1 /* 2 * Copyright © 2008-2018 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #ifndef I915_REQUEST_H 26 #define I915_REQUEST_H 27 28 #include <linux/dma-fence.h> 29 #include <linux/hrtimer.h> 30 #include <linux/irq_work.h> 31 #include <linux/llist.h> 32 #include <linux/lockdep.h> 33 34 #include "gem/i915_gem_context_types.h" 35 #include "gt/intel_context_types.h" 36 #include "gt/intel_engine_types.h" 37 #include "gt/intel_timeline_types.h" 38 39 #include "i915_gem.h" 40 #include "i915_scheduler.h" 41 #include "i915_selftest.h" 42 #include "i915_sw_fence.h" 43 #include "i915_vma_resource.h" 44 45 #include <uapi/drm/i915_drm.h> 46 47 struct drm_file; 48 struct drm_i915_gem_object; 49 struct drm_printer; 50 struct i915_deps; 51 struct i915_request; 52 53 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 54 struct i915_capture_list { 55 struct i915_vma_resource *vma_res; 56 struct i915_capture_list *next; 57 }; 58 59 void i915_request_free_capture_list(struct i915_capture_list *capture); 60 #else 61 #define i915_request_free_capture_list(_a) do {} while (0) 62 #endif 63 64 #define RQ_TRACE(rq, fmt, ...) do { \ 65 const struct i915_request *rq__ = (rq); \ 66 ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt, \ 67 rq__->fence.context, rq__->fence.seqno, \ 68 hwsp_seqno(rq__), ##__VA_ARGS__); \ 69 } while (0) 70 71 enum { 72 /* 73 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW. 74 * 75 * Set by __i915_request_submit() on handing over to HW, and cleared 76 * by __i915_request_unsubmit() if we preempt this request. 77 * 78 * Finally cleared for consistency on retiring the request, when 79 * we know the HW is no longer running this request. 80 * 81 * See i915_request_is_active() 82 */ 83 I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS, 84 85 /* 86 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution 87 * 88 * Using the scheduler, when a request is ready for execution it is put 89 * into the priority queue, and removed from that queue when transferred 90 * to the HW runlists. We want to track its membership within the 91 * priority queue so that we can easily check before rescheduling. 92 * 93 * See i915_request_in_priority_queue() 94 */ 95 I915_FENCE_FLAG_PQUEUE, 96 97 /* 98 * I915_FENCE_FLAG_HOLD - this request is currently on hold 99 * 100 * This request has been suspended, pending an ongoing investigation. 101 */ 102 I915_FENCE_FLAG_HOLD, 103 104 /* 105 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial 106 * breadcrumb that marks the end of semaphore waits and start of the 107 * user payload. 108 */ 109 I915_FENCE_FLAG_INITIAL_BREADCRUMB, 110 111 /* 112 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list 113 * 114 * Internal bookkeeping used by the breadcrumb code to track when 115 * a request is on the various signal_list. 116 */ 117 I915_FENCE_FLAG_SIGNAL, 118 119 /* 120 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted 121 * 122 * The execution of some requests should not be interrupted. This is 123 * a sensitive operation as it makes the request super important, 124 * blocking other higher priority work. Abuse of this flag will 125 * lead to quality of service issues. 126 */ 127 I915_FENCE_FLAG_NOPREEMPT, 128 129 /* 130 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue 131 * 132 * A high priority sentinel request may be submitted to clear the 133 * submission queue. As it will be the only request in-flight, upon 134 * execution all other active requests will have been preempted and 135 * unsubmitted. This preemptive pulse is used to re-evaluate the 136 * in-flight requests, particularly in cases where an active context 137 * is banned and those active requests need to be cancelled. 138 */ 139 I915_FENCE_FLAG_SENTINEL, 140 141 /* 142 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request 143 * 144 * Some requests are more important than others! In particular, a 145 * request that the user is waiting on is typically required for 146 * interactive latency, for which we want to minimise by upclocking 147 * the GPU. Here we track such boost requests on a per-request basis. 148 */ 149 I915_FENCE_FLAG_BOOST, 150 151 /* 152 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a 153 * parent-child relationship (parallel submission, multi-lrc) should 154 * trigger a submission to the GuC rather than just moving the context 155 * tail. 156 */ 157 I915_FENCE_FLAG_SUBMIT_PARALLEL, 158 159 /* 160 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a 161 * parent-child relationship (parallel submission, multi-lrc) that 162 * hit an error while generating requests in the execbuf IOCTL. 163 * Indicates this request should be skipped as another request in 164 * submission / relationship encoutered an error. 165 */ 166 I915_FENCE_FLAG_SKIP_PARALLEL, 167 168 /* 169 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite 170 * fence (dma_fence_array) and i915 generated for parallel submission. 171 */ 172 I915_FENCE_FLAG_COMPOSITE, 173 }; 174 175 /** 176 * Request queue structure. 177 * 178 * The request queue allows us to note sequence numbers that have been emitted 179 * and may be associated with active buffers to be retired. 180 * 181 * By keeping this list, we can avoid having to do questionable sequence 182 * number comparisons on buffer last_read|write_seqno. It also allows an 183 * emission time to be associated with the request for tracking how far ahead 184 * of the GPU the submission is. 185 * 186 * When modifying this structure be very aware that we perform a lockless 187 * RCU lookup of it that may race against reallocation of the struct 188 * from the slab freelist. We intentionally do not zero the structure on 189 * allocation so that the lookup can use the dangling pointers (and is 190 * cogniscent that those pointers may be wrong). Instead, everything that 191 * needs to be initialised must be done so explicitly. 192 * 193 * The requests are reference counted. 194 */ 195 struct i915_request { 196 struct dma_fence fence; 197 spinlock_t lock; 198 199 /** 200 * Context and ring buffer related to this request 201 * Contexts are refcounted, so when this request is associated with a 202 * context, we must increment the context's refcount, to guarantee that 203 * it persists while any request is linked to it. Requests themselves 204 * are also refcounted, so the request will only be freed when the last 205 * reference to it is dismissed, and the code in 206 * i915_request_free() will then decrement the refcount on the 207 * context. 208 */ 209 struct intel_engine_cs *engine; 210 struct intel_context *context; 211 struct intel_ring *ring; 212 struct intel_timeline __rcu *timeline; 213 214 struct list_head signal_link; 215 struct llist_node signal_node; 216 217 /* 218 * The rcu epoch of when this request was allocated. Used to judiciously 219 * apply backpressure on future allocations to ensure that under 220 * mempressure there is sufficient RCU ticks for us to reclaim our 221 * RCU protected slabs. 222 */ 223 unsigned long rcustate; 224 225 /* 226 * We pin the timeline->mutex while constructing the request to 227 * ensure that no caller accidentally drops it during construction. 228 * The timeline->mutex must be held to ensure that only this caller 229 * can use the ring and manipulate the associated timeline during 230 * construction. 231 */ 232 struct pin_cookie cookie; 233 234 /* 235 * Fences for the various phases in the request's lifetime. 236 * 237 * The submit fence is used to await upon all of the request's 238 * dependencies. When it is signaled, the request is ready to run. 239 * It is used by the driver to then queue the request for execution. 240 */ 241 struct i915_sw_fence submit; 242 union { 243 wait_queue_entry_t submitq; 244 struct i915_sw_dma_fence_cb dmaq; 245 struct i915_request_duration_cb { 246 struct dma_fence_cb cb; 247 ktime_t emitted; 248 } duration; 249 }; 250 struct llist_head execute_cb; 251 struct i915_sw_fence semaphore; 252 /** 253 * @submit_work: complete submit fence from an IRQ if needed for 254 * locking hierarchy reasons. 255 */ 256 struct irq_work submit_work; 257 258 /* 259 * A list of everyone we wait upon, and everyone who waits upon us. 260 * Even though we will not be submitted to the hardware before the 261 * submit fence is signaled (it waits for all external events as well 262 * as our own requests), the scheduler still needs to know the 263 * dependency tree for the lifetime of the request (from execbuf 264 * to retirement), i.e. bidirectional dependency information for the 265 * request not tied to individual fences. 266 */ 267 struct i915_sched_node sched; 268 struct i915_dependency dep; 269 intel_engine_mask_t execution_mask; 270 271 /* 272 * A convenience pointer to the current breadcrumb value stored in 273 * the HW status page (or our timeline's local equivalent). The full 274 * path would be rq->hw_context->ring->timeline->hwsp_seqno. 275 */ 276 const u32 *hwsp_seqno; 277 278 /** Position in the ring of the start of the request */ 279 u32 head; 280 281 /** Position in the ring of the start of the user packets */ 282 u32 infix; 283 284 /** 285 * Position in the ring of the start of the postfix. 286 * This is required to calculate the maximum available ring space 287 * without overwriting the postfix. 288 */ 289 u32 postfix; 290 291 /** Position in the ring of the end of the whole request */ 292 u32 tail; 293 294 /** Position in the ring of the end of any workarounds after the tail */ 295 u32 wa_tail; 296 297 /** Preallocate space in the ring for the emitting the request */ 298 u32 reserved_space; 299 300 /** Batch buffer pointer for selftest internal use. */ 301 I915_SELFTEST_DECLARE(struct i915_vma *batch); 302 303 struct i915_vma_resource *batch_res; 304 305 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 306 /** 307 * Additional buffers requested by userspace to be captured upon 308 * a GPU hang. The vma/obj on this list are protected by their 309 * active reference - all objects on this list must also be 310 * on the active_list (of their final request). 311 */ 312 struct i915_capture_list *capture_list; 313 #endif 314 315 /** Time at which this request was emitted, in jiffies. */ 316 unsigned long emitted_jiffies; 317 318 /** timeline->request entry for this request */ 319 struct list_head link; 320 321 /** Watchdog support fields. */ 322 struct i915_request_watchdog { 323 struct llist_node link; 324 struct hrtimer timer; 325 } watchdog; 326 327 /** 328 * @guc_fence_link: Requests may need to be stalled when using GuC 329 * submission waiting for certain GuC operations to complete. If that is 330 * the case, stalled requests are added to a per context list of stalled 331 * requests. The below list_head is the link in that list. Protected by 332 * ce->guc_state.lock. 333 */ 334 struct list_head guc_fence_link; 335 336 /** 337 * @guc_prio: Priority level while the request is in flight. Differs 338 * from i915 scheduler priority. See comment above 339 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by 340 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and 341 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate 342 * if the priority has not been initialized yet or if no more updates 343 * are possible because the request has completed. 344 */ 345 #define GUC_PRIO_INIT 0xff 346 #define GUC_PRIO_FINI 0xfe 347 u8 guc_prio; 348 349 I915_SELFTEST_DECLARE(struct { 350 struct list_head link; 351 unsigned long delay; 352 } mock;) 353 }; 354 355 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 356 357 extern const struct dma_fence_ops i915_fence_ops; 358 359 static inline bool dma_fence_is_i915(const struct dma_fence *fence) 360 { 361 return fence->ops == &i915_fence_ops; 362 } 363 364 struct kmem_cache *i915_request_slab_cache(void); 365 366 struct i915_request * __must_check 367 __i915_request_create(struct intel_context *ce, gfp_t gfp); 368 struct i915_request * __must_check 369 i915_request_create(struct intel_context *ce); 370 371 void __i915_request_skip(struct i915_request *rq); 372 bool i915_request_set_error_once(struct i915_request *rq, int error); 373 struct i915_request *i915_request_mark_eio(struct i915_request *rq); 374 375 struct i915_request *__i915_request_commit(struct i915_request *request); 376 void __i915_request_queue(struct i915_request *rq, 377 const struct i915_sched_attr *attr); 378 void __i915_request_queue_bh(struct i915_request *rq); 379 380 bool i915_request_retire(struct i915_request *rq); 381 void i915_request_retire_upto(struct i915_request *rq); 382 383 static inline struct i915_request * 384 to_request(struct dma_fence *fence) 385 { 386 /* We assume that NULL fence/request are interoperable */ 387 BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0); 388 GEM_BUG_ON(fence && !dma_fence_is_i915(fence)); 389 return container_of(fence, struct i915_request, fence); 390 } 391 392 static inline struct i915_request * 393 i915_request_get(struct i915_request *rq) 394 { 395 return to_request(dma_fence_get(&rq->fence)); 396 } 397 398 static inline struct i915_request * 399 i915_request_get_rcu(struct i915_request *rq) 400 { 401 return to_request(dma_fence_get_rcu(&rq->fence)); 402 } 403 404 static inline void 405 i915_request_put(struct i915_request *rq) 406 { 407 dma_fence_put(&rq->fence); 408 } 409 410 int i915_request_await_object(struct i915_request *to, 411 struct drm_i915_gem_object *obj, 412 bool write); 413 int i915_request_await_dma_fence(struct i915_request *rq, 414 struct dma_fence *fence); 415 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps); 416 int i915_request_await_execution(struct i915_request *rq, 417 struct dma_fence *fence); 418 419 void i915_request_add(struct i915_request *rq); 420 421 bool __i915_request_submit(struct i915_request *request); 422 void i915_request_submit(struct i915_request *request); 423 424 void __i915_request_unsubmit(struct i915_request *request); 425 void i915_request_unsubmit(struct i915_request *request); 426 427 void i915_request_cancel(struct i915_request *rq, int error); 428 429 long i915_request_wait_timeout(struct i915_request *rq, 430 unsigned int flags, 431 long timeout) 432 __attribute__((nonnull(1))); 433 434 long i915_request_wait(struct i915_request *rq, 435 unsigned int flags, 436 long timeout) 437 __attribute__((nonnull(1))); 438 #define I915_WAIT_INTERRUPTIBLE BIT(0) 439 #define I915_WAIT_PRIORITY BIT(1) /* small priority bump for the request */ 440 #define I915_WAIT_ALL BIT(2) /* used by i915_gem_object_wait() */ 441 442 void i915_request_show(struct drm_printer *m, 443 const struct i915_request *rq, 444 const char *prefix, 445 int indent); 446 447 static inline bool i915_request_signaled(const struct i915_request *rq) 448 { 449 /* The request may live longer than its HWSP, so check flags first! */ 450 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags); 451 } 452 453 static inline bool i915_request_is_active(const struct i915_request *rq) 454 { 455 return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 456 } 457 458 static inline bool i915_request_in_priority_queue(const struct i915_request *rq) 459 { 460 return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 461 } 462 463 static inline bool 464 i915_request_has_initial_breadcrumb(const struct i915_request *rq) 465 { 466 return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags); 467 } 468 469 /** 470 * Returns true if seq1 is later than seq2. 471 */ 472 static inline bool i915_seqno_passed(u32 seq1, u32 seq2) 473 { 474 return (s32)(seq1 - seq2) >= 0; 475 } 476 477 static inline u32 __hwsp_seqno(const struct i915_request *rq) 478 { 479 const u32 *hwsp = READ_ONCE(rq->hwsp_seqno); 480 481 return READ_ONCE(*hwsp); 482 } 483 484 /** 485 * hwsp_seqno - the current breadcrumb value in the HW status page 486 * @rq: the request, to chase the relevant HW status page 487 * 488 * The emphasis in naming here is that hwsp_seqno() is not a property of the 489 * request, but an indication of the current HW state (associated with this 490 * request). Its value will change as the GPU executes more requests. 491 * 492 * Returns the current breadcrumb value in the associated HW status page (or 493 * the local timeline's equivalent) for this request. The request itself 494 * has the associated breadcrumb value of rq->fence.seqno, when the HW 495 * status page has that breadcrumb or later, this request is complete. 496 */ 497 static inline u32 hwsp_seqno(const struct i915_request *rq) 498 { 499 u32 seqno; 500 501 rcu_read_lock(); /* the HWSP may be freed at runtime */ 502 seqno = __hwsp_seqno(rq); 503 rcu_read_unlock(); 504 505 return seqno; 506 } 507 508 static inline bool __i915_request_has_started(const struct i915_request *rq) 509 { 510 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1); 511 } 512 513 /** 514 * i915_request_started - check if the request has begun being executed 515 * @rq: the request 516 * 517 * If the timeline is not using initial breadcrumbs, a request is 518 * considered started if the previous request on its timeline (i.e. 519 * context) has been signaled. 520 * 521 * If the timeline is using semaphores, it will also be emitting an 522 * "initial breadcrumb" after the semaphores are complete and just before 523 * it began executing the user payload. A request can therefore be active 524 * on the HW and not yet started as it is still busywaiting on its 525 * dependencies (via HW semaphores). 526 * 527 * If the request has started, its dependencies will have been signaled 528 * (either by fences or by semaphores) and it will have begun processing 529 * the user payload. 530 * 531 * However, even if a request has started, it may have been preempted and 532 * so no longer active, or it may have already completed. 533 * 534 * See also i915_request_is_active(). 535 * 536 * Returns true if the request has begun executing the user payload, or 537 * has completed: 538 */ 539 static inline bool i915_request_started(const struct i915_request *rq) 540 { 541 bool result; 542 543 if (i915_request_signaled(rq)) 544 return true; 545 546 result = true; 547 rcu_read_lock(); /* the HWSP may be freed at runtime */ 548 if (likely(!i915_request_signaled(rq))) 549 /* Remember: started but may have since been preempted! */ 550 result = __i915_request_has_started(rq); 551 rcu_read_unlock(); 552 553 return result; 554 } 555 556 /** 557 * i915_request_is_running - check if the request may actually be executing 558 * @rq: the request 559 * 560 * Returns true if the request is currently submitted to hardware, has passed 561 * its start point (i.e. the context is setup and not busywaiting). Note that 562 * it may no longer be running by the time the function returns! 563 */ 564 static inline bool i915_request_is_running(const struct i915_request *rq) 565 { 566 bool result; 567 568 if (!i915_request_is_active(rq)) 569 return false; 570 571 rcu_read_lock(); 572 result = __i915_request_has_started(rq) && i915_request_is_active(rq); 573 rcu_read_unlock(); 574 575 return result; 576 } 577 578 /** 579 * i915_request_is_ready - check if the request is ready for execution 580 * @rq: the request 581 * 582 * Upon construction, the request is instructed to wait upon various 583 * signals before it is ready to be executed by the HW. That is, we do 584 * not want to start execution and read data before it is written. In practice, 585 * this is controlled with a mixture of interrupts and semaphores. Once 586 * the submit fence is completed, the backend scheduler will place the 587 * request into its queue and from there submit it for execution. So we 588 * can detect when a request is eligible for execution (and is under control 589 * of the scheduler) by querying where it is in any of the scheduler's lists. 590 * 591 * Returns true if the request is ready for execution (it may be inflight), 592 * false otherwise. 593 */ 594 static inline bool i915_request_is_ready(const struct i915_request *rq) 595 { 596 return !list_empty(&rq->sched.link); 597 } 598 599 static inline bool __i915_request_is_complete(const struct i915_request *rq) 600 { 601 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno); 602 } 603 604 static inline bool i915_request_completed(const struct i915_request *rq) 605 { 606 bool result; 607 608 if (i915_request_signaled(rq)) 609 return true; 610 611 result = true; 612 rcu_read_lock(); /* the HWSP may be freed at runtime */ 613 if (likely(!i915_request_signaled(rq))) 614 result = __i915_request_is_complete(rq); 615 rcu_read_unlock(); 616 617 return result; 618 } 619 620 static inline void i915_request_mark_complete(struct i915_request *rq) 621 { 622 WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */ 623 (u32 *)&rq->fence.seqno); 624 } 625 626 static inline bool i915_request_has_waitboost(const struct i915_request *rq) 627 { 628 return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags); 629 } 630 631 static inline bool i915_request_has_nopreempt(const struct i915_request *rq) 632 { 633 /* Preemption should only be disabled very rarely */ 634 return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags)); 635 } 636 637 static inline bool i915_request_has_sentinel(const struct i915_request *rq) 638 { 639 return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags)); 640 } 641 642 static inline bool i915_request_on_hold(const struct i915_request *rq) 643 { 644 return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags)); 645 } 646 647 static inline void i915_request_set_hold(struct i915_request *rq) 648 { 649 set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 650 } 651 652 static inline void i915_request_clear_hold(struct i915_request *rq) 653 { 654 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 655 } 656 657 static inline struct intel_timeline * 658 i915_request_timeline(const struct i915_request *rq) 659 { 660 /* Valid only while the request is being constructed (or retired). */ 661 return rcu_dereference_protected(rq->timeline, 662 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) || 663 test_bit(CONTEXT_IS_PARKING, &rq->context->flags)); 664 } 665 666 static inline struct i915_gem_context * 667 i915_request_gem_context(const struct i915_request *rq) 668 { 669 /* Valid only while the request is being constructed (or retired). */ 670 return rcu_dereference_protected(rq->context->gem_context, true); 671 } 672 673 static inline struct intel_timeline * 674 i915_request_active_timeline(const struct i915_request *rq) 675 { 676 /* 677 * When in use during submission, we are protected by a guarantee that 678 * the context/timeline is pinned and must remain pinned until after 679 * this submission. 680 */ 681 return rcu_dereference_protected(rq->timeline, 682 lockdep_is_held(&rq->engine->sched_engine->lock)); 683 } 684 685 static inline u32 686 i915_request_active_seqno(const struct i915_request *rq) 687 { 688 u32 hwsp_phys_base = 689 page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset); 690 u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno); 691 692 /* 693 * Because of wraparound, we cannot simply take tl->hwsp_offset, 694 * but instead use the fact that the relative for vaddr is the 695 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset 696 * and combine them with the relative offset in rq->hwsp_seqno. 697 * 698 * As rw->hwsp_seqno is rewritten when signaled, this only works 699 * when the request isn't signaled yet, but at that point you 700 * no longer need the offset. 701 */ 702 703 return hwsp_phys_base + hwsp_relative_offset; 704 } 705 706 bool 707 i915_request_active_engine(struct i915_request *rq, 708 struct intel_engine_cs **active); 709 710 void i915_request_notify_execute_cb_imm(struct i915_request *rq); 711 712 enum i915_request_state { 713 I915_REQUEST_UNKNOWN = 0, 714 I915_REQUEST_COMPLETE, 715 I915_REQUEST_PENDING, 716 I915_REQUEST_QUEUED, 717 I915_REQUEST_ACTIVE, 718 }; 719 720 enum i915_request_state i915_test_request_state(struct i915_request *rq); 721 722 void i915_request_module_exit(void); 723 int i915_request_module_init(void); 724 725 #endif /* I915_REQUEST_H */ 726