1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2018 Intel Corporation 5 */ 6 7 #include <linux/mutex.h> 8 9 #include "i915_drv.h" 10 #include "i915_globals.h" 11 #include "i915_request.h" 12 #include "i915_scheduler.h" 13 14 static struct i915_global_scheduler { 15 struct i915_global base; 16 struct kmem_cache *slab_dependencies; 17 struct kmem_cache *slab_priorities; 18 } global; 19 20 static DEFINE_SPINLOCK(schedule_lock); 21 22 static const struct i915_request * 23 node_to_request(const struct i915_sched_node *node) 24 { 25 return container_of(node, const struct i915_request, sched); 26 } 27 28 static inline bool node_started(const struct i915_sched_node *node) 29 { 30 return i915_request_started(node_to_request(node)); 31 } 32 33 static inline bool node_signaled(const struct i915_sched_node *node) 34 { 35 return i915_request_completed(node_to_request(node)); 36 } 37 38 void i915_sched_node_init(struct i915_sched_node *node) 39 { 40 INIT_LIST_HEAD(&node->signalers_list); 41 INIT_LIST_HEAD(&node->waiters_list); 42 INIT_LIST_HEAD(&node->link); 43 node->attr.priority = I915_PRIORITY_INVALID; 44 node->flags = 0; 45 } 46 47 static struct i915_dependency * 48 i915_dependency_alloc(void) 49 { 50 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); 51 } 52 53 static void 54 i915_dependency_free(struct i915_dependency *dep) 55 { 56 kmem_cache_free(global.slab_dependencies, dep); 57 } 58 59 bool __i915_sched_node_add_dependency(struct i915_sched_node *node, 60 struct i915_sched_node *signal, 61 struct i915_dependency *dep, 62 unsigned long flags) 63 { 64 bool ret = false; 65 66 spin_lock(&schedule_lock); 67 68 if (!node_signaled(signal)) { 69 INIT_LIST_HEAD(&dep->dfs_link); 70 list_add(&dep->wait_link, &signal->waiters_list); 71 list_add(&dep->signal_link, &node->signalers_list); 72 dep->signaler = signal; 73 dep->flags = flags; 74 75 /* Keep track of whether anyone on this chain has a semaphore */ 76 if (signal->flags & I915_SCHED_HAS_SEMAPHORE && 77 !node_started(signal)) 78 node->flags |= I915_SCHED_HAS_SEMAPHORE; 79 80 ret = true; 81 } 82 83 spin_unlock(&schedule_lock); 84 85 return ret; 86 } 87 88 int i915_sched_node_add_dependency(struct i915_sched_node *node, 89 struct i915_sched_node *signal) 90 { 91 struct i915_dependency *dep; 92 93 dep = i915_dependency_alloc(); 94 if (!dep) 95 return -ENOMEM; 96 97 if (!__i915_sched_node_add_dependency(node, signal, dep, 98 I915_DEPENDENCY_ALLOC)) 99 i915_dependency_free(dep); 100 101 return 0; 102 } 103 104 void i915_sched_node_fini(struct i915_sched_node *node) 105 { 106 struct i915_dependency *dep, *tmp; 107 108 GEM_BUG_ON(!list_empty(&node->link)); 109 110 spin_lock(&schedule_lock); 111 112 /* 113 * Everyone we depended upon (the fences we wait to be signaled) 114 * should retire before us and remove themselves from our list. 115 * However, retirement is run independently on each timeline and 116 * so we may be called out-of-order. 117 */ 118 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { 119 GEM_BUG_ON(!node_signaled(dep->signaler)); 120 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 121 122 list_del(&dep->wait_link); 123 if (dep->flags & I915_DEPENDENCY_ALLOC) 124 i915_dependency_free(dep); 125 } 126 127 /* Remove ourselves from everyone who depends upon us */ 128 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { 129 GEM_BUG_ON(dep->signaler != node); 130 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 131 132 list_del(&dep->signal_link); 133 if (dep->flags & I915_DEPENDENCY_ALLOC) 134 i915_dependency_free(dep); 135 } 136 137 spin_unlock(&schedule_lock); 138 } 139 140 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 141 { 142 return rb_entry(rb, struct i915_priolist, node); 143 } 144 145 static void assert_priolists(struct intel_engine_execlists * const execlists) 146 { 147 struct rb_node *rb; 148 long last_prio, i; 149 150 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 151 return; 152 153 GEM_BUG_ON(rb_first_cached(&execlists->queue) != 154 rb_first(&execlists->queue.rb_root)); 155 156 last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1; 157 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 158 const struct i915_priolist *p = to_priolist(rb); 159 160 GEM_BUG_ON(p->priority >= last_prio); 161 last_prio = p->priority; 162 163 GEM_BUG_ON(!p->used); 164 for (i = 0; i < ARRAY_SIZE(p->requests); i++) { 165 if (list_empty(&p->requests[i])) 166 continue; 167 168 GEM_BUG_ON(!(p->used & BIT(i))); 169 } 170 } 171 } 172 173 struct list_head * 174 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) 175 { 176 struct intel_engine_execlists * const execlists = &engine->execlists; 177 struct i915_priolist *p; 178 struct rb_node **parent, *rb; 179 bool first = true; 180 int idx, i; 181 182 lockdep_assert_held(&engine->timeline.lock); 183 assert_priolists(execlists); 184 185 /* buckets sorted from highest [in slot 0] to lowest priority */ 186 idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1; 187 prio >>= I915_USER_PRIORITY_SHIFT; 188 if (unlikely(execlists->no_priolist)) 189 prio = I915_PRIORITY_NORMAL; 190 191 find_priolist: 192 /* most positive priority is scheduled first, equal priorities fifo */ 193 rb = NULL; 194 parent = &execlists->queue.rb_root.rb_node; 195 while (*parent) { 196 rb = *parent; 197 p = to_priolist(rb); 198 if (prio > p->priority) { 199 parent = &rb->rb_left; 200 } else if (prio < p->priority) { 201 parent = &rb->rb_right; 202 first = false; 203 } else { 204 goto out; 205 } 206 } 207 208 if (prio == I915_PRIORITY_NORMAL) { 209 p = &execlists->default_priolist; 210 } else { 211 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); 212 /* Convert an allocation failure to a priority bump */ 213 if (unlikely(!p)) { 214 prio = I915_PRIORITY_NORMAL; /* recurses just once */ 215 216 /* To maintain ordering with all rendering, after an 217 * allocation failure we have to disable all scheduling. 218 * Requests will then be executed in fifo, and schedule 219 * will ensure that dependencies are emitted in fifo. 220 * There will be still some reordering with existing 221 * requests, so if userspace lied about their 222 * dependencies that reordering may be visible. 223 */ 224 execlists->no_priolist = true; 225 goto find_priolist; 226 } 227 } 228 229 p->priority = prio; 230 for (i = 0; i < ARRAY_SIZE(p->requests); i++) 231 INIT_LIST_HEAD(&p->requests[i]); 232 rb_link_node(&p->node, rb, parent); 233 rb_insert_color_cached(&p->node, &execlists->queue, first); 234 p->used = 0; 235 236 out: 237 p->used |= BIT(idx); 238 return &p->requests[idx]; 239 } 240 241 struct sched_cache { 242 struct list_head *priolist; 243 }; 244 245 static struct intel_engine_cs * 246 sched_lock_engine(const struct i915_sched_node *node, 247 struct intel_engine_cs *locked, 248 struct sched_cache *cache) 249 { 250 struct intel_engine_cs *engine = node_to_request(node)->engine; 251 252 GEM_BUG_ON(!locked); 253 254 if (engine != locked) { 255 spin_unlock(&locked->timeline.lock); 256 memset(cache, 0, sizeof(*cache)); 257 spin_lock(&engine->timeline.lock); 258 } 259 260 return engine; 261 } 262 263 static bool inflight(const struct i915_request *rq, 264 const struct intel_engine_cs *engine) 265 { 266 const struct i915_request *active; 267 268 if (!i915_request_is_active(rq)) 269 return false; 270 271 active = port_request(engine->execlists.port); 272 return active->hw_context == rq->hw_context; 273 } 274 275 static void __i915_schedule(struct i915_request *rq, 276 const struct i915_sched_attr *attr) 277 { 278 struct intel_engine_cs *engine; 279 struct i915_dependency *dep, *p; 280 struct i915_dependency stack; 281 const int prio = attr->priority; 282 struct sched_cache cache; 283 LIST_HEAD(dfs); 284 285 /* Needed in order to use the temporary link inside i915_dependency */ 286 lockdep_assert_held(&schedule_lock); 287 GEM_BUG_ON(prio == I915_PRIORITY_INVALID); 288 289 if (i915_request_completed(rq)) 290 return; 291 292 if (prio <= READ_ONCE(rq->sched.attr.priority)) 293 return; 294 295 stack.signaler = &rq->sched; 296 list_add(&stack.dfs_link, &dfs); 297 298 /* 299 * Recursively bump all dependent priorities to match the new request. 300 * 301 * A naive approach would be to use recursion: 302 * static void update_priorities(struct i915_sched_node *node, prio) { 303 * list_for_each_entry(dep, &node->signalers_list, signal_link) 304 * update_priorities(dep->signal, prio) 305 * queue_request(node); 306 * } 307 * but that may have unlimited recursion depth and so runs a very 308 * real risk of overunning the kernel stack. Instead, we build 309 * a flat list of all dependencies starting with the current request. 310 * As we walk the list of dependencies, we add all of its dependencies 311 * to the end of the list (this may include an already visited 312 * request) and continue to walk onwards onto the new dependencies. The 313 * end result is a topological list of requests in reverse order, the 314 * last element in the list is the request we must execute first. 315 */ 316 list_for_each_entry(dep, &dfs, dfs_link) { 317 struct i915_sched_node *node = dep->signaler; 318 319 /* If we are already flying, we know we have no signalers */ 320 if (node_started(node)) 321 continue; 322 323 /* 324 * Within an engine, there can be no cycle, but we may 325 * refer to the same dependency chain multiple times 326 * (redundant dependencies are not eliminated) and across 327 * engines. 328 */ 329 list_for_each_entry(p, &node->signalers_list, signal_link) { 330 GEM_BUG_ON(p == dep); /* no cycles! */ 331 332 if (node_signaled(p->signaler)) 333 continue; 334 335 if (prio > READ_ONCE(p->signaler->attr.priority)) 336 list_move_tail(&p->dfs_link, &dfs); 337 } 338 } 339 340 /* 341 * If we didn't need to bump any existing priorities, and we haven't 342 * yet submitted this request (i.e. there is no potential race with 343 * execlists_submit_request()), we can set our own priority and skip 344 * acquiring the engine locks. 345 */ 346 if (rq->sched.attr.priority == I915_PRIORITY_INVALID) { 347 GEM_BUG_ON(!list_empty(&rq->sched.link)); 348 rq->sched.attr = *attr; 349 350 if (stack.dfs_link.next == stack.dfs_link.prev) 351 return; 352 353 __list_del_entry(&stack.dfs_link); 354 } 355 356 memset(&cache, 0, sizeof(cache)); 357 engine = rq->engine; 358 spin_lock_irq(&engine->timeline.lock); 359 360 /* Fifo and depth-first replacement ensure our deps execute before us */ 361 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { 362 struct i915_sched_node *node = dep->signaler; 363 364 INIT_LIST_HEAD(&dep->dfs_link); 365 366 engine = sched_lock_engine(node, engine, &cache); 367 lockdep_assert_held(&engine->timeline.lock); 368 369 /* Recheck after acquiring the engine->timeline.lock */ 370 if (prio <= node->attr.priority || node_signaled(node)) 371 continue; 372 373 node->attr.priority = prio; 374 if (!list_empty(&node->link)) { 375 if (!cache.priolist) 376 cache.priolist = 377 i915_sched_lookup_priolist(engine, 378 prio); 379 list_move_tail(&node->link, cache.priolist); 380 } else { 381 /* 382 * If the request is not in the priolist queue because 383 * it is not yet runnable, then it doesn't contribute 384 * to our preemption decisions. On the other hand, 385 * if the request is on the HW, it too is not in the 386 * queue; but in that case we may still need to reorder 387 * the inflight requests. 388 */ 389 if (!i915_sw_fence_done(&node_to_request(node)->submit)) 390 continue; 391 } 392 393 if (prio <= engine->execlists.queue_priority_hint) 394 continue; 395 396 engine->execlists.queue_priority_hint = prio; 397 398 /* 399 * If we are already the currently executing context, don't 400 * bother evaluating if we should preempt ourselves. 401 */ 402 if (inflight(node_to_request(node), engine)) 403 continue; 404 405 /* Defer (tasklet) submission until after all of our updates. */ 406 tasklet_hi_schedule(&engine->execlists.tasklet); 407 } 408 409 spin_unlock_irq(&engine->timeline.lock); 410 } 411 412 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) 413 { 414 spin_lock(&schedule_lock); 415 __i915_schedule(rq, attr); 416 spin_unlock(&schedule_lock); 417 } 418 419 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump) 420 { 421 struct i915_sched_attr attr; 422 423 GEM_BUG_ON(bump & ~I915_PRIORITY_MASK); 424 425 if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID) 426 return; 427 428 spin_lock_bh(&schedule_lock); 429 430 attr = rq->sched.attr; 431 attr.priority |= bump; 432 __i915_schedule(rq, &attr); 433 434 spin_unlock_bh(&schedule_lock); 435 } 436 437 void __i915_priolist_free(struct i915_priolist *p) 438 { 439 kmem_cache_free(global.slab_priorities, p); 440 } 441 442 static void i915_global_scheduler_shrink(void) 443 { 444 kmem_cache_shrink(global.slab_dependencies); 445 kmem_cache_shrink(global.slab_priorities); 446 } 447 448 static void i915_global_scheduler_exit(void) 449 { 450 kmem_cache_destroy(global.slab_dependencies); 451 kmem_cache_destroy(global.slab_priorities); 452 } 453 454 static struct i915_global_scheduler global = { { 455 .shrink = i915_global_scheduler_shrink, 456 .exit = i915_global_scheduler_exit, 457 } }; 458 459 int __init i915_global_scheduler_init(void) 460 { 461 global.slab_dependencies = KMEM_CACHE(i915_dependency, 462 SLAB_HWCACHE_ALIGN); 463 if (!global.slab_dependencies) 464 return -ENOMEM; 465 466 global.slab_priorities = KMEM_CACHE(i915_priolist, 467 SLAB_HWCACHE_ALIGN); 468 if (!global.slab_priorities) 469 goto err_priorities; 470 471 i915_global_register(&global.base); 472 return 0; 473 474 err_priorities: 475 kmem_cache_destroy(global.slab_priorities); 476 return -ENOMEM; 477 } 478