1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <drm/drm_gem.h> 27 28 #include "display/intel_frontbuffer.h" 29 30 #include "gt/intel_engine.h" 31 #include "gt/intel_engine_heartbeat.h" 32 #include "gt/intel_gt.h" 33 #include "gt/intel_gt_requests.h" 34 35 #include "i915_drv.h" 36 #include "i915_globals.h" 37 #include "i915_sw_fence_work.h" 38 #include "i915_trace.h" 39 #include "i915_vma.h" 40 41 static struct i915_global_vma { 42 struct i915_global base; 43 struct kmem_cache *slab_vmas; 44 } global; 45 46 struct i915_vma *i915_vma_alloc(void) 47 { 48 return kmem_cache_zalloc(global.slab_vmas, GFP_KERNEL); 49 } 50 51 void i915_vma_free(struct i915_vma *vma) 52 { 53 return kmem_cache_free(global.slab_vmas, vma); 54 } 55 56 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 57 58 #include <linux/stackdepot.h> 59 60 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 61 { 62 unsigned long *entries; 63 unsigned int nr_entries; 64 char buf[512]; 65 66 if (!vma->node.stack) { 67 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n", 68 vma->node.start, vma->node.size, reason); 69 return; 70 } 71 72 nr_entries = stack_depot_fetch(vma->node.stack, &entries); 73 stack_trace_snprint(buf, sizeof(buf), entries, nr_entries, 0); 74 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n", 75 vma->node.start, vma->node.size, reason, buf); 76 } 77 78 #else 79 80 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 81 { 82 } 83 84 #endif 85 86 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 87 { 88 return container_of(ref, typeof(struct i915_vma), active); 89 } 90 91 static int __i915_vma_active(struct i915_active *ref) 92 { 93 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; 94 } 95 96 __i915_active_call 97 static void __i915_vma_retire(struct i915_active *ref) 98 { 99 i915_vma_put(active_to_vma(ref)); 100 } 101 102 static struct i915_vma * 103 vma_create(struct drm_i915_gem_object *obj, 104 struct i915_address_space *vm, 105 const struct i915_ggtt_view *view) 106 { 107 struct i915_vma *pos = ERR_PTR(-E2BIG); 108 struct i915_vma *vma; 109 struct rb_node *rb, **p; 110 111 /* The aliasing_ppgtt should never be used directly! */ 112 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 113 114 vma = i915_vma_alloc(); 115 if (vma == NULL) 116 return ERR_PTR(-ENOMEM); 117 118 kref_init(&vma->ref); 119 mutex_init(&vma->pages_mutex); 120 vma->vm = i915_vm_get(vm); 121 vma->ops = &vm->vma_ops; 122 vma->obj = obj; 123 vma->resv = obj->base.resv; 124 vma->size = obj->base.size; 125 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 126 127 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire); 128 129 /* Declare ourselves safe for use inside shrinkers */ 130 if (IS_ENABLED(CONFIG_LOCKDEP)) { 131 fs_reclaim_acquire(GFP_KERNEL); 132 might_lock(&vma->active.mutex); 133 fs_reclaim_release(GFP_KERNEL); 134 } 135 136 INIT_LIST_HEAD(&vma->closed_link); 137 138 if (view && view->type != I915_GGTT_VIEW_NORMAL) { 139 vma->ggtt_view = *view; 140 if (view->type == I915_GGTT_VIEW_PARTIAL) { 141 GEM_BUG_ON(range_overflows_t(u64, 142 view->partial.offset, 143 view->partial.size, 144 obj->base.size >> PAGE_SHIFT)); 145 vma->size = view->partial.size; 146 vma->size <<= PAGE_SHIFT; 147 GEM_BUG_ON(vma->size > obj->base.size); 148 } else if (view->type == I915_GGTT_VIEW_ROTATED) { 149 vma->size = intel_rotation_info_size(&view->rotated); 150 vma->size <<= PAGE_SHIFT; 151 } else if (view->type == I915_GGTT_VIEW_REMAPPED) { 152 vma->size = intel_remapped_info_size(&view->remapped); 153 vma->size <<= PAGE_SHIFT; 154 } 155 } 156 157 if (unlikely(vma->size > vm->total)) 158 goto err_vma; 159 160 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 161 162 spin_lock(&obj->vma.lock); 163 164 if (i915_is_ggtt(vm)) { 165 if (unlikely(overflows_type(vma->size, u32))) 166 goto err_unlock; 167 168 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 169 i915_gem_object_get_tiling(obj), 170 i915_gem_object_get_stride(obj)); 171 if (unlikely(vma->fence_size < vma->size || /* overflow */ 172 vma->fence_size > vm->total)) 173 goto err_unlock; 174 175 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 176 177 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 178 i915_gem_object_get_tiling(obj), 179 i915_gem_object_get_stride(obj)); 180 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 181 182 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 183 } 184 185 rb = NULL; 186 p = &obj->vma.tree.rb_node; 187 while (*p) { 188 long cmp; 189 190 rb = *p; 191 pos = rb_entry(rb, struct i915_vma, obj_node); 192 193 /* 194 * If the view already exists in the tree, another thread 195 * already created a matching vma, so return the older instance 196 * and dispose of ours. 197 */ 198 cmp = i915_vma_compare(pos, vm, view); 199 if (cmp < 0) 200 p = &rb->rb_right; 201 else if (cmp > 0) 202 p = &rb->rb_left; 203 else 204 goto err_unlock; 205 } 206 rb_link_node(&vma->obj_node, rb, p); 207 rb_insert_color(&vma->obj_node, &obj->vma.tree); 208 209 if (i915_vma_is_ggtt(vma)) 210 /* 211 * We put the GGTT vma at the start of the vma-list, followed 212 * by the ppGGTT vma. This allows us to break early when 213 * iterating over only the GGTT vma for an object, see 214 * for_each_ggtt_vma() 215 */ 216 list_add(&vma->obj_link, &obj->vma.list); 217 else 218 list_add_tail(&vma->obj_link, &obj->vma.list); 219 220 spin_unlock(&obj->vma.lock); 221 222 return vma; 223 224 err_unlock: 225 spin_unlock(&obj->vma.lock); 226 err_vma: 227 i915_vm_put(vm); 228 i915_vma_free(vma); 229 return pos; 230 } 231 232 static struct i915_vma * 233 vma_lookup(struct drm_i915_gem_object *obj, 234 struct i915_address_space *vm, 235 const struct i915_ggtt_view *view) 236 { 237 struct rb_node *rb; 238 239 rb = obj->vma.tree.rb_node; 240 while (rb) { 241 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 242 long cmp; 243 244 cmp = i915_vma_compare(vma, vm, view); 245 if (cmp == 0) 246 return vma; 247 248 if (cmp < 0) 249 rb = rb->rb_right; 250 else 251 rb = rb->rb_left; 252 } 253 254 return NULL; 255 } 256 257 /** 258 * i915_vma_instance - return the singleton instance of the VMA 259 * @obj: parent &struct drm_i915_gem_object to be mapped 260 * @vm: address space in which the mapping is located 261 * @view: additional mapping requirements 262 * 263 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 264 * the same @view characteristics. If a match is not found, one is created. 265 * Once created, the VMA is kept until either the object is freed, or the 266 * address space is closed. 267 * 268 * Returns the vma, or an error pointer. 269 */ 270 struct i915_vma * 271 i915_vma_instance(struct drm_i915_gem_object *obj, 272 struct i915_address_space *vm, 273 const struct i915_ggtt_view *view) 274 { 275 struct i915_vma *vma; 276 277 GEM_BUG_ON(view && !i915_is_ggtt(vm)); 278 GEM_BUG_ON(!atomic_read(&vm->open)); 279 280 spin_lock(&obj->vma.lock); 281 vma = vma_lookup(obj, vm, view); 282 spin_unlock(&obj->vma.lock); 283 284 /* vma_create() will resolve the race if another creates the vma */ 285 if (unlikely(!vma)) 286 vma = vma_create(obj, vm, view); 287 288 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 289 return vma; 290 } 291 292 struct i915_vma_work { 293 struct dma_fence_work base; 294 struct i915_vma *vma; 295 struct drm_i915_gem_object *pinned; 296 struct i915_sw_dma_fence_cb cb; 297 enum i915_cache_level cache_level; 298 unsigned int flags; 299 }; 300 301 static int __vma_bind(struct dma_fence_work *work) 302 { 303 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 304 struct i915_vma *vma = vw->vma; 305 int err; 306 307 err = vma->ops->bind_vma(vma, vw->cache_level, vw->flags); 308 if (err) 309 atomic_or(I915_VMA_ERROR, &vma->flags); 310 311 return err; 312 } 313 314 static void __vma_release(struct dma_fence_work *work) 315 { 316 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 317 318 if (vw->pinned) 319 __i915_gem_object_unpin_pages(vw->pinned); 320 } 321 322 static const struct dma_fence_work_ops bind_ops = { 323 .name = "bind", 324 .work = __vma_bind, 325 .release = __vma_release, 326 }; 327 328 struct i915_vma_work *i915_vma_work(void) 329 { 330 struct i915_vma_work *vw; 331 332 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 333 if (!vw) 334 return NULL; 335 336 dma_fence_work_init(&vw->base, &bind_ops); 337 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 338 339 return vw; 340 } 341 342 int i915_vma_wait_for_bind(struct i915_vma *vma) 343 { 344 int err = 0; 345 346 if (rcu_access_pointer(vma->active.excl.fence)) { 347 struct dma_fence *fence; 348 349 rcu_read_lock(); 350 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 351 rcu_read_unlock(); 352 if (fence) { 353 err = dma_fence_wait(fence, MAX_SCHEDULE_TIMEOUT); 354 dma_fence_put(fence); 355 } 356 } 357 358 return err; 359 } 360 361 /** 362 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 363 * @vma: VMA to map 364 * @cache_level: mapping cache level 365 * @flags: flags like global or local mapping 366 * @work: preallocated worker for allocating and binding the PTE 367 * 368 * DMA addresses are taken from the scatter-gather table of this object (or of 369 * this VMA in case of non-default GGTT views) and PTE entries set up. 370 * Note that DMA addresses are also the only part of the SG table we care about. 371 */ 372 int i915_vma_bind(struct i915_vma *vma, 373 enum i915_cache_level cache_level, 374 u32 flags, 375 struct i915_vma_work *work) 376 { 377 u32 bind_flags; 378 u32 vma_flags; 379 int ret; 380 381 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 382 GEM_BUG_ON(vma->size > vma->node.size); 383 384 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 385 vma->node.size, 386 vma->vm->total))) 387 return -ENODEV; 388 389 if (GEM_DEBUG_WARN_ON(!flags)) 390 return -EINVAL; 391 392 bind_flags = flags; 393 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 394 395 vma_flags = atomic_read(&vma->flags); 396 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 397 if (flags & PIN_UPDATE) 398 bind_flags |= vma_flags; 399 else 400 bind_flags &= ~vma_flags; 401 if (bind_flags == 0) 402 return 0; 403 404 GEM_BUG_ON(!vma->pages); 405 406 trace_i915_vma_bind(vma, bind_flags); 407 if (work && (bind_flags & ~vma_flags) & vma->vm->bind_async_flags) { 408 struct dma_fence *prev; 409 410 work->vma = vma; 411 work->cache_level = cache_level; 412 work->flags = bind_flags | I915_VMA_ALLOC; 413 414 /* 415 * Note we only want to chain up to the migration fence on 416 * the pages (not the object itself). As we don't track that, 417 * yet, we have to use the exclusive fence instead. 418 * 419 * Also note that we do not want to track the async vma as 420 * part of the obj->resv->excl_fence as it only affects 421 * execution and not content or object's backing store lifetime. 422 */ 423 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 424 if (prev) { 425 __i915_sw_fence_await_dma_fence(&work->base.chain, 426 prev, 427 &work->cb); 428 dma_fence_put(prev); 429 } 430 431 work->base.dma.error = 0; /* enable the queue_work() */ 432 433 if (vma->obj) { 434 __i915_gem_object_pin_pages(vma->obj); 435 work->pinned = vma->obj; 436 } 437 } else { 438 ret = vma->ops->bind_vma(vma, cache_level, bind_flags); 439 if (ret) 440 return ret; 441 } 442 443 atomic_or(bind_flags, &vma->flags); 444 return 0; 445 } 446 447 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 448 { 449 void __iomem *ptr; 450 int err; 451 452 if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) { 453 err = -ENODEV; 454 goto err; 455 } 456 457 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 458 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 459 460 ptr = READ_ONCE(vma->iomap); 461 if (ptr == NULL) { 462 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 463 vma->node.start, 464 vma->node.size); 465 if (ptr == NULL) { 466 err = -ENOMEM; 467 goto err; 468 } 469 470 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 471 io_mapping_unmap(ptr); 472 ptr = vma->iomap; 473 } 474 } 475 476 __i915_vma_pin(vma); 477 478 err = i915_vma_pin_fence(vma); 479 if (err) 480 goto err_unpin; 481 482 i915_vma_set_ggtt_write(vma); 483 484 /* NB Access through the GTT requires the device to be awake. */ 485 return ptr; 486 487 err_unpin: 488 __i915_vma_unpin(vma); 489 err: 490 return IO_ERR_PTR(err); 491 } 492 493 void i915_vma_flush_writes(struct i915_vma *vma) 494 { 495 if (i915_vma_unset_ggtt_write(vma)) 496 intel_gt_flush_ggtt_writes(vma->vm->gt); 497 } 498 499 void i915_vma_unpin_iomap(struct i915_vma *vma) 500 { 501 GEM_BUG_ON(vma->iomap == NULL); 502 503 i915_vma_flush_writes(vma); 504 505 i915_vma_unpin_fence(vma); 506 i915_vma_unpin(vma); 507 } 508 509 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 510 { 511 struct i915_vma *vma; 512 struct drm_i915_gem_object *obj; 513 514 vma = fetch_and_zero(p_vma); 515 if (!vma) 516 return; 517 518 obj = vma->obj; 519 GEM_BUG_ON(!obj); 520 521 i915_vma_unpin(vma); 522 523 if (flags & I915_VMA_RELEASE_MAP) 524 i915_gem_object_unpin_map(obj); 525 526 i915_gem_object_put(obj); 527 } 528 529 bool i915_vma_misplaced(const struct i915_vma *vma, 530 u64 size, u64 alignment, u64 flags) 531 { 532 if (!drm_mm_node_allocated(&vma->node)) 533 return false; 534 535 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 536 return true; 537 538 if (vma->node.size < size) 539 return true; 540 541 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 542 if (alignment && !IS_ALIGNED(vma->node.start, alignment)) 543 return true; 544 545 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 546 return true; 547 548 if (flags & PIN_OFFSET_BIAS && 549 vma->node.start < (flags & PIN_OFFSET_MASK)) 550 return true; 551 552 if (flags & PIN_OFFSET_FIXED && 553 vma->node.start != (flags & PIN_OFFSET_MASK)) 554 return true; 555 556 return false; 557 } 558 559 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 560 { 561 bool mappable, fenceable; 562 563 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 564 GEM_BUG_ON(!vma->fence_size); 565 566 fenceable = (vma->node.size >= vma->fence_size && 567 IS_ALIGNED(vma->node.start, vma->fence_alignment)); 568 569 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; 570 571 if (mappable && fenceable) 572 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 573 else 574 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 575 } 576 577 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 578 { 579 struct drm_mm_node *node = &vma->node; 580 struct drm_mm_node *other; 581 582 /* 583 * On some machines we have to be careful when putting differing types 584 * of snoopable memory together to avoid the prefetcher crossing memory 585 * domains and dying. During vm initialisation, we decide whether or not 586 * these constraints apply and set the drm_mm.color_adjust 587 * appropriately. 588 */ 589 if (!i915_vm_has_cache_coloring(vma->vm)) 590 return true; 591 592 /* Only valid to be called on an already inserted vma */ 593 GEM_BUG_ON(!drm_mm_node_allocated(node)); 594 GEM_BUG_ON(list_empty(&node->node_list)); 595 596 other = list_prev_entry(node, node_list); 597 if (i915_node_color_differs(other, color) && 598 !drm_mm_hole_follows(other)) 599 return false; 600 601 other = list_next_entry(node, node_list); 602 if (i915_node_color_differs(other, color) && 603 !drm_mm_hole_follows(node)) 604 return false; 605 606 return true; 607 } 608 609 /** 610 * i915_vma_insert - finds a slot for the vma in its address space 611 * @vma: the vma 612 * @size: requested size in bytes (can be larger than the VMA) 613 * @alignment: required alignment 614 * @flags: mask of PIN_* flags to use 615 * 616 * First we try to allocate some free space that meets the requirements for 617 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 618 * preferrably the oldest idle entry to make room for the new VMA. 619 * 620 * Returns: 621 * 0 on success, negative error code otherwise. 622 */ 623 static int 624 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 625 { 626 unsigned long color; 627 u64 start, end; 628 int ret; 629 630 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 631 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 632 633 size = max(size, vma->size); 634 alignment = max(alignment, vma->display_alignment); 635 if (flags & PIN_MAPPABLE) { 636 size = max_t(typeof(size), size, vma->fence_size); 637 alignment = max_t(typeof(alignment), 638 alignment, vma->fence_alignment); 639 } 640 641 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 642 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 643 GEM_BUG_ON(!is_power_of_2(alignment)); 644 645 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 646 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 647 648 end = vma->vm->total; 649 if (flags & PIN_MAPPABLE) 650 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 651 if (flags & PIN_ZONE_4G) 652 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 653 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 654 655 /* If binding the object/GGTT view requires more space than the entire 656 * aperture has, reject it early before evicting everything in a vain 657 * attempt to find space. 658 */ 659 if (size > end) { 660 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 661 size, flags & PIN_MAPPABLE ? "mappable" : "total", 662 end); 663 return -ENOSPC; 664 } 665 666 color = 0; 667 if (vma->obj && i915_vm_has_cache_coloring(vma->vm)) 668 color = vma->obj->cache_level; 669 670 if (flags & PIN_OFFSET_FIXED) { 671 u64 offset = flags & PIN_OFFSET_MASK; 672 if (!IS_ALIGNED(offset, alignment) || 673 range_overflows(offset, size, end)) 674 return -EINVAL; 675 676 ret = i915_gem_gtt_reserve(vma->vm, &vma->node, 677 size, offset, color, 678 flags); 679 if (ret) 680 return ret; 681 } else { 682 /* 683 * We only support huge gtt pages through the 48b PPGTT, 684 * however we also don't want to force any alignment for 685 * objects which need to be tightly packed into the low 32bits. 686 * 687 * Note that we assume that GGTT are limited to 4GiB for the 688 * forseeable future. See also i915_ggtt_offset(). 689 */ 690 if (upper_32_bits(end - 1) && 691 vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 692 /* 693 * We can't mix 64K and 4K PTEs in the same page-table 694 * (2M block), and so to avoid the ugliness and 695 * complexity of coloring we opt for just aligning 64K 696 * objects to 2M. 697 */ 698 u64 page_alignment = 699 rounddown_pow_of_two(vma->page_sizes.sg | 700 I915_GTT_PAGE_SIZE_2M); 701 702 /* 703 * Check we don't expand for the limited Global GTT 704 * (mappable aperture is even more precious!). This 705 * also checks that we exclude the aliasing-ppgtt. 706 */ 707 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 708 709 alignment = max(alignment, page_alignment); 710 711 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 712 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 713 } 714 715 ret = i915_gem_gtt_insert(vma->vm, &vma->node, 716 size, alignment, color, 717 start, end, flags); 718 if (ret) 719 return ret; 720 721 GEM_BUG_ON(vma->node.start < start); 722 GEM_BUG_ON(vma->node.start + vma->node.size > end); 723 } 724 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 725 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 726 727 list_add_tail(&vma->vm_link, &vma->vm->bound_list); 728 729 return 0; 730 } 731 732 static void 733 i915_vma_detach(struct i915_vma *vma) 734 { 735 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 736 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 737 738 /* 739 * And finally now the object is completely decoupled from this 740 * vma, we can drop its hold on the backing storage and allow 741 * it to be reaped by the shrinker. 742 */ 743 list_del(&vma->vm_link); 744 } 745 746 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 747 { 748 unsigned int bound; 749 bool pinned = true; 750 751 bound = atomic_read(&vma->flags); 752 do { 753 if (unlikely(flags & ~bound)) 754 return false; 755 756 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 757 return false; 758 759 if (!(bound & I915_VMA_PIN_MASK)) 760 goto unpinned; 761 762 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 763 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 764 765 return true; 766 767 unpinned: 768 /* 769 * If pin_count==0, but we are bound, check under the lock to avoid 770 * racing with a concurrent i915_vma_unbind(). 771 */ 772 mutex_lock(&vma->vm->mutex); 773 do { 774 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) { 775 pinned = false; 776 break; 777 } 778 779 if (unlikely(flags & ~bound)) { 780 pinned = false; 781 break; 782 } 783 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 784 mutex_unlock(&vma->vm->mutex); 785 786 return pinned; 787 } 788 789 static int vma_get_pages(struct i915_vma *vma) 790 { 791 int err = 0; 792 793 if (atomic_add_unless(&vma->pages_count, 1, 0)) 794 return 0; 795 796 /* Allocations ahoy! */ 797 if (mutex_lock_interruptible(&vma->pages_mutex)) 798 return -EINTR; 799 800 if (!atomic_read(&vma->pages_count)) { 801 if (vma->obj) { 802 err = i915_gem_object_pin_pages(vma->obj); 803 if (err) 804 goto unlock; 805 } 806 807 err = vma->ops->set_pages(vma); 808 if (err) { 809 if (vma->obj) 810 i915_gem_object_unpin_pages(vma->obj); 811 goto unlock; 812 } 813 } 814 atomic_inc(&vma->pages_count); 815 816 unlock: 817 mutex_unlock(&vma->pages_mutex); 818 819 return err; 820 } 821 822 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 823 { 824 /* We allocate under vma_get_pages, so beware the shrinker */ 825 mutex_lock_nested(&vma->pages_mutex, SINGLE_DEPTH_NESTING); 826 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 827 if (atomic_sub_return(count, &vma->pages_count) == 0) { 828 vma->ops->clear_pages(vma); 829 GEM_BUG_ON(vma->pages); 830 if (vma->obj) 831 i915_gem_object_unpin_pages(vma->obj); 832 } 833 mutex_unlock(&vma->pages_mutex); 834 } 835 836 static void vma_put_pages(struct i915_vma *vma) 837 { 838 if (atomic_add_unless(&vma->pages_count, -1, 1)) 839 return; 840 841 __vma_put_pages(vma, 1); 842 } 843 844 static void vma_unbind_pages(struct i915_vma *vma) 845 { 846 unsigned int count; 847 848 lockdep_assert_held(&vma->vm->mutex); 849 850 /* The upper portion of pages_count is the number of bindings */ 851 count = atomic_read(&vma->pages_count); 852 count >>= I915_VMA_PAGES_BIAS; 853 GEM_BUG_ON(!count); 854 855 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 856 } 857 858 int i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 859 { 860 struct i915_vma_work *work = NULL; 861 intel_wakeref_t wakeref = 0; 862 unsigned int bound; 863 int err; 864 865 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 866 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 867 868 GEM_BUG_ON(flags & PIN_UPDATE); 869 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 870 871 /* First try and grab the pin without rebinding the vma */ 872 if (try_qad_pin(vma, flags & I915_VMA_BIND_MASK)) 873 return 0; 874 875 err = vma_get_pages(vma); 876 if (err) 877 return err; 878 879 if (flags & vma->vm->bind_async_flags) { 880 work = i915_vma_work(); 881 if (!work) { 882 err = -ENOMEM; 883 goto err_pages; 884 } 885 } 886 887 if (flags & PIN_GLOBAL) 888 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 889 890 /* 891 * Differentiate between user/kernel vma inside the aliasing-ppgtt. 892 * 893 * We conflate the Global GTT with the user's vma when using the 894 * aliasing-ppgtt, but it is still vitally important to try and 895 * keep the use cases distinct. For example, userptr objects are 896 * not allowed inside the Global GTT as that will cause lock 897 * inversions when we have to evict them the mmu_notifier callbacks - 898 * but they are allowed to be part of the user ppGTT which can never 899 * be mapped. As such we try to give the distinct users of the same 900 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt 901 * and i915_ppgtt separate]. 902 * 903 * NB this may cause us to mask real lock inversions -- while the 904 * code is safe today, lockdep may not be able to spot future 905 * transgressions. 906 */ 907 err = mutex_lock_interruptible_nested(&vma->vm->mutex, 908 !(flags & PIN_GLOBAL)); 909 if (err) 910 goto err_fence; 911 912 /* No more allocations allowed now we hold vm->mutex */ 913 914 if (unlikely(i915_vma_is_closed(vma))) { 915 err = -ENOENT; 916 goto err_unlock; 917 } 918 919 bound = atomic_read(&vma->flags); 920 if (unlikely(bound & I915_VMA_ERROR)) { 921 err = -ENOMEM; 922 goto err_unlock; 923 } 924 925 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 926 err = -EAGAIN; /* pins are meant to be fairly temporary */ 927 goto err_unlock; 928 } 929 930 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 931 __i915_vma_pin(vma); 932 goto err_unlock; 933 } 934 935 err = i915_active_acquire(&vma->active); 936 if (err) 937 goto err_unlock; 938 939 if (!(bound & I915_VMA_BIND_MASK)) { 940 err = i915_vma_insert(vma, size, alignment, flags); 941 if (err) 942 goto err_active; 943 944 if (i915_is_ggtt(vma->vm)) 945 __i915_vma_set_map_and_fenceable(vma); 946 } 947 948 GEM_BUG_ON(!vma->pages); 949 err = i915_vma_bind(vma, 950 vma->obj ? vma->obj->cache_level : 0, 951 flags, work); 952 if (err) 953 goto err_remove; 954 955 /* There should only be at most 2 active bindings (user, global) */ 956 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 957 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 958 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 959 960 __i915_vma_pin(vma); 961 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 962 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 963 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 964 965 err_remove: 966 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 967 i915_vma_detach(vma); 968 drm_mm_remove_node(&vma->node); 969 } 970 err_active: 971 i915_active_release(&vma->active); 972 err_unlock: 973 mutex_unlock(&vma->vm->mutex); 974 err_fence: 975 if (work) 976 dma_fence_work_commit_imm(&work->base); 977 if (wakeref) 978 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 979 err_pages: 980 vma_put_pages(vma); 981 return err; 982 } 983 984 static void flush_idle_contexts(struct intel_gt *gt) 985 { 986 struct intel_engine_cs *engine; 987 enum intel_engine_id id; 988 989 for_each_engine(engine, gt, id) 990 intel_engine_flush_barriers(engine); 991 992 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 993 } 994 995 int i915_ggtt_pin(struct i915_vma *vma, u32 align, unsigned int flags) 996 { 997 struct i915_address_space *vm = vma->vm; 998 int err; 999 1000 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1001 1002 do { 1003 err = i915_vma_pin(vma, 0, align, flags | PIN_GLOBAL); 1004 if (err != -ENOSPC) { 1005 if (!err) { 1006 err = i915_vma_wait_for_bind(vma); 1007 if (err) 1008 i915_vma_unpin(vma); 1009 } 1010 return err; 1011 } 1012 1013 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1014 flush_idle_contexts(vm->gt); 1015 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1016 i915_gem_evict_vm(vm); 1017 mutex_unlock(&vm->mutex); 1018 } 1019 } while (1); 1020 } 1021 1022 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) 1023 { 1024 /* 1025 * We defer actually closing, unbinding and destroying the VMA until 1026 * the next idle point, or if the object is freed in the meantime. By 1027 * postponing the unbind, we allow for it to be resurrected by the 1028 * client, avoiding the work required to rebind the VMA. This is 1029 * advantageous for DRI, where the client/server pass objects 1030 * between themselves, temporarily opening a local VMA to the 1031 * object, and then closing it again. The same object is then reused 1032 * on the next frame (or two, depending on the depth of the swap queue) 1033 * causing us to rebind the VMA once more. This ends up being a lot 1034 * of wasted work for the steady state. 1035 */ 1036 GEM_BUG_ON(i915_vma_is_closed(vma)); 1037 list_add(&vma->closed_link, >->closed_vma); 1038 } 1039 1040 void i915_vma_close(struct i915_vma *vma) 1041 { 1042 struct intel_gt *gt = vma->vm->gt; 1043 unsigned long flags; 1044 1045 if (i915_vma_is_ggtt(vma)) 1046 return; 1047 1048 GEM_BUG_ON(!atomic_read(&vma->open_count)); 1049 if (atomic_dec_and_lock_irqsave(&vma->open_count, 1050 >->closed_lock, 1051 flags)) { 1052 __vma_close(vma, gt); 1053 spin_unlock_irqrestore(>->closed_lock, flags); 1054 } 1055 } 1056 1057 static void __i915_vma_remove_closed(struct i915_vma *vma) 1058 { 1059 struct intel_gt *gt = vma->vm->gt; 1060 1061 spin_lock_irq(>->closed_lock); 1062 list_del_init(&vma->closed_link); 1063 spin_unlock_irq(>->closed_lock); 1064 } 1065 1066 void i915_vma_reopen(struct i915_vma *vma) 1067 { 1068 if (i915_vma_is_closed(vma)) 1069 __i915_vma_remove_closed(vma); 1070 } 1071 1072 void i915_vma_release(struct kref *ref) 1073 { 1074 struct i915_vma *vma = container_of(ref, typeof(*vma), ref); 1075 1076 if (drm_mm_node_allocated(&vma->node)) { 1077 mutex_lock(&vma->vm->mutex); 1078 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1079 WARN_ON(__i915_vma_unbind(vma)); 1080 mutex_unlock(&vma->vm->mutex); 1081 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1082 } 1083 GEM_BUG_ON(i915_vma_is_active(vma)); 1084 1085 if (vma->obj) { 1086 struct drm_i915_gem_object *obj = vma->obj; 1087 1088 spin_lock(&obj->vma.lock); 1089 list_del(&vma->obj_link); 1090 rb_erase(&vma->obj_node, &obj->vma.tree); 1091 spin_unlock(&obj->vma.lock); 1092 } 1093 1094 __i915_vma_remove_closed(vma); 1095 i915_vm_put(vma->vm); 1096 1097 i915_active_fini(&vma->active); 1098 i915_vma_free(vma); 1099 } 1100 1101 void i915_vma_parked(struct intel_gt *gt) 1102 { 1103 struct i915_vma *vma, *next; 1104 LIST_HEAD(closed); 1105 1106 spin_lock_irq(>->closed_lock); 1107 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1108 struct drm_i915_gem_object *obj = vma->obj; 1109 struct i915_address_space *vm = vma->vm; 1110 1111 /* XXX All to avoid keeping a reference on i915_vma itself */ 1112 1113 if (!kref_get_unless_zero(&obj->base.refcount)) 1114 continue; 1115 1116 if (!i915_vm_tryopen(vm)) { 1117 i915_gem_object_put(obj); 1118 continue; 1119 } 1120 1121 list_move(&vma->closed_link, &closed); 1122 } 1123 spin_unlock_irq(>->closed_lock); 1124 1125 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1126 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1127 struct drm_i915_gem_object *obj = vma->obj; 1128 struct i915_address_space *vm = vma->vm; 1129 1130 INIT_LIST_HEAD(&vma->closed_link); 1131 __i915_vma_put(vma); 1132 1133 i915_gem_object_put(obj); 1134 i915_vm_close(vm); 1135 } 1136 } 1137 1138 static void __i915_vma_iounmap(struct i915_vma *vma) 1139 { 1140 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1141 1142 if (vma->iomap == NULL) 1143 return; 1144 1145 io_mapping_unmap(vma->iomap); 1146 vma->iomap = NULL; 1147 } 1148 1149 void i915_vma_revoke_mmap(struct i915_vma *vma) 1150 { 1151 struct drm_vma_offset_node *node; 1152 u64 vma_offset; 1153 1154 if (!i915_vma_has_userfault(vma)) 1155 return; 1156 1157 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1158 GEM_BUG_ON(!vma->obj->userfault_count); 1159 1160 node = &vma->mmo->vma_node; 1161 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 1162 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1163 drm_vma_node_offset_addr(node) + vma_offset, 1164 vma->size, 1165 1); 1166 1167 i915_vma_unset_userfault(vma); 1168 if (!--vma->obj->userfault_count) 1169 list_del(&vma->obj->userfault_link); 1170 } 1171 1172 int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1173 { 1174 int err; 1175 1176 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1177 1178 /* Wait for the vma to be bound before we start! */ 1179 err = i915_request_await_active(rq, &vma->active, 1180 I915_ACTIVE_AWAIT_EXCL); 1181 if (err) 1182 return err; 1183 1184 return i915_active_add_request(&vma->active, rq); 1185 } 1186 1187 int i915_vma_move_to_active(struct i915_vma *vma, 1188 struct i915_request *rq, 1189 unsigned int flags) 1190 { 1191 struct drm_i915_gem_object *obj = vma->obj; 1192 int err; 1193 1194 assert_object_held(obj); 1195 1196 err = __i915_vma_move_to_active(vma, rq); 1197 if (unlikely(err)) 1198 return err; 1199 1200 if (flags & EXEC_OBJECT_WRITE) { 1201 struct intel_frontbuffer *front; 1202 1203 front = __intel_frontbuffer_get(obj); 1204 if (unlikely(front)) { 1205 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1206 i915_active_add_request(&front->write, rq); 1207 intel_frontbuffer_put(front); 1208 } 1209 1210 dma_resv_add_excl_fence(vma->resv, &rq->fence); 1211 obj->write_domain = I915_GEM_DOMAIN_RENDER; 1212 obj->read_domains = 0; 1213 } else { 1214 err = dma_resv_reserve_shared(vma->resv, 1); 1215 if (unlikely(err)) 1216 return err; 1217 1218 dma_resv_add_shared_fence(vma->resv, &rq->fence); 1219 obj->write_domain = 0; 1220 } 1221 1222 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) 1223 i915_active_add_request(&vma->fence->active, rq); 1224 1225 obj->read_domains |= I915_GEM_GPU_DOMAINS; 1226 obj->mm.dirty = true; 1227 1228 GEM_BUG_ON(!i915_vma_is_active(vma)); 1229 return 0; 1230 } 1231 1232 int __i915_vma_unbind(struct i915_vma *vma) 1233 { 1234 int ret; 1235 1236 lockdep_assert_held(&vma->vm->mutex); 1237 1238 if (i915_vma_is_pinned(vma)) { 1239 vma_print_allocator(vma, "is pinned"); 1240 return -EAGAIN; 1241 } 1242 1243 /* 1244 * After confirming that no one else is pinning this vma, wait for 1245 * any laggards who may have crept in during the wait (through 1246 * a residual pin skipping the vm->mutex) to complete. 1247 */ 1248 ret = i915_vma_sync(vma); 1249 if (ret) 1250 return ret; 1251 1252 if (!drm_mm_node_allocated(&vma->node)) 1253 return 0; 1254 1255 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1256 GEM_BUG_ON(i915_vma_is_active(vma)); 1257 1258 if (i915_vma_is_map_and_fenceable(vma)) { 1259 /* Force a pagefault for domain tracking on next user access */ 1260 i915_vma_revoke_mmap(vma); 1261 1262 /* 1263 * Check that we have flushed all writes through the GGTT 1264 * before the unbind, other due to non-strict nature of those 1265 * indirect writes they may end up referencing the GGTT PTE 1266 * after the unbind. 1267 * 1268 * Note that we may be concurrently poking at the GGTT_WRITE 1269 * bit from set-domain, as we mark all GGTT vma associated 1270 * with an object. We know this is for another vma, as we 1271 * are currently unbinding this one -- so if this vma will be 1272 * reused, it will be refaulted and have its dirty bit set 1273 * before the next write. 1274 */ 1275 i915_vma_flush_writes(vma); 1276 1277 /* release the fence reg _after_ flushing */ 1278 i915_vma_revoke_fence(vma); 1279 1280 __i915_vma_iounmap(vma); 1281 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 1282 } 1283 GEM_BUG_ON(vma->fence); 1284 GEM_BUG_ON(i915_vma_has_userfault(vma)); 1285 1286 if (likely(atomic_read(&vma->vm->open))) { 1287 trace_i915_vma_unbind(vma); 1288 vma->ops->unbind_vma(vma); 1289 } 1290 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 1291 &vma->flags); 1292 1293 i915_vma_detach(vma); 1294 vma_unbind_pages(vma); 1295 1296 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 1297 return 0; 1298 } 1299 1300 int i915_vma_unbind(struct i915_vma *vma) 1301 { 1302 struct i915_address_space *vm = vma->vm; 1303 intel_wakeref_t wakeref = 0; 1304 int err; 1305 1306 if (!drm_mm_node_allocated(&vma->node)) 1307 return 0; 1308 1309 /* Optimistic wait before taking the mutex */ 1310 err = i915_vma_sync(vma); 1311 if (err) 1312 goto out_rpm; 1313 1314 if (i915_vma_is_pinned(vma)) { 1315 vma_print_allocator(vma, "is pinned"); 1316 return -EAGAIN; 1317 } 1318 1319 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 1320 /* XXX not always required: nop_clear_range */ 1321 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 1322 1323 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); 1324 if (err) 1325 goto out_rpm; 1326 1327 err = __i915_vma_unbind(vma); 1328 mutex_unlock(&vm->mutex); 1329 1330 out_rpm: 1331 if (wakeref) 1332 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 1333 return err; 1334 } 1335 1336 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 1337 { 1338 i915_gem_object_make_unshrinkable(vma->obj); 1339 return vma; 1340 } 1341 1342 void i915_vma_make_shrinkable(struct i915_vma *vma) 1343 { 1344 i915_gem_object_make_shrinkable(vma->obj); 1345 } 1346 1347 void i915_vma_make_purgeable(struct i915_vma *vma) 1348 { 1349 i915_gem_object_make_purgeable(vma->obj); 1350 } 1351 1352 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1353 #include "selftests/i915_vma.c" 1354 #endif 1355 1356 static void i915_global_vma_shrink(void) 1357 { 1358 kmem_cache_shrink(global.slab_vmas); 1359 } 1360 1361 static void i915_global_vma_exit(void) 1362 { 1363 kmem_cache_destroy(global.slab_vmas); 1364 } 1365 1366 static struct i915_global_vma global = { { 1367 .shrink = i915_global_vma_shrink, 1368 .exit = i915_global_vma_exit, 1369 } }; 1370 1371 int __init i915_global_vma_init(void) 1372 { 1373 global.slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 1374 if (!global.slab_vmas) 1375 return -ENOMEM; 1376 1377 i915_global_register(&global.base); 1378 return 0; 1379 } 1380