vma)) {
2146 		vma_print_allocator(vma, "is pinned");
2147 		return -EAGAIN;
2148 	}
2149 
2150 	if (!obj->mm.rsgt)
2151 		return -EBUSY;
2152 
2153 	err = dma_resv_reserve_fences(obj->base.resv, 2);
2154 	if (err)
2155 		return -EBUSY;
2156 
2157 	/*
2158 	 * It would be great if we could grab this wakeref from the
2159 	 * async unbind work if needed, but we can't because it uses
2160 	 * kmalloc and it's in the dma-fence signalling critical path.
2161 	 */
2162 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2163 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2164 
2165 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2166 		err = -EBUSY;
2167 		goto out_rpm;
2168 	} else if (!trylock_vm) {
2169 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2170 		if (err)
2171 			goto out_rpm;
2172 	}
2173 
2174 	fence = __i915_vma_unbind_async(vma);
2175 	mutex_unlock(&vm->mutex);
2176 	if (IS_ERR_OR_NULL(fence)) {
2177 		err = PTR_ERR_OR_ZERO(fence);
2178 		goto out_rpm;
2179 	}
2180 
2181 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2182 	dma_fence_put(fence);
2183 
2184 out_rpm:
2185 	if (wakeref)
2186 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2187 	return err;
2188 }
2189 
2190 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2191 {
2192 	int err;
2193 
2194 	i915_gem_object_lock(vma->obj, NULL);
2195 	err = i915_vma_unbind(vma);
2196 	i915_gem_object_unlock(vma->obj);
2197 
2198 	return err;
2199 }
2200 
2201 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2202 {
2203 	i915_gem_object_make_unshrinkable(vma->obj);
2204 	return vma;
2205 }
2206 
2207 void i915_vma_make_shrinkable(struct i915_vma *vma)
2208 {
2209 	i915_gem_object_make_shrinkable(vma->obj);
2210 }
2211 
2212 void i915_vma_make_purgeable(struct i915_vma *vma)
2213 {
2214 	i915_gem_object_make_purgeable(vma->obj);
2215 }
2216 
2217 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2218 #include "selftests/i915_vma.c"
2219 #endif
2220 
2221 void i915_vma_module_exit(void)
2222 {
2223 	kmem_cache_destroy(slab_vmas);
2224 }
2225 
2226 int __init i915_vma_module_init(void)
2227 {
2228 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2229 	if (!slab_vmas)
2230 		return -ENOMEM;
2231 
2232 	return 0;
2233 }
2234