1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2018 Intel Corporation 5 */ 6 7 #include <linux/mutex.h> 8 9 #include "i915_drv.h" 10 #include "i915_globals.h" 11 #include "i915_request.h" 12 #include "i915_scheduler.h" 13 14 static struct i915_global_scheduler { 15 struct i915_global base; 16 struct kmem_cache *slab_dependencies; 17 struct kmem_cache *slab_priorities; 18 } global; 19 20 static DEFINE_SPINLOCK(schedule_lock); 21 22 static const struct i915_request * 23 node_to_request(const struct i915_sched_node *node) 24 { 25 return container_of(node, const struct i915_request, sched); 26 } 27 28 static inline bool node_started(const struct i915_sched_node *node) 29 { 30 return i915_request_started(node_to_request(node)); 31 } 32 33 static inline bool node_signaled(const struct i915_sched_node *node) 34 { 35 return i915_request_completed(node_to_request(node)); 36 } 37 38 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 39 { 40 return rb_entry(rb, struct i915_priolist, node); 41 } 42 43 static void assert_priolists(struct intel_engine_execlists * const execlists) 44 { 45 struct rb_node *rb; 46 long last_prio, i; 47 48 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 49 return; 50 51 GEM_BUG_ON(rb_first_cached(&execlists->queue) != 52 rb_first(&execlists->queue.rb_root)); 53 54 last_prio = INT_MAX; 55 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 56 const struct i915_priolist *p = to_priolist(rb); 57 58 GEM_BUG_ON(p->priority > last_prio); 59 last_prio = p->priority; 60 61 GEM_BUG_ON(!p->used); 62 for (i = 0; i < ARRAY_SIZE(p->requests); i++) { 63 if (list_empty(&p->requests[i])) 64 continue; 65 66 GEM_BUG_ON(!(p->used & BIT(i))); 67 } 68 } 69 } 70 71 struct list_head * 72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) 73 { 74 struct intel_engine_execlists * const execlists = &engine->execlists; 75 struct i915_priolist *p; 76 struct rb_node **parent, *rb; 77 bool first = true; 78 int idx, i; 79 80 lockdep_assert_held(&engine->active.lock); 81 assert_priolists(execlists); 82 83 /* buckets sorted from highest [in slot 0] to lowest priority */ 84 idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1; 85 prio >>= I915_USER_PRIORITY_SHIFT; 86 if (unlikely(execlists->no_priolist)) 87 prio = I915_PRIORITY_NORMAL; 88 89 find_priolist: 90 /* most positive priority is scheduled first, equal priorities fifo */ 91 rb = NULL; 92 parent = &execlists->queue.rb_root.rb_node; 93 while (*parent) { 94 rb = *parent; 95 p = to_priolist(rb); 96 if (prio > p->priority) { 97 parent = &rb->rb_left; 98 } else if (prio < p->priority) { 99 parent = &rb->rb_right; 100 first = false; 101 } else { 102 goto out; 103 } 104 } 105 106 if (prio == I915_PRIORITY_NORMAL) { 107 p = &execlists->default_priolist; 108 } else { 109 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); 110 /* Convert an allocation failure to a priority bump */ 111 if (unlikely(!p)) { 112 prio = I915_PRIORITY_NORMAL; /* recurses just once */ 113 114 /* To maintain ordering with all rendering, after an 115 * allocation failure we have to disable all scheduling. 116 * Requests will then be executed in fifo, and schedule 117 * will ensure that dependencies are emitted in fifo. 118 * There will be still some reordering with existing 119 * requests, so if userspace lied about their 120 * dependencies that reordering may be visible. 121 */ 122 execlists->no_priolist = true; 123 goto find_priolist; 124 } 125 } 126 127 p->priority = prio; 128 for (i = 0; i < ARRAY_SIZE(p->requests); i++) 129 INIT_LIST_HEAD(&p->requests[i]); 130 rb_link_node(&p->node, rb, parent); 131 rb_insert_color_cached(&p->node, &execlists->queue, first); 132 p->used = 0; 133 134 out: 135 p->used |= BIT(idx); 136 return &p->requests[idx]; 137 } 138 139 void __i915_priolist_free(struct i915_priolist *p) 140 { 141 kmem_cache_free(global.slab_priorities, p); 142 } 143 144 struct sched_cache { 145 struct list_head *priolist; 146 }; 147 148 static struct intel_engine_cs * 149 sched_lock_engine(const struct i915_sched_node *node, 150 struct intel_engine_cs *locked, 151 struct sched_cache *cache) 152 { 153 const struct i915_request *rq = node_to_request(node); 154 struct intel_engine_cs *engine; 155 156 GEM_BUG_ON(!locked); 157 158 /* 159 * Virtual engines complicate acquiring the engine timeline lock, 160 * as their rq->engine pointer is not stable until under that 161 * engine lock. The simple ploy we use is to take the lock then 162 * check that the rq still belongs to the newly locked engine. 163 */ 164 while (locked != (engine = READ_ONCE(rq->engine))) { 165 spin_unlock(&locked->active.lock); 166 memset(cache, 0, sizeof(*cache)); 167 spin_lock(&engine->active.lock); 168 locked = engine; 169 } 170 171 GEM_BUG_ON(locked != engine); 172 return locked; 173 } 174 175 static inline int rq_prio(const struct i915_request *rq) 176 { 177 return rq->sched.attr.priority; 178 } 179 180 static inline bool need_preempt(int prio, int active) 181 { 182 /* 183 * Allow preemption of low -> normal -> high, but we do 184 * not allow low priority tasks to preempt other low priority 185 * tasks under the impression that latency for low priority 186 * tasks does not matter (as much as background throughput), 187 * so kiss. 188 */ 189 return prio >= max(I915_PRIORITY_NORMAL, active); 190 } 191 192 static void kick_submission(struct intel_engine_cs *engine, 193 const struct i915_request *rq, 194 int prio) 195 { 196 const struct i915_request *inflight; 197 198 /* 199 * We only need to kick the tasklet once for the high priority 200 * new context we add into the queue. 201 */ 202 if (prio <= engine->execlists.queue_priority_hint) 203 return; 204 205 rcu_read_lock(); 206 207 /* Nothing currently active? We're overdue for a submission! */ 208 inflight = execlists_active(&engine->execlists); 209 if (!inflight) 210 goto unlock; 211 212 /* 213 * If we are already the currently executing context, don't 214 * bother evaluating if we should preempt ourselves. 215 */ 216 if (inflight->context == rq->context) 217 goto unlock; 218 219 ENGINE_TRACE(engine, 220 "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n", 221 prio, 222 rq->fence.context, rq->fence.seqno, 223 inflight->fence.context, inflight->fence.seqno, 224 inflight->sched.attr.priority); 225 226 engine->execlists.queue_priority_hint = prio; 227 if (need_preempt(prio, rq_prio(inflight))) 228 tasklet_hi_schedule(&engine->execlists.tasklet); 229 230 unlock: 231 rcu_read_unlock(); 232 } 233 234 static void __i915_schedule(struct i915_sched_node *node, 235 const struct i915_sched_attr *attr) 236 { 237 const int prio = max(attr->priority, node->attr.priority); 238 struct intel_engine_cs *engine; 239 struct i915_dependency *dep, *p; 240 struct i915_dependency stack; 241 struct sched_cache cache; 242 LIST_HEAD(dfs); 243 244 /* Needed in order to use the temporary link inside i915_dependency */ 245 lockdep_assert_held(&schedule_lock); 246 GEM_BUG_ON(prio == I915_PRIORITY_INVALID); 247 248 if (node_signaled(node)) 249 return; 250 251 stack.signaler = node; 252 list_add(&stack.dfs_link, &dfs); 253 254 /* 255 * Recursively bump all dependent priorities to match the new request. 256 * 257 * A naive approach would be to use recursion: 258 * static void update_priorities(struct i915_sched_node *node, prio) { 259 * list_for_each_entry(dep, &node->signalers_list, signal_link) 260 * update_priorities(dep->signal, prio) 261 * queue_request(node); 262 * } 263 * but that may have unlimited recursion depth and so runs a very 264 * real risk of overunning the kernel stack. Instead, we build 265 * a flat list of all dependencies starting with the current request. 266 * As we walk the list of dependencies, we add all of its dependencies 267 * to the end of the list (this may include an already visited 268 * request) and continue to walk onwards onto the new dependencies. The 269 * end result is a topological list of requests in reverse order, the 270 * last element in the list is the request we must execute first. 271 */ 272 list_for_each_entry(dep, &dfs, dfs_link) { 273 struct i915_sched_node *node = dep->signaler; 274 275 /* If we are already flying, we know we have no signalers */ 276 if (node_started(node)) 277 continue; 278 279 /* 280 * Within an engine, there can be no cycle, but we may 281 * refer to the same dependency chain multiple times 282 * (redundant dependencies are not eliminated) and across 283 * engines. 284 */ 285 list_for_each_entry(p, &node->signalers_list, signal_link) { 286 GEM_BUG_ON(p == dep); /* no cycles! */ 287 288 if (node_signaled(p->signaler)) 289 continue; 290 291 if (prio > READ_ONCE(p->signaler->attr.priority)) 292 list_move_tail(&p->dfs_link, &dfs); 293 } 294 } 295 296 /* 297 * If we didn't need to bump any existing priorities, and we haven't 298 * yet submitted this request (i.e. there is no potential race with 299 * execlists_submit_request()), we can set our own priority and skip 300 * acquiring the engine locks. 301 */ 302 if (node->attr.priority == I915_PRIORITY_INVALID) { 303 GEM_BUG_ON(!list_empty(&node->link)); 304 node->attr = *attr; 305 306 if (stack.dfs_link.next == stack.dfs_link.prev) 307 return; 308 309 __list_del_entry(&stack.dfs_link); 310 } 311 312 memset(&cache, 0, sizeof(cache)); 313 engine = node_to_request(node)->engine; 314 spin_lock(&engine->active.lock); 315 316 /* Fifo and depth-first replacement ensure our deps execute before us */ 317 engine = sched_lock_engine(node, engine, &cache); 318 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { 319 INIT_LIST_HEAD(&dep->dfs_link); 320 321 node = dep->signaler; 322 engine = sched_lock_engine(node, engine, &cache); 323 lockdep_assert_held(&engine->active.lock); 324 325 /* Recheck after acquiring the engine->timeline.lock */ 326 if (prio <= node->attr.priority || node_signaled(node)) 327 continue; 328 329 GEM_BUG_ON(node_to_request(node)->engine != engine); 330 331 WRITE_ONCE(node->attr.priority, prio); 332 333 /* 334 * Once the request is ready, it will be placed into the 335 * priority lists and then onto the HW runlist. Before the 336 * request is ready, it does not contribute to our preemption 337 * decisions and we can safely ignore it, as it will, and 338 * any preemption required, be dealt with upon submission. 339 * See engine->submit_request() 340 */ 341 if (list_empty(&node->link)) 342 continue; 343 344 if (i915_request_in_priority_queue(node_to_request(node))) { 345 if (!cache.priolist) 346 cache.priolist = 347 i915_sched_lookup_priolist(engine, 348 prio); 349 list_move_tail(&node->link, cache.priolist); 350 } 351 352 /* Defer (tasklet) submission until after all of our updates. */ 353 kick_submission(engine, node_to_request(node), prio); 354 } 355 356 spin_unlock(&engine->active.lock); 357 } 358 359 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) 360 { 361 spin_lock_irq(&schedule_lock); 362 __i915_schedule(&rq->sched, attr); 363 spin_unlock_irq(&schedule_lock); 364 } 365 366 static void __bump_priority(struct i915_sched_node *node, unsigned int bump) 367 { 368 struct i915_sched_attr attr = node->attr; 369 370 if (attr.priority & bump) 371 return; 372 373 attr.priority |= bump; 374 __i915_schedule(node, &attr); 375 } 376 377 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump) 378 { 379 unsigned long flags; 380 381 GEM_BUG_ON(bump & ~I915_PRIORITY_MASK); 382 if (READ_ONCE(rq->sched.attr.priority) & bump) 383 return; 384 385 spin_lock_irqsave(&schedule_lock, flags); 386 __bump_priority(&rq->sched, bump); 387 spin_unlock_irqrestore(&schedule_lock, flags); 388 } 389 390 void i915_sched_node_init(struct i915_sched_node *node) 391 { 392 INIT_LIST_HEAD(&node->signalers_list); 393 INIT_LIST_HEAD(&node->waiters_list); 394 INIT_LIST_HEAD(&node->link); 395 396 i915_sched_node_reinit(node); 397 } 398 399 void i915_sched_node_reinit(struct i915_sched_node *node) 400 { 401 node->attr.priority = I915_PRIORITY_INVALID; 402 node->semaphores = 0; 403 node->flags = 0; 404 405 GEM_BUG_ON(!list_empty(&node->signalers_list)); 406 GEM_BUG_ON(!list_empty(&node->waiters_list)); 407 GEM_BUG_ON(!list_empty(&node->link)); 408 } 409 410 static struct i915_dependency * 411 i915_dependency_alloc(void) 412 { 413 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); 414 } 415 416 static void 417 i915_dependency_free(struct i915_dependency *dep) 418 { 419 kmem_cache_free(global.slab_dependencies, dep); 420 } 421 422 bool __i915_sched_node_add_dependency(struct i915_sched_node *node, 423 struct i915_sched_node *signal, 424 struct i915_dependency *dep, 425 unsigned long flags) 426 { 427 bool ret = false; 428 429 spin_lock_irq(&schedule_lock); 430 431 if (!node_signaled(signal)) { 432 INIT_LIST_HEAD(&dep->dfs_link); 433 dep->signaler = signal; 434 dep->waiter = node; 435 dep->flags = flags; 436 437 /* All set, now publish. Beware the lockless walkers. */ 438 list_add_rcu(&dep->signal_link, &node->signalers_list); 439 list_add_rcu(&dep->wait_link, &signal->waiters_list); 440 441 /* Propagate the chains */ 442 node->flags |= signal->flags; 443 ret = true; 444 } 445 446 spin_unlock_irq(&schedule_lock); 447 448 return ret; 449 } 450 451 int i915_sched_node_add_dependency(struct i915_sched_node *node, 452 struct i915_sched_node *signal, 453 unsigned long flags) 454 { 455 struct i915_dependency *dep; 456 457 dep = i915_dependency_alloc(); 458 if (!dep) 459 return -ENOMEM; 460 461 local_bh_disable(); 462 463 if (!__i915_sched_node_add_dependency(node, signal, dep, 464 flags | I915_DEPENDENCY_ALLOC)) 465 i915_dependency_free(dep); 466 467 local_bh_enable(); /* kick submission tasklet */ 468 469 return 0; 470 } 471 472 void i915_sched_node_fini(struct i915_sched_node *node) 473 { 474 struct i915_dependency *dep, *tmp; 475 476 spin_lock_irq(&schedule_lock); 477 478 /* 479 * Everyone we depended upon (the fences we wait to be signaled) 480 * should retire before us and remove themselves from our list. 481 * However, retirement is run independently on each timeline and 482 * so we may be called out-of-order. 483 */ 484 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { 485 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 486 487 list_del_rcu(&dep->wait_link); 488 if (dep->flags & I915_DEPENDENCY_ALLOC) 489 i915_dependency_free(dep); 490 } 491 INIT_LIST_HEAD(&node->signalers_list); 492 493 /* Remove ourselves from everyone who depends upon us */ 494 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { 495 GEM_BUG_ON(dep->signaler != node); 496 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 497 498 list_del_rcu(&dep->signal_link); 499 if (dep->flags & I915_DEPENDENCY_ALLOC) 500 i915_dependency_free(dep); 501 } 502 INIT_LIST_HEAD(&node->waiters_list); 503 504 spin_unlock_irq(&schedule_lock); 505 } 506 507 static void i915_global_scheduler_shrink(void) 508 { 509 kmem_cache_shrink(global.slab_dependencies); 510 kmem_cache_shrink(global.slab_priorities); 511 } 512 513 static void i915_global_scheduler_exit(void) 514 { 515 kmem_cache_destroy(global.slab_dependencies); 516 kmem_cache_destroy(global.slab_priorities); 517 } 518 519 static struct i915_global_scheduler global = { { 520 .shrink = i915_global_scheduler_shrink, 521 .exit = i915_global_scheduler_exit, 522 } }; 523 524 int __init i915_global_scheduler_init(void) 525 { 526 global.slab_dependencies = KMEM_CACHE(i915_dependency, 527 SLAB_HWCACHE_ALIGN | 528 SLAB_TYPESAFE_BY_RCU); 529 if (!global.slab_dependencies) 530 return -ENOMEM; 531 532 global.slab_priorities = KMEM_CACHE(i915_priolist, 533 SLAB_HWCACHE_ALIGN); 534 if (!global.slab_priorities) 535 goto err_priorities; 536 537 i915_global_register(&global.base); 538 return 0; 539 540 err_priorities: 541 kmem_cache_destroy(global.slab_priorities); 542 return -ENOMEM; 543 } 544