1 /* 2 * Copyright © 2008-2018 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #ifndef I915_REQUEST_H 26 #define I915_REQUEST_H 27 28 #include <linux/dma-fence.h> 29 #include <linux/hrtimer.h> 30 #include <linux/irq_work.h> 31 #include <linux/llist.h> 32 #include <linux/lockdep.h> 33 34 #include "gem/i915_gem_context_types.h" 35 #include "gt/intel_context_types.h" 36 #include "gt/intel_engine_types.h" 37 #include "gt/intel_timeline_types.h" 38 39 #include "i915_gem.h" 40 #include "i915_scheduler.h" 41 #include "i915_selftest.h" 42 #include "i915_sw_fence.h" 43 44 #include <uapi/drm/i915_drm.h> 45 46 struct drm_file; 47 struct drm_i915_gem_object; 48 struct drm_printer; 49 struct i915_request; 50 51 struct i915_capture_list { 52 struct i915_capture_list *next; 53 struct i915_vma *vma; 54 }; 55 56 #define RQ_TRACE(rq, fmt, ...) do { \ 57 const struct i915_request *rq__ = (rq); \ 58 ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt, \ 59 rq__->fence.context, rq__->fence.seqno, \ 60 hwsp_seqno(rq__), ##__VA_ARGS__); \ 61 } while (0) 62 63 enum { 64 /* 65 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW. 66 * 67 * Set by __i915_request_submit() on handing over to HW, and cleared 68 * by __i915_request_unsubmit() if we preempt this request. 69 * 70 * Finally cleared for consistency on retiring the request, when 71 * we know the HW is no longer running this request. 72 * 73 * See i915_request_is_active() 74 */ 75 I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS, 76 77 /* 78 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution 79 * 80 * Using the scheduler, when a request is ready for execution it is put 81 * into the priority queue, and removed from that queue when transferred 82 * to the HW runlists. We want to track its membership within the 83 * priority queue so that we can easily check before rescheduling. 84 * 85 * See i915_request_in_priority_queue() 86 */ 87 I915_FENCE_FLAG_PQUEUE, 88 89 /* 90 * I915_FENCE_FLAG_HOLD - this request is currently on hold 91 * 92 * This request has been suspended, pending an ongoing investigation. 93 */ 94 I915_FENCE_FLAG_HOLD, 95 96 /* 97 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial 98 * breadcrumb that marks the end of semaphore waits and start of the 99 * user payload. 100 */ 101 I915_FENCE_FLAG_INITIAL_BREADCRUMB, 102 103 /* 104 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list 105 * 106 * Internal bookkeeping used by the breadcrumb code to track when 107 * a request is on the various signal_list. 108 */ 109 I915_FENCE_FLAG_SIGNAL, 110 111 /* 112 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted 113 * 114 * The execution of some requests should not be interrupted. This is 115 * a sensitive operation as it makes the request super important, 116 * blocking other higher priority work. Abuse of this flag will 117 * lead to quality of service issues. 118 */ 119 I915_FENCE_FLAG_NOPREEMPT, 120 121 /* 122 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue 123 * 124 * A high priority sentinel request may be submitted to clear the 125 * submission queue. As it will be the only request in-flight, upon 126 * execution all other active requests will have been preempted and 127 * unsubmitted. This preemptive pulse is used to re-evaluate the 128 * in-flight requests, particularly in cases where an active context 129 * is banned and those active requests need to be cancelled. 130 */ 131 I915_FENCE_FLAG_SENTINEL, 132 133 /* 134 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request 135 * 136 * Some requests are more important than others! In particular, a 137 * request that the user is waiting on is typically required for 138 * interactive latency, for which we want to minimise by upclocking 139 * the GPU. Here we track such boost requests on a per-request basis. 140 */ 141 I915_FENCE_FLAG_BOOST, 142 }; 143 144 /** 145 * Request queue structure. 146 * 147 * The request queue allows us to note sequence numbers that have been emitted 148 * and may be associated with active buffers to be retired. 149 * 150 * By keeping this list, we can avoid having to do questionable sequence 151 * number comparisons on buffer last_read|write_seqno. It also allows an 152 * emission time to be associated with the request for tracking how far ahead 153 * of the GPU the submission is. 154 * 155 * When modifying this structure be very aware that we perform a lockless 156 * RCU lookup of it that may race against reallocation of the struct 157 * from the slab freelist. We intentionally do not zero the structure on 158 * allocation so that the lookup can use the dangling pointers (and is 159 * cogniscent that those pointers may be wrong). Instead, everything that 160 * needs to be initialised must be done so explicitly. 161 * 162 * The requests are reference counted. 163 */ 164 struct i915_request { 165 struct dma_fence fence; 166 spinlock_t lock; 167 168 /** 169 * Context and ring buffer related to this request 170 * Contexts are refcounted, so when this request is associated with a 171 * context, we must increment the context's refcount, to guarantee that 172 * it persists while any request is linked to it. Requests themselves 173 * are also refcounted, so the request will only be freed when the last 174 * reference to it is dismissed, and the code in 175 * i915_request_free() will then decrement the refcount on the 176 * context. 177 */ 178 struct intel_engine_cs *engine; 179 struct intel_context *context; 180 struct intel_ring *ring; 181 struct intel_timeline __rcu *timeline; 182 183 struct list_head signal_link; 184 struct llist_node signal_node; 185 186 /* 187 * The rcu epoch of when this request was allocated. Used to judiciously 188 * apply backpressure on future allocations to ensure that under 189 * mempressure there is sufficient RCU ticks for us to reclaim our 190 * RCU protected slabs. 191 */ 192 unsigned long rcustate; 193 194 /* 195 * We pin the timeline->mutex while constructing the request to 196 * ensure that no caller accidentally drops it during construction. 197 * The timeline->mutex must be held to ensure that only this caller 198 * can use the ring and manipulate the associated timeline during 199 * construction. 200 */ 201 struct pin_cookie cookie; 202 203 /* 204 * Fences for the various phases in the request's lifetime. 205 * 206 * The submit fence is used to await upon all of the request's 207 * dependencies. When it is signaled, the request is ready to run. 208 * It is used by the driver to then queue the request for execution. 209 */ 210 struct i915_sw_fence submit; 211 union { 212 wait_queue_entry_t submitq; 213 struct i915_sw_dma_fence_cb dmaq; 214 struct i915_request_duration_cb { 215 struct dma_fence_cb cb; 216 ktime_t emitted; 217 } duration; 218 }; 219 struct llist_head execute_cb; 220 struct i915_sw_fence semaphore; 221 222 /* 223 * A list of everyone we wait upon, and everyone who waits upon us. 224 * Even though we will not be submitted to the hardware before the 225 * submit fence is signaled (it waits for all external events as well 226 * as our own requests), the scheduler still needs to know the 227 * dependency tree for the lifetime of the request (from execbuf 228 * to retirement), i.e. bidirectional dependency information for the 229 * request not tied to individual fences. 230 */ 231 struct i915_sched_node sched; 232 struct i915_dependency dep; 233 intel_engine_mask_t execution_mask; 234 235 /* 236 * A convenience pointer to the current breadcrumb value stored in 237 * the HW status page (or our timeline's local equivalent). The full 238 * path would be rq->hw_context->ring->timeline->hwsp_seqno. 239 */ 240 const u32 *hwsp_seqno; 241 242 /** Position in the ring of the start of the request */ 243 u32 head; 244 245 /** Position in the ring of the start of the user packets */ 246 u32 infix; 247 248 /** 249 * Position in the ring of the start of the postfix. 250 * This is required to calculate the maximum available ring space 251 * without overwriting the postfix. 252 */ 253 u32 postfix; 254 255 /** Position in the ring of the end of the whole request */ 256 u32 tail; 257 258 /** Position in the ring of the end of any workarounds after the tail */ 259 u32 wa_tail; 260 261 /** Preallocate space in the ring for the emitting the request */ 262 u32 reserved_space; 263 264 /** Batch buffer related to this request if any (used for 265 * error state dump only). 266 */ 267 struct i915_vma *batch; 268 /** 269 * Additional buffers requested by userspace to be captured upon 270 * a GPU hang. The vma/obj on this list are protected by their 271 * active reference - all objects on this list must also be 272 * on the active_list (of their final request). 273 */ 274 struct i915_capture_list *capture_list; 275 276 /** Time at which this request was emitted, in jiffies. */ 277 unsigned long emitted_jiffies; 278 279 /** timeline->request entry for this request */ 280 struct list_head link; 281 282 /** Watchdog support fields. */ 283 struct i915_request_watchdog { 284 struct llist_node link; 285 struct hrtimer timer; 286 } watchdog; 287 288 /* 289 * Requests may need to be stalled when using GuC submission waiting for 290 * certain GuC operations to complete. If that is the case, stalled 291 * requests are added to a per context list of stalled requests. The 292 * below list_head is the link in that list. 293 */ 294 struct list_head guc_fence_link; 295 296 /** 297 * Priority level while the request is inflight. Differs from i915 298 * scheduler priority. See comment above 299 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. 300 */ 301 #define GUC_PRIO_INIT 0xff 302 #define GUC_PRIO_FINI 0xfe 303 u8 guc_prio; 304 305 I915_SELFTEST_DECLARE(struct { 306 struct list_head link; 307 unsigned long delay; 308 } mock;) 309 }; 310 311 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 312 313 extern const struct dma_fence_ops i915_fence_ops; 314 315 static inline bool dma_fence_is_i915(const struct dma_fence *fence) 316 { 317 return fence->ops == &i915_fence_ops; 318 } 319 320 struct kmem_cache *i915_request_slab_cache(void); 321 322 struct i915_request * __must_check 323 __i915_request_create(struct intel_context *ce, gfp_t gfp); 324 struct i915_request * __must_check 325 i915_request_create(struct intel_context *ce); 326 327 void __i915_request_skip(struct i915_request *rq); 328 bool i915_request_set_error_once(struct i915_request *rq, int error); 329 struct i915_request *i915_request_mark_eio(struct i915_request *rq); 330 331 struct i915_request *__i915_request_commit(struct i915_request *request); 332 void __i915_request_queue(struct i915_request *rq, 333 const struct i915_sched_attr *attr); 334 void __i915_request_queue_bh(struct i915_request *rq); 335 336 bool i915_request_retire(struct i915_request *rq); 337 void i915_request_retire_upto(struct i915_request *rq); 338 339 static inline struct i915_request * 340 to_request(struct dma_fence *fence) 341 { 342 /* We assume that NULL fence/request are interoperable */ 343 BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0); 344 GEM_BUG_ON(fence && !dma_fence_is_i915(fence)); 345 return container_of(fence, struct i915_request, fence); 346 } 347 348 static inline struct i915_request * 349 i915_request_get(struct i915_request *rq) 350 { 351 return to_request(dma_fence_get(&rq->fence)); 352 } 353 354 static inline struct i915_request * 355 i915_request_get_rcu(struct i915_request *rq) 356 { 357 return to_request(dma_fence_get_rcu(&rq->fence)); 358 } 359 360 static inline void 361 i915_request_put(struct i915_request *rq) 362 { 363 dma_fence_put(&rq->fence); 364 } 365 366 int i915_request_await_object(struct i915_request *to, 367 struct drm_i915_gem_object *obj, 368 bool write); 369 int i915_request_await_dma_fence(struct i915_request *rq, 370 struct dma_fence *fence); 371 int i915_request_await_execution(struct i915_request *rq, 372 struct dma_fence *fence); 373 374 void i915_request_add(struct i915_request *rq); 375 376 bool __i915_request_submit(struct i915_request *request); 377 void i915_request_submit(struct i915_request *request); 378 379 void __i915_request_unsubmit(struct i915_request *request); 380 void i915_request_unsubmit(struct i915_request *request); 381 382 void i915_request_cancel(struct i915_request *rq, int error); 383 384 long i915_request_wait(struct i915_request *rq, 385 unsigned int flags, 386 long timeout) 387 __attribute__((nonnull(1))); 388 #define I915_WAIT_INTERRUPTIBLE BIT(0) 389 #define I915_WAIT_PRIORITY BIT(1) /* small priority bump for the request */ 390 #define I915_WAIT_ALL BIT(2) /* used by i915_gem_object_wait() */ 391 392 void i915_request_show(struct drm_printer *m, 393 const struct i915_request *rq, 394 const char *prefix, 395 int indent); 396 397 static inline bool i915_request_signaled(const struct i915_request *rq) 398 { 399 /* The request may live longer than its HWSP, so check flags first! */ 400 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags); 401 } 402 403 static inline bool i915_request_is_active(const struct i915_request *rq) 404 { 405 return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 406 } 407 408 static inline bool i915_request_in_priority_queue(const struct i915_request *rq) 409 { 410 return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 411 } 412 413 static inline bool 414 i915_request_has_initial_breadcrumb(const struct i915_request *rq) 415 { 416 return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags); 417 } 418 419 /** 420 * Returns true if seq1 is later than seq2. 421 */ 422 static inline bool i915_seqno_passed(u32 seq1, u32 seq2) 423 { 424 return (s32)(seq1 - seq2) >= 0; 425 } 426 427 static inline u32 __hwsp_seqno(const struct i915_request *rq) 428 { 429 const u32 *hwsp = READ_ONCE(rq->hwsp_seqno); 430 431 return READ_ONCE(*hwsp); 432 } 433 434 /** 435 * hwsp_seqno - the current breadcrumb value in the HW status page 436 * @rq: the request, to chase the relevant HW status page 437 * 438 * The emphasis in naming here is that hwsp_seqno() is not a property of the 439 * request, but an indication of the current HW state (associated with this 440 * request). Its value will change as the GPU executes more requests. 441 * 442 * Returns the current breadcrumb value in the associated HW status page (or 443 * the local timeline's equivalent) for this request. The request itself 444 * has the associated breadcrumb value of rq->fence.seqno, when the HW 445 * status page has that breadcrumb or later, this request is complete. 446 */ 447 static inline u32 hwsp_seqno(const struct i915_request *rq) 448 { 449 u32 seqno; 450 451 rcu_read_lock(); /* the HWSP may be freed at runtime */ 452 seqno = __hwsp_seqno(rq); 453 rcu_read_unlock(); 454 455 return seqno; 456 } 457 458 static inline bool __i915_request_has_started(const struct i915_request *rq) 459 { 460 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1); 461 } 462 463 /** 464 * i915_request_started - check if the request has begun being executed 465 * @rq: the request 466 * 467 * If the timeline is not using initial breadcrumbs, a request is 468 * considered started if the previous request on its timeline (i.e. 469 * context) has been signaled. 470 * 471 * If the timeline is using semaphores, it will also be emitting an 472 * "initial breadcrumb" after the semaphores are complete and just before 473 * it began executing the user payload. A request can therefore be active 474 * on the HW and not yet started as it is still busywaiting on its 475 * dependencies (via HW semaphores). 476 * 477 * If the request has started, its dependencies will have been signaled 478 * (either by fences or by semaphores) and it will have begun processing 479 * the user payload. 480 * 481 * However, even if a request has started, it may have been preempted and 482 * so no longer active, or it may have already completed. 483 * 484 * See also i915_request_is_active(). 485 * 486 * Returns true if the request has begun executing the user payload, or 487 * has completed: 488 */ 489 static inline bool i915_request_started(const struct i915_request *rq) 490 { 491 bool result; 492 493 if (i915_request_signaled(rq)) 494 return true; 495 496 result = true; 497 rcu_read_lock(); /* the HWSP may be freed at runtime */ 498 if (likely(!i915_request_signaled(rq))) 499 /* Remember: started but may have since been preempted! */ 500 result = __i915_request_has_started(rq); 501 rcu_read_unlock(); 502 503 return result; 504 } 505 506 /** 507 * i915_request_is_running - check if the request may actually be executing 508 * @rq: the request 509 * 510 * Returns true if the request is currently submitted to hardware, has passed 511 * its start point (i.e. the context is setup and not busywaiting). Note that 512 * it may no longer be running by the time the function returns! 513 */ 514 static inline bool i915_request_is_running(const struct i915_request *rq) 515 { 516 bool result; 517 518 if (!i915_request_is_active(rq)) 519 return false; 520 521 rcu_read_lock(); 522 result = __i915_request_has_started(rq) && i915_request_is_active(rq); 523 rcu_read_unlock(); 524 525 return result; 526 } 527 528 /** 529 * i915_request_is_ready - check if the request is ready for execution 530 * @rq: the request 531 * 532 * Upon construction, the request is instructed to wait upon various 533 * signals before it is ready to be executed by the HW. That is, we do 534 * not want to start execution and read data before it is written. In practice, 535 * this is controlled with a mixture of interrupts and semaphores. Once 536 * the submit fence is completed, the backend scheduler will place the 537 * request into its queue and from there submit it for execution. So we 538 * can detect when a request is eligible for execution (and is under control 539 * of the scheduler) by querying where it is in any of the scheduler's lists. 540 * 541 * Returns true if the request is ready for execution (it may be inflight), 542 * false otherwise. 543 */ 544 static inline bool i915_request_is_ready(const struct i915_request *rq) 545 { 546 return !list_empty(&rq->sched.link); 547 } 548 549 static inline bool __i915_request_is_complete(const struct i915_request *rq) 550 { 551 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno); 552 } 553 554 static inline bool i915_request_completed(const struct i915_request *rq) 555 { 556 bool result; 557 558 if (i915_request_signaled(rq)) 559 return true; 560 561 result = true; 562 rcu_read_lock(); /* the HWSP may be freed at runtime */ 563 if (likely(!i915_request_signaled(rq))) 564 result = __i915_request_is_complete(rq); 565 rcu_read_unlock(); 566 567 return result; 568 } 569 570 static inline void i915_request_mark_complete(struct i915_request *rq) 571 { 572 WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */ 573 (u32 *)&rq->fence.seqno); 574 } 575 576 static inline bool i915_request_has_waitboost(const struct i915_request *rq) 577 { 578 return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags); 579 } 580 581 static inline bool i915_request_has_nopreempt(const struct i915_request *rq) 582 { 583 /* Preemption should only be disabled very rarely */ 584 return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags)); 585 } 586 587 static inline bool i915_request_has_sentinel(const struct i915_request *rq) 588 { 589 return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags)); 590 } 591 592 static inline bool i915_request_on_hold(const struct i915_request *rq) 593 { 594 return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags)); 595 } 596 597 static inline void i915_request_set_hold(struct i915_request *rq) 598 { 599 set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 600 } 601 602 static inline void i915_request_clear_hold(struct i915_request *rq) 603 { 604 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 605 } 606 607 static inline struct intel_timeline * 608 i915_request_timeline(const struct i915_request *rq) 609 { 610 /* Valid only while the request is being constructed (or retired). */ 611 return rcu_dereference_protected(rq->timeline, 612 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex)); 613 } 614 615 static inline struct i915_gem_context * 616 i915_request_gem_context(const struct i915_request *rq) 617 { 618 /* Valid only while the request is being constructed (or retired). */ 619 return rcu_dereference_protected(rq->context->gem_context, true); 620 } 621 622 static inline struct intel_timeline * 623 i915_request_active_timeline(const struct i915_request *rq) 624 { 625 /* 626 * When in use during submission, we are protected by a guarantee that 627 * the context/timeline is pinned and must remain pinned until after 628 * this submission. 629 */ 630 return rcu_dereference_protected(rq->timeline, 631 lockdep_is_held(&rq->engine->sched_engine->lock)); 632 } 633 634 static inline u32 635 i915_request_active_seqno(const struct i915_request *rq) 636 { 637 u32 hwsp_phys_base = 638 page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset); 639 u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno); 640 641 /* 642 * Because of wraparound, we cannot simply take tl->hwsp_offset, 643 * but instead use the fact that the relative for vaddr is the 644 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset 645 * and combine them with the relative offset in rq->hwsp_seqno. 646 * 647 * As rw->hwsp_seqno is rewritten when signaled, this only works 648 * when the request isn't signaled yet, but at that point you 649 * no longer need the offset. 650 */ 651 652 return hwsp_phys_base + hwsp_relative_offset; 653 } 654 655 bool 656 i915_request_active_engine(struct i915_request *rq, 657 struct intel_engine_cs **active); 658 659 void i915_request_notify_execute_cb_imm(struct i915_request *rq); 660 661 enum i915_request_state { 662 I915_REQUEST_UNKNOWN = 0, 663 I915_REQUEST_COMPLETE, 664 I915_REQUEST_PENDING, 665 I915_REQUEST_QUEUED, 666 I915_REQUEST_ACTIVE, 667 }; 668 669 enum i915_request_state i915_test_request_state(struct i915_request *rq); 670 671 void i915_request_module_exit(void); 672 int i915_request_module_init(void); 673 674 #endif /* I915_REQUEST_H */ 675