1 /*
2  * Copyright © 2008-2018 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef I915_REQUEST_H
26 #define I915_REQUEST_H
27 
28 #include <linux/dma-fence.h>
29 #include <linux/hrtimer.h>
30 #include <linux/irq_work.h>
31 #include <linux/llist.h>
32 #include <linux/lockdep.h>
33 
34 #include "gem/i915_gem_context_types.h"
35 #include "gt/intel_context_types.h"
36 #include "gt/intel_engine_types.h"
37 #include "gt/intel_timeline_types.h"
38 
39 #include "i915_gem.h"
40 #include "i915_scheduler.h"
41 #include "i915_selftest.h"
42 #include "i915_sw_fence.h"
43 
44 #include <uapi/drm/i915_drm.h>
45 
46 struct drm_file;
47 struct drm_i915_gem_object;
48 struct drm_printer;
49 struct i915_request;
50 
51 struct i915_capture_list {
52 	struct i915_capture_list *next;
53 	struct i915_vma *vma;
54 };
55 
56 #define RQ_TRACE(rq, fmt, ...) do {					\
57 	const struct i915_request *rq__ = (rq);				\
58 	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
59 		     rq__->fence.context, rq__->fence.seqno,		\
60 		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
61 } while (0)
62 
63 enum {
64 	/*
65 	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
66 	 *
67 	 * Set by __i915_request_submit() on handing over to HW, and cleared
68 	 * by __i915_request_unsubmit() if we preempt this request.
69 	 *
70 	 * Finally cleared for consistency on retiring the request, when
71 	 * we know the HW is no longer running this request.
72 	 *
73 	 * See i915_request_is_active()
74 	 */
75 	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
76 
77 	/*
78 	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
79 	 *
80 	 * Using the scheduler, when a request is ready for execution it is put
81 	 * into the priority queue, and removed from that queue when transferred
82 	 * to the HW runlists. We want to track its membership within the
83 	 * priority queue so that we can easily check before rescheduling.
84 	 *
85 	 * See i915_request_in_priority_queue()
86 	 */
87 	I915_FENCE_FLAG_PQUEUE,
88 
89 	/*
90 	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
91 	 *
92 	 * This request has been suspended, pending an ongoing investigation.
93 	 */
94 	I915_FENCE_FLAG_HOLD,
95 
96 	/*
97 	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
98 	 * breadcrumb that marks the end of semaphore waits and start of the
99 	 * user payload.
100 	 */
101 	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
102 
103 	/*
104 	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
105 	 *
106 	 * Internal bookkeeping used by the breadcrumb code to track when
107 	 * a request is on the various signal_list.
108 	 */
109 	I915_FENCE_FLAG_SIGNAL,
110 
111 	/*
112 	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
113 	 *
114 	 * The execution of some requests should not be interrupted. This is
115 	 * a sensitive operation as it makes the request super important,
116 	 * blocking other higher priority work. Abuse of this flag will
117 	 * lead to quality of service issues.
118 	 */
119 	I915_FENCE_FLAG_NOPREEMPT,
120 
121 	/*
122 	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
123 	 *
124 	 * A high priority sentinel request may be submitted to clear the
125 	 * submission queue. As it will be the only request in-flight, upon
126 	 * execution all other active requests will have been preempted and
127 	 * unsubmitted. This preemptive pulse is used to re-evaluate the
128 	 * in-flight requests, particularly in cases where an active context
129 	 * is banned and those active requests need to be cancelled.
130 	 */
131 	I915_FENCE_FLAG_SENTINEL,
132 
133 	/*
134 	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
135 	 *
136 	 * Some requests are more important than others! In particular, a
137 	 * request that the user is waiting on is typically required for
138 	 * interactive latency, for which we want to minimise by upclocking
139 	 * the GPU. Here we track such boost requests on a per-request basis.
140 	 */
141 	I915_FENCE_FLAG_BOOST,
142 };
143 
144 /**
145  * Request queue structure.
146  *
147  * The request queue allows us to note sequence numbers that have been emitted
148  * and may be associated with active buffers to be retired.
149  *
150  * By keeping this list, we can avoid having to do questionable sequence
151  * number comparisons on buffer last_read|write_seqno. It also allows an
152  * emission time to be associated with the request for tracking how far ahead
153  * of the GPU the submission is.
154  *
155  * When modifying this structure be very aware that we perform a lockless
156  * RCU lookup of it that may race against reallocation of the struct
157  * from the slab freelist. We intentionally do not zero the structure on
158  * allocation so that the lookup can use the dangling pointers (and is
159  * cogniscent that those pointers may be wrong). Instead, everything that
160  * needs to be initialised must be done so explicitly.
161  *
162  * The requests are reference counted.
163  */
164 struct i915_request {
165 	struct dma_fence fence;
166 	spinlock_t lock;
167 
168 	/**
169 	 * Context and ring buffer related to this request
170 	 * Contexts are refcounted, so when this request is associated with a
171 	 * context, we must increment the context's refcount, to guarantee that
172 	 * it persists while any request is linked to it. Requests themselves
173 	 * are also refcounted, so the request will only be freed when the last
174 	 * reference to it is dismissed, and the code in
175 	 * i915_request_free() will then decrement the refcount on the
176 	 * context.
177 	 */
178 	struct intel_engine_cs *engine;
179 	struct intel_context *context;
180 	struct intel_ring *ring;
181 	struct intel_timeline __rcu *timeline;
182 
183 	struct list_head signal_link;
184 	struct llist_node signal_node;
185 
186 	/*
187 	 * The rcu epoch of when this request was allocated. Used to judiciously
188 	 * apply backpressure on future allocations to ensure that under
189 	 * mempressure there is sufficient RCU ticks for us to reclaim our
190 	 * RCU protected slabs.
191 	 */
192 	unsigned long rcustate;
193 
194 	/*
195 	 * We pin the timeline->mutex while constructing the request to
196 	 * ensure that no caller accidentally drops it during construction.
197 	 * The timeline->mutex must be held to ensure that only this caller
198 	 * can use the ring and manipulate the associated timeline during
199 	 * construction.
200 	 */
201 	struct pin_cookie cookie;
202 
203 	/*
204 	 * Fences for the various phases in the request's lifetime.
205 	 *
206 	 * The submit fence is used to await upon all of the request's
207 	 * dependencies. When it is signaled, the request is ready to run.
208 	 * It is used by the driver to then queue the request for execution.
209 	 */
210 	struct i915_sw_fence submit;
211 	union {
212 		wait_queue_entry_t submitq;
213 		struct i915_sw_dma_fence_cb dmaq;
214 		struct i915_request_duration_cb {
215 			struct dma_fence_cb cb;
216 			ktime_t emitted;
217 		} duration;
218 	};
219 	struct llist_head execute_cb;
220 	struct i915_sw_fence semaphore;
221 
222 	/*
223 	 * A list of everyone we wait upon, and everyone who waits upon us.
224 	 * Even though we will not be submitted to the hardware before the
225 	 * submit fence is signaled (it waits for all external events as well
226 	 * as our own requests), the scheduler still needs to know the
227 	 * dependency tree for the lifetime of the request (from execbuf
228 	 * to retirement), i.e. bidirectional dependency information for the
229 	 * request not tied to individual fences.
230 	 */
231 	struct i915_sched_node sched;
232 	struct i915_dependency dep;
233 	intel_engine_mask_t execution_mask;
234 
235 	/*
236 	 * A convenience pointer to the current breadcrumb value stored in
237 	 * the HW status page (or our timeline's local equivalent). The full
238 	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
239 	 */
240 	const u32 *hwsp_seqno;
241 
242 	/** Position in the ring of the start of the request */
243 	u32 head;
244 
245 	/** Position in the ring of the start of the user packets */
246 	u32 infix;
247 
248 	/**
249 	 * Position in the ring of the start of the postfix.
250 	 * This is required to calculate the maximum available ring space
251 	 * without overwriting the postfix.
252 	 */
253 	u32 postfix;
254 
255 	/** Position in the ring of the end of the whole request */
256 	u32 tail;
257 
258 	/** Position in the ring of the end of any workarounds after the tail */
259 	u32 wa_tail;
260 
261 	/** Preallocate space in the ring for the emitting the request */
262 	u32 reserved_space;
263 
264 	/** Batch buffer related to this request if any (used for
265 	 * error state dump only).
266 	 */
267 	struct i915_vma *batch;
268 	/**
269 	 * Additional buffers requested by userspace to be captured upon
270 	 * a GPU hang. The vma/obj on this list are protected by their
271 	 * active reference - all objects on this list must also be
272 	 * on the active_list (of their final request).
273 	 */
274 	struct i915_capture_list *capture_list;
275 
276 	/** Time at which this request was emitted, in jiffies. */
277 	unsigned long emitted_jiffies;
278 
279 	/** timeline->request entry for this request */
280 	struct list_head link;
281 
282 	/** Watchdog support fields. */
283 	struct i915_request_watchdog {
284 		struct llist_node link;
285 		struct hrtimer timer;
286 	} watchdog;
287 
288 	I915_SELFTEST_DECLARE(struct {
289 		struct list_head link;
290 		unsigned long delay;
291 	} mock;)
292 };
293 
294 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
295 
296 extern const struct dma_fence_ops i915_fence_ops;
297 
298 static inline bool dma_fence_is_i915(const struct dma_fence *fence)
299 {
300 	return fence->ops == &i915_fence_ops;
301 }
302 
303 struct kmem_cache *i915_request_slab_cache(void);
304 
305 struct i915_request * __must_check
306 __i915_request_create(struct intel_context *ce, gfp_t gfp);
307 struct i915_request * __must_check
308 i915_request_create(struct intel_context *ce);
309 
310 void __i915_request_skip(struct i915_request *rq);
311 bool i915_request_set_error_once(struct i915_request *rq, int error);
312 struct i915_request *i915_request_mark_eio(struct i915_request *rq);
313 
314 struct i915_request *__i915_request_commit(struct i915_request *request);
315 void __i915_request_queue(struct i915_request *rq,
316 			  const struct i915_sched_attr *attr);
317 void __i915_request_queue_bh(struct i915_request *rq);
318 
319 bool i915_request_retire(struct i915_request *rq);
320 void i915_request_retire_upto(struct i915_request *rq);
321 
322 static inline struct i915_request *
323 to_request(struct dma_fence *fence)
324 {
325 	/* We assume that NULL fence/request are interoperable */
326 	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
327 	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
328 	return container_of(fence, struct i915_request, fence);
329 }
330 
331 static inline struct i915_request *
332 i915_request_get(struct i915_request *rq)
333 {
334 	return to_request(dma_fence_get(&rq->fence));
335 }
336 
337 static inline struct i915_request *
338 i915_request_get_rcu(struct i915_request *rq)
339 {
340 	return to_request(dma_fence_get_rcu(&rq->fence));
341 }
342 
343 static inline void
344 i915_request_put(struct i915_request *rq)
345 {
346 	dma_fence_put(&rq->fence);
347 }
348 
349 int i915_request_await_object(struct i915_request *to,
350 			      struct drm_i915_gem_object *obj,
351 			      bool write);
352 int i915_request_await_dma_fence(struct i915_request *rq,
353 				 struct dma_fence *fence);
354 int i915_request_await_execution(struct i915_request *rq,
355 				 struct dma_fence *fence,
356 				 void (*hook)(struct i915_request *rq,
357 					      struct dma_fence *signal));
358 
359 void i915_request_add(struct i915_request *rq);
360 
361 bool __i915_request_submit(struct i915_request *request);
362 void i915_request_submit(struct i915_request *request);
363 
364 void __i915_request_unsubmit(struct i915_request *request);
365 void i915_request_unsubmit(struct i915_request *request);
366 
367 void i915_request_cancel(struct i915_request *rq, int error);
368 
369 long i915_request_wait(struct i915_request *rq,
370 		       unsigned int flags,
371 		       long timeout)
372 	__attribute__((nonnull(1)));
373 #define I915_WAIT_INTERRUPTIBLE	BIT(0)
374 #define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
375 #define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
376 
377 void i915_request_show(struct drm_printer *m,
378 		       const struct i915_request *rq,
379 		       const char *prefix,
380 		       int indent);
381 
382 static inline bool i915_request_signaled(const struct i915_request *rq)
383 {
384 	/* The request may live longer than its HWSP, so check flags first! */
385 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
386 }
387 
388 static inline bool i915_request_is_active(const struct i915_request *rq)
389 {
390 	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
391 }
392 
393 static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
394 {
395 	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
396 }
397 
398 static inline bool
399 i915_request_has_initial_breadcrumb(const struct i915_request *rq)
400 {
401 	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
402 }
403 
404 /**
405  * Returns true if seq1 is later than seq2.
406  */
407 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
408 {
409 	return (s32)(seq1 - seq2) >= 0;
410 }
411 
412 static inline u32 __hwsp_seqno(const struct i915_request *rq)
413 {
414 	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
415 
416 	return READ_ONCE(*hwsp);
417 }
418 
419 /**
420  * hwsp_seqno - the current breadcrumb value in the HW status page
421  * @rq: the request, to chase the relevant HW status page
422  *
423  * The emphasis in naming here is that hwsp_seqno() is not a property of the
424  * request, but an indication of the current HW state (associated with this
425  * request). Its value will change as the GPU executes more requests.
426  *
427  * Returns the current breadcrumb value in the associated HW status page (or
428  * the local timeline's equivalent) for this request. The request itself
429  * has the associated breadcrumb value of rq->fence.seqno, when the HW
430  * status page has that breadcrumb or later, this request is complete.
431  */
432 static inline u32 hwsp_seqno(const struct i915_request *rq)
433 {
434 	u32 seqno;
435 
436 	rcu_read_lock(); /* the HWSP may be freed at runtime */
437 	seqno = __hwsp_seqno(rq);
438 	rcu_read_unlock();
439 
440 	return seqno;
441 }
442 
443 static inline bool __i915_request_has_started(const struct i915_request *rq)
444 {
445 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
446 }
447 
448 /**
449  * i915_request_started - check if the request has begun being executed
450  * @rq: the request
451  *
452  * If the timeline is not using initial breadcrumbs, a request is
453  * considered started if the previous request on its timeline (i.e.
454  * context) has been signaled.
455  *
456  * If the timeline is using semaphores, it will also be emitting an
457  * "initial breadcrumb" after the semaphores are complete and just before
458  * it began executing the user payload. A request can therefore be active
459  * on the HW and not yet started as it is still busywaiting on its
460  * dependencies (via HW semaphores).
461  *
462  * If the request has started, its dependencies will have been signaled
463  * (either by fences or by semaphores) and it will have begun processing
464  * the user payload.
465  *
466  * However, even if a request has started, it may have been preempted and
467  * so no longer active, or it may have already completed.
468  *
469  * See also i915_request_is_active().
470  *
471  * Returns true if the request has begun executing the user payload, or
472  * has completed:
473  */
474 static inline bool i915_request_started(const struct i915_request *rq)
475 {
476 	bool result;
477 
478 	if (i915_request_signaled(rq))
479 		return true;
480 
481 	result = true;
482 	rcu_read_lock(); /* the HWSP may be freed at runtime */
483 	if (likely(!i915_request_signaled(rq)))
484 		/* Remember: started but may have since been preempted! */
485 		result = __i915_request_has_started(rq);
486 	rcu_read_unlock();
487 
488 	return result;
489 }
490 
491 /**
492  * i915_request_is_running - check if the request may actually be executing
493  * @rq: the request
494  *
495  * Returns true if the request is currently submitted to hardware, has passed
496  * its start point (i.e. the context is setup and not busywaiting). Note that
497  * it may no longer be running by the time the function returns!
498  */
499 static inline bool i915_request_is_running(const struct i915_request *rq)
500 {
501 	bool result;
502 
503 	if (!i915_request_is_active(rq))
504 		return false;
505 
506 	rcu_read_lock();
507 	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
508 	rcu_read_unlock();
509 
510 	return result;
511 }
512 
513 /**
514  * i915_request_is_ready - check if the request is ready for execution
515  * @rq: the request
516  *
517  * Upon construction, the request is instructed to wait upon various
518  * signals before it is ready to be executed by the HW. That is, we do
519  * not want to start execution and read data before it is written. In practice,
520  * this is controlled with a mixture of interrupts and semaphores. Once
521  * the submit fence is completed, the backend scheduler will place the
522  * request into its queue and from there submit it for execution. So we
523  * can detect when a request is eligible for execution (and is under control
524  * of the scheduler) by querying where it is in any of the scheduler's lists.
525  *
526  * Returns true if the request is ready for execution (it may be inflight),
527  * false otherwise.
528  */
529 static inline bool i915_request_is_ready(const struct i915_request *rq)
530 {
531 	return !list_empty(&rq->sched.link);
532 }
533 
534 static inline bool __i915_request_is_complete(const struct i915_request *rq)
535 {
536 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
537 }
538 
539 static inline bool i915_request_completed(const struct i915_request *rq)
540 {
541 	bool result;
542 
543 	if (i915_request_signaled(rq))
544 		return true;
545 
546 	result = true;
547 	rcu_read_lock(); /* the HWSP may be freed at runtime */
548 	if (likely(!i915_request_signaled(rq)))
549 		result = __i915_request_is_complete(rq);
550 	rcu_read_unlock();
551 
552 	return result;
553 }
554 
555 static inline void i915_request_mark_complete(struct i915_request *rq)
556 {
557 	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
558 		   (u32 *)&rq->fence.seqno);
559 }
560 
561 static inline bool i915_request_has_waitboost(const struct i915_request *rq)
562 {
563 	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
564 }
565 
566 static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
567 {
568 	/* Preemption should only be disabled very rarely */
569 	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
570 }
571 
572 static inline bool i915_request_has_sentinel(const struct i915_request *rq)
573 {
574 	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
575 }
576 
577 static inline bool i915_request_on_hold(const struct i915_request *rq)
578 {
579 	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
580 }
581 
582 static inline void i915_request_set_hold(struct i915_request *rq)
583 {
584 	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
585 }
586 
587 static inline void i915_request_clear_hold(struct i915_request *rq)
588 {
589 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
590 }
591 
592 static inline struct intel_timeline *
593 i915_request_timeline(const struct i915_request *rq)
594 {
595 	/* Valid only while the request is being constructed (or retired). */
596 	return rcu_dereference_protected(rq->timeline,
597 					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex));
598 }
599 
600 static inline struct i915_gem_context *
601 i915_request_gem_context(const struct i915_request *rq)
602 {
603 	/* Valid only while the request is being constructed (or retired). */
604 	return rcu_dereference_protected(rq->context->gem_context, true);
605 }
606 
607 static inline struct intel_timeline *
608 i915_request_active_timeline(const struct i915_request *rq)
609 {
610 	/*
611 	 * When in use during submission, we are protected by a guarantee that
612 	 * the context/timeline is pinned and must remain pinned until after
613 	 * this submission.
614 	 */
615 	return rcu_dereference_protected(rq->timeline,
616 					 lockdep_is_held(&rq->engine->active.lock));
617 }
618 
619 static inline u32
620 i915_request_active_seqno(const struct i915_request *rq)
621 {
622 	u32 hwsp_phys_base =
623 		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
624 	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
625 
626 	/*
627 	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
628 	 * but instead use the fact that the relative for vaddr is the
629 	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
630 	 * and combine them with the relative offset in rq->hwsp_seqno.
631 	 *
632 	 * As rw->hwsp_seqno is rewritten when signaled, this only works
633 	 * when the request isn't signaled yet, but at that point you
634 	 * no longer need the offset.
635 	 */
636 
637 	return hwsp_phys_base + hwsp_relative_offset;
638 }
639 
640 bool
641 i915_request_active_engine(struct i915_request *rq,
642 			   struct intel_engine_cs **active);
643 
644 #endif /* I915_REQUEST_H */
645