1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2018 Intel Corporation
5  */
6 
7 #include <linux/mutex.h>
8 
9 #include "i915_drv.h"
10 #include "i915_globals.h"
11 #include "i915_request.h"
12 #include "i915_scheduler.h"
13 
14 static struct i915_global_scheduler {
15 	struct i915_global base;
16 	struct kmem_cache *slab_dependencies;
17 	struct kmem_cache *slab_priorities;
18 } global;
19 
20 static DEFINE_SPINLOCK(schedule_lock);
21 
22 static const struct i915_request *
23 node_to_request(const struct i915_sched_node *node)
24 {
25 	return container_of(node, const struct i915_request, sched);
26 }
27 
28 static inline bool node_started(const struct i915_sched_node *node)
29 {
30 	return i915_request_started(node_to_request(node));
31 }
32 
33 static inline bool node_signaled(const struct i915_sched_node *node)
34 {
35 	return i915_request_completed(node_to_request(node));
36 }
37 
38 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
39 {
40 	return rb_entry(rb, struct i915_priolist, node);
41 }
42 
43 static void assert_priolists(struct intel_engine_execlists * const execlists)
44 {
45 	struct rb_node *rb;
46 	long last_prio, i;
47 
48 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
49 		return;
50 
51 	GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
52 		   rb_first(&execlists->queue.rb_root));
53 
54 	last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
55 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
56 		const struct i915_priolist *p = to_priolist(rb);
57 
58 		GEM_BUG_ON(p->priority >= last_prio);
59 		last_prio = p->priority;
60 
61 		GEM_BUG_ON(!p->used);
62 		for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
63 			if (list_empty(&p->requests[i]))
64 				continue;
65 
66 			GEM_BUG_ON(!(p->used & BIT(i)));
67 		}
68 	}
69 }
70 
71 struct list_head *
72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
73 {
74 	struct intel_engine_execlists * const execlists = &engine->execlists;
75 	struct i915_priolist *p;
76 	struct rb_node **parent, *rb;
77 	bool first = true;
78 	int idx, i;
79 
80 	lockdep_assert_held(&engine->active.lock);
81 	assert_priolists(execlists);
82 
83 	/* buckets sorted from highest [in slot 0] to lowest priority */
84 	idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
85 	prio >>= I915_USER_PRIORITY_SHIFT;
86 	if (unlikely(execlists->no_priolist))
87 		prio = I915_PRIORITY_NORMAL;
88 
89 find_priolist:
90 	/* most positive priority is scheduled first, equal priorities fifo */
91 	rb = NULL;
92 	parent = &execlists->queue.rb_root.rb_node;
93 	while (*parent) {
94 		rb = *parent;
95 		p = to_priolist(rb);
96 		if (prio > p->priority) {
97 			parent = &rb->rb_left;
98 		} else if (prio < p->priority) {
99 			parent = &rb->rb_right;
100 			first = false;
101 		} else {
102 			goto out;
103 		}
104 	}
105 
106 	if (prio == I915_PRIORITY_NORMAL) {
107 		p = &execlists->default_priolist;
108 	} else {
109 		p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
110 		/* Convert an allocation failure to a priority bump */
111 		if (unlikely(!p)) {
112 			prio = I915_PRIORITY_NORMAL; /* recurses just once */
113 
114 			/* To maintain ordering with all rendering, after an
115 			 * allocation failure we have to disable all scheduling.
116 			 * Requests will then be executed in fifo, and schedule
117 			 * will ensure that dependencies are emitted in fifo.
118 			 * There will be still some reordering with existing
119 			 * requests, so if userspace lied about their
120 			 * dependencies that reordering may be visible.
121 			 */
122 			execlists->no_priolist = true;
123 			goto find_priolist;
124 		}
125 	}
126 
127 	p->priority = prio;
128 	for (i = 0; i < ARRAY_SIZE(p->requests); i++)
129 		INIT_LIST_HEAD(&p->requests[i]);
130 	rb_link_node(&p->node, rb, parent);
131 	rb_insert_color_cached(&p->node, &execlists->queue, first);
132 	p->used = 0;
133 
134 out:
135 	p->used |= BIT(idx);
136 	return &p->requests[idx];
137 }
138 
139 void __i915_priolist_free(struct i915_priolist *p)
140 {
141 	kmem_cache_free(global.slab_priorities, p);
142 }
143 
144 struct sched_cache {
145 	struct list_head *priolist;
146 };
147 
148 static struct intel_engine_cs *
149 sched_lock_engine(const struct i915_sched_node *node,
150 		  struct intel_engine_cs *locked,
151 		  struct sched_cache *cache)
152 {
153 	const struct i915_request *rq = node_to_request(node);
154 	struct intel_engine_cs *engine;
155 
156 	GEM_BUG_ON(!locked);
157 
158 	/*
159 	 * Virtual engines complicate acquiring the engine timeline lock,
160 	 * as their rq->engine pointer is not stable until under that
161 	 * engine lock. The simple ploy we use is to take the lock then
162 	 * check that the rq still belongs to the newly locked engine.
163 	 */
164 	while (locked != (engine = READ_ONCE(rq->engine))) {
165 		spin_unlock(&locked->active.lock);
166 		memset(cache, 0, sizeof(*cache));
167 		spin_lock(&engine->active.lock);
168 		locked = engine;
169 	}
170 
171 	GEM_BUG_ON(locked != engine);
172 	return locked;
173 }
174 
175 static inline int rq_prio(const struct i915_request *rq)
176 {
177 	return rq->sched.attr.priority | __NO_PREEMPTION;
178 }
179 
180 static inline bool need_preempt(int prio, int active)
181 {
182 	/*
183 	 * Allow preemption of low -> normal -> high, but we do
184 	 * not allow low priority tasks to preempt other low priority
185 	 * tasks under the impression that latency for low priority
186 	 * tasks does not matter (as much as background throughput),
187 	 * so kiss.
188 	 */
189 	return prio >= max(I915_PRIORITY_NORMAL, active);
190 }
191 
192 static void kick_submission(struct intel_engine_cs *engine,
193 			    const struct i915_request *rq,
194 			    int prio)
195 {
196 	const struct i915_request *inflight;
197 
198 	/*
199 	 * We only need to kick the tasklet once for the high priority
200 	 * new context we add into the queue.
201 	 */
202 	if (prio <= engine->execlists.queue_priority_hint)
203 		return;
204 
205 	rcu_read_lock();
206 
207 	/* Nothing currently active? We're overdue for a submission! */
208 	inflight = execlists_active(&engine->execlists);
209 	if (!inflight)
210 		goto unlock;
211 
212 	engine->execlists.queue_priority_hint = prio;
213 
214 	/*
215 	 * If we are already the currently executing context, don't
216 	 * bother evaluating if we should preempt ourselves.
217 	 */
218 	if (inflight->context == rq->context)
219 		goto unlock;
220 
221 	if (need_preempt(prio, rq_prio(inflight)))
222 		tasklet_hi_schedule(&engine->execlists.tasklet);
223 
224 unlock:
225 	rcu_read_unlock();
226 }
227 
228 static void __i915_schedule(struct i915_sched_node *node,
229 			    const struct i915_sched_attr *attr)
230 {
231 	const int prio = max(attr->priority, node->attr.priority);
232 	struct intel_engine_cs *engine;
233 	struct i915_dependency *dep, *p;
234 	struct i915_dependency stack;
235 	struct sched_cache cache;
236 	LIST_HEAD(dfs);
237 
238 	/* Needed in order to use the temporary link inside i915_dependency */
239 	lockdep_assert_held(&schedule_lock);
240 	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
241 
242 	if (node_signaled(node))
243 		return;
244 
245 	stack.signaler = node;
246 	list_add(&stack.dfs_link, &dfs);
247 
248 	/*
249 	 * Recursively bump all dependent priorities to match the new request.
250 	 *
251 	 * A naive approach would be to use recursion:
252 	 * static void update_priorities(struct i915_sched_node *node, prio) {
253 	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
254 	 *		update_priorities(dep->signal, prio)
255 	 *	queue_request(node);
256 	 * }
257 	 * but that may have unlimited recursion depth and so runs a very
258 	 * real risk of overunning the kernel stack. Instead, we build
259 	 * a flat list of all dependencies starting with the current request.
260 	 * As we walk the list of dependencies, we add all of its dependencies
261 	 * to the end of the list (this may include an already visited
262 	 * request) and continue to walk onwards onto the new dependencies. The
263 	 * end result is a topological list of requests in reverse order, the
264 	 * last element in the list is the request we must execute first.
265 	 */
266 	list_for_each_entry(dep, &dfs, dfs_link) {
267 		struct i915_sched_node *node = dep->signaler;
268 
269 		/* If we are already flying, we know we have no signalers */
270 		if (node_started(node))
271 			continue;
272 
273 		/*
274 		 * Within an engine, there can be no cycle, but we may
275 		 * refer to the same dependency chain multiple times
276 		 * (redundant dependencies are not eliminated) and across
277 		 * engines.
278 		 */
279 		list_for_each_entry(p, &node->signalers_list, signal_link) {
280 			GEM_BUG_ON(p == dep); /* no cycles! */
281 
282 			if (node_signaled(p->signaler))
283 				continue;
284 
285 			if (prio > READ_ONCE(p->signaler->attr.priority))
286 				list_move_tail(&p->dfs_link, &dfs);
287 		}
288 	}
289 
290 	/*
291 	 * If we didn't need to bump any existing priorities, and we haven't
292 	 * yet submitted this request (i.e. there is no potential race with
293 	 * execlists_submit_request()), we can set our own priority and skip
294 	 * acquiring the engine locks.
295 	 */
296 	if (node->attr.priority == I915_PRIORITY_INVALID) {
297 		GEM_BUG_ON(!list_empty(&node->link));
298 		node->attr = *attr;
299 
300 		if (stack.dfs_link.next == stack.dfs_link.prev)
301 			return;
302 
303 		__list_del_entry(&stack.dfs_link);
304 	}
305 
306 	memset(&cache, 0, sizeof(cache));
307 	engine = node_to_request(node)->engine;
308 	spin_lock(&engine->active.lock);
309 
310 	/* Fifo and depth-first replacement ensure our deps execute before us */
311 	engine = sched_lock_engine(node, engine, &cache);
312 	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
313 		INIT_LIST_HEAD(&dep->dfs_link);
314 
315 		node = dep->signaler;
316 		engine = sched_lock_engine(node, engine, &cache);
317 		lockdep_assert_held(&engine->active.lock);
318 
319 		/* Recheck after acquiring the engine->timeline.lock */
320 		if (prio <= node->attr.priority || node_signaled(node))
321 			continue;
322 
323 		GEM_BUG_ON(node_to_request(node)->engine != engine);
324 
325 		WRITE_ONCE(node->attr.priority, prio);
326 
327 		/*
328 		 * Once the request is ready, it will be placed into the
329 		 * priority lists and then onto the HW runlist. Before the
330 		 * request is ready, it does not contribute to our preemption
331 		 * decisions and we can safely ignore it, as it will, and
332 		 * any preemption required, be dealt with upon submission.
333 		 * See engine->submit_request()
334 		 */
335 		if (list_empty(&node->link))
336 			continue;
337 
338 		if (i915_request_in_priority_queue(node_to_request(node))) {
339 			if (!cache.priolist)
340 				cache.priolist =
341 					i915_sched_lookup_priolist(engine,
342 								   prio);
343 			list_move_tail(&node->link, cache.priolist);
344 		}
345 
346 		/* Defer (tasklet) submission until after all of our updates. */
347 		kick_submission(engine, node_to_request(node), prio);
348 	}
349 
350 	spin_unlock(&engine->active.lock);
351 }
352 
353 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
354 {
355 	spin_lock_irq(&schedule_lock);
356 	__i915_schedule(&rq->sched, attr);
357 	spin_unlock_irq(&schedule_lock);
358 }
359 
360 static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
361 {
362 	struct i915_sched_attr attr = node->attr;
363 
364 	if (attr.priority & bump)
365 		return;
366 
367 	attr.priority |= bump;
368 	__i915_schedule(node, &attr);
369 }
370 
371 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
372 {
373 	unsigned long flags;
374 
375 	GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
376 	if (READ_ONCE(rq->sched.attr.priority) & bump)
377 		return;
378 
379 	spin_lock_irqsave(&schedule_lock, flags);
380 	__bump_priority(&rq->sched, bump);
381 	spin_unlock_irqrestore(&schedule_lock, flags);
382 }
383 
384 void i915_sched_node_init(struct i915_sched_node *node)
385 {
386 	INIT_LIST_HEAD(&node->signalers_list);
387 	INIT_LIST_HEAD(&node->waiters_list);
388 	INIT_LIST_HEAD(&node->link);
389 
390 	i915_sched_node_reinit(node);
391 }
392 
393 void i915_sched_node_reinit(struct i915_sched_node *node)
394 {
395 	node->attr.priority = I915_PRIORITY_INVALID;
396 	node->semaphores = 0;
397 	node->flags = 0;
398 
399 	GEM_BUG_ON(!list_empty(&node->signalers_list));
400 	GEM_BUG_ON(!list_empty(&node->waiters_list));
401 	GEM_BUG_ON(!list_empty(&node->link));
402 }
403 
404 static struct i915_dependency *
405 i915_dependency_alloc(void)
406 {
407 	return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
408 }
409 
410 static void
411 i915_dependency_free(struct i915_dependency *dep)
412 {
413 	kmem_cache_free(global.slab_dependencies, dep);
414 }
415 
416 bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
417 				      struct i915_sched_node *signal,
418 				      struct i915_dependency *dep,
419 				      unsigned long flags)
420 {
421 	bool ret = false;
422 
423 	spin_lock_irq(&schedule_lock);
424 
425 	if (!node_signaled(signal)) {
426 		INIT_LIST_HEAD(&dep->dfs_link);
427 		dep->signaler = signal;
428 		dep->waiter = node;
429 		dep->flags = flags;
430 
431 		/* Keep track of whether anyone on this chain has a semaphore */
432 		if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
433 		    !node_started(signal))
434 			node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
435 
436 		/* All set, now publish. Beware the lockless walkers. */
437 		list_add_rcu(&dep->signal_link, &node->signalers_list);
438 		list_add_rcu(&dep->wait_link, &signal->waiters_list);
439 
440 		/*
441 		 * As we do not allow WAIT to preempt inflight requests,
442 		 * once we have executed a request, along with triggering
443 		 * any execution callbacks, we must preserve its ordering
444 		 * within the non-preemptible FIFO.
445 		 */
446 		BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK);
447 		if (flags & I915_DEPENDENCY_EXTERNAL)
448 			__bump_priority(signal, __NO_PREEMPTION);
449 
450 		ret = true;
451 	}
452 
453 	spin_unlock_irq(&schedule_lock);
454 
455 	return ret;
456 }
457 
458 int i915_sched_node_add_dependency(struct i915_sched_node *node,
459 				   struct i915_sched_node *signal)
460 {
461 	struct i915_dependency *dep;
462 
463 	dep = i915_dependency_alloc();
464 	if (!dep)
465 		return -ENOMEM;
466 
467 	if (!__i915_sched_node_add_dependency(node, signal, dep,
468 					      I915_DEPENDENCY_EXTERNAL |
469 					      I915_DEPENDENCY_ALLOC))
470 		i915_dependency_free(dep);
471 
472 	return 0;
473 }
474 
475 void i915_sched_node_fini(struct i915_sched_node *node)
476 {
477 	struct i915_dependency *dep, *tmp;
478 
479 	spin_lock_irq(&schedule_lock);
480 
481 	/*
482 	 * Everyone we depended upon (the fences we wait to be signaled)
483 	 * should retire before us and remove themselves from our list.
484 	 * However, retirement is run independently on each timeline and
485 	 * so we may be called out-of-order.
486 	 */
487 	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
488 		GEM_BUG_ON(!list_empty(&dep->dfs_link));
489 
490 		list_del_rcu(&dep->wait_link);
491 		if (dep->flags & I915_DEPENDENCY_ALLOC)
492 			i915_dependency_free(dep);
493 	}
494 	INIT_LIST_HEAD(&node->signalers_list);
495 
496 	/* Remove ourselves from everyone who depends upon us */
497 	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
498 		GEM_BUG_ON(dep->signaler != node);
499 		GEM_BUG_ON(!list_empty(&dep->dfs_link));
500 
501 		list_del_rcu(&dep->signal_link);
502 		if (dep->flags & I915_DEPENDENCY_ALLOC)
503 			i915_dependency_free(dep);
504 	}
505 	INIT_LIST_HEAD(&node->waiters_list);
506 
507 	spin_unlock_irq(&schedule_lock);
508 }
509 
510 static void i915_global_scheduler_shrink(void)
511 {
512 	kmem_cache_shrink(global.slab_dependencies);
513 	kmem_cache_shrink(global.slab_priorities);
514 }
515 
516 static void i915_global_scheduler_exit(void)
517 {
518 	kmem_cache_destroy(global.slab_dependencies);
519 	kmem_cache_destroy(global.slab_priorities);
520 }
521 
522 static struct i915_global_scheduler global = { {
523 	.shrink = i915_global_scheduler_shrink,
524 	.exit = i915_global_scheduler_exit,
525 } };
526 
527 int __init i915_global_scheduler_init(void)
528 {
529 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
530 					      SLAB_HWCACHE_ALIGN |
531 					      SLAB_TYPESAFE_BY_RCU);
532 	if (!global.slab_dependencies)
533 		return -ENOMEM;
534 
535 	global.slab_priorities = KMEM_CACHE(i915_priolist,
536 					    SLAB_HWCACHE_ALIGN);
537 	if (!global.slab_priorities)
538 		goto err_priorities;
539 
540 	i915_global_register(&global.base);
541 	return 0;
542 
543 err_priorities:
544 	kmem_cache_destroy(global.slab_priorities);
545 	return -ENOMEM;
546 }
547