xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vma.c (revision 61c1f340bc809a1ca1e3c8794207a91cde1a7c78)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_frontbuffer.h"
30 #include "gem/i915_gem_lmem.h"
31 #include "gem/i915_gem_tiling.h"
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_gt.h"
35 #include "gt/intel_gt_requests.h"
36 
37 #include "i915_drv.h"
38 #include "i915_gem_evict.h"
39 #include "i915_sw_fence_work.h"
40 #include "i915_trace.h"
41 #include "i915_vma.h"
42 #include "i915_vma_resource.h"
43 
44 static inline void assert_vma_held_evict(const struct i915_vma *vma)
45 {
46 	/*
47 	 * We may be forced to unbind when the vm is dead, to clean it up.
48 	 * This is the only exception to the requirement of the object lock
49 	 * being held.
50 	 */
51 	if (kref_read(&vma->vm->ref))
52 		assert_object_held_shared(vma->obj);
53 }
54 
55 static struct kmem_cache *slab_vmas;
56 
57 static struct i915_vma *i915_vma_alloc(void)
58 {
59 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
60 }
61 
62 static void i915_vma_free(struct i915_vma *vma)
63 {
64 	return kmem_cache_free(slab_vmas, vma);
65 }
66 
67 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
68 
69 #include <linux/stackdepot.h>
70 
71 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
72 {
73 	char buf[512];
74 
75 	if (!vma->node.stack) {
76 		DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
77 				 vma->node.start, vma->node.size, reason);
78 		return;
79 	}
80 
81 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
82 	DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
83 			 vma->node.start, vma->node.size, reason, buf);
84 }
85 
86 #else
87 
88 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
89 {
90 }
91 
92 #endif
93 
94 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
95 {
96 	return container_of(ref, typeof(struct i915_vma), active);
97 }
98 
99 static int __i915_vma_active(struct i915_active *ref)
100 {
101 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
102 }
103 
104 static void __i915_vma_retire(struct i915_active *ref)
105 {
106 	i915_vma_put(active_to_vma(ref));
107 }
108 
109 static struct i915_vma *
110 vma_create(struct drm_i915_gem_object *obj,
111 	   struct i915_address_space *vm,
112 	   const struct i915_ggtt_view *view)
113 {
114 	struct i915_vma *pos = ERR_PTR(-E2BIG);
115 	struct i915_vma *vma;
116 	struct rb_node *rb, **p;
117 	int err;
118 
119 	/* The aliasing_ppgtt should never be used directly! */
120 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
121 
122 	vma = i915_vma_alloc();
123 	if (vma == NULL)
124 		return ERR_PTR(-ENOMEM);
125 
126 	vma->ops = &vm->vma_ops;
127 	vma->obj = obj;
128 	vma->size = obj->base.size;
129 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
130 
131 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
132 
133 	/* Declare ourselves safe for use inside shrinkers */
134 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
135 		fs_reclaim_acquire(GFP_KERNEL);
136 		might_lock(&vma->active.mutex);
137 		fs_reclaim_release(GFP_KERNEL);
138 	}
139 
140 	INIT_LIST_HEAD(&vma->closed_link);
141 	INIT_LIST_HEAD(&vma->obj_link);
142 	RB_CLEAR_NODE(&vma->obj_node);
143 
144 	if (view && view->type != I915_GGTT_VIEW_NORMAL) {
145 		vma->ggtt_view = *view;
146 		if (view->type == I915_GGTT_VIEW_PARTIAL) {
147 			GEM_BUG_ON(range_overflows_t(u64,
148 						     view->partial.offset,
149 						     view->partial.size,
150 						     obj->base.size >> PAGE_SHIFT));
151 			vma->size = view->partial.size;
152 			vma->size <<= PAGE_SHIFT;
153 			GEM_BUG_ON(vma->size > obj->base.size);
154 		} else if (view->type == I915_GGTT_VIEW_ROTATED) {
155 			vma->size = intel_rotation_info_size(&view->rotated);
156 			vma->size <<= PAGE_SHIFT;
157 		} else if (view->type == I915_GGTT_VIEW_REMAPPED) {
158 			vma->size = intel_remapped_info_size(&view->remapped);
159 			vma->size <<= PAGE_SHIFT;
160 		}
161 	}
162 
163 	if (unlikely(vma->size > vm->total))
164 		goto err_vma;
165 
166 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
167 
168 	err = mutex_lock_interruptible(&vm->mutex);
169 	if (err) {
170 		pos = ERR_PTR(err);
171 		goto err_vma;
172 	}
173 
174 	vma->vm = vm;
175 	list_add_tail(&vma->vm_link, &vm->unbound_list);
176 
177 	spin_lock(&obj->vma.lock);
178 	if (i915_is_ggtt(vm)) {
179 		if (unlikely(overflows_type(vma->size, u32)))
180 			goto err_unlock;
181 
182 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
183 						      i915_gem_object_get_tiling(obj),
184 						      i915_gem_object_get_stride(obj));
185 		if (unlikely(vma->fence_size < vma->size || /* overflow */
186 			     vma->fence_size > vm->total))
187 			goto err_unlock;
188 
189 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
190 
191 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
192 								i915_gem_object_get_tiling(obj),
193 								i915_gem_object_get_stride(obj));
194 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
195 
196 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
197 	}
198 
199 	rb = NULL;
200 	p = &obj->vma.tree.rb_node;
201 	while (*p) {
202 		long cmp;
203 
204 		rb = *p;
205 		pos = rb_entry(rb, struct i915_vma, obj_node);
206 
207 		/*
208 		 * If the view already exists in the tree, another thread
209 		 * already created a matching vma, so return the older instance
210 		 * and dispose of ours.
211 		 */
212 		cmp = i915_vma_compare(pos, vm, view);
213 		if (cmp < 0)
214 			p = &rb->rb_right;
215 		else if (cmp > 0)
216 			p = &rb->rb_left;
217 		else
218 			goto err_unlock;
219 	}
220 	rb_link_node(&vma->obj_node, rb, p);
221 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
222 
223 	if (i915_vma_is_ggtt(vma))
224 		/*
225 		 * We put the GGTT vma at the start of the vma-list, followed
226 		 * by the ppGGTT vma. This allows us to break early when
227 		 * iterating over only the GGTT vma for an object, see
228 		 * for_each_ggtt_vma()
229 		 */
230 		list_add(&vma->obj_link, &obj->vma.list);
231 	else
232 		list_add_tail(&vma->obj_link, &obj->vma.list);
233 
234 	spin_unlock(&obj->vma.lock);
235 	mutex_unlock(&vm->mutex);
236 
237 	return vma;
238 
239 err_unlock:
240 	spin_unlock(&obj->vma.lock);
241 	list_del_init(&vma->vm_link);
242 	mutex_unlock(&vm->mutex);
243 err_vma:
244 	i915_vma_free(vma);
245 	return pos;
246 }
247 
248 static struct i915_vma *
249 i915_vma_lookup(struct drm_i915_gem_object *obj,
250 	   struct i915_address_space *vm,
251 	   const struct i915_ggtt_view *view)
252 {
253 	struct rb_node *rb;
254 
255 	rb = obj->vma.tree.rb_node;
256 	while (rb) {
257 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
258 		long cmp;
259 
260 		cmp = i915_vma_compare(vma, vm, view);
261 		if (cmp == 0)
262 			return vma;
263 
264 		if (cmp < 0)
265 			rb = rb->rb_right;
266 		else
267 			rb = rb->rb_left;
268 	}
269 
270 	return NULL;
271 }
272 
273 /**
274  * i915_vma_instance - return the singleton instance of the VMA
275  * @obj: parent &struct drm_i915_gem_object to be mapped
276  * @vm: address space in which the mapping is located
277  * @view: additional mapping requirements
278  *
279  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
280  * the same @view characteristics. If a match is not found, one is created.
281  * Once created, the VMA is kept until either the object is freed, or the
282  * address space is closed.
283  *
284  * Returns the vma, or an error pointer.
285  */
286 struct i915_vma *
287 i915_vma_instance(struct drm_i915_gem_object *obj,
288 		  struct i915_address_space *vm,
289 		  const struct i915_ggtt_view *view)
290 {
291 	struct i915_vma *vma;
292 
293 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
294 	GEM_BUG_ON(!kref_read(&vm->ref));
295 
296 	spin_lock(&obj->vma.lock);
297 	vma = i915_vma_lookup(obj, vm, view);
298 	spin_unlock(&obj->vma.lock);
299 
300 	/* vma_create() will resolve the race if another creates the vma */
301 	if (unlikely(!vma))
302 		vma = vma_create(obj, vm, view);
303 
304 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
305 	return vma;
306 }
307 
308 struct i915_vma_work {
309 	struct dma_fence_work base;
310 	struct i915_address_space *vm;
311 	struct i915_vm_pt_stash stash;
312 	struct i915_vma_resource *vma_res;
313 	struct drm_i915_gem_object *pinned;
314 	struct i915_sw_dma_fence_cb cb;
315 	enum i915_cache_level cache_level;
316 	unsigned int flags;
317 };
318 
319 static void __vma_bind(struct dma_fence_work *work)
320 {
321 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
322 	struct i915_vma_resource *vma_res = vw->vma_res;
323 
324 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
325 			       vma_res, vw->cache_level, vw->flags);
326 
327 }
328 
329 static void __vma_release(struct dma_fence_work *work)
330 {
331 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
332 
333 	if (vw->pinned)
334 		i915_gem_object_put(vw->pinned);
335 
336 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
337 	if (vw->vma_res)
338 		i915_vma_resource_put(vw->vma_res);
339 }
340 
341 static const struct dma_fence_work_ops bind_ops = {
342 	.name = "bind",
343 	.work = __vma_bind,
344 	.release = __vma_release,
345 };
346 
347 struct i915_vma_work *i915_vma_work(void)
348 {
349 	struct i915_vma_work *vw;
350 
351 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
352 	if (!vw)
353 		return NULL;
354 
355 	dma_fence_work_init(&vw->base, &bind_ops);
356 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
357 
358 	return vw;
359 }
360 
361 int i915_vma_wait_for_bind(struct i915_vma *vma)
362 {
363 	int err = 0;
364 
365 	if (rcu_access_pointer(vma->active.excl.fence)) {
366 		struct dma_fence *fence;
367 
368 		rcu_read_lock();
369 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
370 		rcu_read_unlock();
371 		if (fence) {
372 			err = dma_fence_wait(fence, true);
373 			dma_fence_put(fence);
374 		}
375 	}
376 
377 	return err;
378 }
379 
380 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
381 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
382 {
383 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
384 	int err;
385 
386 	if (!fence)
387 		return 0;
388 
389 	if (dma_fence_is_signaled(fence))
390 		err = fence->error;
391 	else
392 		err = -EBUSY;
393 
394 	dma_fence_put(fence);
395 
396 	return err;
397 }
398 #else
399 #define i915_vma_verify_bind_complete(_vma) 0
400 #endif
401 
402 I915_SELFTEST_EXPORT void
403 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
404 				struct i915_vma *vma)
405 {
406 	struct drm_i915_gem_object *obj = vma->obj;
407 
408 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
409 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
410 			       i915_gem_object_is_lmem(obj), obj->mm.region,
411 			       vma->ops, vma->private, vma->node.start,
412 			       vma->node.size, vma->size);
413 }
414 
415 /**
416  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
417  * @vma: VMA to map
418  * @cache_level: mapping cache level
419  * @flags: flags like global or local mapping
420  * @work: preallocated worker for allocating and binding the PTE
421  * @vma_res: pointer to a preallocated vma resource. The resource is either
422  * consumed or freed.
423  *
424  * DMA addresses are taken from the scatter-gather table of this object (or of
425  * this VMA in case of non-default GGTT views) and PTE entries set up.
426  * Note that DMA addresses are also the only part of the SG table we care about.
427  */
428 int i915_vma_bind(struct i915_vma *vma,
429 		  enum i915_cache_level cache_level,
430 		  u32 flags,
431 		  struct i915_vma_work *work,
432 		  struct i915_vma_resource *vma_res)
433 {
434 	u32 bind_flags;
435 	u32 vma_flags;
436 	int ret;
437 
438 	lockdep_assert_held(&vma->vm->mutex);
439 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
440 	GEM_BUG_ON(vma->size > vma->node.size);
441 
442 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
443 					      vma->node.size,
444 					      vma->vm->total))) {
445 		i915_vma_resource_free(vma_res);
446 		return -ENODEV;
447 	}
448 
449 	if (GEM_DEBUG_WARN_ON(!flags)) {
450 		i915_vma_resource_free(vma_res);
451 		return -EINVAL;
452 	}
453 
454 	bind_flags = flags;
455 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
456 
457 	vma_flags = atomic_read(&vma->flags);
458 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
459 
460 	bind_flags &= ~vma_flags;
461 	if (bind_flags == 0) {
462 		i915_vma_resource_free(vma_res);
463 		return 0;
464 	}
465 
466 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
467 
468 	/* Wait for or await async unbinds touching our range */
469 	if (work && bind_flags & vma->vm->bind_async_flags)
470 		ret = i915_vma_resource_bind_dep_await(vma->vm,
471 						       &work->base.chain,
472 						       vma->node.start,
473 						       vma->node.size,
474 						       true,
475 						       GFP_NOWAIT |
476 						       __GFP_RETRY_MAYFAIL |
477 						       __GFP_NOWARN);
478 	else
479 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
480 						      vma->node.size, true);
481 	if (ret) {
482 		i915_vma_resource_free(vma_res);
483 		return ret;
484 	}
485 
486 	if (vma->resource || !vma_res) {
487 		/* Rebinding with an additional I915_VMA_*_BIND */
488 		GEM_WARN_ON(!vma_flags);
489 		i915_vma_resource_free(vma_res);
490 	} else {
491 		i915_vma_resource_init_from_vma(vma_res, vma);
492 		vma->resource = vma_res;
493 	}
494 	trace_i915_vma_bind(vma, bind_flags);
495 	if (work && bind_flags & vma->vm->bind_async_flags) {
496 		struct dma_fence *prev;
497 
498 		work->vma_res = i915_vma_resource_get(vma->resource);
499 		work->cache_level = cache_level;
500 		work->flags = bind_flags;
501 
502 		/*
503 		 * Note we only want to chain up to the migration fence on
504 		 * the pages (not the object itself). As we don't track that,
505 		 * yet, we have to use the exclusive fence instead.
506 		 *
507 		 * Also note that we do not want to track the async vma as
508 		 * part of the obj->resv->excl_fence as it only affects
509 		 * execution and not content or object's backing store lifetime.
510 		 */
511 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
512 		if (prev) {
513 			__i915_sw_fence_await_dma_fence(&work->base.chain,
514 							prev,
515 							&work->cb);
516 			dma_fence_put(prev);
517 		}
518 
519 		work->base.dma.error = 0; /* enable the queue_work() */
520 
521 		/*
522 		 * If we don't have the refcounted pages list, keep a reference
523 		 * on the object to avoid waiting for the async bind to
524 		 * complete in the object destruction path.
525 		 */
526 		if (!work->vma_res->bi.pages_rsgt)
527 			work->pinned = i915_gem_object_get(vma->obj);
528 	} else {
529 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
530 		if (ret) {
531 			i915_vma_resource_free(vma->resource);
532 			vma->resource = NULL;
533 
534 			return ret;
535 		}
536 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
537 				   bind_flags);
538 	}
539 
540 	set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags);
541 
542 	atomic_or(bind_flags, &vma->flags);
543 	return 0;
544 }
545 
546 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
547 {
548 	void __iomem *ptr;
549 	int err;
550 
551 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
552 		return IOMEM_ERR_PTR(-EINVAL);
553 
554 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
555 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
556 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
557 
558 	ptr = READ_ONCE(vma->iomap);
559 	if (ptr == NULL) {
560 		/*
561 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
562 		 * instead, which already supports mapping non-contiguous chunks
563 		 * of pages, that way we can also drop the
564 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
565 		 */
566 		if (i915_gem_object_is_lmem(vma->obj)) {
567 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
568 							  vma->obj->base.size);
569 		} else if (i915_vma_is_map_and_fenceable(vma)) {
570 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
571 						vma->node.start,
572 						vma->node.size);
573 		} else {
574 			ptr = (void __iomem *)
575 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
576 			if (IS_ERR(ptr)) {
577 				err = PTR_ERR(ptr);
578 				goto err;
579 			}
580 			ptr = page_pack_bits(ptr, 1);
581 		}
582 
583 		if (ptr == NULL) {
584 			err = -ENOMEM;
585 			goto err;
586 		}
587 
588 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
589 			if (page_unmask_bits(ptr))
590 				__i915_gem_object_release_map(vma->obj);
591 			else
592 				io_mapping_unmap(ptr);
593 			ptr = vma->iomap;
594 		}
595 	}
596 
597 	__i915_vma_pin(vma);
598 
599 	err = i915_vma_pin_fence(vma);
600 	if (err)
601 		goto err_unpin;
602 
603 	i915_vma_set_ggtt_write(vma);
604 
605 	/* NB Access through the GTT requires the device to be awake. */
606 	return page_mask_bits(ptr);
607 
608 err_unpin:
609 	__i915_vma_unpin(vma);
610 err:
611 	return IOMEM_ERR_PTR(err);
612 }
613 
614 void i915_vma_flush_writes(struct i915_vma *vma)
615 {
616 	if (i915_vma_unset_ggtt_write(vma))
617 		intel_gt_flush_ggtt_writes(vma->vm->gt);
618 }
619 
620 void i915_vma_unpin_iomap(struct i915_vma *vma)
621 {
622 	GEM_BUG_ON(vma->iomap == NULL);
623 
624 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
625 
626 	i915_vma_flush_writes(vma);
627 
628 	i915_vma_unpin_fence(vma);
629 	i915_vma_unpin(vma);
630 }
631 
632 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
633 {
634 	struct i915_vma *vma;
635 	struct drm_i915_gem_object *obj;
636 
637 	vma = fetch_and_zero(p_vma);
638 	if (!vma)
639 		return;
640 
641 	obj = vma->obj;
642 	GEM_BUG_ON(!obj);
643 
644 	i915_vma_unpin(vma);
645 
646 	if (flags & I915_VMA_RELEASE_MAP)
647 		i915_gem_object_unpin_map(obj);
648 
649 	i915_gem_object_put(obj);
650 }
651 
652 bool i915_vma_misplaced(const struct i915_vma *vma,
653 			u64 size, u64 alignment, u64 flags)
654 {
655 	if (!drm_mm_node_allocated(&vma->node))
656 		return false;
657 
658 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
659 		return true;
660 
661 	if (vma->node.size < size)
662 		return true;
663 
664 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
665 	if (alignment && !IS_ALIGNED(vma->node.start, alignment))
666 		return true;
667 
668 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
669 		return true;
670 
671 	if (flags & PIN_OFFSET_BIAS &&
672 	    vma->node.start < (flags & PIN_OFFSET_MASK))
673 		return true;
674 
675 	if (flags & PIN_OFFSET_FIXED &&
676 	    vma->node.start != (flags & PIN_OFFSET_MASK))
677 		return true;
678 
679 	return false;
680 }
681 
682 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
683 {
684 	bool mappable, fenceable;
685 
686 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
687 	GEM_BUG_ON(!vma->fence_size);
688 
689 	fenceable = (vma->node.size >= vma->fence_size &&
690 		     IS_ALIGNED(vma->node.start, vma->fence_alignment));
691 
692 	mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
693 
694 	if (mappable && fenceable)
695 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
696 	else
697 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
698 }
699 
700 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
701 {
702 	struct drm_mm_node *node = &vma->node;
703 	struct drm_mm_node *other;
704 
705 	/*
706 	 * On some machines we have to be careful when putting differing types
707 	 * of snoopable memory together to avoid the prefetcher crossing memory
708 	 * domains and dying. During vm initialisation, we decide whether or not
709 	 * these constraints apply and set the drm_mm.color_adjust
710 	 * appropriately.
711 	 */
712 	if (!i915_vm_has_cache_coloring(vma->vm))
713 		return true;
714 
715 	/* Only valid to be called on an already inserted vma */
716 	GEM_BUG_ON(!drm_mm_node_allocated(node));
717 	GEM_BUG_ON(list_empty(&node->node_list));
718 
719 	other = list_prev_entry(node, node_list);
720 	if (i915_node_color_differs(other, color) &&
721 	    !drm_mm_hole_follows(other))
722 		return false;
723 
724 	other = list_next_entry(node, node_list);
725 	if (i915_node_color_differs(other, color) &&
726 	    !drm_mm_hole_follows(node))
727 		return false;
728 
729 	return true;
730 }
731 
732 /**
733  * i915_vma_insert - finds a slot for the vma in its address space
734  * @vma: the vma
735  * @size: requested size in bytes (can be larger than the VMA)
736  * @alignment: required alignment
737  * @flags: mask of PIN_* flags to use
738  *
739  * First we try to allocate some free space that meets the requirements for
740  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
741  * preferrably the oldest idle entry to make room for the new VMA.
742  *
743  * Returns:
744  * 0 on success, negative error code otherwise.
745  */
746 static int
747 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
748 		u64 size, u64 alignment, u64 flags)
749 {
750 	unsigned long color;
751 	u64 start, end;
752 	int ret;
753 
754 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
755 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
756 
757 	size = max(size, vma->size);
758 	alignment = max(alignment, vma->display_alignment);
759 	if (flags & PIN_MAPPABLE) {
760 		size = max_t(typeof(size), size, vma->fence_size);
761 		alignment = max_t(typeof(alignment),
762 				  alignment, vma->fence_alignment);
763 	}
764 
765 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
766 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
767 	GEM_BUG_ON(!is_power_of_2(alignment));
768 
769 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
770 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
771 
772 	end = vma->vm->total;
773 	if (flags & PIN_MAPPABLE)
774 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
775 	if (flags & PIN_ZONE_4G)
776 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
777 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
778 
779 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
780 	/*
781 	 * for compact-pt we round up the reservation to prevent
782 	 * any smaller pages being used within the same PDE
783 	 */
784 	if (NEEDS_COMPACT_PT(vma->vm->i915))
785 		size = round_up(size, alignment);
786 
787 	/* If binding the object/GGTT view requires more space than the entire
788 	 * aperture has, reject it early before evicting everything in a vain
789 	 * attempt to find space.
790 	 */
791 	if (size > end) {
792 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
793 			  size, flags & PIN_MAPPABLE ? "mappable" : "total",
794 			  end);
795 		return -ENOSPC;
796 	}
797 
798 	color = 0;
799 
800 	if (i915_vm_has_cache_coloring(vma->vm))
801 		color = vma->obj->cache_level;
802 
803 	if (flags & PIN_OFFSET_FIXED) {
804 		u64 offset = flags & PIN_OFFSET_MASK;
805 		if (!IS_ALIGNED(offset, alignment) ||
806 		    range_overflows(offset, size, end))
807 			return -EINVAL;
808 
809 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
810 					   size, offset, color,
811 					   flags);
812 		if (ret)
813 			return ret;
814 	} else {
815 		/*
816 		 * We only support huge gtt pages through the 48b PPGTT,
817 		 * however we also don't want to force any alignment for
818 		 * objects which need to be tightly packed into the low 32bits.
819 		 *
820 		 * Note that we assume that GGTT are limited to 4GiB for the
821 		 * forseeable future. See also i915_ggtt_offset().
822 		 */
823 		if (upper_32_bits(end - 1) &&
824 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
825 			/*
826 			 * We can't mix 64K and 4K PTEs in the same page-table
827 			 * (2M block), and so to avoid the ugliness and
828 			 * complexity of coloring we opt for just aligning 64K
829 			 * objects to 2M.
830 			 */
831 			u64 page_alignment =
832 				rounddown_pow_of_two(vma->page_sizes.sg |
833 						     I915_GTT_PAGE_SIZE_2M);
834 
835 			/*
836 			 * Check we don't expand for the limited Global GTT
837 			 * (mappable aperture is even more precious!). This
838 			 * also checks that we exclude the aliasing-ppgtt.
839 			 */
840 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
841 
842 			alignment = max(alignment, page_alignment);
843 
844 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
845 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
846 		}
847 
848 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
849 					  size, alignment, color,
850 					  start, end, flags);
851 		if (ret)
852 			return ret;
853 
854 		GEM_BUG_ON(vma->node.start < start);
855 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
856 	}
857 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
858 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
859 
860 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
861 
862 	return 0;
863 }
864 
865 static void
866 i915_vma_detach(struct i915_vma *vma)
867 {
868 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
869 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
870 
871 	/*
872 	 * And finally now the object is completely decoupled from this
873 	 * vma, we can drop its hold on the backing storage and allow
874 	 * it to be reaped by the shrinker.
875 	 */
876 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
877 }
878 
879 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
880 {
881 	unsigned int bound;
882 
883 	bound = atomic_read(&vma->flags);
884 
885 	if (flags & PIN_VALIDATE) {
886 		flags &= I915_VMA_BIND_MASK;
887 
888 		return (flags & bound) == flags;
889 	}
890 
891 	/* with the lock mandatory for unbind, we don't race here */
892 	flags &= I915_VMA_BIND_MASK;
893 	do {
894 		if (unlikely(flags & ~bound))
895 			return false;
896 
897 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
898 			return false;
899 
900 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
901 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
902 
903 	return true;
904 }
905 
906 static struct scatterlist *
907 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
908 	     unsigned int width, unsigned int height,
909 	     unsigned int src_stride, unsigned int dst_stride,
910 	     struct sg_table *st, struct scatterlist *sg)
911 {
912 	unsigned int column, row;
913 	unsigned int src_idx;
914 
915 	for (column = 0; column < width; column++) {
916 		unsigned int left;
917 
918 		src_idx = src_stride * (height - 1) + column + offset;
919 		for (row = 0; row < height; row++) {
920 			st->nents++;
921 			/*
922 			 * We don't need the pages, but need to initialize
923 			 * the entries so the sg list can be happily traversed.
924 			 * The only thing we need are DMA addresses.
925 			 */
926 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
927 			sg_dma_address(sg) =
928 				i915_gem_object_get_dma_address(obj, src_idx);
929 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
930 			sg = sg_next(sg);
931 			src_idx -= src_stride;
932 		}
933 
934 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
935 
936 		if (!left)
937 			continue;
938 
939 		st->nents++;
940 
941 		/*
942 		 * The DE ignores the PTEs for the padding tiles, the sg entry
943 		 * here is just a conenience to indicate how many padding PTEs
944 		 * to insert at this spot.
945 		 */
946 		sg_set_page(sg, NULL, left, 0);
947 		sg_dma_address(sg) = 0;
948 		sg_dma_len(sg) = left;
949 		sg = sg_next(sg);
950 	}
951 
952 	return sg;
953 }
954 
955 static noinline struct sg_table *
956 intel_rotate_pages(struct intel_rotation_info *rot_info,
957 		   struct drm_i915_gem_object *obj)
958 {
959 	unsigned int size = intel_rotation_info_size(rot_info);
960 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
961 	struct sg_table *st;
962 	struct scatterlist *sg;
963 	int ret = -ENOMEM;
964 	int i;
965 
966 	/* Allocate target SG list. */
967 	st = kmalloc(sizeof(*st), GFP_KERNEL);
968 	if (!st)
969 		goto err_st_alloc;
970 
971 	ret = sg_alloc_table(st, size, GFP_KERNEL);
972 	if (ret)
973 		goto err_sg_alloc;
974 
975 	st->nents = 0;
976 	sg = st->sgl;
977 
978 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
979 		sg = rotate_pages(obj, rot_info->plane[i].offset,
980 				  rot_info->plane[i].width, rot_info->plane[i].height,
981 				  rot_info->plane[i].src_stride,
982 				  rot_info->plane[i].dst_stride,
983 				  st, sg);
984 
985 	return st;
986 
987 err_sg_alloc:
988 	kfree(st);
989 err_st_alloc:
990 
991 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
992 		obj->base.size, rot_info->plane[0].width,
993 		rot_info->plane[0].height, size);
994 
995 	return ERR_PTR(ret);
996 }
997 
998 static struct scatterlist *
999 add_padding_pages(unsigned int count,
1000 		  struct sg_table *st, struct scatterlist *sg)
1001 {
1002 	st->nents++;
1003 
1004 	/*
1005 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1006 	 * here is just a convenience to indicate how many padding PTEs
1007 	 * to insert at this spot.
1008 	 */
1009 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1010 	sg_dma_address(sg) = 0;
1011 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1012 	sg = sg_next(sg);
1013 
1014 	return sg;
1015 }
1016 
1017 static struct scatterlist *
1018 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1019 			      unsigned int offset, unsigned int alignment_pad,
1020 			      unsigned int width, unsigned int height,
1021 			      unsigned int src_stride, unsigned int dst_stride,
1022 			      struct sg_table *st, struct scatterlist *sg,
1023 			      unsigned int *gtt_offset)
1024 {
1025 	unsigned int row;
1026 
1027 	if (!width || !height)
1028 		return sg;
1029 
1030 	if (alignment_pad)
1031 		sg = add_padding_pages(alignment_pad, st, sg);
1032 
1033 	for (row = 0; row < height; row++) {
1034 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1035 
1036 		while (left) {
1037 			dma_addr_t addr;
1038 			unsigned int length;
1039 
1040 			/*
1041 			 * We don't need the pages, but need to initialize
1042 			 * the entries so the sg list can be happily traversed.
1043 			 * The only thing we need are DMA addresses.
1044 			 */
1045 
1046 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1047 
1048 			length = min(left, length);
1049 
1050 			st->nents++;
1051 
1052 			sg_set_page(sg, NULL, length, 0);
1053 			sg_dma_address(sg) = addr;
1054 			sg_dma_len(sg) = length;
1055 			sg = sg_next(sg);
1056 
1057 			offset += length / I915_GTT_PAGE_SIZE;
1058 			left -= length;
1059 		}
1060 
1061 		offset += src_stride - width;
1062 
1063 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1064 
1065 		if (!left)
1066 			continue;
1067 
1068 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1069 	}
1070 
1071 	*gtt_offset += alignment_pad + dst_stride * height;
1072 
1073 	return sg;
1074 }
1075 
1076 static struct scatterlist *
1077 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1078 		       unsigned int obj_offset,
1079 		       unsigned int count,
1080 		       struct sg_table *st, struct scatterlist *sg)
1081 {
1082 	struct scatterlist *iter;
1083 	unsigned int offset;
1084 
1085 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1086 	GEM_BUG_ON(!iter);
1087 
1088 	do {
1089 		unsigned int len;
1090 
1091 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1092 			  count << PAGE_SHIFT);
1093 		sg_set_page(sg, NULL, len, 0);
1094 		sg_dma_address(sg) =
1095 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1096 		sg_dma_len(sg) = len;
1097 
1098 		st->nents++;
1099 		count -= len >> PAGE_SHIFT;
1100 		if (count == 0)
1101 			return sg;
1102 
1103 		sg = __sg_next(sg);
1104 		iter = __sg_next(iter);
1105 		offset = 0;
1106 	} while (1);
1107 }
1108 
1109 static struct scatterlist *
1110 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1111 			       unsigned int obj_offset, unsigned int alignment_pad,
1112 			       unsigned int size,
1113 			       struct sg_table *st, struct scatterlist *sg,
1114 			       unsigned int *gtt_offset)
1115 {
1116 	if (!size)
1117 		return sg;
1118 
1119 	if (alignment_pad)
1120 		sg = add_padding_pages(alignment_pad, st, sg);
1121 
1122 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1123 	sg = sg_next(sg);
1124 
1125 	*gtt_offset += alignment_pad + size;
1126 
1127 	return sg;
1128 }
1129 
1130 static struct scatterlist *
1131 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1132 			struct drm_i915_gem_object *obj,
1133 			int color_plane,
1134 			struct sg_table *st, struct scatterlist *sg,
1135 			unsigned int *gtt_offset)
1136 {
1137 	unsigned int alignment_pad = 0;
1138 
1139 	if (rem_info->plane_alignment)
1140 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1141 
1142 	if (rem_info->plane[color_plane].linear)
1143 		sg = remap_linear_color_plane_pages(obj,
1144 						    rem_info->plane[color_plane].offset,
1145 						    alignment_pad,
1146 						    rem_info->plane[color_plane].size,
1147 						    st, sg,
1148 						    gtt_offset);
1149 
1150 	else
1151 		sg = remap_tiled_color_plane_pages(obj,
1152 						   rem_info->plane[color_plane].offset,
1153 						   alignment_pad,
1154 						   rem_info->plane[color_plane].width,
1155 						   rem_info->plane[color_plane].height,
1156 						   rem_info->plane[color_plane].src_stride,
1157 						   rem_info->plane[color_plane].dst_stride,
1158 						   st, sg,
1159 						   gtt_offset);
1160 
1161 	return sg;
1162 }
1163 
1164 static noinline struct sg_table *
1165 intel_remap_pages(struct intel_remapped_info *rem_info,
1166 		  struct drm_i915_gem_object *obj)
1167 {
1168 	unsigned int size = intel_remapped_info_size(rem_info);
1169 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1170 	struct sg_table *st;
1171 	struct scatterlist *sg;
1172 	unsigned int gtt_offset = 0;
1173 	int ret = -ENOMEM;
1174 	int i;
1175 
1176 	/* Allocate target SG list. */
1177 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1178 	if (!st)
1179 		goto err_st_alloc;
1180 
1181 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1182 	if (ret)
1183 		goto err_sg_alloc;
1184 
1185 	st->nents = 0;
1186 	sg = st->sgl;
1187 
1188 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1189 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1190 
1191 	i915_sg_trim(st);
1192 
1193 	return st;
1194 
1195 err_sg_alloc:
1196 	kfree(st);
1197 err_st_alloc:
1198 
1199 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1200 		obj->base.size, rem_info->plane[0].width,
1201 		rem_info->plane[0].height, size);
1202 
1203 	return ERR_PTR(ret);
1204 }
1205 
1206 static noinline struct sg_table *
1207 intel_partial_pages(const struct i915_ggtt_view *view,
1208 		    struct drm_i915_gem_object *obj)
1209 {
1210 	struct sg_table *st;
1211 	struct scatterlist *sg;
1212 	unsigned int count = view->partial.size;
1213 	int ret = -ENOMEM;
1214 
1215 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1216 	if (!st)
1217 		goto err_st_alloc;
1218 
1219 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1220 	if (ret)
1221 		goto err_sg_alloc;
1222 
1223 	st->nents = 0;
1224 
1225 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1226 
1227 	sg_mark_end(sg);
1228 	i915_sg_trim(st); /* Drop any unused tail entries. */
1229 
1230 	return st;
1231 
1232 err_sg_alloc:
1233 	kfree(st);
1234 err_st_alloc:
1235 	return ERR_PTR(ret);
1236 }
1237 
1238 static int
1239 __i915_vma_get_pages(struct i915_vma *vma)
1240 {
1241 	struct sg_table *pages;
1242 
1243 	/*
1244 	 * The vma->pages are only valid within the lifespan of the borrowed
1245 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1246 	 * must be the vma->pages. A simple rule is that vma->pages must only
1247 	 * be accessed when the obj->mm.pages are pinned.
1248 	 */
1249 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1250 
1251 	switch (vma->ggtt_view.type) {
1252 	default:
1253 		GEM_BUG_ON(vma->ggtt_view.type);
1254 		fallthrough;
1255 	case I915_GGTT_VIEW_NORMAL:
1256 		pages = vma->obj->mm.pages;
1257 		break;
1258 
1259 	case I915_GGTT_VIEW_ROTATED:
1260 		pages =
1261 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1262 		break;
1263 
1264 	case I915_GGTT_VIEW_REMAPPED:
1265 		pages =
1266 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1267 		break;
1268 
1269 	case I915_GGTT_VIEW_PARTIAL:
1270 		pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1271 		break;
1272 	}
1273 
1274 	if (IS_ERR(pages)) {
1275 		drm_err(&vma->vm->i915->drm,
1276 			"Failed to get pages for VMA view type %u (%ld)!\n",
1277 			vma->ggtt_view.type, PTR_ERR(pages));
1278 		return PTR_ERR(pages);
1279 	}
1280 
1281 	vma->pages = pages;
1282 
1283 	return 0;
1284 }
1285 
1286 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1287 {
1288 	int err;
1289 
1290 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1291 		return 0;
1292 
1293 	err = i915_gem_object_pin_pages(vma->obj);
1294 	if (err)
1295 		return err;
1296 
1297 	err = __i915_vma_get_pages(vma);
1298 	if (err)
1299 		goto err_unpin;
1300 
1301 	vma->page_sizes = vma->obj->mm.page_sizes;
1302 	atomic_inc(&vma->pages_count);
1303 
1304 	return 0;
1305 
1306 err_unpin:
1307 	__i915_gem_object_unpin_pages(vma->obj);
1308 
1309 	return err;
1310 }
1311 
1312 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1313 {
1314 	/* We allocate under vma_get_pages, so beware the shrinker */
1315 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1316 
1317 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1318 		if (vma->pages != vma->obj->mm.pages) {
1319 			sg_free_table(vma->pages);
1320 			kfree(vma->pages);
1321 		}
1322 		vma->pages = NULL;
1323 
1324 		i915_gem_object_unpin_pages(vma->obj);
1325 	}
1326 }
1327 
1328 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1329 {
1330 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1331 		return;
1332 
1333 	__vma_put_pages(vma, 1);
1334 }
1335 
1336 static void vma_unbind_pages(struct i915_vma *vma)
1337 {
1338 	unsigned int count;
1339 
1340 	lockdep_assert_held(&vma->vm->mutex);
1341 
1342 	/* The upper portion of pages_count is the number of bindings */
1343 	count = atomic_read(&vma->pages_count);
1344 	count >>= I915_VMA_PAGES_BIAS;
1345 	GEM_BUG_ON(!count);
1346 
1347 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1348 }
1349 
1350 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1351 		    u64 size, u64 alignment, u64 flags)
1352 {
1353 	struct i915_vma_work *work = NULL;
1354 	struct dma_fence *moving = NULL;
1355 	struct i915_vma_resource *vma_res = NULL;
1356 	intel_wakeref_t wakeref = 0;
1357 	unsigned int bound;
1358 	int err;
1359 
1360 	assert_vma_held(vma);
1361 	GEM_BUG_ON(!ww);
1362 
1363 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1364 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1365 
1366 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1367 
1368 	/* First try and grab the pin without rebinding the vma */
1369 	if (try_qad_pin(vma, flags))
1370 		return 0;
1371 
1372 	err = i915_vma_get_pages(vma);
1373 	if (err)
1374 		return err;
1375 
1376 	if (flags & PIN_GLOBAL)
1377 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1378 
1379 	if (flags & vma->vm->bind_async_flags) {
1380 		/* lock VM */
1381 		err = i915_vm_lock_objects(vma->vm, ww);
1382 		if (err)
1383 			goto err_rpm;
1384 
1385 		work = i915_vma_work();
1386 		if (!work) {
1387 			err = -ENOMEM;
1388 			goto err_rpm;
1389 		}
1390 
1391 		work->vm = vma->vm;
1392 
1393 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1394 		if (err)
1395 			goto err_rpm;
1396 
1397 		dma_fence_work_chain(&work->base, moving);
1398 
1399 		/* Allocate enough page directories to used PTE */
1400 		if (vma->vm->allocate_va_range) {
1401 			err = i915_vm_alloc_pt_stash(vma->vm,
1402 						     &work->stash,
1403 						     vma->size);
1404 			if (err)
1405 				goto err_fence;
1406 
1407 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1408 			if (err)
1409 				goto err_fence;
1410 		}
1411 	}
1412 
1413 	vma_res = i915_vma_resource_alloc();
1414 	if (IS_ERR(vma_res)) {
1415 		err = PTR_ERR(vma_res);
1416 		goto err_fence;
1417 	}
1418 
1419 	/*
1420 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1421 	 *
1422 	 * We conflate the Global GTT with the user's vma when using the
1423 	 * aliasing-ppgtt, but it is still vitally important to try and
1424 	 * keep the use cases distinct. For example, userptr objects are
1425 	 * not allowed inside the Global GTT as that will cause lock
1426 	 * inversions when we have to evict them the mmu_notifier callbacks -
1427 	 * but they are allowed to be part of the user ppGTT which can never
1428 	 * be mapped. As such we try to give the distinct users of the same
1429 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1430 	 * and i915_ppgtt separate].
1431 	 *
1432 	 * NB this may cause us to mask real lock inversions -- while the
1433 	 * code is safe today, lockdep may not be able to spot future
1434 	 * transgressions.
1435 	 */
1436 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1437 					      !(flags & PIN_GLOBAL));
1438 	if (err)
1439 		goto err_vma_res;
1440 
1441 	/* No more allocations allowed now we hold vm->mutex */
1442 
1443 	if (unlikely(i915_vma_is_closed(vma))) {
1444 		err = -ENOENT;
1445 		goto err_unlock;
1446 	}
1447 
1448 	bound = atomic_read(&vma->flags);
1449 	if (unlikely(bound & I915_VMA_ERROR)) {
1450 		err = -ENOMEM;
1451 		goto err_unlock;
1452 	}
1453 
1454 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1455 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1456 		goto err_unlock;
1457 	}
1458 
1459 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1460 		if (!(flags & PIN_VALIDATE))
1461 			__i915_vma_pin(vma);
1462 		goto err_unlock;
1463 	}
1464 
1465 	err = i915_active_acquire(&vma->active);
1466 	if (err)
1467 		goto err_unlock;
1468 
1469 	if (!(bound & I915_VMA_BIND_MASK)) {
1470 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1471 		if (err)
1472 			goto err_active;
1473 
1474 		if (i915_is_ggtt(vma->vm))
1475 			__i915_vma_set_map_and_fenceable(vma);
1476 	}
1477 
1478 	GEM_BUG_ON(!vma->pages);
1479 	err = i915_vma_bind(vma,
1480 			    vma->obj->cache_level,
1481 			    flags, work, vma_res);
1482 	vma_res = NULL;
1483 	if (err)
1484 		goto err_remove;
1485 
1486 	/* There should only be at most 2 active bindings (user, global) */
1487 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1488 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1489 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1490 
1491 	if (!(flags & PIN_VALIDATE)) {
1492 		__i915_vma_pin(vma);
1493 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1494 	}
1495 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1496 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1497 
1498 err_remove:
1499 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1500 		i915_vma_detach(vma);
1501 		drm_mm_remove_node(&vma->node);
1502 	}
1503 err_active:
1504 	i915_active_release(&vma->active);
1505 err_unlock:
1506 	mutex_unlock(&vma->vm->mutex);
1507 err_vma_res:
1508 	i915_vma_resource_free(vma_res);
1509 err_fence:
1510 	if (work)
1511 		dma_fence_work_commit_imm(&work->base);
1512 err_rpm:
1513 	if (wakeref)
1514 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1515 
1516 	if (moving)
1517 		dma_fence_put(moving);
1518 
1519 	i915_vma_put_pages(vma);
1520 	return err;
1521 }
1522 
1523 static void flush_idle_contexts(struct intel_gt *gt)
1524 {
1525 	struct intel_engine_cs *engine;
1526 	enum intel_engine_id id;
1527 
1528 	for_each_engine(engine, gt, id)
1529 		intel_engine_flush_barriers(engine);
1530 
1531 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1532 }
1533 
1534 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1535 			   u32 align, unsigned int flags)
1536 {
1537 	struct i915_address_space *vm = vma->vm;
1538 	int err;
1539 
1540 	do {
1541 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1542 
1543 		if (err != -ENOSPC) {
1544 			if (!err) {
1545 				err = i915_vma_wait_for_bind(vma);
1546 				if (err)
1547 					i915_vma_unpin(vma);
1548 			}
1549 			return err;
1550 		}
1551 
1552 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1553 		flush_idle_contexts(vm->gt);
1554 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1555 			/*
1556 			 * We pass NULL ww here, as we don't want to unbind
1557 			 * locked objects when called from execbuf when pinning
1558 			 * is removed. This would probably regress badly.
1559 			 */
1560 			i915_gem_evict_vm(vm, NULL);
1561 			mutex_unlock(&vm->mutex);
1562 		}
1563 	} while (1);
1564 }
1565 
1566 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1567 		  u32 align, unsigned int flags)
1568 {
1569 	struct i915_gem_ww_ctx _ww;
1570 	int err;
1571 
1572 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1573 
1574 	if (ww)
1575 		return __i915_ggtt_pin(vma, ww, align, flags);
1576 
1577 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1578 
1579 	for_i915_gem_ww(&_ww, err, true) {
1580 		err = i915_gem_object_lock(vma->obj, &_ww);
1581 		if (!err)
1582 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1583 	}
1584 
1585 	return err;
1586 }
1587 
1588 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1589 {
1590 	/*
1591 	 * We defer actually closing, unbinding and destroying the VMA until
1592 	 * the next idle point, or if the object is freed in the meantime. By
1593 	 * postponing the unbind, we allow for it to be resurrected by the
1594 	 * client, avoiding the work required to rebind the VMA. This is
1595 	 * advantageous for DRI, where the client/server pass objects
1596 	 * between themselves, temporarily opening a local VMA to the
1597 	 * object, and then closing it again. The same object is then reused
1598 	 * on the next frame (or two, depending on the depth of the swap queue)
1599 	 * causing us to rebind the VMA once more. This ends up being a lot
1600 	 * of wasted work for the steady state.
1601 	 */
1602 	GEM_BUG_ON(i915_vma_is_closed(vma));
1603 	list_add(&vma->closed_link, &gt->closed_vma);
1604 }
1605 
1606 void i915_vma_close(struct i915_vma *vma)
1607 {
1608 	struct intel_gt *gt = vma->vm->gt;
1609 	unsigned long flags;
1610 
1611 	if (i915_vma_is_ggtt(vma))
1612 		return;
1613 
1614 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1615 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1616 					&gt->closed_lock,
1617 					flags)) {
1618 		__vma_close(vma, gt);
1619 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1620 	}
1621 }
1622 
1623 static void __i915_vma_remove_closed(struct i915_vma *vma)
1624 {
1625 	list_del_init(&vma->closed_link);
1626 }
1627 
1628 void i915_vma_reopen(struct i915_vma *vma)
1629 {
1630 	struct intel_gt *gt = vma->vm->gt;
1631 
1632 	spin_lock_irq(&gt->closed_lock);
1633 	if (i915_vma_is_closed(vma))
1634 		__i915_vma_remove_closed(vma);
1635 	spin_unlock_irq(&gt->closed_lock);
1636 }
1637 
1638 static void force_unbind(struct i915_vma *vma)
1639 {
1640 	if (!drm_mm_node_allocated(&vma->node))
1641 		return;
1642 
1643 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1644 	WARN_ON(__i915_vma_unbind(vma));
1645 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1646 }
1647 
1648 static void release_references(struct i915_vma *vma, bool vm_ddestroy)
1649 {
1650 	struct drm_i915_gem_object *obj = vma->obj;
1651 	struct intel_gt *gt = vma->vm->gt;
1652 
1653 	GEM_BUG_ON(i915_vma_is_active(vma));
1654 
1655 	spin_lock(&obj->vma.lock);
1656 	list_del(&vma->obj_link);
1657 	if (!RB_EMPTY_NODE(&vma->obj_node))
1658 		rb_erase(&vma->obj_node, &obj->vma.tree);
1659 
1660 	spin_unlock(&obj->vma.lock);
1661 
1662 	spin_lock_irq(&gt->closed_lock);
1663 	__i915_vma_remove_closed(vma);
1664 	spin_unlock_irq(&gt->closed_lock);
1665 
1666 	if (vm_ddestroy)
1667 		i915_vm_resv_put(vma->vm);
1668 
1669 	i915_active_fini(&vma->active);
1670 	GEM_WARN_ON(vma->resource);
1671 	i915_vma_free(vma);
1672 }
1673 
1674 /**
1675  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1676  * the initial reference.
1677  *
1678  * This function should be called when it's decided the vma isn't needed
1679  * anymore. The caller must assure that it doesn't race with another lookup
1680  * plus destroy, typically by taking an appropriate reference.
1681  *
1682  * Current callsites are
1683  * - __i915_gem_object_pages_fini()
1684  * - __i915_vm_close() - Blocks the above function by taking a reference on
1685  * the object.
1686  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1687  * on the vm and a reference on the object. Also takes the object lock so
1688  * destruction from __i915_vma_parked() can be blocked by holding the
1689  * object lock. Since the object lock is only allowed from within i915 with
1690  * an object refcount, holding the object lock also implicitly blocks the
1691  * vma freeing from __i915_gem_object_pages_fini().
1692  *
1693  * Because of locks taken during destruction, a vma is also guaranteed to
1694  * stay alive while the following locks are held if it was looked up while
1695  * holding one of the locks:
1696  * - vm->mutex
1697  * - obj->vma.lock
1698  * - gt->closed_lock
1699  */
1700 void i915_vma_destroy_locked(struct i915_vma *vma)
1701 {
1702 	lockdep_assert_held(&vma->vm->mutex);
1703 
1704 	force_unbind(vma);
1705 	list_del_init(&vma->vm_link);
1706 	release_references(vma, false);
1707 }
1708 
1709 void i915_vma_destroy(struct i915_vma *vma)
1710 {
1711 	bool vm_ddestroy;
1712 
1713 	mutex_lock(&vma->vm->mutex);
1714 	force_unbind(vma);
1715 	list_del_init(&vma->vm_link);
1716 	vm_ddestroy = vma->vm_ddestroy;
1717 	vma->vm_ddestroy = false;
1718 	mutex_unlock(&vma->vm->mutex);
1719 	release_references(vma, vm_ddestroy);
1720 }
1721 
1722 void i915_vma_parked(struct intel_gt *gt)
1723 {
1724 	struct i915_vma *vma, *next;
1725 	LIST_HEAD(closed);
1726 
1727 	spin_lock_irq(&gt->closed_lock);
1728 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1729 		struct drm_i915_gem_object *obj = vma->obj;
1730 		struct i915_address_space *vm = vma->vm;
1731 
1732 		/* XXX All to avoid keeping a reference on i915_vma itself */
1733 
1734 		if (!kref_get_unless_zero(&obj->base.refcount))
1735 			continue;
1736 
1737 		if (!i915_vm_tryget(vm)) {
1738 			i915_gem_object_put(obj);
1739 			continue;
1740 		}
1741 
1742 		list_move(&vma->closed_link, &closed);
1743 	}
1744 	spin_unlock_irq(&gt->closed_lock);
1745 
1746 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1747 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1748 		struct drm_i915_gem_object *obj = vma->obj;
1749 		struct i915_address_space *vm = vma->vm;
1750 
1751 		if (i915_gem_object_trylock(obj, NULL)) {
1752 			INIT_LIST_HEAD(&vma->closed_link);
1753 			i915_vma_destroy(vma);
1754 			i915_gem_object_unlock(obj);
1755 		} else {
1756 			/* back you go.. */
1757 			spin_lock_irq(&gt->closed_lock);
1758 			list_add(&vma->closed_link, &gt->closed_vma);
1759 			spin_unlock_irq(&gt->closed_lock);
1760 		}
1761 
1762 		i915_gem_object_put(obj);
1763 		i915_vm_put(vm);
1764 	}
1765 }
1766 
1767 static void __i915_vma_iounmap(struct i915_vma *vma)
1768 {
1769 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1770 
1771 	if (vma->iomap == NULL)
1772 		return;
1773 
1774 	if (page_unmask_bits(vma->iomap))
1775 		__i915_gem_object_release_map(vma->obj);
1776 	else
1777 		io_mapping_unmap(vma->iomap);
1778 	vma->iomap = NULL;
1779 }
1780 
1781 void i915_vma_revoke_mmap(struct i915_vma *vma)
1782 {
1783 	struct drm_vma_offset_node *node;
1784 	u64 vma_offset;
1785 
1786 	if (!i915_vma_has_userfault(vma))
1787 		return;
1788 
1789 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1790 	GEM_BUG_ON(!vma->obj->userfault_count);
1791 
1792 	node = &vma->mmo->vma_node;
1793 	vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
1794 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1795 			    drm_vma_node_offset_addr(node) + vma_offset,
1796 			    vma->size,
1797 			    1);
1798 
1799 	i915_vma_unset_userfault(vma);
1800 	if (!--vma->obj->userfault_count)
1801 		list_del(&vma->obj->userfault_link);
1802 }
1803 
1804 static int
1805 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1806 {
1807 	return __i915_request_await_exclusive(rq, &vma->active);
1808 }
1809 
1810 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1811 {
1812 	int err;
1813 
1814 	/* Wait for the vma to be bound before we start! */
1815 	err = __i915_request_await_bind(rq, vma);
1816 	if (err)
1817 		return err;
1818 
1819 	return i915_active_add_request(&vma->active, rq);
1820 }
1821 
1822 int _i915_vma_move_to_active(struct i915_vma *vma,
1823 			     struct i915_request *rq,
1824 			     struct dma_fence *fence,
1825 			     unsigned int flags)
1826 {
1827 	struct drm_i915_gem_object *obj = vma->obj;
1828 	int err;
1829 
1830 	assert_object_held(obj);
1831 
1832 	GEM_BUG_ON(!vma->pages);
1833 
1834 	err = __i915_vma_move_to_active(vma, rq);
1835 	if (unlikely(err))
1836 		return err;
1837 
1838 	/*
1839 	 * Reserve fences slot early to prevent an allocation after preparing
1840 	 * the workload and associating fences with dma_resv.
1841 	 */
1842 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1843 		struct dma_fence *curr;
1844 		int idx;
1845 
1846 		dma_fence_array_for_each(curr, idx, fence)
1847 			;
1848 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1849 		if (unlikely(err))
1850 			return err;
1851 	}
1852 
1853 	if (flags & EXEC_OBJECT_WRITE) {
1854 		struct intel_frontbuffer *front;
1855 
1856 		front = __intel_frontbuffer_get(obj);
1857 		if (unlikely(front)) {
1858 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1859 				i915_active_add_request(&front->write, rq);
1860 			intel_frontbuffer_put(front);
1861 		}
1862 	}
1863 
1864 	if (fence) {
1865 		struct dma_fence *curr;
1866 		enum dma_resv_usage usage;
1867 		int idx;
1868 
1869 		obj->read_domains = 0;
1870 		if (flags & EXEC_OBJECT_WRITE) {
1871 			usage = DMA_RESV_USAGE_WRITE;
1872 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1873 		} else {
1874 			usage = DMA_RESV_USAGE_READ;
1875 		}
1876 
1877 		dma_fence_array_for_each(curr, idx, fence)
1878 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1879 	}
1880 
1881 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1882 		i915_active_add_request(&vma->fence->active, rq);
1883 
1884 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1885 	obj->mm.dirty = true;
1886 
1887 	GEM_BUG_ON(!i915_vma_is_active(vma));
1888 	return 0;
1889 }
1890 
1891 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1892 {
1893 	struct i915_vma_resource *vma_res = vma->resource;
1894 	struct dma_fence *unbind_fence;
1895 
1896 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1897 	assert_vma_held_evict(vma);
1898 
1899 	if (i915_vma_is_map_and_fenceable(vma)) {
1900 		/* Force a pagefault for domain tracking on next user access */
1901 		i915_vma_revoke_mmap(vma);
1902 
1903 		/*
1904 		 * Check that we have flushed all writes through the GGTT
1905 		 * before the unbind, other due to non-strict nature of those
1906 		 * indirect writes they may end up referencing the GGTT PTE
1907 		 * after the unbind.
1908 		 *
1909 		 * Note that we may be concurrently poking at the GGTT_WRITE
1910 		 * bit from set-domain, as we mark all GGTT vma associated
1911 		 * with an object. We know this is for another vma, as we
1912 		 * are currently unbinding this one -- so if this vma will be
1913 		 * reused, it will be refaulted and have its dirty bit set
1914 		 * before the next write.
1915 		 */
1916 		i915_vma_flush_writes(vma);
1917 
1918 		/* release the fence reg _after_ flushing */
1919 		i915_vma_revoke_fence(vma);
1920 
1921 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1922 	}
1923 
1924 	__i915_vma_iounmap(vma);
1925 
1926 	GEM_BUG_ON(vma->fence);
1927 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1928 
1929 	/* Object backend must be async capable. */
1930 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1931 
1932 	/* If vm is not open, unbind is a nop. */
1933 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1934 		kref_read(&vma->vm->ref);
1935 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1936 		vma->vm->skip_pte_rewrite;
1937 	trace_i915_vma_unbind(vma);
1938 
1939 	unbind_fence = i915_vma_resource_unbind(vma_res);
1940 	vma->resource = NULL;
1941 
1942 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1943 		   &vma->flags);
1944 
1945 	i915_vma_detach(vma);
1946 
1947 	if (!async && unbind_fence) {
1948 		dma_fence_wait(unbind_fence, false);
1949 		dma_fence_put(unbind_fence);
1950 		unbind_fence = NULL;
1951 	}
1952 
1953 	/*
1954 	 * Binding itself may not have completed until the unbind fence signals,
1955 	 * so don't drop the pages until that happens, unless the resource is
1956 	 * async_capable.
1957 	 */
1958 
1959 	vma_unbind_pages(vma);
1960 	return unbind_fence;
1961 }
1962 
1963 int __i915_vma_unbind(struct i915_vma *vma)
1964 {
1965 	int ret;
1966 
1967 	lockdep_assert_held(&vma->vm->mutex);
1968 	assert_vma_held_evict(vma);
1969 
1970 	if (!drm_mm_node_allocated(&vma->node))
1971 		return 0;
1972 
1973 	if (i915_vma_is_pinned(vma)) {
1974 		vma_print_allocator(vma, "is pinned");
1975 		return -EAGAIN;
1976 	}
1977 
1978 	/*
1979 	 * After confirming that no one else is pinning this vma, wait for
1980 	 * any laggards who may have crept in during the wait (through
1981 	 * a residual pin skipping the vm->mutex) to complete.
1982 	 */
1983 	ret = i915_vma_sync(vma);
1984 	if (ret)
1985 		return ret;
1986 
1987 	GEM_BUG_ON(i915_vma_is_active(vma));
1988 	__i915_vma_evict(vma, false);
1989 
1990 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
1991 	return 0;
1992 }
1993 
1994 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
1995 {
1996 	struct dma_fence *fence;
1997 
1998 	lockdep_assert_held(&vma->vm->mutex);
1999 
2000 	if (!drm_mm_node_allocated(&vma->node))
2001 		return NULL;
2002 
2003 	if (i915_vma_is_pinned(vma) ||
2004 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2005 		return ERR_PTR(-EAGAIN);
2006 
2007 	/*
2008 	 * We probably need to replace this with awaiting the fences of the
2009 	 * object's dma_resv when the vma active goes away. When doing that
2010 	 * we need to be careful to not add the vma_resource unbind fence
2011 	 * immediately to the object's dma_resv, because then unbinding
2012 	 * the next vma from the object, in case there are many, will
2013 	 * actually await the unbinding of the previous vmas, which is
2014 	 * undesirable.
2015 	 */
2016 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2017 				       I915_ACTIVE_AWAIT_EXCL |
2018 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2019 		return ERR_PTR(-EBUSY);
2020 	}
2021 
2022 	fence = __i915_vma_evict(vma, true);
2023 
2024 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2025 
2026 	return fence;
2027 }
2028 
2029 int i915_vma_unbind(struct i915_vma *vma)
2030 {
2031 	struct i915_address_space *vm = vma->vm;
2032 	intel_wakeref_t wakeref = 0;
2033 	int err;
2034 
2035 	assert_object_held_shared(vma->obj);
2036 
2037 	/* Optimistic wait before taking the mutex */
2038 	err = i915_vma_sync(vma);
2039 	if (err)
2040 		return err;
2041 
2042 	if (!drm_mm_node_allocated(&vma->node))
2043 		return 0;
2044 
2045 	if (i915_vma_is_pinned(vma)) {
2046 		vma_print_allocator(vma, "is pinned");
2047 		return -EAGAIN;
2048 	}
2049 
2050 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2051 		/* XXX not always required: nop_clear_range */
2052 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2053 
2054 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2055 	if (err)
2056 		goto out_rpm;
2057 
2058 	err = __i915_vma_unbind(vma);
2059 	mutex_unlock(&vm->mutex);
2060 
2061 out_rpm:
2062 	if (wakeref)
2063 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2064 	return err;
2065 }
2066 
2067 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2068 {
2069 	struct drm_i915_gem_object *obj = vma->obj;
2070 	struct i915_address_space *vm = vma->vm;
2071 	intel_wakeref_t wakeref = 0;
2072 	struct dma_fence *fence;
2073 	int err;
2074 
2075 	/*
2076 	 * We need the dma-resv lock since we add the
2077 	 * unbind fence to the dma-resv object.
2078 	 */
2079 	assert_object_held(obj);
2080 
2081 	if (!drm_mm_node_allocated(&vma->node))
2082 		return 0;
2083 
2084 	if (i915_vma_is_pinned(vma)) {
2085 		vma_print_allocator(vma, "is pinned");
2086 		return -EAGAIN;
2087 	}
2088 
2089 	if (!obj->mm.rsgt)
2090 		return -EBUSY;
2091 
2092 	err = dma_resv_reserve_fences(obj->base.resv, 1);
2093 	if (err)
2094 		return -EBUSY;
2095 
2096 	/*
2097 	 * It would be great if we could grab this wakeref from the
2098 	 * async unbind work if needed, but we can't because it uses
2099 	 * kmalloc and it's in the dma-fence signalling critical path.
2100 	 */
2101 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2102 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2103 
2104 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2105 		err = -EBUSY;
2106 		goto out_rpm;
2107 	} else if (!trylock_vm) {
2108 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2109 		if (err)
2110 			goto out_rpm;
2111 	}
2112 
2113 	fence = __i915_vma_unbind_async(vma);
2114 	mutex_unlock(&vm->mutex);
2115 	if (IS_ERR_OR_NULL(fence)) {
2116 		err = PTR_ERR_OR_ZERO(fence);
2117 		goto out_rpm;
2118 	}
2119 
2120 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2121 	dma_fence_put(fence);
2122 
2123 out_rpm:
2124 	if (wakeref)
2125 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2126 	return err;
2127 }
2128 
2129 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2130 {
2131 	int err;
2132 
2133 	i915_gem_object_lock(vma->obj, NULL);
2134 	err = i915_vma_unbind(vma);
2135 	i915_gem_object_unlock(vma->obj);
2136 
2137 	return err;
2138 }
2139 
2140 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2141 {
2142 	i915_gem_object_make_unshrinkable(vma->obj);
2143 	return vma;
2144 }
2145 
2146 void i915_vma_make_shrinkable(struct i915_vma *vma)
2147 {
2148 	i915_gem_object_make_shrinkable(vma->obj);
2149 }
2150 
2151 void i915_vma_make_purgeable(struct i915_vma *vma)
2152 {
2153 	i915_gem_object_make_purgeable(vma->obj);
2154 }
2155 
2156 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2157 #include "selftests/i915_vma.c"
2158 #endif
2159 
2160 void i915_vma_module_exit(void)
2161 {
2162 	kmem_cache_destroy(slab_vmas);
2163 }
2164 
2165 int __init i915_vma_module_init(void)
2166 {
2167 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2168 	if (!slab_vmas)
2169 		return -ENOMEM;
2170 
2171 	return 0;
2172 }
2173