xref: /openbmc/linux/drivers/gpu/drm/i915/i915_request.h (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 /*
2  * Copyright © 2008-2018 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef I915_REQUEST_H
26 #define I915_REQUEST_H
27 
28 #include <linux/dma-fence.h>
29 #include <linux/hrtimer.h>
30 #include <linux/irq_work.h>
31 #include <linux/llist.h>
32 #include <linux/lockdep.h>
33 
34 #include "gem/i915_gem_context_types.h"
35 #include "gt/intel_context_types.h"
36 #include "gt/intel_engine_types.h"
37 #include "gt/intel_timeline_types.h"
38 
39 #include "i915_gem.h"
40 #include "i915_scheduler.h"
41 #include "i915_selftest.h"
42 #include "i915_sw_fence.h"
43 
44 #include <uapi/drm/i915_drm.h>
45 
46 struct drm_file;
47 struct drm_i915_gem_object;
48 struct drm_printer;
49 struct i915_request;
50 
51 struct i915_capture_list {
52 	struct i915_capture_list *next;
53 	struct i915_vma *vma;
54 };
55 
56 #define RQ_TRACE(rq, fmt, ...) do {					\
57 	const struct i915_request *rq__ = (rq);				\
58 	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
59 		     rq__->fence.context, rq__->fence.seqno,		\
60 		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
61 } while (0)
62 
63 enum {
64 	/*
65 	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
66 	 *
67 	 * Set by __i915_request_submit() on handing over to HW, and cleared
68 	 * by __i915_request_unsubmit() if we preempt this request.
69 	 *
70 	 * Finally cleared for consistency on retiring the request, when
71 	 * we know the HW is no longer running this request.
72 	 *
73 	 * See i915_request_is_active()
74 	 */
75 	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
76 
77 	/*
78 	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
79 	 *
80 	 * Using the scheduler, when a request is ready for execution it is put
81 	 * into the priority queue, and removed from that queue when transferred
82 	 * to the HW runlists. We want to track its membership within the
83 	 * priority queue so that we can easily check before rescheduling.
84 	 *
85 	 * See i915_request_in_priority_queue()
86 	 */
87 	I915_FENCE_FLAG_PQUEUE,
88 
89 	/*
90 	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
91 	 *
92 	 * This request has been suspended, pending an ongoing investigation.
93 	 */
94 	I915_FENCE_FLAG_HOLD,
95 
96 	/*
97 	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
98 	 * breadcrumb that marks the end of semaphore waits and start of the
99 	 * user payload.
100 	 */
101 	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
102 
103 	/*
104 	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
105 	 *
106 	 * Internal bookkeeping used by the breadcrumb code to track when
107 	 * a request is on the various signal_list.
108 	 */
109 	I915_FENCE_FLAG_SIGNAL,
110 
111 	/*
112 	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
113 	 *
114 	 * The execution of some requests should not be interrupted. This is
115 	 * a sensitive operation as it makes the request super important,
116 	 * blocking other higher priority work. Abuse of this flag will
117 	 * lead to quality of service issues.
118 	 */
119 	I915_FENCE_FLAG_NOPREEMPT,
120 
121 	/*
122 	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
123 	 *
124 	 * A high priority sentinel request may be submitted to clear the
125 	 * submission queue. As it will be the only request in-flight, upon
126 	 * execution all other active requests will have been preempted and
127 	 * unsubmitted. This preemptive pulse is used to re-evaluate the
128 	 * in-flight requests, particularly in cases where an active context
129 	 * is banned and those active requests need to be cancelled.
130 	 */
131 	I915_FENCE_FLAG_SENTINEL,
132 
133 	/*
134 	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
135 	 *
136 	 * Some requests are more important than others! In particular, a
137 	 * request that the user is waiting on is typically required for
138 	 * interactive latency, for which we want to minimise by upclocking
139 	 * the GPU. Here we track such boost requests on a per-request basis.
140 	 */
141 	I915_FENCE_FLAG_BOOST,
142 
143 	/*
144 	 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a
145 	 * parent-child relationship (parallel submission, multi-lrc) should
146 	 * trigger a submission to the GuC rather than just moving the context
147 	 * tail.
148 	 */
149 	I915_FENCE_FLAG_SUBMIT_PARALLEL,
150 
151 	/*
152 	 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a
153 	 * parent-child relationship (parallel submission, multi-lrc) that
154 	 * hit an error while generating requests in the execbuf IOCTL.
155 	 * Indicates this request should be skipped as another request in
156 	 * submission / relationship encoutered an error.
157 	 */
158 	I915_FENCE_FLAG_SKIP_PARALLEL,
159 
160 	/*
161 	 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite
162 	 * fence (dma_fence_array) and i915 generated for parallel submission.
163 	 */
164 	I915_FENCE_FLAG_COMPOSITE,
165 };
166 
167 /**
168  * Request queue structure.
169  *
170  * The request queue allows us to note sequence numbers that have been emitted
171  * and may be associated with active buffers to be retired.
172  *
173  * By keeping this list, we can avoid having to do questionable sequence
174  * number comparisons on buffer last_read|write_seqno. It also allows an
175  * emission time to be associated with the request for tracking how far ahead
176  * of the GPU the submission is.
177  *
178  * When modifying this structure be very aware that we perform a lockless
179  * RCU lookup of it that may race against reallocation of the struct
180  * from the slab freelist. We intentionally do not zero the structure on
181  * allocation so that the lookup can use the dangling pointers (and is
182  * cogniscent that those pointers may be wrong). Instead, everything that
183  * needs to be initialised must be done so explicitly.
184  *
185  * The requests are reference counted.
186  */
187 struct i915_request {
188 	struct dma_fence fence;
189 	spinlock_t lock;
190 
191 	/**
192 	 * Context and ring buffer related to this request
193 	 * Contexts are refcounted, so when this request is associated with a
194 	 * context, we must increment the context's refcount, to guarantee that
195 	 * it persists while any request is linked to it. Requests themselves
196 	 * are also refcounted, so the request will only be freed when the last
197 	 * reference to it is dismissed, and the code in
198 	 * i915_request_free() will then decrement the refcount on the
199 	 * context.
200 	 */
201 	struct intel_engine_cs *engine;
202 	struct intel_context *context;
203 	struct intel_ring *ring;
204 	struct intel_timeline __rcu *timeline;
205 
206 	struct list_head signal_link;
207 	struct llist_node signal_node;
208 
209 	/*
210 	 * The rcu epoch of when this request was allocated. Used to judiciously
211 	 * apply backpressure on future allocations to ensure that under
212 	 * mempressure there is sufficient RCU ticks for us to reclaim our
213 	 * RCU protected slabs.
214 	 */
215 	unsigned long rcustate;
216 
217 	/*
218 	 * We pin the timeline->mutex while constructing the request to
219 	 * ensure that no caller accidentally drops it during construction.
220 	 * The timeline->mutex must be held to ensure that only this caller
221 	 * can use the ring and manipulate the associated timeline during
222 	 * construction.
223 	 */
224 	struct pin_cookie cookie;
225 
226 	/*
227 	 * Fences for the various phases in the request's lifetime.
228 	 *
229 	 * The submit fence is used to await upon all of the request's
230 	 * dependencies. When it is signaled, the request is ready to run.
231 	 * It is used by the driver to then queue the request for execution.
232 	 */
233 	struct i915_sw_fence submit;
234 	union {
235 		wait_queue_entry_t submitq;
236 		struct i915_sw_dma_fence_cb dmaq;
237 		struct i915_request_duration_cb {
238 			struct dma_fence_cb cb;
239 			ktime_t emitted;
240 		} duration;
241 	};
242 	struct llist_head execute_cb;
243 	struct i915_sw_fence semaphore;
244 	/**
245 	 * @submit_work: complete submit fence from an IRQ if needed for
246 	 * locking hierarchy reasons.
247 	 */
248 	struct irq_work submit_work;
249 
250 	/*
251 	 * A list of everyone we wait upon, and everyone who waits upon us.
252 	 * Even though we will not be submitted to the hardware before the
253 	 * submit fence is signaled (it waits for all external events as well
254 	 * as our own requests), the scheduler still needs to know the
255 	 * dependency tree for the lifetime of the request (from execbuf
256 	 * to retirement), i.e. bidirectional dependency information for the
257 	 * request not tied to individual fences.
258 	 */
259 	struct i915_sched_node sched;
260 	struct i915_dependency dep;
261 	intel_engine_mask_t execution_mask;
262 
263 	/*
264 	 * A convenience pointer to the current breadcrumb value stored in
265 	 * the HW status page (or our timeline's local equivalent). The full
266 	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
267 	 */
268 	const u32 *hwsp_seqno;
269 
270 	/** Position in the ring of the start of the request */
271 	u32 head;
272 
273 	/** Position in the ring of the start of the user packets */
274 	u32 infix;
275 
276 	/**
277 	 * Position in the ring of the start of the postfix.
278 	 * This is required to calculate the maximum available ring space
279 	 * without overwriting the postfix.
280 	 */
281 	u32 postfix;
282 
283 	/** Position in the ring of the end of the whole request */
284 	u32 tail;
285 
286 	/** Position in the ring of the end of any workarounds after the tail */
287 	u32 wa_tail;
288 
289 	/** Preallocate space in the ring for the emitting the request */
290 	u32 reserved_space;
291 
292 	/** Batch buffer related to this request if any (used for
293 	 * error state dump only).
294 	 */
295 	struct i915_vma *batch;
296 	/**
297 	 * Additional buffers requested by userspace to be captured upon
298 	 * a GPU hang. The vma/obj on this list are protected by their
299 	 * active reference - all objects on this list must also be
300 	 * on the active_list (of their final request).
301 	 */
302 	struct i915_capture_list *capture_list;
303 
304 	/** Time at which this request was emitted, in jiffies. */
305 	unsigned long emitted_jiffies;
306 
307 	/** timeline->request entry for this request */
308 	struct list_head link;
309 
310 	/** Watchdog support fields. */
311 	struct i915_request_watchdog {
312 		struct llist_node link;
313 		struct hrtimer timer;
314 	} watchdog;
315 
316 	/**
317 	 * @guc_fence_link: Requests may need to be stalled when using GuC
318 	 * submission waiting for certain GuC operations to complete. If that is
319 	 * the case, stalled requests are added to a per context list of stalled
320 	 * requests. The below list_head is the link in that list. Protected by
321 	 * ce->guc_state.lock.
322 	 */
323 	struct list_head guc_fence_link;
324 
325 	/**
326 	 * @guc_prio: Priority level while the request is in flight. Differs
327 	 * from i915 scheduler priority. See comment above
328 	 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by
329 	 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and
330 	 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate
331 	 * if the priority has not been initialized yet or if no more updates
332 	 * are possible because the request has completed.
333 	 */
334 #define	GUC_PRIO_INIT	0xff
335 #define	GUC_PRIO_FINI	0xfe
336 	u8 guc_prio;
337 
338 	I915_SELFTEST_DECLARE(struct {
339 		struct list_head link;
340 		unsigned long delay;
341 	} mock;)
342 };
343 
344 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
345 
346 extern const struct dma_fence_ops i915_fence_ops;
347 
348 static inline bool dma_fence_is_i915(const struct dma_fence *fence)
349 {
350 	return fence->ops == &i915_fence_ops;
351 }
352 
353 struct kmem_cache *i915_request_slab_cache(void);
354 
355 struct i915_request * __must_check
356 __i915_request_create(struct intel_context *ce, gfp_t gfp);
357 struct i915_request * __must_check
358 i915_request_create(struct intel_context *ce);
359 
360 void __i915_request_skip(struct i915_request *rq);
361 bool i915_request_set_error_once(struct i915_request *rq, int error);
362 struct i915_request *i915_request_mark_eio(struct i915_request *rq);
363 
364 struct i915_request *__i915_request_commit(struct i915_request *request);
365 void __i915_request_queue(struct i915_request *rq,
366 			  const struct i915_sched_attr *attr);
367 void __i915_request_queue_bh(struct i915_request *rq);
368 
369 bool i915_request_retire(struct i915_request *rq);
370 void i915_request_retire_upto(struct i915_request *rq);
371 
372 static inline struct i915_request *
373 to_request(struct dma_fence *fence)
374 {
375 	/* We assume that NULL fence/request are interoperable */
376 	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
377 	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
378 	return container_of(fence, struct i915_request, fence);
379 }
380 
381 static inline struct i915_request *
382 i915_request_get(struct i915_request *rq)
383 {
384 	return to_request(dma_fence_get(&rq->fence));
385 }
386 
387 static inline struct i915_request *
388 i915_request_get_rcu(struct i915_request *rq)
389 {
390 	return to_request(dma_fence_get_rcu(&rq->fence));
391 }
392 
393 static inline void
394 i915_request_put(struct i915_request *rq)
395 {
396 	dma_fence_put(&rq->fence);
397 }
398 
399 int i915_request_await_object(struct i915_request *to,
400 			      struct drm_i915_gem_object *obj,
401 			      bool write);
402 int i915_request_await_dma_fence(struct i915_request *rq,
403 				 struct dma_fence *fence);
404 int i915_request_await_execution(struct i915_request *rq,
405 				 struct dma_fence *fence);
406 
407 void i915_request_add(struct i915_request *rq);
408 
409 bool __i915_request_submit(struct i915_request *request);
410 void i915_request_submit(struct i915_request *request);
411 
412 void __i915_request_unsubmit(struct i915_request *request);
413 void i915_request_unsubmit(struct i915_request *request);
414 
415 void i915_request_cancel(struct i915_request *rq, int error);
416 
417 long i915_request_wait(struct i915_request *rq,
418 		       unsigned int flags,
419 		       long timeout)
420 	__attribute__((nonnull(1)));
421 #define I915_WAIT_INTERRUPTIBLE	BIT(0)
422 #define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
423 #define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
424 
425 void i915_request_show(struct drm_printer *m,
426 		       const struct i915_request *rq,
427 		       const char *prefix,
428 		       int indent);
429 
430 static inline bool i915_request_signaled(const struct i915_request *rq)
431 {
432 	/* The request may live longer than its HWSP, so check flags first! */
433 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
434 }
435 
436 static inline bool i915_request_is_active(const struct i915_request *rq)
437 {
438 	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
439 }
440 
441 static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
442 {
443 	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
444 }
445 
446 static inline bool
447 i915_request_has_initial_breadcrumb(const struct i915_request *rq)
448 {
449 	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
450 }
451 
452 /**
453  * Returns true if seq1 is later than seq2.
454  */
455 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
456 {
457 	return (s32)(seq1 - seq2) >= 0;
458 }
459 
460 static inline u32 __hwsp_seqno(const struct i915_request *rq)
461 {
462 	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
463 
464 	return READ_ONCE(*hwsp);
465 }
466 
467 /**
468  * hwsp_seqno - the current breadcrumb value in the HW status page
469  * @rq: the request, to chase the relevant HW status page
470  *
471  * The emphasis in naming here is that hwsp_seqno() is not a property of the
472  * request, but an indication of the current HW state (associated with this
473  * request). Its value will change as the GPU executes more requests.
474  *
475  * Returns the current breadcrumb value in the associated HW status page (or
476  * the local timeline's equivalent) for this request. The request itself
477  * has the associated breadcrumb value of rq->fence.seqno, when the HW
478  * status page has that breadcrumb or later, this request is complete.
479  */
480 static inline u32 hwsp_seqno(const struct i915_request *rq)
481 {
482 	u32 seqno;
483 
484 	rcu_read_lock(); /* the HWSP may be freed at runtime */
485 	seqno = __hwsp_seqno(rq);
486 	rcu_read_unlock();
487 
488 	return seqno;
489 }
490 
491 static inline bool __i915_request_has_started(const struct i915_request *rq)
492 {
493 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
494 }
495 
496 /**
497  * i915_request_started - check if the request has begun being executed
498  * @rq: the request
499  *
500  * If the timeline is not using initial breadcrumbs, a request is
501  * considered started if the previous request on its timeline (i.e.
502  * context) has been signaled.
503  *
504  * If the timeline is using semaphores, it will also be emitting an
505  * "initial breadcrumb" after the semaphores are complete and just before
506  * it began executing the user payload. A request can therefore be active
507  * on the HW and not yet started as it is still busywaiting on its
508  * dependencies (via HW semaphores).
509  *
510  * If the request has started, its dependencies will have been signaled
511  * (either by fences or by semaphores) and it will have begun processing
512  * the user payload.
513  *
514  * However, even if a request has started, it may have been preempted and
515  * so no longer active, or it may have already completed.
516  *
517  * See also i915_request_is_active().
518  *
519  * Returns true if the request has begun executing the user payload, or
520  * has completed:
521  */
522 static inline bool i915_request_started(const struct i915_request *rq)
523 {
524 	bool result;
525 
526 	if (i915_request_signaled(rq))
527 		return true;
528 
529 	result = true;
530 	rcu_read_lock(); /* the HWSP may be freed at runtime */
531 	if (likely(!i915_request_signaled(rq)))
532 		/* Remember: started but may have since been preempted! */
533 		result = __i915_request_has_started(rq);
534 	rcu_read_unlock();
535 
536 	return result;
537 }
538 
539 /**
540  * i915_request_is_running - check if the request may actually be executing
541  * @rq: the request
542  *
543  * Returns true if the request is currently submitted to hardware, has passed
544  * its start point (i.e. the context is setup and not busywaiting). Note that
545  * it may no longer be running by the time the function returns!
546  */
547 static inline bool i915_request_is_running(const struct i915_request *rq)
548 {
549 	bool result;
550 
551 	if (!i915_request_is_active(rq))
552 		return false;
553 
554 	rcu_read_lock();
555 	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
556 	rcu_read_unlock();
557 
558 	return result;
559 }
560 
561 /**
562  * i915_request_is_ready - check if the request is ready for execution
563  * @rq: the request
564  *
565  * Upon construction, the request is instructed to wait upon various
566  * signals before it is ready to be executed by the HW. That is, we do
567  * not want to start execution and read data before it is written. In practice,
568  * this is controlled with a mixture of interrupts and semaphores. Once
569  * the submit fence is completed, the backend scheduler will place the
570  * request into its queue and from there submit it for execution. So we
571  * can detect when a request is eligible for execution (and is under control
572  * of the scheduler) by querying where it is in any of the scheduler's lists.
573  *
574  * Returns true if the request is ready for execution (it may be inflight),
575  * false otherwise.
576  */
577 static inline bool i915_request_is_ready(const struct i915_request *rq)
578 {
579 	return !list_empty(&rq->sched.link);
580 }
581 
582 static inline bool __i915_request_is_complete(const struct i915_request *rq)
583 {
584 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
585 }
586 
587 static inline bool i915_request_completed(const struct i915_request *rq)
588 {
589 	bool result;
590 
591 	if (i915_request_signaled(rq))
592 		return true;
593 
594 	result = true;
595 	rcu_read_lock(); /* the HWSP may be freed at runtime */
596 	if (likely(!i915_request_signaled(rq)))
597 		result = __i915_request_is_complete(rq);
598 	rcu_read_unlock();
599 
600 	return result;
601 }
602 
603 static inline void i915_request_mark_complete(struct i915_request *rq)
604 {
605 	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
606 		   (u32 *)&rq->fence.seqno);
607 }
608 
609 static inline bool i915_request_has_waitboost(const struct i915_request *rq)
610 {
611 	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
612 }
613 
614 static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
615 {
616 	/* Preemption should only be disabled very rarely */
617 	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
618 }
619 
620 static inline bool i915_request_has_sentinel(const struct i915_request *rq)
621 {
622 	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
623 }
624 
625 static inline bool i915_request_on_hold(const struct i915_request *rq)
626 {
627 	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
628 }
629 
630 static inline void i915_request_set_hold(struct i915_request *rq)
631 {
632 	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
633 }
634 
635 static inline void i915_request_clear_hold(struct i915_request *rq)
636 {
637 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
638 }
639 
640 static inline struct intel_timeline *
641 i915_request_timeline(const struct i915_request *rq)
642 {
643 	/* Valid only while the request is being constructed (or retired). */
644 	return rcu_dereference_protected(rq->timeline,
645 					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex));
646 }
647 
648 static inline struct i915_gem_context *
649 i915_request_gem_context(const struct i915_request *rq)
650 {
651 	/* Valid only while the request is being constructed (or retired). */
652 	return rcu_dereference_protected(rq->context->gem_context, true);
653 }
654 
655 static inline struct intel_timeline *
656 i915_request_active_timeline(const struct i915_request *rq)
657 {
658 	/*
659 	 * When in use during submission, we are protected by a guarantee that
660 	 * the context/timeline is pinned and must remain pinned until after
661 	 * this submission.
662 	 */
663 	return rcu_dereference_protected(rq->timeline,
664 					 lockdep_is_held(&rq->engine->sched_engine->lock));
665 }
666 
667 static inline u32
668 i915_request_active_seqno(const struct i915_request *rq)
669 {
670 	u32 hwsp_phys_base =
671 		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
672 	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
673 
674 	/*
675 	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
676 	 * but instead use the fact that the relative for vaddr is the
677 	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
678 	 * and combine them with the relative offset in rq->hwsp_seqno.
679 	 *
680 	 * As rw->hwsp_seqno is rewritten when signaled, this only works
681 	 * when the request isn't signaled yet, but at that point you
682 	 * no longer need the offset.
683 	 */
684 
685 	return hwsp_phys_base + hwsp_relative_offset;
686 }
687 
688 bool
689 i915_request_active_engine(struct i915_request *rq,
690 			   struct intel_engine_cs **active);
691 
692 void i915_request_notify_execute_cb_imm(struct i915_request *rq);
693 
694 enum i915_request_state {
695 	I915_REQUEST_UNKNOWN = 0,
696 	I915_REQUEST_COMPLETE,
697 	I915_REQUEST_PENDING,
698 	I915_REQUEST_QUEUED,
699 	I915_REQUEST_ACTIVE,
700 };
701 
702 enum i915_request_state i915_test_request_state(struct i915_request *rq);
703 
704 void i915_request_module_exit(void);
705 int i915_request_module_init(void);
706 
707 #endif /* I915_REQUEST_H */
708