1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2018 Intel Corporation 5 */ 6 7 #include <linux/mutex.h> 8 9 #include "i915_drv.h" 10 #include "i915_globals.h" 11 #include "i915_request.h" 12 #include "i915_scheduler.h" 13 14 static struct i915_global_scheduler { 15 struct i915_global base; 16 struct kmem_cache *slab_dependencies; 17 struct kmem_cache *slab_priorities; 18 } global; 19 20 static DEFINE_SPINLOCK(schedule_lock); 21 22 static const struct i915_request * 23 node_to_request(const struct i915_sched_node *node) 24 { 25 return container_of(node, const struct i915_request, sched); 26 } 27 28 static inline bool node_started(const struct i915_sched_node *node) 29 { 30 return i915_request_started(node_to_request(node)); 31 } 32 33 static inline bool node_signaled(const struct i915_sched_node *node) 34 { 35 return i915_request_completed(node_to_request(node)); 36 } 37 38 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 39 { 40 return rb_entry(rb, struct i915_priolist, node); 41 } 42 43 static void assert_priolists(struct intel_engine_execlists * const execlists) 44 { 45 struct rb_node *rb; 46 long last_prio, i; 47 48 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 49 return; 50 51 GEM_BUG_ON(rb_first_cached(&execlists->queue) != 52 rb_first(&execlists->queue.rb_root)); 53 54 last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1; 55 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 56 const struct i915_priolist *p = to_priolist(rb); 57 58 GEM_BUG_ON(p->priority >= last_prio); 59 last_prio = p->priority; 60 61 GEM_BUG_ON(!p->used); 62 for (i = 0; i < ARRAY_SIZE(p->requests); i++) { 63 if (list_empty(&p->requests[i])) 64 continue; 65 66 GEM_BUG_ON(!(p->used & BIT(i))); 67 } 68 } 69 } 70 71 struct list_head * 72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) 73 { 74 struct intel_engine_execlists * const execlists = &engine->execlists; 75 struct i915_priolist *p; 76 struct rb_node **parent, *rb; 77 bool first = true; 78 int idx, i; 79 80 lockdep_assert_held(&engine->active.lock); 81 assert_priolists(execlists); 82 83 /* buckets sorted from highest [in slot 0] to lowest priority */ 84 idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1; 85 prio >>= I915_USER_PRIORITY_SHIFT; 86 if (unlikely(execlists->no_priolist)) 87 prio = I915_PRIORITY_NORMAL; 88 89 find_priolist: 90 /* most positive priority is scheduled first, equal priorities fifo */ 91 rb = NULL; 92 parent = &execlists->queue.rb_root.rb_node; 93 while (*parent) { 94 rb = *parent; 95 p = to_priolist(rb); 96 if (prio > p->priority) { 97 parent = &rb->rb_left; 98 } else if (prio < p->priority) { 99 parent = &rb->rb_right; 100 first = false; 101 } else { 102 goto out; 103 } 104 } 105 106 if (prio == I915_PRIORITY_NORMAL) { 107 p = &execlists->default_priolist; 108 } else { 109 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); 110 /* Convert an allocation failure to a priority bump */ 111 if (unlikely(!p)) { 112 prio = I915_PRIORITY_NORMAL; /* recurses just once */ 113 114 /* To maintain ordering with all rendering, after an 115 * allocation failure we have to disable all scheduling. 116 * Requests will then be executed in fifo, and schedule 117 * will ensure that dependencies are emitted in fifo. 118 * There will be still some reordering with existing 119 * requests, so if userspace lied about their 120 * dependencies that reordering may be visible. 121 */ 122 execlists->no_priolist = true; 123 goto find_priolist; 124 } 125 } 126 127 p->priority = prio; 128 for (i = 0; i < ARRAY_SIZE(p->requests); i++) 129 INIT_LIST_HEAD(&p->requests[i]); 130 rb_link_node(&p->node, rb, parent); 131 rb_insert_color_cached(&p->node, &execlists->queue, first); 132 p->used = 0; 133 134 out: 135 p->used |= BIT(idx); 136 return &p->requests[idx]; 137 } 138 139 void __i915_priolist_free(struct i915_priolist *p) 140 { 141 kmem_cache_free(global.slab_priorities, p); 142 } 143 144 struct sched_cache { 145 struct list_head *priolist; 146 }; 147 148 static struct intel_engine_cs * 149 sched_lock_engine(const struct i915_sched_node *node, 150 struct intel_engine_cs *locked, 151 struct sched_cache *cache) 152 { 153 const struct i915_request *rq = node_to_request(node); 154 struct intel_engine_cs *engine; 155 156 GEM_BUG_ON(!locked); 157 158 /* 159 * Virtual engines complicate acquiring the engine timeline lock, 160 * as their rq->engine pointer is not stable until under that 161 * engine lock. The simple ploy we use is to take the lock then 162 * check that the rq still belongs to the newly locked engine. 163 */ 164 while (locked != (engine = READ_ONCE(rq->engine))) { 165 spin_unlock(&locked->active.lock); 166 memset(cache, 0, sizeof(*cache)); 167 spin_lock(&engine->active.lock); 168 locked = engine; 169 } 170 171 GEM_BUG_ON(locked != engine); 172 return locked; 173 } 174 175 static inline int rq_prio(const struct i915_request *rq) 176 { 177 return rq->sched.attr.priority | __NO_PREEMPTION; 178 } 179 180 static inline bool need_preempt(int prio, int active) 181 { 182 /* 183 * Allow preemption of low -> normal -> high, but we do 184 * not allow low priority tasks to preempt other low priority 185 * tasks under the impression that latency for low priority 186 * tasks does not matter (as much as background throughput), 187 * so kiss. 188 */ 189 return prio >= max(I915_PRIORITY_NORMAL, active); 190 } 191 192 static void kick_submission(struct intel_engine_cs *engine, 193 const struct i915_request *rq, 194 int prio) 195 { 196 const struct i915_request *inflight; 197 198 /* 199 * We only need to kick the tasklet once for the high priority 200 * new context we add into the queue. 201 */ 202 if (prio <= engine->execlists.queue_priority_hint) 203 return; 204 205 rcu_read_lock(); 206 207 /* Nothing currently active? We're overdue for a submission! */ 208 inflight = execlists_active(&engine->execlists); 209 if (!inflight) 210 goto unlock; 211 212 /* 213 * If we are already the currently executing context, don't 214 * bother evaluating if we should preempt ourselves, or if 215 * we expect nothing to change as a result of running the 216 * tasklet, i.e. we have not change the priority queue 217 * sufficiently to oust the running context. 218 */ 219 if (inflight->hw_context == rq->hw_context) 220 goto unlock; 221 222 engine->execlists.queue_priority_hint = prio; 223 if (need_preempt(prio, rq_prio(inflight))) 224 tasklet_hi_schedule(&engine->execlists.tasklet); 225 226 unlock: 227 rcu_read_unlock(); 228 } 229 230 static void __i915_schedule(struct i915_sched_node *node, 231 const struct i915_sched_attr *attr) 232 { 233 struct intel_engine_cs *engine; 234 struct i915_dependency *dep, *p; 235 struct i915_dependency stack; 236 const int prio = attr->priority; 237 struct sched_cache cache; 238 LIST_HEAD(dfs); 239 240 /* Needed in order to use the temporary link inside i915_dependency */ 241 lockdep_assert_held(&schedule_lock); 242 GEM_BUG_ON(prio == I915_PRIORITY_INVALID); 243 244 if (prio <= READ_ONCE(node->attr.priority)) 245 return; 246 247 if (node_signaled(node)) 248 return; 249 250 stack.signaler = node; 251 list_add(&stack.dfs_link, &dfs); 252 253 /* 254 * Recursively bump all dependent priorities to match the new request. 255 * 256 * A naive approach would be to use recursion: 257 * static void update_priorities(struct i915_sched_node *node, prio) { 258 * list_for_each_entry(dep, &node->signalers_list, signal_link) 259 * update_priorities(dep->signal, prio) 260 * queue_request(node); 261 * } 262 * but that may have unlimited recursion depth and so runs a very 263 * real risk of overunning the kernel stack. Instead, we build 264 * a flat list of all dependencies starting with the current request. 265 * As we walk the list of dependencies, we add all of its dependencies 266 * to the end of the list (this may include an already visited 267 * request) and continue to walk onwards onto the new dependencies. The 268 * end result is a topological list of requests in reverse order, the 269 * last element in the list is the request we must execute first. 270 */ 271 list_for_each_entry(dep, &dfs, dfs_link) { 272 struct i915_sched_node *node = dep->signaler; 273 274 /* If we are already flying, we know we have no signalers */ 275 if (node_started(node)) 276 continue; 277 278 /* 279 * Within an engine, there can be no cycle, but we may 280 * refer to the same dependency chain multiple times 281 * (redundant dependencies are not eliminated) and across 282 * engines. 283 */ 284 list_for_each_entry(p, &node->signalers_list, signal_link) { 285 GEM_BUG_ON(p == dep); /* no cycles! */ 286 287 if (node_signaled(p->signaler)) 288 continue; 289 290 if (prio > READ_ONCE(p->signaler->attr.priority)) 291 list_move_tail(&p->dfs_link, &dfs); 292 } 293 } 294 295 /* 296 * If we didn't need to bump any existing priorities, and we haven't 297 * yet submitted this request (i.e. there is no potential race with 298 * execlists_submit_request()), we can set our own priority and skip 299 * acquiring the engine locks. 300 */ 301 if (node->attr.priority == I915_PRIORITY_INVALID) { 302 GEM_BUG_ON(!list_empty(&node->link)); 303 node->attr = *attr; 304 305 if (stack.dfs_link.next == stack.dfs_link.prev) 306 return; 307 308 __list_del_entry(&stack.dfs_link); 309 } 310 311 memset(&cache, 0, sizeof(cache)); 312 engine = node_to_request(node)->engine; 313 spin_lock(&engine->active.lock); 314 315 /* Fifo and depth-first replacement ensure our deps execute before us */ 316 engine = sched_lock_engine(node, engine, &cache); 317 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { 318 INIT_LIST_HEAD(&dep->dfs_link); 319 320 node = dep->signaler; 321 engine = sched_lock_engine(node, engine, &cache); 322 lockdep_assert_held(&engine->active.lock); 323 324 /* Recheck after acquiring the engine->timeline.lock */ 325 if (prio <= node->attr.priority || node_signaled(node)) 326 continue; 327 328 GEM_BUG_ON(node_to_request(node)->engine != engine); 329 330 node->attr.priority = prio; 331 332 if (list_empty(&node->link)) { 333 /* 334 * If the request is not in the priolist queue because 335 * it is not yet runnable, then it doesn't contribute 336 * to our preemption decisions. On the other hand, 337 * if the request is on the HW, it too is not in the 338 * queue; but in that case we may still need to reorder 339 * the inflight requests. 340 */ 341 continue; 342 } 343 344 if (!intel_engine_is_virtual(engine) && 345 !i915_request_is_active(node_to_request(node))) { 346 if (!cache.priolist) 347 cache.priolist = 348 i915_sched_lookup_priolist(engine, 349 prio); 350 list_move_tail(&node->link, cache.priolist); 351 } 352 353 /* Defer (tasklet) submission until after all of our updates. */ 354 kick_submission(engine, node_to_request(node), prio); 355 } 356 357 spin_unlock(&engine->active.lock); 358 } 359 360 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) 361 { 362 spin_lock_irq(&schedule_lock); 363 __i915_schedule(&rq->sched, attr); 364 spin_unlock_irq(&schedule_lock); 365 } 366 367 static void __bump_priority(struct i915_sched_node *node, unsigned int bump) 368 { 369 struct i915_sched_attr attr = node->attr; 370 371 attr.priority |= bump; 372 __i915_schedule(node, &attr); 373 } 374 375 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump) 376 { 377 unsigned long flags; 378 379 GEM_BUG_ON(bump & ~I915_PRIORITY_MASK); 380 if (READ_ONCE(rq->sched.attr.priority) & bump) 381 return; 382 383 spin_lock_irqsave(&schedule_lock, flags); 384 __bump_priority(&rq->sched, bump); 385 spin_unlock_irqrestore(&schedule_lock, flags); 386 } 387 388 void i915_sched_node_init(struct i915_sched_node *node) 389 { 390 INIT_LIST_HEAD(&node->signalers_list); 391 INIT_LIST_HEAD(&node->waiters_list); 392 INIT_LIST_HEAD(&node->link); 393 node->attr.priority = I915_PRIORITY_INVALID; 394 node->semaphores = 0; 395 node->flags = 0; 396 } 397 398 static struct i915_dependency * 399 i915_dependency_alloc(void) 400 { 401 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); 402 } 403 404 static void 405 i915_dependency_free(struct i915_dependency *dep) 406 { 407 kmem_cache_free(global.slab_dependencies, dep); 408 } 409 410 bool __i915_sched_node_add_dependency(struct i915_sched_node *node, 411 struct i915_sched_node *signal, 412 struct i915_dependency *dep, 413 unsigned long flags) 414 { 415 bool ret = false; 416 417 spin_lock_irq(&schedule_lock); 418 419 if (!node_signaled(signal)) { 420 INIT_LIST_HEAD(&dep->dfs_link); 421 list_add(&dep->wait_link, &signal->waiters_list); 422 list_add(&dep->signal_link, &node->signalers_list); 423 dep->signaler = signal; 424 dep->waiter = node; 425 dep->flags = flags; 426 427 /* Keep track of whether anyone on this chain has a semaphore */ 428 if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN && 429 !node_started(signal)) 430 node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 431 432 /* 433 * As we do not allow WAIT to preempt inflight requests, 434 * once we have executed a request, along with triggering 435 * any execution callbacks, we must preserve its ordering 436 * within the non-preemptible FIFO. 437 */ 438 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); 439 if (flags & I915_DEPENDENCY_EXTERNAL) 440 __bump_priority(signal, __NO_PREEMPTION); 441 442 ret = true; 443 } 444 445 spin_unlock_irq(&schedule_lock); 446 447 return ret; 448 } 449 450 int i915_sched_node_add_dependency(struct i915_sched_node *node, 451 struct i915_sched_node *signal) 452 { 453 struct i915_dependency *dep; 454 455 dep = i915_dependency_alloc(); 456 if (!dep) 457 return -ENOMEM; 458 459 if (!__i915_sched_node_add_dependency(node, signal, dep, 460 I915_DEPENDENCY_EXTERNAL | 461 I915_DEPENDENCY_ALLOC)) 462 i915_dependency_free(dep); 463 464 return 0; 465 } 466 467 void i915_sched_node_fini(struct i915_sched_node *node) 468 { 469 struct i915_dependency *dep, *tmp; 470 471 spin_lock_irq(&schedule_lock); 472 473 /* 474 * Everyone we depended upon (the fences we wait to be signaled) 475 * should retire before us and remove themselves from our list. 476 * However, retirement is run independently on each timeline and 477 * so we may be called out-of-order. 478 */ 479 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { 480 GEM_BUG_ON(!node_signaled(dep->signaler)); 481 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 482 483 list_del(&dep->wait_link); 484 if (dep->flags & I915_DEPENDENCY_ALLOC) 485 i915_dependency_free(dep); 486 } 487 488 /* Remove ourselves from everyone who depends upon us */ 489 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { 490 GEM_BUG_ON(dep->signaler != node); 491 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 492 493 list_del(&dep->signal_link); 494 if (dep->flags & I915_DEPENDENCY_ALLOC) 495 i915_dependency_free(dep); 496 } 497 498 spin_unlock_irq(&schedule_lock); 499 } 500 501 static void i915_global_scheduler_shrink(void) 502 { 503 kmem_cache_shrink(global.slab_dependencies); 504 kmem_cache_shrink(global.slab_priorities); 505 } 506 507 static void i915_global_scheduler_exit(void) 508 { 509 kmem_cache_destroy(global.slab_dependencies); 510 kmem_cache_destroy(global.slab_priorities); 511 } 512 513 static struct i915_global_scheduler global = { { 514 .shrink = i915_global_scheduler_shrink, 515 .exit = i915_global_scheduler_exit, 516 } }; 517 518 int __init i915_global_scheduler_init(void) 519 { 520 global.slab_dependencies = KMEM_CACHE(i915_dependency, 521 SLAB_HWCACHE_ALIGN); 522 if (!global.slab_dependencies) 523 return -ENOMEM; 524 525 global.slab_priorities = KMEM_CACHE(i915_priolist, 526 SLAB_HWCACHE_ALIGN); 527 if (!global.slab_priorities) 528 goto err_priorities; 529 530 i915_global_register(&global.base); 531 return 0; 532 533 err_priorities: 534 kmem_cache_destroy(global.slab_priorities); 535 return -ENOMEM; 536 } 537