1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2018 Intel Corporation 5 */ 6 7 #include <linux/mutex.h> 8 9 #include "i915_drv.h" 10 #include "i915_globals.h" 11 #include "i915_request.h" 12 #include "i915_scheduler.h" 13 14 static struct i915_global_scheduler { 15 struct i915_global base; 16 struct kmem_cache *slab_dependencies; 17 struct kmem_cache *slab_priorities; 18 } global; 19 20 static DEFINE_SPINLOCK(schedule_lock); 21 22 static const struct i915_request * 23 node_to_request(const struct i915_sched_node *node) 24 { 25 return container_of(node, const struct i915_request, sched); 26 } 27 28 static inline bool node_started(const struct i915_sched_node *node) 29 { 30 return i915_request_started(node_to_request(node)); 31 } 32 33 static inline bool node_signaled(const struct i915_sched_node *node) 34 { 35 return i915_request_completed(node_to_request(node)); 36 } 37 38 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 39 { 40 return rb_entry(rb, struct i915_priolist, node); 41 } 42 43 static void assert_priolists(struct intel_engine_execlists * const execlists) 44 { 45 struct rb_node *rb; 46 long last_prio, i; 47 48 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 49 return; 50 51 GEM_BUG_ON(rb_first_cached(&execlists->queue) != 52 rb_first(&execlists->queue.rb_root)); 53 54 last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1; 55 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 56 const struct i915_priolist *p = to_priolist(rb); 57 58 GEM_BUG_ON(p->priority >= last_prio); 59 last_prio = p->priority; 60 61 GEM_BUG_ON(!p->used); 62 for (i = 0; i < ARRAY_SIZE(p->requests); i++) { 63 if (list_empty(&p->requests[i])) 64 continue; 65 66 GEM_BUG_ON(!(p->used & BIT(i))); 67 } 68 } 69 } 70 71 struct list_head * 72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) 73 { 74 struct intel_engine_execlists * const execlists = &engine->execlists; 75 struct i915_priolist *p; 76 struct rb_node **parent, *rb; 77 bool first = true; 78 int idx, i; 79 80 lockdep_assert_held(&engine->active.lock); 81 assert_priolists(execlists); 82 83 /* buckets sorted from highest [in slot 0] to lowest priority */ 84 idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1; 85 prio >>= I915_USER_PRIORITY_SHIFT; 86 if (unlikely(execlists->no_priolist)) 87 prio = I915_PRIORITY_NORMAL; 88 89 find_priolist: 90 /* most positive priority is scheduled first, equal priorities fifo */ 91 rb = NULL; 92 parent = &execlists->queue.rb_root.rb_node; 93 while (*parent) { 94 rb = *parent; 95 p = to_priolist(rb); 96 if (prio > p->priority) { 97 parent = &rb->rb_left; 98 } else if (prio < p->priority) { 99 parent = &rb->rb_right; 100 first = false; 101 } else { 102 goto out; 103 } 104 } 105 106 if (prio == I915_PRIORITY_NORMAL) { 107 p = &execlists->default_priolist; 108 } else { 109 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); 110 /* Convert an allocation failure to a priority bump */ 111 if (unlikely(!p)) { 112 prio = I915_PRIORITY_NORMAL; /* recurses just once */ 113 114 /* To maintain ordering with all rendering, after an 115 * allocation failure we have to disable all scheduling. 116 * Requests will then be executed in fifo, and schedule 117 * will ensure that dependencies are emitted in fifo. 118 * There will be still some reordering with existing 119 * requests, so if userspace lied about their 120 * dependencies that reordering may be visible. 121 */ 122 execlists->no_priolist = true; 123 goto find_priolist; 124 } 125 } 126 127 p->priority = prio; 128 for (i = 0; i < ARRAY_SIZE(p->requests); i++) 129 INIT_LIST_HEAD(&p->requests[i]); 130 rb_link_node(&p->node, rb, parent); 131 rb_insert_color_cached(&p->node, &execlists->queue, first); 132 p->used = 0; 133 134 out: 135 p->used |= BIT(idx); 136 return &p->requests[idx]; 137 } 138 139 void __i915_priolist_free(struct i915_priolist *p) 140 { 141 kmem_cache_free(global.slab_priorities, p); 142 } 143 144 struct sched_cache { 145 struct list_head *priolist; 146 }; 147 148 static struct intel_engine_cs * 149 sched_lock_engine(const struct i915_sched_node *node, 150 struct intel_engine_cs *locked, 151 struct sched_cache *cache) 152 { 153 const struct i915_request *rq = node_to_request(node); 154 struct intel_engine_cs *engine; 155 156 GEM_BUG_ON(!locked); 157 158 /* 159 * Virtual engines complicate acquiring the engine timeline lock, 160 * as their rq->engine pointer is not stable until under that 161 * engine lock. The simple ploy we use is to take the lock then 162 * check that the rq still belongs to the newly locked engine. 163 */ 164 while (locked != (engine = READ_ONCE(rq->engine))) { 165 spin_unlock(&locked->active.lock); 166 memset(cache, 0, sizeof(*cache)); 167 spin_lock(&engine->active.lock); 168 locked = engine; 169 } 170 171 GEM_BUG_ON(locked != engine); 172 return locked; 173 } 174 175 static inline int rq_prio(const struct i915_request *rq) 176 { 177 return rq->sched.attr.priority | __NO_PREEMPTION; 178 } 179 180 static inline bool need_preempt(int prio, int active) 181 { 182 /* 183 * Allow preemption of low -> normal -> high, but we do 184 * not allow low priority tasks to preempt other low priority 185 * tasks under the impression that latency for low priority 186 * tasks does not matter (as much as background throughput), 187 * so kiss. 188 */ 189 return prio >= max(I915_PRIORITY_NORMAL, active); 190 } 191 192 static void kick_submission(struct intel_engine_cs *engine, 193 const struct i915_request *rq, 194 int prio) 195 { 196 const struct i915_request *inflight; 197 198 /* 199 * We only need to kick the tasklet once for the high priority 200 * new context we add into the queue. 201 */ 202 if (prio <= engine->execlists.queue_priority_hint) 203 return; 204 205 rcu_read_lock(); 206 207 /* Nothing currently active? We're overdue for a submission! */ 208 inflight = execlists_active(&engine->execlists); 209 if (!inflight) 210 goto unlock; 211 212 engine->execlists.queue_priority_hint = prio; 213 214 /* 215 * If we are already the currently executing context, don't 216 * bother evaluating if we should preempt ourselves. 217 */ 218 if (inflight->context == rq->context) 219 goto unlock; 220 221 if (need_preempt(prio, rq_prio(inflight))) 222 tasklet_hi_schedule(&engine->execlists.tasklet); 223 224 unlock: 225 rcu_read_unlock(); 226 } 227 228 static void __i915_schedule(struct i915_sched_node *node, 229 const struct i915_sched_attr *attr) 230 { 231 const int prio = max(attr->priority, node->attr.priority); 232 struct intel_engine_cs *engine; 233 struct i915_dependency *dep, *p; 234 struct i915_dependency stack; 235 struct sched_cache cache; 236 LIST_HEAD(dfs); 237 238 /* Needed in order to use the temporary link inside i915_dependency */ 239 lockdep_assert_held(&schedule_lock); 240 GEM_BUG_ON(prio == I915_PRIORITY_INVALID); 241 242 if (node_signaled(node)) 243 return; 244 245 stack.signaler = node; 246 list_add(&stack.dfs_link, &dfs); 247 248 /* 249 * Recursively bump all dependent priorities to match the new request. 250 * 251 * A naive approach would be to use recursion: 252 * static void update_priorities(struct i915_sched_node *node, prio) { 253 * list_for_each_entry(dep, &node->signalers_list, signal_link) 254 * update_priorities(dep->signal, prio) 255 * queue_request(node); 256 * } 257 * but that may have unlimited recursion depth and so runs a very 258 * real risk of overunning the kernel stack. Instead, we build 259 * a flat list of all dependencies starting with the current request. 260 * As we walk the list of dependencies, we add all of its dependencies 261 * to the end of the list (this may include an already visited 262 * request) and continue to walk onwards onto the new dependencies. The 263 * end result is a topological list of requests in reverse order, the 264 * last element in the list is the request we must execute first. 265 */ 266 list_for_each_entry(dep, &dfs, dfs_link) { 267 struct i915_sched_node *node = dep->signaler; 268 269 /* If we are already flying, we know we have no signalers */ 270 if (node_started(node)) 271 continue; 272 273 /* 274 * Within an engine, there can be no cycle, but we may 275 * refer to the same dependency chain multiple times 276 * (redundant dependencies are not eliminated) and across 277 * engines. 278 */ 279 list_for_each_entry(p, &node->signalers_list, signal_link) { 280 GEM_BUG_ON(p == dep); /* no cycles! */ 281 282 if (node_signaled(p->signaler)) 283 continue; 284 285 if (prio > READ_ONCE(p->signaler->attr.priority)) 286 list_move_tail(&p->dfs_link, &dfs); 287 } 288 } 289 290 /* 291 * If we didn't need to bump any existing priorities, and we haven't 292 * yet submitted this request (i.e. there is no potential race with 293 * execlists_submit_request()), we can set our own priority and skip 294 * acquiring the engine locks. 295 */ 296 if (node->attr.priority == I915_PRIORITY_INVALID) { 297 GEM_BUG_ON(!list_empty(&node->link)); 298 node->attr = *attr; 299 300 if (stack.dfs_link.next == stack.dfs_link.prev) 301 return; 302 303 __list_del_entry(&stack.dfs_link); 304 } 305 306 memset(&cache, 0, sizeof(cache)); 307 engine = node_to_request(node)->engine; 308 spin_lock(&engine->active.lock); 309 310 /* Fifo and depth-first replacement ensure our deps execute before us */ 311 engine = sched_lock_engine(node, engine, &cache); 312 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { 313 INIT_LIST_HEAD(&dep->dfs_link); 314 315 node = dep->signaler; 316 engine = sched_lock_engine(node, engine, &cache); 317 lockdep_assert_held(&engine->active.lock); 318 319 /* Recheck after acquiring the engine->timeline.lock */ 320 if (prio <= node->attr.priority || node_signaled(node)) 321 continue; 322 323 GEM_BUG_ON(node_to_request(node)->engine != engine); 324 325 WRITE_ONCE(node->attr.priority, prio); 326 327 /* 328 * Once the request is ready, it will be placed into the 329 * priority lists and then onto the HW runlist. Before the 330 * request is ready, it does not contribute to our preemption 331 * decisions and we can safely ignore it, as it will, and 332 * any preemption required, be dealt with upon submission. 333 * See engine->submit_request() 334 */ 335 if (list_empty(&node->link)) 336 continue; 337 338 if (i915_request_in_priority_queue(node_to_request(node))) { 339 if (!cache.priolist) 340 cache.priolist = 341 i915_sched_lookup_priolist(engine, 342 prio); 343 list_move_tail(&node->link, cache.priolist); 344 } 345 346 /* Defer (tasklet) submission until after all of our updates. */ 347 kick_submission(engine, node_to_request(node), prio); 348 } 349 350 spin_unlock(&engine->active.lock); 351 } 352 353 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) 354 { 355 spin_lock_irq(&schedule_lock); 356 __i915_schedule(&rq->sched, attr); 357 spin_unlock_irq(&schedule_lock); 358 } 359 360 static void __bump_priority(struct i915_sched_node *node, unsigned int bump) 361 { 362 struct i915_sched_attr attr = node->attr; 363 364 if (attr.priority & bump) 365 return; 366 367 attr.priority |= bump; 368 __i915_schedule(node, &attr); 369 } 370 371 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump) 372 { 373 unsigned long flags; 374 375 GEM_BUG_ON(bump & ~I915_PRIORITY_MASK); 376 if (READ_ONCE(rq->sched.attr.priority) & bump) 377 return; 378 379 spin_lock_irqsave(&schedule_lock, flags); 380 __bump_priority(&rq->sched, bump); 381 spin_unlock_irqrestore(&schedule_lock, flags); 382 } 383 384 void i915_sched_node_init(struct i915_sched_node *node) 385 { 386 INIT_LIST_HEAD(&node->signalers_list); 387 INIT_LIST_HEAD(&node->waiters_list); 388 INIT_LIST_HEAD(&node->link); 389 390 i915_sched_node_reinit(node); 391 } 392 393 void i915_sched_node_reinit(struct i915_sched_node *node) 394 { 395 node->attr.priority = I915_PRIORITY_INVALID; 396 node->semaphores = 0; 397 node->flags = 0; 398 399 GEM_BUG_ON(!list_empty(&node->signalers_list)); 400 GEM_BUG_ON(!list_empty(&node->waiters_list)); 401 GEM_BUG_ON(!list_empty(&node->link)); 402 } 403 404 static struct i915_dependency * 405 i915_dependency_alloc(void) 406 { 407 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); 408 } 409 410 static void 411 i915_dependency_free(struct i915_dependency *dep) 412 { 413 kmem_cache_free(global.slab_dependencies, dep); 414 } 415 416 bool __i915_sched_node_add_dependency(struct i915_sched_node *node, 417 struct i915_sched_node *signal, 418 struct i915_dependency *dep, 419 unsigned long flags) 420 { 421 bool ret = false; 422 423 spin_lock_irq(&schedule_lock); 424 425 if (!node_signaled(signal)) { 426 INIT_LIST_HEAD(&dep->dfs_link); 427 dep->signaler = signal; 428 dep->waiter = node; 429 dep->flags = flags; 430 431 /* Keep track of whether anyone on this chain has a semaphore */ 432 if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN && 433 !node_started(signal)) 434 node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 435 436 /* All set, now publish. Beware the lockless walkers. */ 437 list_add_rcu(&dep->signal_link, &node->signalers_list); 438 list_add_rcu(&dep->wait_link, &signal->waiters_list); 439 440 /* 441 * As we do not allow WAIT to preempt inflight requests, 442 * once we have executed a request, along with triggering 443 * any execution callbacks, we must preserve its ordering 444 * within the non-preemptible FIFO. 445 */ 446 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); 447 if (flags & I915_DEPENDENCY_EXTERNAL) 448 __bump_priority(signal, __NO_PREEMPTION); 449 450 ret = true; 451 } 452 453 spin_unlock_irq(&schedule_lock); 454 455 return ret; 456 } 457 458 int i915_sched_node_add_dependency(struct i915_sched_node *node, 459 struct i915_sched_node *signal) 460 { 461 struct i915_dependency *dep; 462 463 dep = i915_dependency_alloc(); 464 if (!dep) 465 return -ENOMEM; 466 467 if (!__i915_sched_node_add_dependency(node, signal, dep, 468 I915_DEPENDENCY_EXTERNAL | 469 I915_DEPENDENCY_ALLOC)) 470 i915_dependency_free(dep); 471 472 return 0; 473 } 474 475 void i915_sched_node_fini(struct i915_sched_node *node) 476 { 477 struct i915_dependency *dep, *tmp; 478 479 spin_lock_irq(&schedule_lock); 480 481 /* 482 * Everyone we depended upon (the fences we wait to be signaled) 483 * should retire before us and remove themselves from our list. 484 * However, retirement is run independently on each timeline and 485 * so we may be called out-of-order. 486 */ 487 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { 488 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 489 490 list_del_rcu(&dep->wait_link); 491 if (dep->flags & I915_DEPENDENCY_ALLOC) 492 i915_dependency_free(dep); 493 } 494 INIT_LIST_HEAD(&node->signalers_list); 495 496 /* Remove ourselves from everyone who depends upon us */ 497 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { 498 GEM_BUG_ON(dep->signaler != node); 499 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 500 501 list_del_rcu(&dep->signal_link); 502 if (dep->flags & I915_DEPENDENCY_ALLOC) 503 i915_dependency_free(dep); 504 } 505 INIT_LIST_HEAD(&node->waiters_list); 506 507 spin_unlock_irq(&schedule_lock); 508 } 509 510 static void i915_global_scheduler_shrink(void) 511 { 512 kmem_cache_shrink(global.slab_dependencies); 513 kmem_cache_shrink(global.slab_priorities); 514 } 515 516 static void i915_global_scheduler_exit(void) 517 { 518 kmem_cache_destroy(global.slab_dependencies); 519 kmem_cache_destroy(global.slab_priorities); 520 } 521 522 static struct i915_global_scheduler global = { { 523 .shrink = i915_global_scheduler_shrink, 524 .exit = i915_global_scheduler_exit, 525 } }; 526 527 int __init i915_global_scheduler_init(void) 528 { 529 global.slab_dependencies = KMEM_CACHE(i915_dependency, 530 SLAB_HWCACHE_ALIGN | 531 SLAB_TYPESAFE_BY_RCU); 532 if (!global.slab_dependencies) 533 return -ENOMEM; 534 535 global.slab_priorities = KMEM_CACHE(i915_priolist, 536 SLAB_HWCACHE_ALIGN); 537 if (!global.slab_priorities) 538 goto err_priorities; 539 540 i915_global_register(&global.base); 541 return 0; 542 543 err_priorities: 544 kmem_cache_destroy(global.slab_priorities); 545 return -ENOMEM; 546 } 547