xref: /openbmc/linux/drivers/gpu/drm/i915/i915_vgpu.c (revision aeb64ff3)
1 /*
2  * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "i915_vgpu.h"
25 
26 /**
27  * DOC: Intel GVT-g guest support
28  *
29  * Intel GVT-g is a graphics virtualization technology which shares the
30  * GPU among multiple virtual machines on a time-sharing basis. Each
31  * virtual machine is presented a virtual GPU (vGPU), which has equivalent
32  * features as the underlying physical GPU (pGPU), so i915 driver can run
33  * seamlessly in a virtual machine. This file provides vGPU specific
34  * optimizations when running in a virtual machine, to reduce the complexity
35  * of vGPU emulation and to improve the overall performance.
36  *
37  * A primary function introduced here is so-called "address space ballooning"
38  * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
39  * so each VM can directly access a portion of the memory without hypervisor's
40  * intervention, e.g. filling textures or queuing commands. However with the
41  * partitioning an unmodified i915 driver would assume a smaller graphics
42  * memory starting from address ZERO, then requires vGPU emulation module to
43  * translate the graphics address between 'guest view' and 'host view', for
44  * all registers and command opcodes which contain a graphics memory address.
45  * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
46  * by telling the exact partitioning knowledge to each guest i915 driver, which
47  * then reserves and prevents non-allocated portions from allocation. Thus vGPU
48  * emulation module only needs to scan and validate graphics addresses without
49  * complexity of address translation.
50  *
51  */
52 
53 /**
54  * i915_detect_vgpu - detect virtual GPU
55  * @dev_priv: i915 device private
56  *
57  * This function is called at the initialization stage, to detect whether
58  * running on a vGPU.
59  */
60 void i915_detect_vgpu(struct drm_i915_private *dev_priv)
61 {
62 	struct pci_dev *pdev = dev_priv->drm.pdev;
63 	u64 magic;
64 	u16 version_major;
65 	void __iomem *shared_area;
66 
67 	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
68 
69 	/*
70 	 * This is called before we setup the main MMIO BAR mappings used via
71 	 * the uncore structure, so we need to access the BAR directly. Since
72 	 * we do not support VGT on older gens, return early so we don't have
73 	 * to consider differently numbered or sized MMIO bars
74 	 */
75 	if (INTEL_GEN(dev_priv) < 6)
76 		return;
77 
78 	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
79 	if (!shared_area) {
80 		DRM_ERROR("failed to map MMIO bar to check for VGT\n");
81 		return;
82 	}
83 
84 	magic = readq(shared_area + vgtif_offset(magic));
85 	if (magic != VGT_MAGIC)
86 		goto out;
87 
88 	version_major = readw(shared_area + vgtif_offset(version_major));
89 	if (version_major < VGT_VERSION_MAJOR) {
90 		DRM_INFO("VGT interface version mismatch!\n");
91 		goto out;
92 	}
93 
94 	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
95 
96 	dev_priv->vgpu.active = true;
97 	mutex_init(&dev_priv->vgpu.lock);
98 	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
99 
100 out:
101 	pci_iounmap(pdev, shared_area);
102 }
103 
104 bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
105 {
106 	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
107 }
108 
109 struct _balloon_info_ {
110 	/*
111 	 * There are up to 2 regions per mappable/unmappable graphic
112 	 * memory that might be ballooned. Here, index 0/1 is for mappable
113 	 * graphic memory, 2/3 for unmappable graphic memory.
114 	 */
115 	struct drm_mm_node space[4];
116 };
117 
118 static struct _balloon_info_ bl_info;
119 
120 static void vgt_deballoon_space(struct i915_ggtt *ggtt,
121 				struct drm_mm_node *node)
122 {
123 	if (!drm_mm_node_allocated(node))
124 		return;
125 
126 	DRM_DEBUG_DRIVER("deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
127 			 node->start,
128 			 node->start + node->size,
129 			 node->size / 1024);
130 
131 	ggtt->vm.reserved -= node->size;
132 	drm_mm_remove_node(node);
133 }
134 
135 /**
136  * intel_vgt_deballoon - deballoon reserved graphics address trunks
137  * @ggtt: the global GGTT from which we reserved earlier
138  *
139  * This function is called to deallocate the ballooned-out graphic memory, when
140  * driver is unloaded or when ballooning fails.
141  */
142 void intel_vgt_deballoon(struct i915_ggtt *ggtt)
143 {
144 	int i;
145 
146 	if (!intel_vgpu_active(ggtt->vm.i915))
147 		return;
148 
149 	DRM_DEBUG("VGT deballoon.\n");
150 
151 	for (i = 0; i < 4; i++)
152 		vgt_deballoon_space(ggtt, &bl_info.space[i]);
153 }
154 
155 static int vgt_balloon_space(struct i915_ggtt *ggtt,
156 			     struct drm_mm_node *node,
157 			     unsigned long start, unsigned long end)
158 {
159 	unsigned long size = end - start;
160 	int ret;
161 
162 	if (start >= end)
163 		return -EINVAL;
164 
165 	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
166 		 start, end, size / 1024);
167 	ret = i915_gem_gtt_reserve(&ggtt->vm, node,
168 				   size, start, I915_COLOR_UNEVICTABLE,
169 				   0);
170 	if (!ret)
171 		ggtt->vm.reserved += size;
172 
173 	return ret;
174 }
175 
176 /**
177  * intel_vgt_balloon - balloon out reserved graphics address trunks
178  * @ggtt: the global GGTT from which to reserve
179  *
180  * This function is called at the initialization stage, to balloon out the
181  * graphic address space allocated to other vGPUs, by marking these spaces as
182  * reserved. The ballooning related knowledge(starting address and size of
183  * the mappable/unmappable graphic memory) is described in the vgt_if structure
184  * in a reserved mmio range.
185  *
186  * To give an example, the drawing below depicts one typical scenario after
187  * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
188  * out each for the mappable and the non-mappable part. From the vGPU1 point of
189  * view, the total size is the same as the physical one, with the start address
190  * of its graphic space being zero. Yet there are some portions ballooned out(
191  * the shadow part, which are marked as reserved by drm allocator). From the
192  * host point of view, the graphic address space is partitioned by multiple
193  * vGPUs in different VMs. ::
194  *
195  *                         vGPU1 view         Host view
196  *              0 ------> +-----------+     +-----------+
197  *                ^       |###########|     |   vGPU3   |
198  *                |       |###########|     +-----------+
199  *                |       |###########|     |   vGPU2   |
200  *                |       +-----------+     +-----------+
201  *         mappable GM    | available | ==> |   vGPU1   |
202  *                |       +-----------+     +-----------+
203  *                |       |###########|     |           |
204  *                v       |###########|     |   Host    |
205  *                +=======+===========+     +===========+
206  *                ^       |###########|     |   vGPU3   |
207  *                |       |###########|     +-----------+
208  *                |       |###########|     |   vGPU2   |
209  *                |       +-----------+     +-----------+
210  *       unmappable GM    | available | ==> |   vGPU1   |
211  *                |       +-----------+     +-----------+
212  *                |       |###########|     |           |
213  *                |       |###########|     |   Host    |
214  *                v       |###########|     |           |
215  *  total GM size ------> +-----------+     +-----------+
216  *
217  * Returns:
218  * zero on success, non-zero if configuration invalid or ballooning failed
219  */
220 int intel_vgt_balloon(struct i915_ggtt *ggtt)
221 {
222 	struct intel_uncore *uncore = &ggtt->vm.i915->uncore;
223 	unsigned long ggtt_end = ggtt->vm.total;
224 
225 	unsigned long mappable_base, mappable_size, mappable_end;
226 	unsigned long unmappable_base, unmappable_size, unmappable_end;
227 	int ret;
228 
229 	if (!intel_vgpu_active(ggtt->vm.i915))
230 		return 0;
231 
232 	mappable_base =
233 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
234 	mappable_size =
235 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
236 	unmappable_base =
237 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
238 	unmappable_size =
239 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
240 
241 	mappable_end = mappable_base + mappable_size;
242 	unmappable_end = unmappable_base + unmappable_size;
243 
244 	DRM_INFO("VGT ballooning configuration:\n");
245 	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
246 		 mappable_base, mappable_size / 1024);
247 	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
248 		 unmappable_base, unmappable_size / 1024);
249 
250 	if (mappable_end > ggtt->mappable_end ||
251 	    unmappable_base < ggtt->mappable_end ||
252 	    unmappable_end > ggtt_end) {
253 		DRM_ERROR("Invalid ballooning configuration!\n");
254 		return -EINVAL;
255 	}
256 
257 	/* Unmappable graphic memory ballooning */
258 	if (unmappable_base > ggtt->mappable_end) {
259 		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
260 					ggtt->mappable_end, unmappable_base);
261 
262 		if (ret)
263 			goto err;
264 	}
265 
266 	if (unmappable_end < ggtt_end) {
267 		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
268 					unmappable_end, ggtt_end);
269 		if (ret)
270 			goto err_upon_mappable;
271 	}
272 
273 	/* Mappable graphic memory ballooning */
274 	if (mappable_base) {
275 		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
276 					0, mappable_base);
277 
278 		if (ret)
279 			goto err_upon_unmappable;
280 	}
281 
282 	if (mappable_end < ggtt->mappable_end) {
283 		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
284 					mappable_end, ggtt->mappable_end);
285 
286 		if (ret)
287 			goto err_below_mappable;
288 	}
289 
290 	DRM_INFO("VGT balloon successfully\n");
291 	return 0;
292 
293 err_below_mappable:
294 	vgt_deballoon_space(ggtt, &bl_info.space[0]);
295 err_upon_unmappable:
296 	vgt_deballoon_space(ggtt, &bl_info.space[3]);
297 err_upon_mappable:
298 	vgt_deballoon_space(ggtt, &bl_info.space[2]);
299 err:
300 	DRM_ERROR("VGT balloon fail\n");
301 	return ret;
302 }
303