xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vgpu.c (revision d6e0cbb1)
1 /*
2  * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "intel_drv.h"
25 #include "i915_vgpu.h"
26 
27 /**
28  * DOC: Intel GVT-g guest support
29  *
30  * Intel GVT-g is a graphics virtualization technology which shares the
31  * GPU among multiple virtual machines on a time-sharing basis. Each
32  * virtual machine is presented a virtual GPU (vGPU), which has equivalent
33  * features as the underlying physical GPU (pGPU), so i915 driver can run
34  * seamlessly in a virtual machine. This file provides vGPU specific
35  * optimizations when running in a virtual machine, to reduce the complexity
36  * of vGPU emulation and to improve the overall performance.
37  *
38  * A primary function introduced here is so-called "address space ballooning"
39  * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
40  * so each VM can directly access a portion of the memory without hypervisor's
41  * intervention, e.g. filling textures or queuing commands. However with the
42  * partitioning an unmodified i915 driver would assume a smaller graphics
43  * memory starting from address ZERO, then requires vGPU emulation module to
44  * translate the graphics address between 'guest view' and 'host view', for
45  * all registers and command opcodes which contain a graphics memory address.
46  * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
47  * by telling the exact partitioning knowledge to each guest i915 driver, which
48  * then reserves and prevents non-allocated portions from allocation. Thus vGPU
49  * emulation module only needs to scan and validate graphics addresses without
50  * complexity of address translation.
51  *
52  */
53 
54 /**
55  * i915_detect_vgpu - detect virtual GPU
56  * @dev_priv: i915 device private
57  *
58  * This function is called at the initialization stage, to detect whether
59  * running on a vGPU.
60  */
61 void i915_detect_vgpu(struct drm_i915_private *dev_priv)
62 {
63 	struct pci_dev *pdev = dev_priv->drm.pdev;
64 	u64 magic;
65 	u16 version_major;
66 	void __iomem *shared_area;
67 
68 	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
69 
70 	/*
71 	 * This is called before we setup the main MMIO BAR mappings used via
72 	 * the uncore structure, so we need to access the BAR directly. Since
73 	 * we do not support VGT on older gens, return early so we don't have
74 	 * to consider differently numbered or sized MMIO bars
75 	 */
76 	if (INTEL_GEN(dev_priv) < 6)
77 		return;
78 
79 	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
80 	if (!shared_area) {
81 		DRM_ERROR("failed to map MMIO bar to check for VGT\n");
82 		return;
83 	}
84 
85 	magic = readq(shared_area + vgtif_offset(magic));
86 	if (magic != VGT_MAGIC)
87 		goto out;
88 
89 	version_major = readw(shared_area + vgtif_offset(version_major));
90 	if (version_major < VGT_VERSION_MAJOR) {
91 		DRM_INFO("VGT interface version mismatch!\n");
92 		goto out;
93 	}
94 
95 	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
96 
97 	dev_priv->vgpu.active = true;
98 	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
99 
100 out:
101 	pci_iounmap(pdev, shared_area);
102 }
103 
104 bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
105 {
106 	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
107 }
108 
109 struct _balloon_info_ {
110 	/*
111 	 * There are up to 2 regions per mappable/unmappable graphic
112 	 * memory that might be ballooned. Here, index 0/1 is for mappable
113 	 * graphic memory, 2/3 for unmappable graphic memory.
114 	 */
115 	struct drm_mm_node space[4];
116 };
117 
118 static struct _balloon_info_ bl_info;
119 
120 static void vgt_deballoon_space(struct i915_ggtt *ggtt,
121 				struct drm_mm_node *node)
122 {
123 	DRM_DEBUG_DRIVER("deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
124 			 node->start,
125 			 node->start + node->size,
126 			 node->size / 1024);
127 
128 	ggtt->vm.reserved -= node->size;
129 	drm_mm_remove_node(node);
130 }
131 
132 /**
133  * intel_vgt_deballoon - deballoon reserved graphics address trunks
134  * @ggtt: the global GGTT from which we reserved earlier
135  *
136  * This function is called to deallocate the ballooned-out graphic memory, when
137  * driver is unloaded or when ballooning fails.
138  */
139 void intel_vgt_deballoon(struct i915_ggtt *ggtt)
140 {
141 	int i;
142 
143 	if (!intel_vgpu_active(ggtt->vm.i915))
144 		return;
145 
146 	DRM_DEBUG("VGT deballoon.\n");
147 
148 	for (i = 0; i < 4; i++)
149 		vgt_deballoon_space(ggtt, &bl_info.space[i]);
150 }
151 
152 static int vgt_balloon_space(struct i915_ggtt *ggtt,
153 			     struct drm_mm_node *node,
154 			     unsigned long start, unsigned long end)
155 {
156 	unsigned long size = end - start;
157 	int ret;
158 
159 	if (start >= end)
160 		return -EINVAL;
161 
162 	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
163 		 start, end, size / 1024);
164 	ret = i915_gem_gtt_reserve(&ggtt->vm, node,
165 				   size, start, I915_COLOR_UNEVICTABLE,
166 				   0);
167 	if (!ret)
168 		ggtt->vm.reserved += size;
169 
170 	return ret;
171 }
172 
173 /**
174  * intel_vgt_balloon - balloon out reserved graphics address trunks
175  * @ggtt: the global GGTT from which to reserve
176  *
177  * This function is called at the initialization stage, to balloon out the
178  * graphic address space allocated to other vGPUs, by marking these spaces as
179  * reserved. The ballooning related knowledge(starting address and size of
180  * the mappable/unmappable graphic memory) is described in the vgt_if structure
181  * in a reserved mmio range.
182  *
183  * To give an example, the drawing below depicts one typical scenario after
184  * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
185  * out each for the mappable and the non-mappable part. From the vGPU1 point of
186  * view, the total size is the same as the physical one, with the start address
187  * of its graphic space being zero. Yet there are some portions ballooned out(
188  * the shadow part, which are marked as reserved by drm allocator). From the
189  * host point of view, the graphic address space is partitioned by multiple
190  * vGPUs in different VMs. ::
191  *
192  *                         vGPU1 view         Host view
193  *              0 ------> +-----------+     +-----------+
194  *                ^       |###########|     |   vGPU3   |
195  *                |       |###########|     +-----------+
196  *                |       |###########|     |   vGPU2   |
197  *                |       +-----------+     +-----------+
198  *         mappable GM    | available | ==> |   vGPU1   |
199  *                |       +-----------+     +-----------+
200  *                |       |###########|     |           |
201  *                v       |###########|     |   Host    |
202  *                +=======+===========+     +===========+
203  *                ^       |###########|     |   vGPU3   |
204  *                |       |###########|     +-----------+
205  *                |       |###########|     |   vGPU2   |
206  *                |       +-----------+     +-----------+
207  *       unmappable GM    | available | ==> |   vGPU1   |
208  *                |       +-----------+     +-----------+
209  *                |       |###########|     |           |
210  *                |       |###########|     |   Host    |
211  *                v       |###########|     |           |
212  *  total GM size ------> +-----------+     +-----------+
213  *
214  * Returns:
215  * zero on success, non-zero if configuration invalid or ballooning failed
216  */
217 int intel_vgt_balloon(struct i915_ggtt *ggtt)
218 {
219 	struct intel_uncore *uncore = &ggtt->vm.i915->uncore;
220 	unsigned long ggtt_end = ggtt->vm.total;
221 
222 	unsigned long mappable_base, mappable_size, mappable_end;
223 	unsigned long unmappable_base, unmappable_size, unmappable_end;
224 	int ret;
225 
226 	if (!intel_vgpu_active(ggtt->vm.i915))
227 		return 0;
228 
229 	mappable_base =
230 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
231 	mappable_size =
232 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
233 	unmappable_base =
234 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
235 	unmappable_size =
236 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
237 
238 	mappable_end = mappable_base + mappable_size;
239 	unmappable_end = unmappable_base + unmappable_size;
240 
241 	DRM_INFO("VGT ballooning configuration:\n");
242 	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
243 		 mappable_base, mappable_size / 1024);
244 	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
245 		 unmappable_base, unmappable_size / 1024);
246 
247 	if (mappable_end > ggtt->mappable_end ||
248 	    unmappable_base < ggtt->mappable_end ||
249 	    unmappable_end > ggtt_end) {
250 		DRM_ERROR("Invalid ballooning configuration!\n");
251 		return -EINVAL;
252 	}
253 
254 	/* Unmappable graphic memory ballooning */
255 	if (unmappable_base > ggtt->mappable_end) {
256 		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
257 					ggtt->mappable_end, unmappable_base);
258 
259 		if (ret)
260 			goto err;
261 	}
262 
263 	if (unmappable_end < ggtt_end) {
264 		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
265 					unmappable_end, ggtt_end);
266 		if (ret)
267 			goto err_upon_mappable;
268 	}
269 
270 	/* Mappable graphic memory ballooning */
271 	if (mappable_base) {
272 		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
273 					0, mappable_base);
274 
275 		if (ret)
276 			goto err_upon_unmappable;
277 	}
278 
279 	if (mappable_end < ggtt->mappable_end) {
280 		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
281 					mappable_end, ggtt->mappable_end);
282 
283 		if (ret)
284 			goto err_below_mappable;
285 	}
286 
287 	DRM_INFO("VGT balloon successfully\n");
288 	return 0;
289 
290 err_below_mappable:
291 	vgt_deballoon_space(ggtt, &bl_info.space[0]);
292 err_upon_unmappable:
293 	vgt_deballoon_space(ggtt, &bl_info.space[3]);
294 err_upon_mappable:
295 	vgt_deballoon_space(ggtt, &bl_info.space[2]);
296 err:
297 	DRM_ERROR("VGT balloon fail\n");
298 	return ret;
299 }
300