1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2018 Intel Corporation 5 */ 6 7 #include <linux/mutex.h> 8 9 #include "i915_drv.h" 10 #include "i915_globals.h" 11 #include "i915_request.h" 12 #include "i915_scheduler.h" 13 14 static struct i915_global_scheduler { 15 struct i915_global base; 16 struct kmem_cache *slab_dependencies; 17 struct kmem_cache *slab_priorities; 18 } global; 19 20 static DEFINE_SPINLOCK(schedule_lock); 21 22 static const struct i915_request * 23 node_to_request(const struct i915_sched_node *node) 24 { 25 return container_of(node, const struct i915_request, sched); 26 } 27 28 static inline bool node_started(const struct i915_sched_node *node) 29 { 30 return i915_request_started(node_to_request(node)); 31 } 32 33 static inline bool node_signaled(const struct i915_sched_node *node) 34 { 35 return i915_request_completed(node_to_request(node)); 36 } 37 38 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 39 { 40 return rb_entry(rb, struct i915_priolist, node); 41 } 42 43 static void assert_priolists(struct intel_engine_execlists * const execlists) 44 { 45 struct rb_node *rb; 46 long last_prio, i; 47 48 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 49 return; 50 51 GEM_BUG_ON(rb_first_cached(&execlists->queue) != 52 rb_first(&execlists->queue.rb_root)); 53 54 last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1; 55 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 56 const struct i915_priolist *p = to_priolist(rb); 57 58 GEM_BUG_ON(p->priority >= last_prio); 59 last_prio = p->priority; 60 61 GEM_BUG_ON(!p->used); 62 for (i = 0; i < ARRAY_SIZE(p->requests); i++) { 63 if (list_empty(&p->requests[i])) 64 continue; 65 66 GEM_BUG_ON(!(p->used & BIT(i))); 67 } 68 } 69 } 70 71 struct list_head * 72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) 73 { 74 struct intel_engine_execlists * const execlists = &engine->execlists; 75 struct i915_priolist *p; 76 struct rb_node **parent, *rb; 77 bool first = true; 78 int idx, i; 79 80 lockdep_assert_held(&engine->active.lock); 81 assert_priolists(execlists); 82 83 /* buckets sorted from highest [in slot 0] to lowest priority */ 84 idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1; 85 prio >>= I915_USER_PRIORITY_SHIFT; 86 if (unlikely(execlists->no_priolist)) 87 prio = I915_PRIORITY_NORMAL; 88 89 find_priolist: 90 /* most positive priority is scheduled first, equal priorities fifo */ 91 rb = NULL; 92 parent = &execlists->queue.rb_root.rb_node; 93 while (*parent) { 94 rb = *parent; 95 p = to_priolist(rb); 96 if (prio > p->priority) { 97 parent = &rb->rb_left; 98 } else if (prio < p->priority) { 99 parent = &rb->rb_right; 100 first = false; 101 } else { 102 goto out; 103 } 104 } 105 106 if (prio == I915_PRIORITY_NORMAL) { 107 p = &execlists->default_priolist; 108 } else { 109 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); 110 /* Convert an allocation failure to a priority bump */ 111 if (unlikely(!p)) { 112 prio = I915_PRIORITY_NORMAL; /* recurses just once */ 113 114 /* To maintain ordering with all rendering, after an 115 * allocation failure we have to disable all scheduling. 116 * Requests will then be executed in fifo, and schedule 117 * will ensure that dependencies are emitted in fifo. 118 * There will be still some reordering with existing 119 * requests, so if userspace lied about their 120 * dependencies that reordering may be visible. 121 */ 122 execlists->no_priolist = true; 123 goto find_priolist; 124 } 125 } 126 127 p->priority = prio; 128 for (i = 0; i < ARRAY_SIZE(p->requests); i++) 129 INIT_LIST_HEAD(&p->requests[i]); 130 rb_link_node(&p->node, rb, parent); 131 rb_insert_color_cached(&p->node, &execlists->queue, first); 132 p->used = 0; 133 134 out: 135 p->used |= BIT(idx); 136 return &p->requests[idx]; 137 } 138 139 void __i915_priolist_free(struct i915_priolist *p) 140 { 141 kmem_cache_free(global.slab_priorities, p); 142 } 143 144 struct sched_cache { 145 struct list_head *priolist; 146 }; 147 148 static struct intel_engine_cs * 149 sched_lock_engine(const struct i915_sched_node *node, 150 struct intel_engine_cs *locked, 151 struct sched_cache *cache) 152 { 153 const struct i915_request *rq = node_to_request(node); 154 struct intel_engine_cs *engine; 155 156 GEM_BUG_ON(!locked); 157 158 /* 159 * Virtual engines complicate acquiring the engine timeline lock, 160 * as their rq->engine pointer is not stable until under that 161 * engine lock. The simple ploy we use is to take the lock then 162 * check that the rq still belongs to the newly locked engine. 163 */ 164 while (locked != (engine = READ_ONCE(rq->engine))) { 165 spin_unlock(&locked->active.lock); 166 memset(cache, 0, sizeof(*cache)); 167 spin_lock(&engine->active.lock); 168 locked = engine; 169 } 170 171 GEM_BUG_ON(locked != engine); 172 return locked; 173 } 174 175 static inline int rq_prio(const struct i915_request *rq) 176 { 177 return rq->sched.attr.priority | __NO_PREEMPTION; 178 } 179 180 static void kick_submission(struct intel_engine_cs *engine, int prio) 181 { 182 const struct i915_request *inflight = 183 port_request(engine->execlists.port); 184 185 /* 186 * If we are already the currently executing context, don't 187 * bother evaluating if we should preempt ourselves, or if 188 * we expect nothing to change as a result of running the 189 * tasklet, i.e. we have not change the priority queue 190 * sufficiently to oust the running context. 191 */ 192 if (!inflight || !i915_scheduler_need_preempt(prio, rq_prio(inflight))) 193 return; 194 195 tasklet_hi_schedule(&engine->execlists.tasklet); 196 } 197 198 static void __i915_schedule(struct i915_sched_node *node, 199 const struct i915_sched_attr *attr) 200 { 201 struct intel_engine_cs *engine; 202 struct i915_dependency *dep, *p; 203 struct i915_dependency stack; 204 const int prio = attr->priority; 205 struct sched_cache cache; 206 LIST_HEAD(dfs); 207 208 /* Needed in order to use the temporary link inside i915_dependency */ 209 lockdep_assert_held(&schedule_lock); 210 GEM_BUG_ON(prio == I915_PRIORITY_INVALID); 211 212 if (prio <= READ_ONCE(node->attr.priority)) 213 return; 214 215 if (node_signaled(node)) 216 return; 217 218 stack.signaler = node; 219 list_add(&stack.dfs_link, &dfs); 220 221 /* 222 * Recursively bump all dependent priorities to match the new request. 223 * 224 * A naive approach would be to use recursion: 225 * static void update_priorities(struct i915_sched_node *node, prio) { 226 * list_for_each_entry(dep, &node->signalers_list, signal_link) 227 * update_priorities(dep->signal, prio) 228 * queue_request(node); 229 * } 230 * but that may have unlimited recursion depth and so runs a very 231 * real risk of overunning the kernel stack. Instead, we build 232 * a flat list of all dependencies starting with the current request. 233 * As we walk the list of dependencies, we add all of its dependencies 234 * to the end of the list (this may include an already visited 235 * request) and continue to walk onwards onto the new dependencies. The 236 * end result is a topological list of requests in reverse order, the 237 * last element in the list is the request we must execute first. 238 */ 239 list_for_each_entry(dep, &dfs, dfs_link) { 240 struct i915_sched_node *node = dep->signaler; 241 242 /* If we are already flying, we know we have no signalers */ 243 if (node_started(node)) 244 continue; 245 246 /* 247 * Within an engine, there can be no cycle, but we may 248 * refer to the same dependency chain multiple times 249 * (redundant dependencies are not eliminated) and across 250 * engines. 251 */ 252 list_for_each_entry(p, &node->signalers_list, signal_link) { 253 GEM_BUG_ON(p == dep); /* no cycles! */ 254 255 if (node_signaled(p->signaler)) 256 continue; 257 258 if (prio > READ_ONCE(p->signaler->attr.priority)) 259 list_move_tail(&p->dfs_link, &dfs); 260 } 261 } 262 263 /* 264 * If we didn't need to bump any existing priorities, and we haven't 265 * yet submitted this request (i.e. there is no potential race with 266 * execlists_submit_request()), we can set our own priority and skip 267 * acquiring the engine locks. 268 */ 269 if (node->attr.priority == I915_PRIORITY_INVALID) { 270 GEM_BUG_ON(!list_empty(&node->link)); 271 node->attr = *attr; 272 273 if (stack.dfs_link.next == stack.dfs_link.prev) 274 return; 275 276 __list_del_entry(&stack.dfs_link); 277 } 278 279 memset(&cache, 0, sizeof(cache)); 280 engine = node_to_request(node)->engine; 281 spin_lock(&engine->active.lock); 282 283 /* Fifo and depth-first replacement ensure our deps execute before us */ 284 engine = sched_lock_engine(node, engine, &cache); 285 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { 286 INIT_LIST_HEAD(&dep->dfs_link); 287 288 node = dep->signaler; 289 engine = sched_lock_engine(node, engine, &cache); 290 lockdep_assert_held(&engine->active.lock); 291 292 /* Recheck after acquiring the engine->timeline.lock */ 293 if (prio <= node->attr.priority || node_signaled(node)) 294 continue; 295 296 GEM_BUG_ON(node_to_request(node)->engine != engine); 297 298 node->attr.priority = prio; 299 300 if (list_empty(&node->link)) { 301 /* 302 * If the request is not in the priolist queue because 303 * it is not yet runnable, then it doesn't contribute 304 * to our preemption decisions. On the other hand, 305 * if the request is on the HW, it too is not in the 306 * queue; but in that case we may still need to reorder 307 * the inflight requests. 308 */ 309 continue; 310 } 311 312 if (!intel_engine_is_virtual(engine) && 313 !i915_request_is_active(node_to_request(node))) { 314 if (!cache.priolist) 315 cache.priolist = 316 i915_sched_lookup_priolist(engine, 317 prio); 318 list_move_tail(&node->link, cache.priolist); 319 } 320 321 if (prio <= engine->execlists.queue_priority_hint) 322 continue; 323 324 engine->execlists.queue_priority_hint = prio; 325 326 /* Defer (tasklet) submission until after all of our updates. */ 327 kick_submission(engine, prio); 328 } 329 330 spin_unlock(&engine->active.lock); 331 } 332 333 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) 334 { 335 spin_lock_irq(&schedule_lock); 336 __i915_schedule(&rq->sched, attr); 337 spin_unlock_irq(&schedule_lock); 338 } 339 340 static void __bump_priority(struct i915_sched_node *node, unsigned int bump) 341 { 342 struct i915_sched_attr attr = node->attr; 343 344 attr.priority |= bump; 345 __i915_schedule(node, &attr); 346 } 347 348 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump) 349 { 350 unsigned long flags; 351 352 GEM_BUG_ON(bump & ~I915_PRIORITY_MASK); 353 354 if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID) 355 return; 356 357 spin_lock_irqsave(&schedule_lock, flags); 358 __bump_priority(&rq->sched, bump); 359 spin_unlock_irqrestore(&schedule_lock, flags); 360 } 361 362 void i915_sched_node_init(struct i915_sched_node *node) 363 { 364 INIT_LIST_HEAD(&node->signalers_list); 365 INIT_LIST_HEAD(&node->waiters_list); 366 INIT_LIST_HEAD(&node->link); 367 node->attr.priority = I915_PRIORITY_INVALID; 368 node->semaphores = 0; 369 node->flags = 0; 370 } 371 372 static struct i915_dependency * 373 i915_dependency_alloc(void) 374 { 375 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); 376 } 377 378 static void 379 i915_dependency_free(struct i915_dependency *dep) 380 { 381 kmem_cache_free(global.slab_dependencies, dep); 382 } 383 384 bool __i915_sched_node_add_dependency(struct i915_sched_node *node, 385 struct i915_sched_node *signal, 386 struct i915_dependency *dep, 387 unsigned long flags) 388 { 389 bool ret = false; 390 391 spin_lock_irq(&schedule_lock); 392 393 if (!node_signaled(signal)) { 394 INIT_LIST_HEAD(&dep->dfs_link); 395 list_add(&dep->wait_link, &signal->waiters_list); 396 list_add(&dep->signal_link, &node->signalers_list); 397 dep->signaler = signal; 398 dep->flags = flags; 399 400 /* Keep track of whether anyone on this chain has a semaphore */ 401 if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN && 402 !node_started(signal)) 403 node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 404 405 /* 406 * As we do not allow WAIT to preempt inflight requests, 407 * once we have executed a request, along with triggering 408 * any execution callbacks, we must preserve its ordering 409 * within the non-preemptible FIFO. 410 */ 411 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); 412 if (flags & I915_DEPENDENCY_EXTERNAL) 413 __bump_priority(signal, __NO_PREEMPTION); 414 415 ret = true; 416 } 417 418 spin_unlock_irq(&schedule_lock); 419 420 return ret; 421 } 422 423 int i915_sched_node_add_dependency(struct i915_sched_node *node, 424 struct i915_sched_node *signal) 425 { 426 struct i915_dependency *dep; 427 428 dep = i915_dependency_alloc(); 429 if (!dep) 430 return -ENOMEM; 431 432 if (!__i915_sched_node_add_dependency(node, signal, dep, 433 I915_DEPENDENCY_EXTERNAL | 434 I915_DEPENDENCY_ALLOC)) 435 i915_dependency_free(dep); 436 437 return 0; 438 } 439 440 void i915_sched_node_fini(struct i915_sched_node *node) 441 { 442 struct i915_dependency *dep, *tmp; 443 444 spin_lock_irq(&schedule_lock); 445 446 /* 447 * Everyone we depended upon (the fences we wait to be signaled) 448 * should retire before us and remove themselves from our list. 449 * However, retirement is run independently on each timeline and 450 * so we may be called out-of-order. 451 */ 452 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { 453 GEM_BUG_ON(!node_signaled(dep->signaler)); 454 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 455 456 list_del(&dep->wait_link); 457 if (dep->flags & I915_DEPENDENCY_ALLOC) 458 i915_dependency_free(dep); 459 } 460 461 /* Remove ourselves from everyone who depends upon us */ 462 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { 463 GEM_BUG_ON(dep->signaler != node); 464 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 465 466 list_del(&dep->signal_link); 467 if (dep->flags & I915_DEPENDENCY_ALLOC) 468 i915_dependency_free(dep); 469 } 470 471 spin_unlock_irq(&schedule_lock); 472 } 473 474 static void i915_global_scheduler_shrink(void) 475 { 476 kmem_cache_shrink(global.slab_dependencies); 477 kmem_cache_shrink(global.slab_priorities); 478 } 479 480 static void i915_global_scheduler_exit(void) 481 { 482 kmem_cache_destroy(global.slab_dependencies); 483 kmem_cache_destroy(global.slab_priorities); 484 } 485 486 static struct i915_global_scheduler global = { { 487 .shrink = i915_global_scheduler_shrink, 488 .exit = i915_global_scheduler_exit, 489 } }; 490 491 int __init i915_global_scheduler_init(void) 492 { 493 global.slab_dependencies = KMEM_CACHE(i915_dependency, 494 SLAB_HWCACHE_ALIGN); 495 if (!global.slab_dependencies) 496 return -ENOMEM; 497 498 global.slab_priorities = KMEM_CACHE(i915_priolist, 499 SLAB_HWCACHE_ALIGN); 500 if (!global.slab_priorities) 501 goto err_priorities; 502 503 i915_global_register(&global.base); 504 return 0; 505 506 err_priorities: 507 kmem_cache_destroy(global.slab_priorities); 508 return -ENOMEM; 509 } 510