1 /* 2 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 */ 23 24 #include "intel_drv.h" 25 #include "i915_vgpu.h" 26 27 /** 28 * DOC: Intel GVT-g guest support 29 * 30 * Intel GVT-g is a graphics virtualization technology which shares the 31 * GPU among multiple virtual machines on a time-sharing basis. Each 32 * virtual machine is presented a virtual GPU (vGPU), which has equivalent 33 * features as the underlying physical GPU (pGPU), so i915 driver can run 34 * seamlessly in a virtual machine. This file provides vGPU specific 35 * optimizations when running in a virtual machine, to reduce the complexity 36 * of vGPU emulation and to improve the overall performance. 37 * 38 * A primary function introduced here is so-called "address space ballooning" 39 * technique. Intel GVT-g partitions global graphics memory among multiple VMs, 40 * so each VM can directly access a portion of the memory without hypervisor's 41 * intervention, e.g. filling textures or queuing commands. However with the 42 * partitioning an unmodified i915 driver would assume a smaller graphics 43 * memory starting from address ZERO, then requires vGPU emulation module to 44 * translate the graphics address between 'guest view' and 'host view', for 45 * all registers and command opcodes which contain a graphics memory address. 46 * To reduce the complexity, Intel GVT-g introduces "address space ballooning", 47 * by telling the exact partitioning knowledge to each guest i915 driver, which 48 * then reserves and prevents non-allocated portions from allocation. Thus vGPU 49 * emulation module only needs to scan and validate graphics addresses without 50 * complexity of address translation. 51 * 52 */ 53 54 /** 55 * i915_check_vgpu - detect virtual GPU 56 * @dev: drm device * 57 * 58 * This function is called at the initialization stage, to detect whether 59 * running on a vGPU. 60 */ 61 void i915_check_vgpu(struct drm_device *dev) 62 { 63 struct drm_i915_private *dev_priv = to_i915(dev); 64 uint64_t magic; 65 uint32_t version; 66 67 BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE); 68 69 if (!IS_HASWELL(dev)) 70 return; 71 72 magic = readq(dev_priv->regs + vgtif_reg(magic)); 73 if (magic != VGT_MAGIC) 74 return; 75 76 version = INTEL_VGT_IF_VERSION_ENCODE( 77 readw(dev_priv->regs + vgtif_reg(version_major)), 78 readw(dev_priv->regs + vgtif_reg(version_minor))); 79 if (version != INTEL_VGT_IF_VERSION) { 80 DRM_INFO("VGT interface version mismatch!\n"); 81 return; 82 } 83 84 dev_priv->vgpu.active = true; 85 DRM_INFO("Virtual GPU for Intel GVT-g detected.\n"); 86 } 87 88 struct _balloon_info_ { 89 /* 90 * There are up to 2 regions per mappable/unmappable graphic 91 * memory that might be ballooned. Here, index 0/1 is for mappable 92 * graphic memory, 2/3 for unmappable graphic memory. 93 */ 94 struct drm_mm_node space[4]; 95 }; 96 97 static struct _balloon_info_ bl_info; 98 99 /** 100 * intel_vgt_deballoon - deballoon reserved graphics address trunks 101 * 102 * This function is called to deallocate the ballooned-out graphic memory, when 103 * driver is unloaded or when ballooning fails. 104 */ 105 void intel_vgt_deballoon(void) 106 { 107 int i; 108 109 DRM_DEBUG("VGT deballoon.\n"); 110 111 for (i = 0; i < 4; i++) { 112 if (bl_info.space[i].allocated) 113 drm_mm_remove_node(&bl_info.space[i]); 114 } 115 116 memset(&bl_info, 0, sizeof(bl_info)); 117 } 118 119 static int vgt_balloon_space(struct drm_mm *mm, 120 struct drm_mm_node *node, 121 unsigned long start, unsigned long end) 122 { 123 unsigned long size = end - start; 124 125 if (start == end) 126 return -EINVAL; 127 128 DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n", 129 start, end, size / 1024); 130 131 node->start = start; 132 node->size = size; 133 134 return drm_mm_reserve_node(mm, node); 135 } 136 137 /** 138 * intel_vgt_balloon - balloon out reserved graphics address trunks 139 * @dev: drm device 140 * 141 * This function is called at the initialization stage, to balloon out the 142 * graphic address space allocated to other vGPUs, by marking these spaces as 143 * reserved. The ballooning related knowledge(starting address and size of 144 * the mappable/unmappable graphic memory) is described in the vgt_if structure 145 * in a reserved mmio range. 146 * 147 * To give an example, the drawing below depicts one typical scenario after 148 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned 149 * out each for the mappable and the non-mappable part. From the vGPU1 point of 150 * view, the total size is the same as the physical one, with the start address 151 * of its graphic space being zero. Yet there are some portions ballooned out( 152 * the shadow part, which are marked as reserved by drm allocator). From the 153 * host point of view, the graphic address space is partitioned by multiple 154 * vGPUs in different VMs. 155 * 156 * vGPU1 view Host view 157 * 0 ------> +-----------+ +-----------+ 158 * ^ |///////////| | vGPU3 | 159 * | |///////////| +-----------+ 160 * | |///////////| | vGPU2 | 161 * | +-----------+ +-----------+ 162 * mappable GM | available | ==> | vGPU1 | 163 * | +-----------+ +-----------+ 164 * | |///////////| | | 165 * v |///////////| | Host | 166 * +=======+===========+ +===========+ 167 * ^ |///////////| | vGPU3 | 168 * | |///////////| +-----------+ 169 * | |///////////| | vGPU2 | 170 * | +-----------+ +-----------+ 171 * unmappable GM | available | ==> | vGPU1 | 172 * | +-----------+ +-----------+ 173 * | |///////////| | | 174 * | |///////////| | Host | 175 * v |///////////| | | 176 * total GM size ------> +-----------+ +-----------+ 177 * 178 * Returns: 179 * zero on success, non-zero if configuration invalid or ballooning failed 180 */ 181 int intel_vgt_balloon(struct drm_device *dev) 182 { 183 struct drm_i915_private *dev_priv = to_i915(dev); 184 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; 185 unsigned long ggtt_vm_end = ggtt_vm->start + ggtt_vm->total; 186 187 unsigned long mappable_base, mappable_size, mappable_end; 188 unsigned long unmappable_base, unmappable_size, unmappable_end; 189 int ret; 190 191 mappable_base = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.base)); 192 mappable_size = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.size)); 193 unmappable_base = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.base)); 194 unmappable_size = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.size)); 195 196 mappable_end = mappable_base + mappable_size; 197 unmappable_end = unmappable_base + unmappable_size; 198 199 DRM_INFO("VGT ballooning configuration:\n"); 200 DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n", 201 mappable_base, mappable_size / 1024); 202 DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n", 203 unmappable_base, unmappable_size / 1024); 204 205 if (mappable_base < ggtt_vm->start || 206 mappable_end > dev_priv->gtt.mappable_end || 207 unmappable_base < dev_priv->gtt.mappable_end || 208 unmappable_end > ggtt_vm_end) { 209 DRM_ERROR("Invalid ballooning configuration!\n"); 210 return -EINVAL; 211 } 212 213 /* Unmappable graphic memory ballooning */ 214 if (unmappable_base > dev_priv->gtt.mappable_end) { 215 ret = vgt_balloon_space(&ggtt_vm->mm, 216 &bl_info.space[2], 217 dev_priv->gtt.mappable_end, 218 unmappable_base); 219 220 if (ret) 221 goto err; 222 } 223 224 /* 225 * No need to partition out the last physical page, 226 * because it is reserved to the guard page. 227 */ 228 if (unmappable_end < ggtt_vm_end - PAGE_SIZE) { 229 ret = vgt_balloon_space(&ggtt_vm->mm, 230 &bl_info.space[3], 231 unmappable_end, 232 ggtt_vm_end - PAGE_SIZE); 233 if (ret) 234 goto err; 235 } 236 237 /* Mappable graphic memory ballooning */ 238 if (mappable_base > ggtt_vm->start) { 239 ret = vgt_balloon_space(&ggtt_vm->mm, 240 &bl_info.space[0], 241 ggtt_vm->start, mappable_base); 242 243 if (ret) 244 goto err; 245 } 246 247 if (mappable_end < dev_priv->gtt.mappable_end) { 248 ret = vgt_balloon_space(&ggtt_vm->mm, 249 &bl_info.space[1], 250 mappable_end, 251 dev_priv->gtt.mappable_end); 252 253 if (ret) 254 goto err; 255 } 256 257 DRM_INFO("VGT balloon successfully\n"); 258 return 0; 259 260 err: 261 DRM_ERROR("VGT balloon fail\n"); 262 intel_vgt_deballoon(); 263 return ret; 264 } 265