1 /* 2 * Copyright © 2008-2018 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #ifndef I915_REQUEST_H 26 #define I915_REQUEST_H 27 28 #include <linux/dma-fence.h> 29 #include <linux/hrtimer.h> 30 #include <linux/irq_work.h> 31 #include <linux/llist.h> 32 #include <linux/lockdep.h> 33 34 #include "gem/i915_gem_context_types.h" 35 #include "gt/intel_context_types.h" 36 #include "gt/intel_engine_types.h" 37 #include "gt/intel_timeline_types.h" 38 39 #include "i915_gem.h" 40 #include "i915_scheduler.h" 41 #include "i915_selftest.h" 42 #include "i915_sw_fence.h" 43 #include "i915_vma_resource.h" 44 45 #include <uapi/drm/i915_drm.h> 46 47 struct drm_file; 48 struct drm_i915_gem_object; 49 struct drm_printer; 50 struct i915_deps; 51 struct i915_request; 52 53 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 54 struct i915_capture_list { 55 struct i915_vma_resource *vma_res; 56 struct i915_capture_list *next; 57 }; 58 59 void i915_request_free_capture_list(struct i915_capture_list *capture); 60 #else 61 #define i915_request_free_capture_list(_a) do {} while (0) 62 #endif 63 64 #define RQ_TRACE(rq, fmt, ...) do { \ 65 const struct i915_request *rq__ = (rq); \ 66 ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt, \ 67 rq__->fence.context, rq__->fence.seqno, \ 68 hwsp_seqno(rq__), ##__VA_ARGS__); \ 69 } while (0) 70 71 enum { 72 /* 73 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW. 74 * 75 * Set by __i915_request_submit() on handing over to HW, and cleared 76 * by __i915_request_unsubmit() if we preempt this request. 77 * 78 * Finally cleared for consistency on retiring the request, when 79 * we know the HW is no longer running this request. 80 * 81 * See i915_request_is_active() 82 */ 83 I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS, 84 85 /* 86 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution 87 * 88 * Using the scheduler, when a request is ready for execution it is put 89 * into the priority queue, and removed from that queue when transferred 90 * to the HW runlists. We want to track its membership within the 91 * priority queue so that we can easily check before rescheduling. 92 * 93 * See i915_request_in_priority_queue() 94 */ 95 I915_FENCE_FLAG_PQUEUE, 96 97 /* 98 * I915_FENCE_FLAG_HOLD - this request is currently on hold 99 * 100 * This request has been suspended, pending an ongoing investigation. 101 */ 102 I915_FENCE_FLAG_HOLD, 103 104 /* 105 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial 106 * breadcrumb that marks the end of semaphore waits and start of the 107 * user payload. 108 */ 109 I915_FENCE_FLAG_INITIAL_BREADCRUMB, 110 111 /* 112 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list 113 * 114 * Internal bookkeeping used by the breadcrumb code to track when 115 * a request is on the various signal_list. 116 */ 117 I915_FENCE_FLAG_SIGNAL, 118 119 /* 120 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted 121 * 122 * The execution of some requests should not be interrupted. This is 123 * a sensitive operation as it makes the request super important, 124 * blocking other higher priority work. Abuse of this flag will 125 * lead to quality of service issues. 126 */ 127 I915_FENCE_FLAG_NOPREEMPT, 128 129 /* 130 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue 131 * 132 * A high priority sentinel request may be submitted to clear the 133 * submission queue. As it will be the only request in-flight, upon 134 * execution all other active requests will have been preempted and 135 * unsubmitted. This preemptive pulse is used to re-evaluate the 136 * in-flight requests, particularly in cases where an active context 137 * is banned and those active requests need to be cancelled. 138 */ 139 I915_FENCE_FLAG_SENTINEL, 140 141 /* 142 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request 143 * 144 * Some requests are more important than others! In particular, a 145 * request that the user is waiting on is typically required for 146 * interactive latency, for which we want to minimise by upclocking 147 * the GPU. Here we track such boost requests on a per-request basis. 148 */ 149 I915_FENCE_FLAG_BOOST, 150 151 /* 152 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a 153 * parent-child relationship (parallel submission, multi-lrc) should 154 * trigger a submission to the GuC rather than just moving the context 155 * tail. 156 */ 157 I915_FENCE_FLAG_SUBMIT_PARALLEL, 158 159 /* 160 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a 161 * parent-child relationship (parallel submission, multi-lrc) that 162 * hit an error while generating requests in the execbuf IOCTL. 163 * Indicates this request should be skipped as another request in 164 * submission / relationship encoutered an error. 165 */ 166 I915_FENCE_FLAG_SKIP_PARALLEL, 167 168 /* 169 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite 170 * fence (dma_fence_array) and i915 generated for parallel submission. 171 */ 172 I915_FENCE_FLAG_COMPOSITE, 173 }; 174 175 /** 176 * Request queue structure. 177 * 178 * The request queue allows us to note sequence numbers that have been emitted 179 * and may be associated with active buffers to be retired. 180 * 181 * By keeping this list, we can avoid having to do questionable sequence 182 * number comparisons on buffer last_read|write_seqno. It also allows an 183 * emission time to be associated with the request for tracking how far ahead 184 * of the GPU the submission is. 185 * 186 * When modifying this structure be very aware that we perform a lockless 187 * RCU lookup of it that may race against reallocation of the struct 188 * from the slab freelist. We intentionally do not zero the structure on 189 * allocation so that the lookup can use the dangling pointers (and is 190 * cogniscent that those pointers may be wrong). Instead, everything that 191 * needs to be initialised must be done so explicitly. 192 * 193 * The requests are reference counted. 194 */ 195 struct i915_request { 196 struct dma_fence fence; 197 spinlock_t lock; 198 199 struct drm_i915_private *i915; 200 201 /** 202 * Context and ring buffer related to this request 203 * Contexts are refcounted, so when this request is associated with a 204 * context, we must increment the context's refcount, to guarantee that 205 * it persists while any request is linked to it. Requests themselves 206 * are also refcounted, so the request will only be freed when the last 207 * reference to it is dismissed, and the code in 208 * i915_request_free() will then decrement the refcount on the 209 * context. 210 */ 211 struct intel_engine_cs *engine; 212 struct intel_context *context; 213 struct intel_ring *ring; 214 struct intel_timeline __rcu *timeline; 215 216 struct list_head signal_link; 217 struct llist_node signal_node; 218 219 /* 220 * The rcu epoch of when this request was allocated. Used to judiciously 221 * apply backpressure on future allocations to ensure that under 222 * mempressure there is sufficient RCU ticks for us to reclaim our 223 * RCU protected slabs. 224 */ 225 unsigned long rcustate; 226 227 /* 228 * We pin the timeline->mutex while constructing the request to 229 * ensure that no caller accidentally drops it during construction. 230 * The timeline->mutex must be held to ensure that only this caller 231 * can use the ring and manipulate the associated timeline during 232 * construction. 233 */ 234 struct pin_cookie cookie; 235 236 /* 237 * Fences for the various phases in the request's lifetime. 238 * 239 * The submit fence is used to await upon all of the request's 240 * dependencies. When it is signaled, the request is ready to run. 241 * It is used by the driver to then queue the request for execution. 242 */ 243 struct i915_sw_fence submit; 244 union { 245 wait_queue_entry_t submitq; 246 struct i915_sw_dma_fence_cb dmaq; 247 struct i915_request_duration_cb { 248 struct dma_fence_cb cb; 249 ktime_t emitted; 250 } duration; 251 }; 252 struct llist_head execute_cb; 253 struct i915_sw_fence semaphore; 254 /** 255 * @submit_work: complete submit fence from an IRQ if needed for 256 * locking hierarchy reasons. 257 */ 258 struct irq_work submit_work; 259 260 /* 261 * A list of everyone we wait upon, and everyone who waits upon us. 262 * Even though we will not be submitted to the hardware before the 263 * submit fence is signaled (it waits for all external events as well 264 * as our own requests), the scheduler still needs to know the 265 * dependency tree for the lifetime of the request (from execbuf 266 * to retirement), i.e. bidirectional dependency information for the 267 * request not tied to individual fences. 268 */ 269 struct i915_sched_node sched; 270 struct i915_dependency dep; 271 intel_engine_mask_t execution_mask; 272 273 /* 274 * A convenience pointer to the current breadcrumb value stored in 275 * the HW status page (or our timeline's local equivalent). The full 276 * path would be rq->hw_context->ring->timeline->hwsp_seqno. 277 */ 278 const u32 *hwsp_seqno; 279 280 /** Position in the ring of the start of the request */ 281 u32 head; 282 283 /** Position in the ring of the start of the user packets */ 284 u32 infix; 285 286 /** 287 * Position in the ring of the start of the postfix. 288 * This is required to calculate the maximum available ring space 289 * without overwriting the postfix. 290 */ 291 u32 postfix; 292 293 /** Position in the ring of the end of the whole request */ 294 u32 tail; 295 296 /** Position in the ring of the end of any workarounds after the tail */ 297 u32 wa_tail; 298 299 /** Preallocate space in the ring for the emitting the request */ 300 u32 reserved_space; 301 302 /** Batch buffer pointer for selftest internal use. */ 303 I915_SELFTEST_DECLARE(struct i915_vma *batch); 304 305 struct i915_vma_resource *batch_res; 306 307 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 308 /** 309 * Additional buffers requested by userspace to be captured upon 310 * a GPU hang. The vma/obj on this list are protected by their 311 * active reference - all objects on this list must also be 312 * on the active_list (of their final request). 313 */ 314 struct i915_capture_list *capture_list; 315 #endif 316 317 /** Time at which this request was emitted, in jiffies. */ 318 unsigned long emitted_jiffies; 319 320 /** timeline->request entry for this request */ 321 struct list_head link; 322 323 /** Watchdog support fields. */ 324 struct i915_request_watchdog { 325 struct llist_node link; 326 struct hrtimer timer; 327 } watchdog; 328 329 /** 330 * @guc_fence_link: Requests may need to be stalled when using GuC 331 * submission waiting for certain GuC operations to complete. If that is 332 * the case, stalled requests are added to a per context list of stalled 333 * requests. The below list_head is the link in that list. Protected by 334 * ce->guc_state.lock. 335 */ 336 struct list_head guc_fence_link; 337 338 /** 339 * @guc_prio: Priority level while the request is in flight. Differs 340 * from i915 scheduler priority. See comment above 341 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by 342 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and 343 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate 344 * if the priority has not been initialized yet or if no more updates 345 * are possible because the request has completed. 346 */ 347 #define GUC_PRIO_INIT 0xff 348 #define GUC_PRIO_FINI 0xfe 349 u8 guc_prio; 350 351 /** 352 * @hucq: wait queue entry used to wait on the HuC load to complete 353 */ 354 wait_queue_entry_t hucq; 355 356 I915_SELFTEST_DECLARE(struct { 357 struct list_head link; 358 unsigned long delay; 359 } mock;) 360 }; 361 362 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 363 364 extern const struct dma_fence_ops i915_fence_ops; 365 366 static inline bool dma_fence_is_i915(const struct dma_fence *fence) 367 { 368 return fence->ops == &i915_fence_ops; 369 } 370 371 struct kmem_cache *i915_request_slab_cache(void); 372 373 struct i915_request * __must_check 374 __i915_request_create(struct intel_context *ce, gfp_t gfp); 375 struct i915_request * __must_check 376 i915_request_create(struct intel_context *ce); 377 378 void __i915_request_skip(struct i915_request *rq); 379 bool i915_request_set_error_once(struct i915_request *rq, int error); 380 struct i915_request *i915_request_mark_eio(struct i915_request *rq); 381 382 struct i915_request *__i915_request_commit(struct i915_request *request); 383 void __i915_request_queue(struct i915_request *rq, 384 const struct i915_sched_attr *attr); 385 void __i915_request_queue_bh(struct i915_request *rq); 386 387 bool i915_request_retire(struct i915_request *rq); 388 void i915_request_retire_upto(struct i915_request *rq); 389 390 static inline struct i915_request * 391 to_request(struct dma_fence *fence) 392 { 393 /* We assume that NULL fence/request are interoperable */ 394 BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0); 395 GEM_BUG_ON(fence && !dma_fence_is_i915(fence)); 396 return container_of(fence, struct i915_request, fence); 397 } 398 399 static inline struct i915_request * 400 i915_request_get(struct i915_request *rq) 401 { 402 return to_request(dma_fence_get(&rq->fence)); 403 } 404 405 static inline struct i915_request * 406 i915_request_get_rcu(struct i915_request *rq) 407 { 408 return to_request(dma_fence_get_rcu(&rq->fence)); 409 } 410 411 static inline void 412 i915_request_put(struct i915_request *rq) 413 { 414 dma_fence_put(&rq->fence); 415 } 416 417 int i915_request_await_object(struct i915_request *to, 418 struct drm_i915_gem_object *obj, 419 bool write); 420 int i915_request_await_dma_fence(struct i915_request *rq, 421 struct dma_fence *fence); 422 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps); 423 int i915_request_await_execution(struct i915_request *rq, 424 struct dma_fence *fence); 425 426 void i915_request_add(struct i915_request *rq); 427 428 bool __i915_request_submit(struct i915_request *request); 429 void i915_request_submit(struct i915_request *request); 430 431 void __i915_request_unsubmit(struct i915_request *request); 432 void i915_request_unsubmit(struct i915_request *request); 433 434 void i915_request_cancel(struct i915_request *rq, int error); 435 436 long i915_request_wait_timeout(struct i915_request *rq, 437 unsigned int flags, 438 long timeout) 439 __attribute__((nonnull(1))); 440 441 long i915_request_wait(struct i915_request *rq, 442 unsigned int flags, 443 long timeout) 444 __attribute__((nonnull(1))); 445 #define I915_WAIT_INTERRUPTIBLE BIT(0) 446 #define I915_WAIT_PRIORITY BIT(1) /* small priority bump for the request */ 447 #define I915_WAIT_ALL BIT(2) /* used by i915_gem_object_wait() */ 448 449 void i915_request_show(struct drm_printer *m, 450 const struct i915_request *rq, 451 const char *prefix, 452 int indent); 453 454 static inline bool i915_request_signaled(const struct i915_request *rq) 455 { 456 /* The request may live longer than its HWSP, so check flags first! */ 457 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags); 458 } 459 460 static inline bool i915_request_is_active(const struct i915_request *rq) 461 { 462 return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 463 } 464 465 static inline bool i915_request_in_priority_queue(const struct i915_request *rq) 466 { 467 return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 468 } 469 470 static inline bool 471 i915_request_has_initial_breadcrumb(const struct i915_request *rq) 472 { 473 return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags); 474 } 475 476 /** 477 * Returns true if seq1 is later than seq2. 478 */ 479 static inline bool i915_seqno_passed(u32 seq1, u32 seq2) 480 { 481 return (s32)(seq1 - seq2) >= 0; 482 } 483 484 static inline u32 __hwsp_seqno(const struct i915_request *rq) 485 { 486 const u32 *hwsp = READ_ONCE(rq->hwsp_seqno); 487 488 return READ_ONCE(*hwsp); 489 } 490 491 /** 492 * hwsp_seqno - the current breadcrumb value in the HW status page 493 * @rq: the request, to chase the relevant HW status page 494 * 495 * The emphasis in naming here is that hwsp_seqno() is not a property of the 496 * request, but an indication of the current HW state (associated with this 497 * request). Its value will change as the GPU executes more requests. 498 * 499 * Returns the current breadcrumb value in the associated HW status page (or 500 * the local timeline's equivalent) for this request. The request itself 501 * has the associated breadcrumb value of rq->fence.seqno, when the HW 502 * status page has that breadcrumb or later, this request is complete. 503 */ 504 static inline u32 hwsp_seqno(const struct i915_request *rq) 505 { 506 u32 seqno; 507 508 rcu_read_lock(); /* the HWSP may be freed at runtime */ 509 seqno = __hwsp_seqno(rq); 510 rcu_read_unlock(); 511 512 return seqno; 513 } 514 515 static inline bool __i915_request_has_started(const struct i915_request *rq) 516 { 517 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1); 518 } 519 520 /** 521 * i915_request_started - check if the request has begun being executed 522 * @rq: the request 523 * 524 * If the timeline is not using initial breadcrumbs, a request is 525 * considered started if the previous request on its timeline (i.e. 526 * context) has been signaled. 527 * 528 * If the timeline is using semaphores, it will also be emitting an 529 * "initial breadcrumb" after the semaphores are complete and just before 530 * it began executing the user payload. A request can therefore be active 531 * on the HW and not yet started as it is still busywaiting on its 532 * dependencies (via HW semaphores). 533 * 534 * If the request has started, its dependencies will have been signaled 535 * (either by fences or by semaphores) and it will have begun processing 536 * the user payload. 537 * 538 * However, even if a request has started, it may have been preempted and 539 * so no longer active, or it may have already completed. 540 * 541 * See also i915_request_is_active(). 542 * 543 * Returns true if the request has begun executing the user payload, or 544 * has completed: 545 */ 546 static inline bool i915_request_started(const struct i915_request *rq) 547 { 548 bool result; 549 550 if (i915_request_signaled(rq)) 551 return true; 552 553 result = true; 554 rcu_read_lock(); /* the HWSP may be freed at runtime */ 555 if (likely(!i915_request_signaled(rq))) 556 /* Remember: started but may have since been preempted! */ 557 result = __i915_request_has_started(rq); 558 rcu_read_unlock(); 559 560 return result; 561 } 562 563 /** 564 * i915_request_is_running - check if the request may actually be executing 565 * @rq: the request 566 * 567 * Returns true if the request is currently submitted to hardware, has passed 568 * its start point (i.e. the context is setup and not busywaiting). Note that 569 * it may no longer be running by the time the function returns! 570 */ 571 static inline bool i915_request_is_running(const struct i915_request *rq) 572 { 573 bool result; 574 575 if (!i915_request_is_active(rq)) 576 return false; 577 578 rcu_read_lock(); 579 result = __i915_request_has_started(rq) && i915_request_is_active(rq); 580 rcu_read_unlock(); 581 582 return result; 583 } 584 585 /** 586 * i915_request_is_ready - check if the request is ready for execution 587 * @rq: the request 588 * 589 * Upon construction, the request is instructed to wait upon various 590 * signals before it is ready to be executed by the HW. That is, we do 591 * not want to start execution and read data before it is written. In practice, 592 * this is controlled with a mixture of interrupts and semaphores. Once 593 * the submit fence is completed, the backend scheduler will place the 594 * request into its queue and from there submit it for execution. So we 595 * can detect when a request is eligible for execution (and is under control 596 * of the scheduler) by querying where it is in any of the scheduler's lists. 597 * 598 * Returns true if the request is ready for execution (it may be inflight), 599 * false otherwise. 600 */ 601 static inline bool i915_request_is_ready(const struct i915_request *rq) 602 { 603 return !list_empty(&rq->sched.link); 604 } 605 606 static inline bool __i915_request_is_complete(const struct i915_request *rq) 607 { 608 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno); 609 } 610 611 static inline bool i915_request_completed(const struct i915_request *rq) 612 { 613 bool result; 614 615 if (i915_request_signaled(rq)) 616 return true; 617 618 result = true; 619 rcu_read_lock(); /* the HWSP may be freed at runtime */ 620 if (likely(!i915_request_signaled(rq))) 621 result = __i915_request_is_complete(rq); 622 rcu_read_unlock(); 623 624 return result; 625 } 626 627 static inline void i915_request_mark_complete(struct i915_request *rq) 628 { 629 WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */ 630 (u32 *)&rq->fence.seqno); 631 } 632 633 static inline bool i915_request_has_waitboost(const struct i915_request *rq) 634 { 635 return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags); 636 } 637 638 static inline bool i915_request_has_nopreempt(const struct i915_request *rq) 639 { 640 /* Preemption should only be disabled very rarely */ 641 return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags)); 642 } 643 644 static inline bool i915_request_has_sentinel(const struct i915_request *rq) 645 { 646 return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags)); 647 } 648 649 static inline bool i915_request_on_hold(const struct i915_request *rq) 650 { 651 return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags)); 652 } 653 654 static inline void i915_request_set_hold(struct i915_request *rq) 655 { 656 set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 657 } 658 659 static inline void i915_request_clear_hold(struct i915_request *rq) 660 { 661 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 662 } 663 664 static inline struct intel_timeline * 665 i915_request_timeline(const struct i915_request *rq) 666 { 667 /* Valid only while the request is being constructed (or retired). */ 668 return rcu_dereference_protected(rq->timeline, 669 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) || 670 test_bit(CONTEXT_IS_PARKING, &rq->context->flags)); 671 } 672 673 static inline struct i915_gem_context * 674 i915_request_gem_context(const struct i915_request *rq) 675 { 676 /* Valid only while the request is being constructed (or retired). */ 677 return rcu_dereference_protected(rq->context->gem_context, true); 678 } 679 680 static inline struct intel_timeline * 681 i915_request_active_timeline(const struct i915_request *rq) 682 { 683 /* 684 * When in use during submission, we are protected by a guarantee that 685 * the context/timeline is pinned and must remain pinned until after 686 * this submission. 687 */ 688 return rcu_dereference_protected(rq->timeline, 689 lockdep_is_held(&rq->engine->sched_engine->lock)); 690 } 691 692 static inline u32 693 i915_request_active_seqno(const struct i915_request *rq) 694 { 695 u32 hwsp_phys_base = 696 page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset); 697 u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno); 698 699 /* 700 * Because of wraparound, we cannot simply take tl->hwsp_offset, 701 * but instead use the fact that the relative for vaddr is the 702 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset 703 * and combine them with the relative offset in rq->hwsp_seqno. 704 * 705 * As rw->hwsp_seqno is rewritten when signaled, this only works 706 * when the request isn't signaled yet, but at that point you 707 * no longer need the offset. 708 */ 709 710 return hwsp_phys_base + hwsp_relative_offset; 711 } 712 713 bool 714 i915_request_active_engine(struct i915_request *rq, 715 struct intel_engine_cs **active); 716 717 void i915_request_notify_execute_cb_imm(struct i915_request *rq); 718 719 enum i915_request_state { 720 I915_REQUEST_UNKNOWN = 0, 721 I915_REQUEST_COMPLETE, 722 I915_REQUEST_PENDING, 723 I915_REQUEST_QUEUED, 724 I915_REQUEST_ACTIVE, 725 }; 726 727 enum i915_request_state i915_test_request_state(struct i915_request *rq); 728 729 void i915_request_module_exit(void); 730 int i915_request_module_init(void); 731 732 #endif /* I915_REQUEST_H */ 733