1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2018 Intel Corporation 5 */ 6 7 #include <linux/mutex.h> 8 9 #include "i915_drv.h" 10 #include "i915_globals.h" 11 #include "i915_request.h" 12 #include "i915_scheduler.h" 13 14 static struct i915_global_scheduler { 15 struct i915_global base; 16 struct kmem_cache *slab_dependencies; 17 struct kmem_cache *slab_priorities; 18 } global; 19 20 static DEFINE_SPINLOCK(schedule_lock); 21 22 static const struct i915_request * 23 node_to_request(const struct i915_sched_node *node) 24 { 25 return container_of(node, const struct i915_request, sched); 26 } 27 28 static inline bool node_started(const struct i915_sched_node *node) 29 { 30 return i915_request_started(node_to_request(node)); 31 } 32 33 static inline bool node_signaled(const struct i915_sched_node *node) 34 { 35 return i915_request_completed(node_to_request(node)); 36 } 37 38 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 39 { 40 return rb_entry(rb, struct i915_priolist, node); 41 } 42 43 static void assert_priolists(struct intel_engine_execlists * const execlists) 44 { 45 struct rb_node *rb; 46 long last_prio; 47 48 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 49 return; 50 51 GEM_BUG_ON(rb_first_cached(&execlists->queue) != 52 rb_first(&execlists->queue.rb_root)); 53 54 last_prio = INT_MAX; 55 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 56 const struct i915_priolist *p = to_priolist(rb); 57 58 GEM_BUG_ON(p->priority > last_prio); 59 last_prio = p->priority; 60 } 61 } 62 63 struct list_head * 64 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) 65 { 66 struct intel_engine_execlists * const execlists = &engine->execlists; 67 struct i915_priolist *p; 68 struct rb_node **parent, *rb; 69 bool first = true; 70 71 lockdep_assert_held(&engine->active.lock); 72 assert_priolists(execlists); 73 74 if (unlikely(execlists->no_priolist)) 75 prio = I915_PRIORITY_NORMAL; 76 77 find_priolist: 78 /* most positive priority is scheduled first, equal priorities fifo */ 79 rb = NULL; 80 parent = &execlists->queue.rb_root.rb_node; 81 while (*parent) { 82 rb = *parent; 83 p = to_priolist(rb); 84 if (prio > p->priority) { 85 parent = &rb->rb_left; 86 } else if (prio < p->priority) { 87 parent = &rb->rb_right; 88 first = false; 89 } else { 90 return &p->requests; 91 } 92 } 93 94 if (prio == I915_PRIORITY_NORMAL) { 95 p = &execlists->default_priolist; 96 } else { 97 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); 98 /* Convert an allocation failure to a priority bump */ 99 if (unlikely(!p)) { 100 prio = I915_PRIORITY_NORMAL; /* recurses just once */ 101 102 /* To maintain ordering with all rendering, after an 103 * allocation failure we have to disable all scheduling. 104 * Requests will then be executed in fifo, and schedule 105 * will ensure that dependencies are emitted in fifo. 106 * There will be still some reordering with existing 107 * requests, so if userspace lied about their 108 * dependencies that reordering may be visible. 109 */ 110 execlists->no_priolist = true; 111 goto find_priolist; 112 } 113 } 114 115 p->priority = prio; 116 INIT_LIST_HEAD(&p->requests); 117 118 rb_link_node(&p->node, rb, parent); 119 rb_insert_color_cached(&p->node, &execlists->queue, first); 120 121 return &p->requests; 122 } 123 124 void __i915_priolist_free(struct i915_priolist *p) 125 { 126 kmem_cache_free(global.slab_priorities, p); 127 } 128 129 struct sched_cache { 130 struct list_head *priolist; 131 }; 132 133 static struct intel_engine_cs * 134 sched_lock_engine(const struct i915_sched_node *node, 135 struct intel_engine_cs *locked, 136 struct sched_cache *cache) 137 { 138 const struct i915_request *rq = node_to_request(node); 139 struct intel_engine_cs *engine; 140 141 GEM_BUG_ON(!locked); 142 143 /* 144 * Virtual engines complicate acquiring the engine timeline lock, 145 * as their rq->engine pointer is not stable until under that 146 * engine lock. The simple ploy we use is to take the lock then 147 * check that the rq still belongs to the newly locked engine. 148 */ 149 while (locked != (engine = READ_ONCE(rq->engine))) { 150 spin_unlock(&locked->active.lock); 151 memset(cache, 0, sizeof(*cache)); 152 spin_lock(&engine->active.lock); 153 locked = engine; 154 } 155 156 GEM_BUG_ON(locked != engine); 157 return locked; 158 } 159 160 static inline int rq_prio(const struct i915_request *rq) 161 { 162 return rq->sched.attr.priority; 163 } 164 165 static inline bool need_preempt(int prio, int active) 166 { 167 /* 168 * Allow preemption of low -> normal -> high, but we do 169 * not allow low priority tasks to preempt other low priority 170 * tasks under the impression that latency for low priority 171 * tasks does not matter (as much as background throughput), 172 * so kiss. 173 */ 174 return prio >= max(I915_PRIORITY_NORMAL, active); 175 } 176 177 static void kick_submission(struct intel_engine_cs *engine, 178 const struct i915_request *rq, 179 int prio) 180 { 181 const struct i915_request *inflight; 182 183 /* 184 * We only need to kick the tasklet once for the high priority 185 * new context we add into the queue. 186 */ 187 if (prio <= engine->execlists.queue_priority_hint) 188 return; 189 190 rcu_read_lock(); 191 192 /* Nothing currently active? We're overdue for a submission! */ 193 inflight = execlists_active(&engine->execlists); 194 if (!inflight) 195 goto unlock; 196 197 /* 198 * If we are already the currently executing context, don't 199 * bother evaluating if we should preempt ourselves. 200 */ 201 if (inflight->context == rq->context) 202 goto unlock; 203 204 ENGINE_TRACE(engine, 205 "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n", 206 prio, 207 rq->fence.context, rq->fence.seqno, 208 inflight->fence.context, inflight->fence.seqno, 209 inflight->sched.attr.priority); 210 211 engine->execlists.queue_priority_hint = prio; 212 if (need_preempt(prio, rq_prio(inflight))) 213 tasklet_hi_schedule(&engine->execlists.tasklet); 214 215 unlock: 216 rcu_read_unlock(); 217 } 218 219 static void __i915_schedule(struct i915_sched_node *node, 220 const struct i915_sched_attr *attr) 221 { 222 const int prio = max(attr->priority, node->attr.priority); 223 struct intel_engine_cs *engine; 224 struct i915_dependency *dep, *p; 225 struct i915_dependency stack; 226 struct sched_cache cache; 227 LIST_HEAD(dfs); 228 229 /* Needed in order to use the temporary link inside i915_dependency */ 230 lockdep_assert_held(&schedule_lock); 231 GEM_BUG_ON(prio == I915_PRIORITY_INVALID); 232 233 if (node_signaled(node)) 234 return; 235 236 stack.signaler = node; 237 list_add(&stack.dfs_link, &dfs); 238 239 /* 240 * Recursively bump all dependent priorities to match the new request. 241 * 242 * A naive approach would be to use recursion: 243 * static void update_priorities(struct i915_sched_node *node, prio) { 244 * list_for_each_entry(dep, &node->signalers_list, signal_link) 245 * update_priorities(dep->signal, prio) 246 * queue_request(node); 247 * } 248 * but that may have unlimited recursion depth and so runs a very 249 * real risk of overunning the kernel stack. Instead, we build 250 * a flat list of all dependencies starting with the current request. 251 * As we walk the list of dependencies, we add all of its dependencies 252 * to the end of the list (this may include an already visited 253 * request) and continue to walk onwards onto the new dependencies. The 254 * end result is a topological list of requests in reverse order, the 255 * last element in the list is the request we must execute first. 256 */ 257 list_for_each_entry(dep, &dfs, dfs_link) { 258 struct i915_sched_node *node = dep->signaler; 259 260 /* If we are already flying, we know we have no signalers */ 261 if (node_started(node)) 262 continue; 263 264 /* 265 * Within an engine, there can be no cycle, but we may 266 * refer to the same dependency chain multiple times 267 * (redundant dependencies are not eliminated) and across 268 * engines. 269 */ 270 list_for_each_entry(p, &node->signalers_list, signal_link) { 271 GEM_BUG_ON(p == dep); /* no cycles! */ 272 273 if (node_signaled(p->signaler)) 274 continue; 275 276 if (prio > READ_ONCE(p->signaler->attr.priority)) 277 list_move_tail(&p->dfs_link, &dfs); 278 } 279 } 280 281 /* 282 * If we didn't need to bump any existing priorities, and we haven't 283 * yet submitted this request (i.e. there is no potential race with 284 * execlists_submit_request()), we can set our own priority and skip 285 * acquiring the engine locks. 286 */ 287 if (node->attr.priority == I915_PRIORITY_INVALID) { 288 GEM_BUG_ON(!list_empty(&node->link)); 289 node->attr = *attr; 290 291 if (stack.dfs_link.next == stack.dfs_link.prev) 292 return; 293 294 __list_del_entry(&stack.dfs_link); 295 } 296 297 memset(&cache, 0, sizeof(cache)); 298 engine = node_to_request(node)->engine; 299 spin_lock(&engine->active.lock); 300 301 /* Fifo and depth-first replacement ensure our deps execute before us */ 302 engine = sched_lock_engine(node, engine, &cache); 303 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { 304 INIT_LIST_HEAD(&dep->dfs_link); 305 306 node = dep->signaler; 307 engine = sched_lock_engine(node, engine, &cache); 308 lockdep_assert_held(&engine->active.lock); 309 310 /* Recheck after acquiring the engine->timeline.lock */ 311 if (prio <= node->attr.priority || node_signaled(node)) 312 continue; 313 314 GEM_BUG_ON(node_to_request(node)->engine != engine); 315 316 WRITE_ONCE(node->attr.priority, prio); 317 318 /* 319 * Once the request is ready, it will be placed into the 320 * priority lists and then onto the HW runlist. Before the 321 * request is ready, it does not contribute to our preemption 322 * decisions and we can safely ignore it, as it will, and 323 * any preemption required, be dealt with upon submission. 324 * See engine->submit_request() 325 */ 326 if (list_empty(&node->link)) 327 continue; 328 329 if (i915_request_in_priority_queue(node_to_request(node))) { 330 if (!cache.priolist) 331 cache.priolist = 332 i915_sched_lookup_priolist(engine, 333 prio); 334 list_move_tail(&node->link, cache.priolist); 335 } 336 337 /* Defer (tasklet) submission until after all of our updates. */ 338 kick_submission(engine, node_to_request(node), prio); 339 } 340 341 spin_unlock(&engine->active.lock); 342 } 343 344 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) 345 { 346 spin_lock_irq(&schedule_lock); 347 __i915_schedule(&rq->sched, attr); 348 spin_unlock_irq(&schedule_lock); 349 } 350 351 void i915_sched_node_init(struct i915_sched_node *node) 352 { 353 INIT_LIST_HEAD(&node->signalers_list); 354 INIT_LIST_HEAD(&node->waiters_list); 355 INIT_LIST_HEAD(&node->link); 356 357 i915_sched_node_reinit(node); 358 } 359 360 void i915_sched_node_reinit(struct i915_sched_node *node) 361 { 362 node->attr.priority = I915_PRIORITY_INVALID; 363 node->semaphores = 0; 364 node->flags = 0; 365 366 GEM_BUG_ON(!list_empty(&node->signalers_list)); 367 GEM_BUG_ON(!list_empty(&node->waiters_list)); 368 GEM_BUG_ON(!list_empty(&node->link)); 369 } 370 371 static struct i915_dependency * 372 i915_dependency_alloc(void) 373 { 374 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); 375 } 376 377 static void 378 i915_dependency_free(struct i915_dependency *dep) 379 { 380 kmem_cache_free(global.slab_dependencies, dep); 381 } 382 383 bool __i915_sched_node_add_dependency(struct i915_sched_node *node, 384 struct i915_sched_node *signal, 385 struct i915_dependency *dep, 386 unsigned long flags) 387 { 388 bool ret = false; 389 390 spin_lock_irq(&schedule_lock); 391 392 if (!node_signaled(signal)) { 393 INIT_LIST_HEAD(&dep->dfs_link); 394 dep->signaler = signal; 395 dep->waiter = node; 396 dep->flags = flags; 397 398 /* All set, now publish. Beware the lockless walkers. */ 399 list_add_rcu(&dep->signal_link, &node->signalers_list); 400 list_add_rcu(&dep->wait_link, &signal->waiters_list); 401 402 /* Propagate the chains */ 403 node->flags |= signal->flags; 404 ret = true; 405 } 406 407 spin_unlock_irq(&schedule_lock); 408 409 return ret; 410 } 411 412 int i915_sched_node_add_dependency(struct i915_sched_node *node, 413 struct i915_sched_node *signal, 414 unsigned long flags) 415 { 416 struct i915_dependency *dep; 417 418 dep = i915_dependency_alloc(); 419 if (!dep) 420 return -ENOMEM; 421 422 if (!__i915_sched_node_add_dependency(node, signal, dep, 423 flags | I915_DEPENDENCY_ALLOC)) 424 i915_dependency_free(dep); 425 426 return 0; 427 } 428 429 void i915_sched_node_fini(struct i915_sched_node *node) 430 { 431 struct i915_dependency *dep, *tmp; 432 433 spin_lock_irq(&schedule_lock); 434 435 /* 436 * Everyone we depended upon (the fences we wait to be signaled) 437 * should retire before us and remove themselves from our list. 438 * However, retirement is run independently on each timeline and 439 * so we may be called out-of-order. 440 */ 441 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { 442 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 443 444 list_del_rcu(&dep->wait_link); 445 if (dep->flags & I915_DEPENDENCY_ALLOC) 446 i915_dependency_free(dep); 447 } 448 INIT_LIST_HEAD(&node->signalers_list); 449 450 /* Remove ourselves from everyone who depends upon us */ 451 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { 452 GEM_BUG_ON(dep->signaler != node); 453 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 454 455 list_del_rcu(&dep->signal_link); 456 if (dep->flags & I915_DEPENDENCY_ALLOC) 457 i915_dependency_free(dep); 458 } 459 INIT_LIST_HEAD(&node->waiters_list); 460 461 spin_unlock_irq(&schedule_lock); 462 } 463 464 void i915_request_show_with_schedule(struct drm_printer *m, 465 const struct i915_request *rq, 466 const char *prefix, 467 int indent) 468 { 469 struct i915_dependency *dep; 470 471 i915_request_show(m, rq, prefix, indent); 472 if (i915_request_completed(rq)) 473 return; 474 475 rcu_read_lock(); 476 for_each_signaler(dep, rq) { 477 const struct i915_request *signaler = 478 node_to_request(dep->signaler); 479 480 /* Dependencies along the same timeline are expected. */ 481 if (signaler->timeline == rq->timeline) 482 continue; 483 484 if (__i915_request_is_complete(signaler)) 485 continue; 486 487 i915_request_show(m, signaler, prefix, indent + 2); 488 } 489 rcu_read_unlock(); 490 } 491 492 static void i915_global_scheduler_shrink(void) 493 { 494 kmem_cache_shrink(global.slab_dependencies); 495 kmem_cache_shrink(global.slab_priorities); 496 } 497 498 static void i915_global_scheduler_exit(void) 499 { 500 kmem_cache_destroy(global.slab_dependencies); 501 kmem_cache_destroy(global.slab_priorities); 502 } 503 504 static struct i915_global_scheduler global = { { 505 .shrink = i915_global_scheduler_shrink, 506 .exit = i915_global_scheduler_exit, 507 } }; 508 509 int __init i915_global_scheduler_init(void) 510 { 511 global.slab_dependencies = KMEM_CACHE(i915_dependency, 512 SLAB_HWCACHE_ALIGN | 513 SLAB_TYPESAFE_BY_RCU); 514 if (!global.slab_dependencies) 515 return -ENOMEM; 516 517 global.slab_priorities = KMEM_CACHE(i915_priolist, 0); 518 if (!global.slab_priorities) 519 goto err_priorities; 520 521 i915_global_register(&global.base); 522 return 0; 523 524 err_priorities: 525 kmem_cache_destroy(global.slab_priorities); 526 return -ENOMEM; 527 } 528