1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2018 Intel Corporation 5 */ 6 7 #include <linux/mutex.h> 8 9 #include "i915_drv.h" 10 #include "i915_globals.h" 11 #include "i915_request.h" 12 #include "i915_scheduler.h" 13 14 static struct i915_global_scheduler { 15 struct i915_global base; 16 struct kmem_cache *slab_dependencies; 17 struct kmem_cache *slab_priorities; 18 } global; 19 20 static DEFINE_SPINLOCK(schedule_lock); 21 22 static const struct i915_request * 23 node_to_request(const struct i915_sched_node *node) 24 { 25 return container_of(node, const struct i915_request, sched); 26 } 27 28 static inline bool node_started(const struct i915_sched_node *node) 29 { 30 return i915_request_started(node_to_request(node)); 31 } 32 33 static inline bool node_signaled(const struct i915_sched_node *node) 34 { 35 return i915_request_completed(node_to_request(node)); 36 } 37 38 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 39 { 40 return rb_entry(rb, struct i915_priolist, node); 41 } 42 43 static void assert_priolists(struct intel_engine_execlists * const execlists) 44 { 45 struct rb_node *rb; 46 long last_prio, i; 47 48 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 49 return; 50 51 GEM_BUG_ON(rb_first_cached(&execlists->queue) != 52 rb_first(&execlists->queue.rb_root)); 53 54 last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1; 55 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 56 const struct i915_priolist *p = to_priolist(rb); 57 58 GEM_BUG_ON(p->priority >= last_prio); 59 last_prio = p->priority; 60 61 GEM_BUG_ON(!p->used); 62 for (i = 0; i < ARRAY_SIZE(p->requests); i++) { 63 if (list_empty(&p->requests[i])) 64 continue; 65 66 GEM_BUG_ON(!(p->used & BIT(i))); 67 } 68 } 69 } 70 71 struct list_head * 72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) 73 { 74 struct intel_engine_execlists * const execlists = &engine->execlists; 75 struct i915_priolist *p; 76 struct rb_node **parent, *rb; 77 bool first = true; 78 int idx, i; 79 80 lockdep_assert_held(&engine->active.lock); 81 assert_priolists(execlists); 82 83 /* buckets sorted from highest [in slot 0] to lowest priority */ 84 idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1; 85 prio >>= I915_USER_PRIORITY_SHIFT; 86 if (unlikely(execlists->no_priolist)) 87 prio = I915_PRIORITY_NORMAL; 88 89 find_priolist: 90 /* most positive priority is scheduled first, equal priorities fifo */ 91 rb = NULL; 92 parent = &execlists->queue.rb_root.rb_node; 93 while (*parent) { 94 rb = *parent; 95 p = to_priolist(rb); 96 if (prio > p->priority) { 97 parent = &rb->rb_left; 98 } else if (prio < p->priority) { 99 parent = &rb->rb_right; 100 first = false; 101 } else { 102 goto out; 103 } 104 } 105 106 if (prio == I915_PRIORITY_NORMAL) { 107 p = &execlists->default_priolist; 108 } else { 109 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); 110 /* Convert an allocation failure to a priority bump */ 111 if (unlikely(!p)) { 112 prio = I915_PRIORITY_NORMAL; /* recurses just once */ 113 114 /* To maintain ordering with all rendering, after an 115 * allocation failure we have to disable all scheduling. 116 * Requests will then be executed in fifo, and schedule 117 * will ensure that dependencies are emitted in fifo. 118 * There will be still some reordering with existing 119 * requests, so if userspace lied about their 120 * dependencies that reordering may be visible. 121 */ 122 execlists->no_priolist = true; 123 goto find_priolist; 124 } 125 } 126 127 p->priority = prio; 128 for (i = 0; i < ARRAY_SIZE(p->requests); i++) 129 INIT_LIST_HEAD(&p->requests[i]); 130 rb_link_node(&p->node, rb, parent); 131 rb_insert_color_cached(&p->node, &execlists->queue, first); 132 p->used = 0; 133 134 out: 135 p->used |= BIT(idx); 136 return &p->requests[idx]; 137 } 138 139 void __i915_priolist_free(struct i915_priolist *p) 140 { 141 kmem_cache_free(global.slab_priorities, p); 142 } 143 144 struct sched_cache { 145 struct list_head *priolist; 146 }; 147 148 static struct intel_engine_cs * 149 sched_lock_engine(const struct i915_sched_node *node, 150 struct intel_engine_cs *locked, 151 struct sched_cache *cache) 152 { 153 const struct i915_request *rq = node_to_request(node); 154 struct intel_engine_cs *engine; 155 156 GEM_BUG_ON(!locked); 157 158 /* 159 * Virtual engines complicate acquiring the engine timeline lock, 160 * as their rq->engine pointer is not stable until under that 161 * engine lock. The simple ploy we use is to take the lock then 162 * check that the rq still belongs to the newly locked engine. 163 */ 164 while (locked != (engine = READ_ONCE(rq->engine))) { 165 spin_unlock(&locked->active.lock); 166 memset(cache, 0, sizeof(*cache)); 167 spin_lock(&engine->active.lock); 168 locked = engine; 169 } 170 171 GEM_BUG_ON(locked != engine); 172 return locked; 173 } 174 175 static inline int rq_prio(const struct i915_request *rq) 176 { 177 return rq->sched.attr.priority | __NO_PREEMPTION; 178 } 179 180 static void kick_submission(struct intel_engine_cs *engine, int prio) 181 { 182 const struct i915_request *inflight = *engine->execlists.active; 183 184 /* 185 * If we are already the currently executing context, don't 186 * bother evaluating if we should preempt ourselves, or if 187 * we expect nothing to change as a result of running the 188 * tasklet, i.e. we have not change the priority queue 189 * sufficiently to oust the running context. 190 */ 191 if (!inflight || !i915_scheduler_need_preempt(prio, rq_prio(inflight))) 192 return; 193 194 tasklet_hi_schedule(&engine->execlists.tasklet); 195 } 196 197 static void __i915_schedule(struct i915_sched_node *node, 198 const struct i915_sched_attr *attr) 199 { 200 struct intel_engine_cs *engine; 201 struct i915_dependency *dep, *p; 202 struct i915_dependency stack; 203 const int prio = attr->priority; 204 struct sched_cache cache; 205 LIST_HEAD(dfs); 206 207 /* Needed in order to use the temporary link inside i915_dependency */ 208 lockdep_assert_held(&schedule_lock); 209 GEM_BUG_ON(prio == I915_PRIORITY_INVALID); 210 211 if (prio <= READ_ONCE(node->attr.priority)) 212 return; 213 214 if (node_signaled(node)) 215 return; 216 217 stack.signaler = node; 218 list_add(&stack.dfs_link, &dfs); 219 220 /* 221 * Recursively bump all dependent priorities to match the new request. 222 * 223 * A naive approach would be to use recursion: 224 * static void update_priorities(struct i915_sched_node *node, prio) { 225 * list_for_each_entry(dep, &node->signalers_list, signal_link) 226 * update_priorities(dep->signal, prio) 227 * queue_request(node); 228 * } 229 * but that may have unlimited recursion depth and so runs a very 230 * real risk of overunning the kernel stack. Instead, we build 231 * a flat list of all dependencies starting with the current request. 232 * As we walk the list of dependencies, we add all of its dependencies 233 * to the end of the list (this may include an already visited 234 * request) and continue to walk onwards onto the new dependencies. The 235 * end result is a topological list of requests in reverse order, the 236 * last element in the list is the request we must execute first. 237 */ 238 list_for_each_entry(dep, &dfs, dfs_link) { 239 struct i915_sched_node *node = dep->signaler; 240 241 /* If we are already flying, we know we have no signalers */ 242 if (node_started(node)) 243 continue; 244 245 /* 246 * Within an engine, there can be no cycle, but we may 247 * refer to the same dependency chain multiple times 248 * (redundant dependencies are not eliminated) and across 249 * engines. 250 */ 251 list_for_each_entry(p, &node->signalers_list, signal_link) { 252 GEM_BUG_ON(p == dep); /* no cycles! */ 253 254 if (node_signaled(p->signaler)) 255 continue; 256 257 if (prio > READ_ONCE(p->signaler->attr.priority)) 258 list_move_tail(&p->dfs_link, &dfs); 259 } 260 } 261 262 /* 263 * If we didn't need to bump any existing priorities, and we haven't 264 * yet submitted this request (i.e. there is no potential race with 265 * execlists_submit_request()), we can set our own priority and skip 266 * acquiring the engine locks. 267 */ 268 if (node->attr.priority == I915_PRIORITY_INVALID) { 269 GEM_BUG_ON(!list_empty(&node->link)); 270 node->attr = *attr; 271 272 if (stack.dfs_link.next == stack.dfs_link.prev) 273 return; 274 275 __list_del_entry(&stack.dfs_link); 276 } 277 278 memset(&cache, 0, sizeof(cache)); 279 engine = node_to_request(node)->engine; 280 spin_lock(&engine->active.lock); 281 282 /* Fifo and depth-first replacement ensure our deps execute before us */ 283 engine = sched_lock_engine(node, engine, &cache); 284 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { 285 INIT_LIST_HEAD(&dep->dfs_link); 286 287 node = dep->signaler; 288 engine = sched_lock_engine(node, engine, &cache); 289 lockdep_assert_held(&engine->active.lock); 290 291 /* Recheck after acquiring the engine->timeline.lock */ 292 if (prio <= node->attr.priority || node_signaled(node)) 293 continue; 294 295 GEM_BUG_ON(node_to_request(node)->engine != engine); 296 297 node->attr.priority = prio; 298 299 if (list_empty(&node->link)) { 300 /* 301 * If the request is not in the priolist queue because 302 * it is not yet runnable, then it doesn't contribute 303 * to our preemption decisions. On the other hand, 304 * if the request is on the HW, it too is not in the 305 * queue; but in that case we may still need to reorder 306 * the inflight requests. 307 */ 308 continue; 309 } 310 311 if (!intel_engine_is_virtual(engine) && 312 !i915_request_is_active(node_to_request(node))) { 313 if (!cache.priolist) 314 cache.priolist = 315 i915_sched_lookup_priolist(engine, 316 prio); 317 list_move_tail(&node->link, cache.priolist); 318 } 319 320 if (prio <= engine->execlists.queue_priority_hint) 321 continue; 322 323 engine->execlists.queue_priority_hint = prio; 324 325 /* Defer (tasklet) submission until after all of our updates. */ 326 kick_submission(engine, prio); 327 } 328 329 spin_unlock(&engine->active.lock); 330 } 331 332 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) 333 { 334 spin_lock_irq(&schedule_lock); 335 __i915_schedule(&rq->sched, attr); 336 spin_unlock_irq(&schedule_lock); 337 } 338 339 static void __bump_priority(struct i915_sched_node *node, unsigned int bump) 340 { 341 struct i915_sched_attr attr = node->attr; 342 343 attr.priority |= bump; 344 __i915_schedule(node, &attr); 345 } 346 347 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump) 348 { 349 unsigned long flags; 350 351 GEM_BUG_ON(bump & ~I915_PRIORITY_MASK); 352 if (READ_ONCE(rq->sched.attr.priority) & bump) 353 return; 354 355 spin_lock_irqsave(&schedule_lock, flags); 356 __bump_priority(&rq->sched, bump); 357 spin_unlock_irqrestore(&schedule_lock, flags); 358 } 359 360 void i915_sched_node_init(struct i915_sched_node *node) 361 { 362 INIT_LIST_HEAD(&node->signalers_list); 363 INIT_LIST_HEAD(&node->waiters_list); 364 INIT_LIST_HEAD(&node->link); 365 node->attr.priority = I915_PRIORITY_INVALID; 366 node->semaphores = 0; 367 node->flags = 0; 368 } 369 370 static struct i915_dependency * 371 i915_dependency_alloc(void) 372 { 373 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); 374 } 375 376 static void 377 i915_dependency_free(struct i915_dependency *dep) 378 { 379 kmem_cache_free(global.slab_dependencies, dep); 380 } 381 382 bool __i915_sched_node_add_dependency(struct i915_sched_node *node, 383 struct i915_sched_node *signal, 384 struct i915_dependency *dep, 385 unsigned long flags) 386 { 387 bool ret = false; 388 389 spin_lock_irq(&schedule_lock); 390 391 if (!node_signaled(signal)) { 392 INIT_LIST_HEAD(&dep->dfs_link); 393 list_add(&dep->wait_link, &signal->waiters_list); 394 list_add(&dep->signal_link, &node->signalers_list); 395 dep->signaler = signal; 396 dep->waiter = node; 397 dep->flags = flags; 398 399 /* Keep track of whether anyone on this chain has a semaphore */ 400 if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN && 401 !node_started(signal)) 402 node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 403 404 /* 405 * As we do not allow WAIT to preempt inflight requests, 406 * once we have executed a request, along with triggering 407 * any execution callbacks, we must preserve its ordering 408 * within the non-preemptible FIFO. 409 */ 410 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); 411 if (flags & I915_DEPENDENCY_EXTERNAL) 412 __bump_priority(signal, __NO_PREEMPTION); 413 414 ret = true; 415 } 416 417 spin_unlock_irq(&schedule_lock); 418 419 return ret; 420 } 421 422 int i915_sched_node_add_dependency(struct i915_sched_node *node, 423 struct i915_sched_node *signal) 424 { 425 struct i915_dependency *dep; 426 427 dep = i915_dependency_alloc(); 428 if (!dep) 429 return -ENOMEM; 430 431 if (!__i915_sched_node_add_dependency(node, signal, dep, 432 I915_DEPENDENCY_EXTERNAL | 433 I915_DEPENDENCY_ALLOC)) 434 i915_dependency_free(dep); 435 436 return 0; 437 } 438 439 void i915_sched_node_fini(struct i915_sched_node *node) 440 { 441 struct i915_dependency *dep, *tmp; 442 443 spin_lock_irq(&schedule_lock); 444 445 /* 446 * Everyone we depended upon (the fences we wait to be signaled) 447 * should retire before us and remove themselves from our list. 448 * However, retirement is run independently on each timeline and 449 * so we may be called out-of-order. 450 */ 451 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { 452 GEM_BUG_ON(!node_signaled(dep->signaler)); 453 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 454 455 list_del(&dep->wait_link); 456 if (dep->flags & I915_DEPENDENCY_ALLOC) 457 i915_dependency_free(dep); 458 } 459 460 /* Remove ourselves from everyone who depends upon us */ 461 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { 462 GEM_BUG_ON(dep->signaler != node); 463 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 464 465 list_del(&dep->signal_link); 466 if (dep->flags & I915_DEPENDENCY_ALLOC) 467 i915_dependency_free(dep); 468 } 469 470 spin_unlock_irq(&schedule_lock); 471 } 472 473 static void i915_global_scheduler_shrink(void) 474 { 475 kmem_cache_shrink(global.slab_dependencies); 476 kmem_cache_shrink(global.slab_priorities); 477 } 478 479 static void i915_global_scheduler_exit(void) 480 { 481 kmem_cache_destroy(global.slab_dependencies); 482 kmem_cache_destroy(global.slab_priorities); 483 } 484 485 static struct i915_global_scheduler global = { { 486 .shrink = i915_global_scheduler_shrink, 487 .exit = i915_global_scheduler_exit, 488 } }; 489 490 int __init i915_global_scheduler_init(void) 491 { 492 global.slab_dependencies = KMEM_CACHE(i915_dependency, 493 SLAB_HWCACHE_ALIGN); 494 if (!global.slab_dependencies) 495 return -ENOMEM; 496 497 global.slab_priorities = KMEM_CACHE(i915_priolist, 498 SLAB_HWCACHE_ALIGN); 499 if (!global.slab_priorities) 500 goto err_priorities; 501 502 i915_global_register(&global.base); 503 return 0; 504 505 err_priorities: 506 kmem_cache_destroy(global.slab_priorities); 507 return -ENOMEM; 508 } 509