xref: /openbmc/linux/drivers/gpu/drm/i915/i915_request.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_context.h"
35 #include "gt/intel_ring.h"
36 #include "gt/intel_rps.h"
37 
38 #include "i915_active.h"
39 #include "i915_drv.h"
40 #include "i915_globals.h"
41 #include "i915_trace.h"
42 #include "intel_pm.h"
43 
44 struct execute_cb {
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_execute_cbs;
55 } global;
56 
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 	return dev_name(to_request(fence)->engine->i915->drm.dev);
60 }
61 
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 	const struct i915_gem_context *ctx;
65 
66 	/*
67 	 * The timeline struct (as part of the ppgtt underneath a context)
68 	 * may be freed when the request is no longer in use by the GPU.
69 	 * We could extend the life of a context to beyond that of all
70 	 * fences, possibly keeping the hw resource around indefinitely,
71 	 * or we just give them a false name. Since
72 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 	 * lie seems justifiable.
74 	 */
75 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 		return "signaled";
77 
78 	ctx = i915_request_gem_context(to_request(fence));
79 	if (!ctx)
80 		return "[" DRIVER_NAME "]";
81 
82 	return ctx->name;
83 }
84 
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 	return i915_request_completed(to_request(fence));
88 }
89 
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 	return i915_request_enable_breadcrumb(to_request(fence));
93 }
94 
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 				   bool interruptible,
97 				   signed long timeout)
98 {
99 	return i915_request_wait(to_request(fence),
100 				 interruptible | I915_WAIT_PRIORITY,
101 				 timeout);
102 }
103 
104 struct kmem_cache *i915_request_slab_cache(void)
105 {
106 	return global.slab_requests;
107 }
108 
109 static void i915_fence_release(struct dma_fence *fence)
110 {
111 	struct i915_request *rq = to_request(fence);
112 
113 	/*
114 	 * The request is put onto a RCU freelist (i.e. the address
115 	 * is immediately reused), mark the fences as being freed now.
116 	 * Otherwise the debugobjects for the fences are only marked as
117 	 * freed when the slab cache itself is freed, and so we would get
118 	 * caught trying to reuse dead objects.
119 	 */
120 	i915_sw_fence_fini(&rq->submit);
121 	i915_sw_fence_fini(&rq->semaphore);
122 
123 	/*
124 	 * Keep one request on each engine for reserved use under mempressure
125 	 *
126 	 * We do not hold a reference to the engine here and so have to be
127 	 * very careful in what rq->engine we poke. The virtual engine is
128 	 * referenced via the rq->context and we released that ref during
129 	 * i915_request_retire(), ergo we must not dereference a virtual
130 	 * engine here. Not that we would want to, as the only consumer of
131 	 * the reserved engine->request_pool is the power management parking,
132 	 * which must-not-fail, and that is only run on the physical engines.
133 	 *
134 	 * Since the request must have been executed to be have completed,
135 	 * we know that it will have been processed by the HW and will
136 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
137 	 * at this point is stable. rq->execution_mask will be a single
138 	 * bit if the last and _only_ engine it could execution on was a
139 	 * physical engine, if it's multiple bits then it started on and
140 	 * could still be on a virtual engine. Thus if the mask is not a
141 	 * power-of-two we assume that rq->engine may still be a virtual
142 	 * engine and so a dangling invalid pointer that we cannot dereference
143 	 *
144 	 * For example, consider the flow of a bonded request through a virtual
145 	 * engine. The request is created with a wide engine mask (all engines
146 	 * that we might execute on). On processing the bond, the request mask
147 	 * is reduced to one or more engines. If the request is subsequently
148 	 * bound to a single engine, it will then be constrained to only
149 	 * execute on that engine and never returned to the virtual engine
150 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
151 	 * know that if the rq->execution_mask is a single bit, rq->engine
152 	 * can be a physical engine with the exact corresponding mask.
153 	 */
154 	if (is_power_of_2(rq->execution_mask) &&
155 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
156 		return;
157 
158 	kmem_cache_free(global.slab_requests, rq);
159 }
160 
161 const struct dma_fence_ops i915_fence_ops = {
162 	.get_driver_name = i915_fence_get_driver_name,
163 	.get_timeline_name = i915_fence_get_timeline_name,
164 	.enable_signaling = i915_fence_enable_signaling,
165 	.signaled = i915_fence_signaled,
166 	.wait = i915_fence_wait,
167 	.release = i915_fence_release,
168 };
169 
170 static void irq_execute_cb(struct irq_work *wrk)
171 {
172 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
173 
174 	i915_sw_fence_complete(cb->fence);
175 	kmem_cache_free(global.slab_execute_cbs, cb);
176 }
177 
178 static void irq_execute_cb_hook(struct irq_work *wrk)
179 {
180 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
181 
182 	cb->hook(container_of(cb->fence, struct i915_request, submit),
183 		 &cb->signal->fence);
184 	i915_request_put(cb->signal);
185 
186 	irq_execute_cb(wrk);
187 }
188 
189 static void __notify_execute_cb(struct i915_request *rq)
190 {
191 	struct execute_cb *cb, *cn;
192 
193 	lockdep_assert_held(&rq->lock);
194 
195 	GEM_BUG_ON(!i915_request_is_active(rq));
196 	if (llist_empty(&rq->execute_cb))
197 		return;
198 
199 	llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
200 		irq_work_queue(&cb->work);
201 
202 	/*
203 	 * XXX Rollback on __i915_request_unsubmit()
204 	 *
205 	 * In the future, perhaps when we have an active time-slicing scheduler,
206 	 * it will be interesting to unsubmit parallel execution and remove
207 	 * busywaits from the GPU until their master is restarted. This is
208 	 * quite hairy, we have to carefully rollback the fence and do a
209 	 * preempt-to-idle cycle on the target engine, all the while the
210 	 * master execute_cb may refire.
211 	 */
212 	init_llist_head(&rq->execute_cb);
213 }
214 
215 static inline void
216 remove_from_client(struct i915_request *request)
217 {
218 	struct drm_i915_file_private *file_priv;
219 
220 	if (!READ_ONCE(request->file_priv))
221 		return;
222 
223 	rcu_read_lock();
224 	file_priv = xchg(&request->file_priv, NULL);
225 	if (file_priv) {
226 		spin_lock(&file_priv->mm.lock);
227 		list_del(&request->client_link);
228 		spin_unlock(&file_priv->mm.lock);
229 	}
230 	rcu_read_unlock();
231 }
232 
233 static void free_capture_list(struct i915_request *request)
234 {
235 	struct i915_capture_list *capture;
236 
237 	capture = fetch_and_zero(&request->capture_list);
238 	while (capture) {
239 		struct i915_capture_list *next = capture->next;
240 
241 		kfree(capture);
242 		capture = next;
243 	}
244 }
245 
246 static void __i915_request_fill(struct i915_request *rq, u8 val)
247 {
248 	void *vaddr = rq->ring->vaddr;
249 	u32 head;
250 
251 	head = rq->infix;
252 	if (rq->postfix < head) {
253 		memset(vaddr + head, val, rq->ring->size - head);
254 		head = 0;
255 	}
256 	memset(vaddr + head, val, rq->postfix - head);
257 }
258 
259 static void remove_from_engine(struct i915_request *rq)
260 {
261 	struct intel_engine_cs *engine, *locked;
262 
263 	/*
264 	 * Virtual engines complicate acquiring the engine timeline lock,
265 	 * as their rq->engine pointer is not stable until under that
266 	 * engine lock. The simple ploy we use is to take the lock then
267 	 * check that the rq still belongs to the newly locked engine.
268 	 */
269 	locked = READ_ONCE(rq->engine);
270 	spin_lock_irq(&locked->active.lock);
271 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
272 		spin_unlock(&locked->active.lock);
273 		spin_lock(&engine->active.lock);
274 		locked = engine;
275 	}
276 	list_del_init(&rq->sched.link);
277 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
278 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279 	spin_unlock_irq(&locked->active.lock);
280 }
281 
282 bool i915_request_retire(struct i915_request *rq)
283 {
284 	if (!i915_request_completed(rq))
285 		return false;
286 
287 	RQ_TRACE(rq, "\n");
288 
289 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
290 	trace_i915_request_retire(rq);
291 
292 	/*
293 	 * We know the GPU must have read the request to have
294 	 * sent us the seqno + interrupt, so use the position
295 	 * of tail of the request to update the last known position
296 	 * of the GPU head.
297 	 *
298 	 * Note this requires that we are always called in request
299 	 * completion order.
300 	 */
301 	GEM_BUG_ON(!list_is_first(&rq->link,
302 				  &i915_request_timeline(rq)->requests));
303 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
304 		/* Poison before we release our space in the ring */
305 		__i915_request_fill(rq, POISON_FREE);
306 	rq->ring->head = rq->postfix;
307 
308 	/*
309 	 * We only loosely track inflight requests across preemption,
310 	 * and so we may find ourselves attempting to retire a _completed_
311 	 * request that we have removed from the HW and put back on a run
312 	 * queue.
313 	 */
314 	remove_from_engine(rq);
315 
316 	spin_lock_irq(&rq->lock);
317 	i915_request_mark_complete(rq);
318 	if (!i915_request_signaled(rq))
319 		dma_fence_signal_locked(&rq->fence);
320 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
321 		i915_request_cancel_breadcrumb(rq);
322 	if (i915_request_has_waitboost(rq)) {
323 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
324 		atomic_dec(&rq->engine->gt->rps.num_waiters);
325 	}
326 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
327 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
328 		__notify_execute_cb(rq);
329 	}
330 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
331 	spin_unlock_irq(&rq->lock);
332 
333 	remove_from_client(rq);
334 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
335 
336 	intel_context_exit(rq->context);
337 	intel_context_unpin(rq->context);
338 
339 	free_capture_list(rq);
340 	i915_sched_node_fini(&rq->sched);
341 	i915_request_put(rq);
342 
343 	return true;
344 }
345 
346 void i915_request_retire_upto(struct i915_request *rq)
347 {
348 	struct intel_timeline * const tl = i915_request_timeline(rq);
349 	struct i915_request *tmp;
350 
351 	RQ_TRACE(rq, "\n");
352 
353 	GEM_BUG_ON(!i915_request_completed(rq));
354 
355 	do {
356 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357 	} while (i915_request_retire(tmp) && tmp != rq);
358 }
359 
360 static void __llist_add(struct llist_node *node, struct llist_head *head)
361 {
362 	node->next = head->first;
363 	head->first = node;
364 }
365 
366 static struct i915_request * const *
367 __engine_active(struct intel_engine_cs *engine)
368 {
369 	return READ_ONCE(engine->execlists.active);
370 }
371 
372 static bool __request_in_flight(const struct i915_request *signal)
373 {
374 	struct i915_request * const *port, *rq;
375 	bool inflight = false;
376 
377 	if (!i915_request_is_ready(signal))
378 		return false;
379 
380 	/*
381 	 * Even if we have unwound the request, it may still be on
382 	 * the GPU (preempt-to-busy). If that request is inside an
383 	 * unpreemptible critical section, it will not be removed. Some
384 	 * GPU functions may even be stuck waiting for the paired request
385 	 * (__await_execution) to be submitted and cannot be preempted
386 	 * until the bond is executing.
387 	 *
388 	 * As we know that there are always preemption points between
389 	 * requests, we know that only the currently executing request
390 	 * may be still active even though we have cleared the flag.
391 	 * However, we can't rely on our tracking of ELSP[0] to know
392 	 * which request is currently active and so maybe stuck, as
393 	 * the tracking maybe an event behind. Instead assume that
394 	 * if the context is still inflight, then it is still active
395 	 * even if the active flag has been cleared.
396 	 *
397 	 * To further complicate matters, if there a pending promotion, the HW
398 	 * may either perform a context switch to the second inflight execlists,
399 	 * or it may switch to the pending set of execlists. In the case of the
400 	 * latter, it may send the ACK and we process the event copying the
401 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
402 	 * this implies the HW is arbitrating and not struck in *active, we do
403 	 * not worry about complete accuracy, but we do require no read/write
404 	 * tearing of the pointer [the read of the pointer must be valid, even
405 	 * as the array is being overwritten, for which we require the writes
406 	 * to avoid tearing.]
407 	 *
408 	 * Note that the read of *execlists->active may race with the promotion
409 	 * of execlists->pending[] to execlists->inflight[], overwritting
410 	 * the value at *execlists->active. This is fine. The promotion implies
411 	 * that we received an ACK from the HW, and so the context is not
412 	 * stuck -- if we do not see ourselves in *active, the inflight status
413 	 * is valid. If instead we see ourselves being copied into *active,
414 	 * we are inflight and may signal the callback.
415 	 */
416 	if (!intel_context_inflight(signal->context))
417 		return false;
418 
419 	rcu_read_lock();
420 	for (port = __engine_active(signal->engine);
421 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
422 	     port++) {
423 		if (rq->context == signal->context) {
424 			inflight = i915_seqno_passed(rq->fence.seqno,
425 						     signal->fence.seqno);
426 			break;
427 		}
428 	}
429 	rcu_read_unlock();
430 
431 	return inflight;
432 }
433 
434 static int
435 __await_execution(struct i915_request *rq,
436 		  struct i915_request *signal,
437 		  void (*hook)(struct i915_request *rq,
438 			       struct dma_fence *signal),
439 		  gfp_t gfp)
440 {
441 	struct execute_cb *cb;
442 
443 	if (i915_request_is_active(signal)) {
444 		if (hook)
445 			hook(rq, &signal->fence);
446 		return 0;
447 	}
448 
449 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
450 	if (!cb)
451 		return -ENOMEM;
452 
453 	cb->fence = &rq->submit;
454 	i915_sw_fence_await(cb->fence);
455 	init_irq_work(&cb->work, irq_execute_cb);
456 
457 	if (hook) {
458 		cb->hook = hook;
459 		cb->signal = i915_request_get(signal);
460 		cb->work.func = irq_execute_cb_hook;
461 	}
462 
463 	spin_lock_irq(&signal->lock);
464 	if (i915_request_is_active(signal) || __request_in_flight(signal)) {
465 		if (hook) {
466 			hook(rq, &signal->fence);
467 			i915_request_put(signal);
468 		}
469 		i915_sw_fence_complete(cb->fence);
470 		kmem_cache_free(global.slab_execute_cbs, cb);
471 	} else {
472 		__llist_add(&cb->work.llnode, &signal->execute_cb);
473 	}
474 	spin_unlock_irq(&signal->lock);
475 
476 	return 0;
477 }
478 
479 static bool fatal_error(int error)
480 {
481 	switch (error) {
482 	case 0: /* not an error! */
483 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
484 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
485 		return false;
486 	default:
487 		return true;
488 	}
489 }
490 
491 void __i915_request_skip(struct i915_request *rq)
492 {
493 	GEM_BUG_ON(!fatal_error(rq->fence.error));
494 
495 	if (rq->infix == rq->postfix)
496 		return;
497 
498 	/*
499 	 * As this request likely depends on state from the lost
500 	 * context, clear out all the user operations leaving the
501 	 * breadcrumb at the end (so we get the fence notifications).
502 	 */
503 	__i915_request_fill(rq, 0);
504 	rq->infix = rq->postfix;
505 }
506 
507 void i915_request_set_error_once(struct i915_request *rq, int error)
508 {
509 	int old;
510 
511 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
512 
513 	if (i915_request_signaled(rq))
514 		return;
515 
516 	old = READ_ONCE(rq->fence.error);
517 	do {
518 		if (fatal_error(old))
519 			return;
520 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
521 }
522 
523 bool __i915_request_submit(struct i915_request *request)
524 {
525 	struct intel_engine_cs *engine = request->engine;
526 	bool result = false;
527 
528 	RQ_TRACE(request, "\n");
529 
530 	GEM_BUG_ON(!irqs_disabled());
531 	lockdep_assert_held(&engine->active.lock);
532 
533 	/*
534 	 * With the advent of preempt-to-busy, we frequently encounter
535 	 * requests that we have unsubmitted from HW, but left running
536 	 * until the next ack and so have completed in the meantime. On
537 	 * resubmission of that completed request, we can skip
538 	 * updating the payload, and execlists can even skip submitting
539 	 * the request.
540 	 *
541 	 * We must remove the request from the caller's priority queue,
542 	 * and the caller must only call us when the request is in their
543 	 * priority queue, under the active.lock. This ensures that the
544 	 * request has *not* yet been retired and we can safely move
545 	 * the request into the engine->active.list where it will be
546 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
547 	 * request, this would be a horrible use-after-free.)
548 	 */
549 	if (i915_request_completed(request))
550 		goto xfer;
551 
552 	if (unlikely(intel_context_is_banned(request->context)))
553 		i915_request_set_error_once(request, -EIO);
554 	if (unlikely(fatal_error(request->fence.error)))
555 		__i915_request_skip(request);
556 
557 	/*
558 	 * Are we using semaphores when the gpu is already saturated?
559 	 *
560 	 * Using semaphores incurs a cost in having the GPU poll a
561 	 * memory location, busywaiting for it to change. The continual
562 	 * memory reads can have a noticeable impact on the rest of the
563 	 * system with the extra bus traffic, stalling the cpu as it too
564 	 * tries to access memory across the bus (perf stat -e bus-cycles).
565 	 *
566 	 * If we installed a semaphore on this request and we only submit
567 	 * the request after the signaler completed, that indicates the
568 	 * system is overloaded and using semaphores at this time only
569 	 * increases the amount of work we are doing. If so, we disable
570 	 * further use of semaphores until we are idle again, whence we
571 	 * optimistically try again.
572 	 */
573 	if (request->sched.semaphores &&
574 	    i915_sw_fence_signaled(&request->semaphore))
575 		engine->saturated |= request->sched.semaphores;
576 
577 	engine->emit_fini_breadcrumb(request,
578 				     request->ring->vaddr + request->postfix);
579 
580 	trace_i915_request_execute(request);
581 	engine->serial++;
582 	result = true;
583 
584 xfer:
585 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
586 		list_move_tail(&request->sched.link, &engine->active.requests);
587 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
588 	}
589 
590 	/* We may be recursing from the signal callback of another i915 fence */
591 	if (!i915_request_signaled(request)) {
592 		spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
593 
594 		__notify_execute_cb(request);
595 		if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
596 			     &request->fence.flags) &&
597 		    !i915_request_enable_breadcrumb(request))
598 			intel_engine_signal_breadcrumbs(engine);
599 
600 		spin_unlock(&request->lock);
601 		GEM_BUG_ON(!llist_empty(&request->execute_cb));
602 	}
603 
604 	return result;
605 }
606 
607 void i915_request_submit(struct i915_request *request)
608 {
609 	struct intel_engine_cs *engine = request->engine;
610 	unsigned long flags;
611 
612 	/* Will be called from irq-context when using foreign fences. */
613 	spin_lock_irqsave(&engine->active.lock, flags);
614 
615 	__i915_request_submit(request);
616 
617 	spin_unlock_irqrestore(&engine->active.lock, flags);
618 }
619 
620 void __i915_request_unsubmit(struct i915_request *request)
621 {
622 	struct intel_engine_cs *engine = request->engine;
623 
624 	RQ_TRACE(request, "\n");
625 
626 	GEM_BUG_ON(!irqs_disabled());
627 	lockdep_assert_held(&engine->active.lock);
628 
629 	/*
630 	 * Only unwind in reverse order, required so that the per-context list
631 	 * is kept in seqno/ring order.
632 	 */
633 
634 	/* We may be recursing from the signal callback of another i915 fence */
635 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
636 
637 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
638 		i915_request_cancel_breadcrumb(request);
639 
640 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
641 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
642 
643 	spin_unlock(&request->lock);
644 
645 	/* We've already spun, don't charge on resubmitting. */
646 	if (request->sched.semaphores && i915_request_started(request))
647 		request->sched.semaphores = 0;
648 
649 	/*
650 	 * We don't need to wake_up any waiters on request->execute, they
651 	 * will get woken by any other event or us re-adding this request
652 	 * to the engine timeline (__i915_request_submit()). The waiters
653 	 * should be quite adapt at finding that the request now has a new
654 	 * global_seqno to the one they went to sleep on.
655 	 */
656 }
657 
658 void i915_request_unsubmit(struct i915_request *request)
659 {
660 	struct intel_engine_cs *engine = request->engine;
661 	unsigned long flags;
662 
663 	/* Will be called from irq-context when using foreign fences. */
664 	spin_lock_irqsave(&engine->active.lock, flags);
665 
666 	__i915_request_unsubmit(request);
667 
668 	spin_unlock_irqrestore(&engine->active.lock, flags);
669 }
670 
671 static int __i915_sw_fence_call
672 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
673 {
674 	struct i915_request *request =
675 		container_of(fence, typeof(*request), submit);
676 
677 	switch (state) {
678 	case FENCE_COMPLETE:
679 		trace_i915_request_submit(request);
680 
681 		if (unlikely(fence->error))
682 			i915_request_set_error_once(request, fence->error);
683 
684 		/*
685 		 * We need to serialize use of the submit_request() callback
686 		 * with its hotplugging performed during an emergency
687 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
688 		 * critical section in order to force i915_gem_set_wedged() to
689 		 * wait until the submit_request() is completed before
690 		 * proceeding.
691 		 */
692 		rcu_read_lock();
693 		request->engine->submit_request(request);
694 		rcu_read_unlock();
695 		break;
696 
697 	case FENCE_FREE:
698 		i915_request_put(request);
699 		break;
700 	}
701 
702 	return NOTIFY_DONE;
703 }
704 
705 static int __i915_sw_fence_call
706 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
707 {
708 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
709 
710 	switch (state) {
711 	case FENCE_COMPLETE:
712 		break;
713 
714 	case FENCE_FREE:
715 		i915_request_put(rq);
716 		break;
717 	}
718 
719 	return NOTIFY_DONE;
720 }
721 
722 static void retire_requests(struct intel_timeline *tl)
723 {
724 	struct i915_request *rq, *rn;
725 
726 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
727 		if (!i915_request_retire(rq))
728 			break;
729 }
730 
731 static noinline struct i915_request *
732 request_alloc_slow(struct intel_timeline *tl,
733 		   struct i915_request **rsvd,
734 		   gfp_t gfp)
735 {
736 	struct i915_request *rq;
737 
738 	/* If we cannot wait, dip into our reserves */
739 	if (!gfpflags_allow_blocking(gfp)) {
740 		rq = xchg(rsvd, NULL);
741 		if (!rq) /* Use the normal failure path for one final WARN */
742 			goto out;
743 
744 		return rq;
745 	}
746 
747 	if (list_empty(&tl->requests))
748 		goto out;
749 
750 	/* Move our oldest request to the slab-cache (if not in use!) */
751 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
752 	i915_request_retire(rq);
753 
754 	rq = kmem_cache_alloc(global.slab_requests,
755 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
756 	if (rq)
757 		return rq;
758 
759 	/* Ratelimit ourselves to prevent oom from malicious clients */
760 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
761 	cond_synchronize_rcu(rq->rcustate);
762 
763 	/* Retire our old requests in the hope that we free some */
764 	retire_requests(tl);
765 
766 out:
767 	return kmem_cache_alloc(global.slab_requests, gfp);
768 }
769 
770 static void __i915_request_ctor(void *arg)
771 {
772 	struct i915_request *rq = arg;
773 
774 	spin_lock_init(&rq->lock);
775 	i915_sched_node_init(&rq->sched);
776 	i915_sw_fence_init(&rq->submit, submit_notify);
777 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
778 
779 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
780 
781 	rq->file_priv = NULL;
782 	rq->capture_list = NULL;
783 
784 	init_llist_head(&rq->execute_cb);
785 }
786 
787 struct i915_request *
788 __i915_request_create(struct intel_context *ce, gfp_t gfp)
789 {
790 	struct intel_timeline *tl = ce->timeline;
791 	struct i915_request *rq;
792 	u32 seqno;
793 	int ret;
794 
795 	might_sleep_if(gfpflags_allow_blocking(gfp));
796 
797 	/* Check that the caller provided an already pinned context */
798 	__intel_context_pin(ce);
799 
800 	/*
801 	 * Beware: Dragons be flying overhead.
802 	 *
803 	 * We use RCU to look up requests in flight. The lookups may
804 	 * race with the request being allocated from the slab freelist.
805 	 * That is the request we are writing to here, may be in the process
806 	 * of being read by __i915_active_request_get_rcu(). As such,
807 	 * we have to be very careful when overwriting the contents. During
808 	 * the RCU lookup, we change chase the request->engine pointer,
809 	 * read the request->global_seqno and increment the reference count.
810 	 *
811 	 * The reference count is incremented atomically. If it is zero,
812 	 * the lookup knows the request is unallocated and complete. Otherwise,
813 	 * it is either still in use, or has been reallocated and reset
814 	 * with dma_fence_init(). This increment is safe for release as we
815 	 * check that the request we have a reference to and matches the active
816 	 * request.
817 	 *
818 	 * Before we increment the refcount, we chase the request->engine
819 	 * pointer. We must not call kmem_cache_zalloc() or else we set
820 	 * that pointer to NULL and cause a crash during the lookup. If
821 	 * we see the request is completed (based on the value of the
822 	 * old engine and seqno), the lookup is complete and reports NULL.
823 	 * If we decide the request is not completed (new engine or seqno),
824 	 * then we grab a reference and double check that it is still the
825 	 * active request - which it won't be and restart the lookup.
826 	 *
827 	 * Do not use kmem_cache_zalloc() here!
828 	 */
829 	rq = kmem_cache_alloc(global.slab_requests,
830 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
831 	if (unlikely(!rq)) {
832 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
833 		if (!rq) {
834 			ret = -ENOMEM;
835 			goto err_unreserve;
836 		}
837 	}
838 
839 	rq->context = ce;
840 	rq->engine = ce->engine;
841 	rq->ring = ce->ring;
842 	rq->execution_mask = ce->engine->mask;
843 
844 	kref_init(&rq->fence.refcount);
845 	rq->fence.flags = 0;
846 	rq->fence.error = 0;
847 	INIT_LIST_HEAD(&rq->fence.cb_list);
848 
849 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
850 	if (ret)
851 		goto err_free;
852 
853 	rq->fence.context = tl->fence_context;
854 	rq->fence.seqno = seqno;
855 
856 	RCU_INIT_POINTER(rq->timeline, tl);
857 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
858 	rq->hwsp_seqno = tl->hwsp_seqno;
859 	GEM_BUG_ON(i915_request_completed(rq));
860 
861 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
862 
863 	/* We bump the ref for the fence chain */
864 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
865 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
866 
867 	i915_sched_node_reinit(&rq->sched);
868 
869 	/* No zalloc, everything must be cleared after use */
870 	rq->batch = NULL;
871 	GEM_BUG_ON(rq->file_priv);
872 	GEM_BUG_ON(rq->capture_list);
873 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
874 
875 	/*
876 	 * Reserve space in the ring buffer for all the commands required to
877 	 * eventually emit this request. This is to guarantee that the
878 	 * i915_request_add() call can't fail. Note that the reserve may need
879 	 * to be redone if the request is not actually submitted straight
880 	 * away, e.g. because a GPU scheduler has deferred it.
881 	 *
882 	 * Note that due to how we add reserved_space to intel_ring_begin()
883 	 * we need to double our request to ensure that if we need to wrap
884 	 * around inside i915_request_add() there is sufficient space at
885 	 * the beginning of the ring as well.
886 	 */
887 	rq->reserved_space =
888 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
889 
890 	/*
891 	 * Record the position of the start of the request so that
892 	 * should we detect the updated seqno part-way through the
893 	 * GPU processing the request, we never over-estimate the
894 	 * position of the head.
895 	 */
896 	rq->head = rq->ring->emit;
897 
898 	ret = rq->engine->request_alloc(rq);
899 	if (ret)
900 		goto err_unwind;
901 
902 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
903 
904 	intel_context_mark_active(ce);
905 	list_add_tail_rcu(&rq->link, &tl->requests);
906 
907 	return rq;
908 
909 err_unwind:
910 	ce->ring->emit = rq->head;
911 
912 	/* Make sure we didn't add ourselves to external state before freeing */
913 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
914 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
915 
916 err_free:
917 	kmem_cache_free(global.slab_requests, rq);
918 err_unreserve:
919 	intel_context_unpin(ce);
920 	return ERR_PTR(ret);
921 }
922 
923 struct i915_request *
924 i915_request_create(struct intel_context *ce)
925 {
926 	struct i915_request *rq;
927 	struct intel_timeline *tl;
928 
929 	tl = intel_context_timeline_lock(ce);
930 	if (IS_ERR(tl))
931 		return ERR_CAST(tl);
932 
933 	/* Move our oldest request to the slab-cache (if not in use!) */
934 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
935 	if (!list_is_last(&rq->link, &tl->requests))
936 		i915_request_retire(rq);
937 
938 	intel_context_enter(ce);
939 	rq = __i915_request_create(ce, GFP_KERNEL);
940 	intel_context_exit(ce); /* active reference transferred to request */
941 	if (IS_ERR(rq))
942 		goto err_unlock;
943 
944 	/* Check that we do not interrupt ourselves with a new request */
945 	rq->cookie = lockdep_pin_lock(&tl->mutex);
946 
947 	return rq;
948 
949 err_unlock:
950 	intel_context_timeline_unlock(tl);
951 	return rq;
952 }
953 
954 static int
955 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
956 {
957 	struct dma_fence *fence;
958 	int err;
959 
960 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
961 		return 0;
962 
963 	if (i915_request_started(signal))
964 		return 0;
965 
966 	fence = NULL;
967 	rcu_read_lock();
968 	spin_lock_irq(&signal->lock);
969 	do {
970 		struct list_head *pos = READ_ONCE(signal->link.prev);
971 		struct i915_request *prev;
972 
973 		/* Confirm signal has not been retired, the link is valid */
974 		if (unlikely(i915_request_started(signal)))
975 			break;
976 
977 		/* Is signal the earliest request on its timeline? */
978 		if (pos == &rcu_dereference(signal->timeline)->requests)
979 			break;
980 
981 		/*
982 		 * Peek at the request before us in the timeline. That
983 		 * request will only be valid before it is retired, so
984 		 * after acquiring a reference to it, confirm that it is
985 		 * still part of the signaler's timeline.
986 		 */
987 		prev = list_entry(pos, typeof(*prev), link);
988 		if (!i915_request_get_rcu(prev))
989 			break;
990 
991 		/* After the strong barrier, confirm prev is still attached */
992 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
993 			i915_request_put(prev);
994 			break;
995 		}
996 
997 		fence = &prev->fence;
998 	} while (0);
999 	spin_unlock_irq(&signal->lock);
1000 	rcu_read_unlock();
1001 	if (!fence)
1002 		return 0;
1003 
1004 	err = 0;
1005 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1006 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1007 						    fence, 0,
1008 						    I915_FENCE_GFP);
1009 	dma_fence_put(fence);
1010 
1011 	return err;
1012 }
1013 
1014 static intel_engine_mask_t
1015 already_busywaiting(struct i915_request *rq)
1016 {
1017 	/*
1018 	 * Polling a semaphore causes bus traffic, delaying other users of
1019 	 * both the GPU and CPU. We want to limit the impact on others,
1020 	 * while taking advantage of early submission to reduce GPU
1021 	 * latency. Therefore we restrict ourselves to not using more
1022 	 * than one semaphore from each source, and not using a semaphore
1023 	 * if we have detected the engine is saturated (i.e. would not be
1024 	 * submitted early and cause bus traffic reading an already passed
1025 	 * semaphore).
1026 	 *
1027 	 * See the are-we-too-late? check in __i915_request_submit().
1028 	 */
1029 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1030 }
1031 
1032 static int
1033 __emit_semaphore_wait(struct i915_request *to,
1034 		      struct i915_request *from,
1035 		      u32 seqno)
1036 {
1037 	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1038 	u32 hwsp_offset;
1039 	int len, err;
1040 	u32 *cs;
1041 
1042 	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1043 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1044 
1045 	/* We need to pin the signaler's HWSP until we are finished reading. */
1046 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1047 	if (err)
1048 		return err;
1049 
1050 	len = 4;
1051 	if (has_token)
1052 		len += 2;
1053 
1054 	cs = intel_ring_begin(to, len);
1055 	if (IS_ERR(cs))
1056 		return PTR_ERR(cs);
1057 
1058 	/*
1059 	 * Using greater-than-or-equal here means we have to worry
1060 	 * about seqno wraparound. To side step that issue, we swap
1061 	 * the timeline HWSP upon wrapping, so that everyone listening
1062 	 * for the old (pre-wrap) values do not see the much smaller
1063 	 * (post-wrap) values than they were expecting (and so wait
1064 	 * forever).
1065 	 */
1066 	*cs++ = (MI_SEMAPHORE_WAIT |
1067 		 MI_SEMAPHORE_GLOBAL_GTT |
1068 		 MI_SEMAPHORE_POLL |
1069 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1070 		has_token;
1071 	*cs++ = seqno;
1072 	*cs++ = hwsp_offset;
1073 	*cs++ = 0;
1074 	if (has_token) {
1075 		*cs++ = 0;
1076 		*cs++ = MI_NOOP;
1077 	}
1078 
1079 	intel_ring_advance(to, cs);
1080 	return 0;
1081 }
1082 
1083 static int
1084 emit_semaphore_wait(struct i915_request *to,
1085 		    struct i915_request *from,
1086 		    gfp_t gfp)
1087 {
1088 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1089 	struct i915_sw_fence *wait = &to->submit;
1090 
1091 	if (!intel_context_use_semaphores(to->context))
1092 		goto await_fence;
1093 
1094 	if (i915_request_has_initial_breadcrumb(to))
1095 		goto await_fence;
1096 
1097 	if (!rcu_access_pointer(from->hwsp_cacheline))
1098 		goto await_fence;
1099 
1100 	/*
1101 	 * If this or its dependents are waiting on an external fence
1102 	 * that may fail catastrophically, then we want to avoid using
1103 	 * sempahores as they bypass the fence signaling metadata, and we
1104 	 * lose the fence->error propagation.
1105 	 */
1106 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1107 		goto await_fence;
1108 
1109 	/* Just emit the first semaphore we see as request space is limited. */
1110 	if (already_busywaiting(to) & mask)
1111 		goto await_fence;
1112 
1113 	if (i915_request_await_start(to, from) < 0)
1114 		goto await_fence;
1115 
1116 	/* Only submit our spinner after the signaler is running! */
1117 	if (__await_execution(to, from, NULL, gfp))
1118 		goto await_fence;
1119 
1120 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1121 		goto await_fence;
1122 
1123 	to->sched.semaphores |= mask;
1124 	wait = &to->semaphore;
1125 
1126 await_fence:
1127 	return i915_sw_fence_await_dma_fence(wait,
1128 					     &from->fence, 0,
1129 					     I915_FENCE_GFP);
1130 }
1131 
1132 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1133 					  struct dma_fence *fence)
1134 {
1135 	return __intel_timeline_sync_is_later(tl,
1136 					      fence->context,
1137 					      fence->seqno - 1);
1138 }
1139 
1140 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1141 					 const struct dma_fence *fence)
1142 {
1143 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1144 }
1145 
1146 static int
1147 __i915_request_await_execution(struct i915_request *to,
1148 			       struct i915_request *from,
1149 			       void (*hook)(struct i915_request *rq,
1150 					    struct dma_fence *signal))
1151 {
1152 	int err;
1153 
1154 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1155 
1156 	/* Submit both requests at the same time */
1157 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1158 	if (err)
1159 		return err;
1160 
1161 	/* Squash repeated depenendices to the same timelines */
1162 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1163 					  &from->fence))
1164 		return 0;
1165 
1166 	/*
1167 	 * Wait until the start of this request.
1168 	 *
1169 	 * The execution cb fires when we submit the request to HW. But in
1170 	 * many cases this may be long before the request itself is ready to
1171 	 * run (consider that we submit 2 requests for the same context, where
1172 	 * the request of interest is behind an indefinite spinner). So we hook
1173 	 * up to both to reduce our queues and keep the execution lag minimised
1174 	 * in the worst case, though we hope that the await_start is elided.
1175 	 */
1176 	err = i915_request_await_start(to, from);
1177 	if (err < 0)
1178 		return err;
1179 
1180 	/*
1181 	 * Ensure both start together [after all semaphores in signal]
1182 	 *
1183 	 * Now that we are queued to the HW at roughly the same time (thanks
1184 	 * to the execute cb) and are ready to run at roughly the same time
1185 	 * (thanks to the await start), our signaler may still be indefinitely
1186 	 * delayed by waiting on a semaphore from a remote engine. If our
1187 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1188 	 * want to start our payload until our signaler also starts theirs.
1189 	 * So we wait.
1190 	 *
1191 	 * However, there is also a second condition for which we need to wait
1192 	 * for the precise start of the signaler. Consider that the signaler
1193 	 * was submitted in a chain of requests following another context
1194 	 * (with just an ordinary intra-engine fence dependency between the
1195 	 * two). In this case the signaler is queued to HW, but not for
1196 	 * immediate execution, and so we must wait until it reaches the
1197 	 * active slot.
1198 	 */
1199 	if (intel_engine_has_semaphores(to->engine) &&
1200 	    !i915_request_has_initial_breadcrumb(to)) {
1201 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1202 		if (err < 0)
1203 			return err;
1204 	}
1205 
1206 	/* Couple the dependency tree for PI on this exposed to->fence */
1207 	if (to->engine->schedule) {
1208 		err = i915_sched_node_add_dependency(&to->sched,
1209 						     &from->sched,
1210 						     I915_DEPENDENCY_WEAK);
1211 		if (err < 0)
1212 			return err;
1213 	}
1214 
1215 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1216 					     &from->fence);
1217 }
1218 
1219 static void mark_external(struct i915_request *rq)
1220 {
1221 	/*
1222 	 * The downside of using semaphores is that we lose metadata passing
1223 	 * along the signaling chain. This is particularly nasty when we
1224 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1225 	 * fatal errors we want to scrub the request before it is executed,
1226 	 * which means that we cannot preload the request onto HW and have
1227 	 * it wait upon a semaphore.
1228 	 */
1229 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1230 }
1231 
1232 static int
1233 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1234 {
1235 	mark_external(rq);
1236 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1237 					     i915_fence_context_timeout(rq->engine->i915,
1238 									fence->context),
1239 					     I915_FENCE_GFP);
1240 }
1241 
1242 static int
1243 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1244 {
1245 	struct dma_fence *iter;
1246 	int err = 0;
1247 
1248 	if (!to_dma_fence_chain(fence))
1249 		return __i915_request_await_external(rq, fence);
1250 
1251 	dma_fence_chain_for_each(iter, fence) {
1252 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1253 
1254 		if (!dma_fence_is_i915(chain->fence)) {
1255 			err = __i915_request_await_external(rq, iter);
1256 			break;
1257 		}
1258 
1259 		err = i915_request_await_dma_fence(rq, chain->fence);
1260 		if (err < 0)
1261 			break;
1262 	}
1263 
1264 	dma_fence_put(iter);
1265 	return err;
1266 }
1267 
1268 int
1269 i915_request_await_execution(struct i915_request *rq,
1270 			     struct dma_fence *fence,
1271 			     void (*hook)(struct i915_request *rq,
1272 					  struct dma_fence *signal))
1273 {
1274 	struct dma_fence **child = &fence;
1275 	unsigned int nchild = 1;
1276 	int ret;
1277 
1278 	if (dma_fence_is_array(fence)) {
1279 		struct dma_fence_array *array = to_dma_fence_array(fence);
1280 
1281 		/* XXX Error for signal-on-any fence arrays */
1282 
1283 		child = array->fences;
1284 		nchild = array->num_fences;
1285 		GEM_BUG_ON(!nchild);
1286 	}
1287 
1288 	do {
1289 		fence = *child++;
1290 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1291 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1292 			continue;
1293 		}
1294 
1295 		if (fence->context == rq->fence.context)
1296 			continue;
1297 
1298 		/*
1299 		 * We don't squash repeated fence dependencies here as we
1300 		 * want to run our callback in all cases.
1301 		 */
1302 
1303 		if (dma_fence_is_i915(fence))
1304 			ret = __i915_request_await_execution(rq,
1305 							     to_request(fence),
1306 							     hook);
1307 		else
1308 			ret = i915_request_await_external(rq, fence);
1309 		if (ret < 0)
1310 			return ret;
1311 	} while (--nchild);
1312 
1313 	return 0;
1314 }
1315 
1316 static int
1317 await_request_submit(struct i915_request *to, struct i915_request *from)
1318 {
1319 	/*
1320 	 * If we are waiting on a virtual engine, then it may be
1321 	 * constrained to execute on a single engine *prior* to submission.
1322 	 * When it is submitted, it will be first submitted to the virtual
1323 	 * engine and then passed to the physical engine. We cannot allow
1324 	 * the waiter to be submitted immediately to the physical engine
1325 	 * as it may then bypass the virtual request.
1326 	 */
1327 	if (to->engine == READ_ONCE(from->engine))
1328 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1329 							&from->submit,
1330 							I915_FENCE_GFP);
1331 	else
1332 		return __i915_request_await_execution(to, from, NULL);
1333 }
1334 
1335 static int
1336 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1337 {
1338 	int ret;
1339 
1340 	GEM_BUG_ON(to == from);
1341 	GEM_BUG_ON(to->timeline == from->timeline);
1342 
1343 	if (i915_request_completed(from)) {
1344 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1345 		return 0;
1346 	}
1347 
1348 	if (to->engine->schedule) {
1349 		ret = i915_sched_node_add_dependency(&to->sched,
1350 						     &from->sched,
1351 						     I915_DEPENDENCY_EXTERNAL);
1352 		if (ret < 0)
1353 			return ret;
1354 	}
1355 
1356 	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1357 		ret = await_request_submit(to, from);
1358 	else
1359 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1360 	if (ret < 0)
1361 		return ret;
1362 
1363 	return 0;
1364 }
1365 
1366 int
1367 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1368 {
1369 	struct dma_fence **child = &fence;
1370 	unsigned int nchild = 1;
1371 	int ret;
1372 
1373 	/*
1374 	 * Note that if the fence-array was created in signal-on-any mode,
1375 	 * we should *not* decompose it into its individual fences. However,
1376 	 * we don't currently store which mode the fence-array is operating
1377 	 * in. Fortunately, the only user of signal-on-any is private to
1378 	 * amdgpu and we should not see any incoming fence-array from
1379 	 * sync-file being in signal-on-any mode.
1380 	 */
1381 	if (dma_fence_is_array(fence)) {
1382 		struct dma_fence_array *array = to_dma_fence_array(fence);
1383 
1384 		child = array->fences;
1385 		nchild = array->num_fences;
1386 		GEM_BUG_ON(!nchild);
1387 	}
1388 
1389 	do {
1390 		fence = *child++;
1391 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1392 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1393 			continue;
1394 		}
1395 
1396 		/*
1397 		 * Requests on the same timeline are explicitly ordered, along
1398 		 * with their dependencies, by i915_request_add() which ensures
1399 		 * that requests are submitted in-order through each ring.
1400 		 */
1401 		if (fence->context == rq->fence.context)
1402 			continue;
1403 
1404 		/* Squash repeated waits to the same timelines */
1405 		if (fence->context &&
1406 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1407 						 fence))
1408 			continue;
1409 
1410 		if (dma_fence_is_i915(fence))
1411 			ret = i915_request_await_request(rq, to_request(fence));
1412 		else
1413 			ret = i915_request_await_external(rq, fence);
1414 		if (ret < 0)
1415 			return ret;
1416 
1417 		/* Record the latest fence used against each timeline */
1418 		if (fence->context)
1419 			intel_timeline_sync_set(i915_request_timeline(rq),
1420 						fence);
1421 	} while (--nchild);
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  * i915_request_await_object - set this request to (async) wait upon a bo
1428  * @to: request we are wishing to use
1429  * @obj: object which may be in use on another ring.
1430  * @write: whether the wait is on behalf of a writer
1431  *
1432  * This code is meant to abstract object synchronization with the GPU.
1433  * Conceptually we serialise writes between engines inside the GPU.
1434  * We only allow one engine to write into a buffer at any time, but
1435  * multiple readers. To ensure each has a coherent view of memory, we must:
1436  *
1437  * - If there is an outstanding write request to the object, the new
1438  *   request must wait for it to complete (either CPU or in hw, requests
1439  *   on the same ring will be naturally ordered).
1440  *
1441  * - If we are a write request (pending_write_domain is set), the new
1442  *   request must wait for outstanding read requests to complete.
1443  *
1444  * Returns 0 if successful, else propagates up the lower layer error.
1445  */
1446 int
1447 i915_request_await_object(struct i915_request *to,
1448 			  struct drm_i915_gem_object *obj,
1449 			  bool write)
1450 {
1451 	struct dma_fence *excl;
1452 	int ret = 0;
1453 
1454 	if (write) {
1455 		struct dma_fence **shared;
1456 		unsigned int count, i;
1457 
1458 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1459 							&excl, &count, &shared);
1460 		if (ret)
1461 			return ret;
1462 
1463 		for (i = 0; i < count; i++) {
1464 			ret = i915_request_await_dma_fence(to, shared[i]);
1465 			if (ret)
1466 				break;
1467 
1468 			dma_fence_put(shared[i]);
1469 		}
1470 
1471 		for (; i < count; i++)
1472 			dma_fence_put(shared[i]);
1473 		kfree(shared);
1474 	} else {
1475 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1476 	}
1477 
1478 	if (excl) {
1479 		if (ret == 0)
1480 			ret = i915_request_await_dma_fence(to, excl);
1481 
1482 		dma_fence_put(excl);
1483 	}
1484 
1485 	return ret;
1486 }
1487 
1488 static struct i915_request *
1489 __i915_request_add_to_timeline(struct i915_request *rq)
1490 {
1491 	struct intel_timeline *timeline = i915_request_timeline(rq);
1492 	struct i915_request *prev;
1493 
1494 	/*
1495 	 * Dependency tracking and request ordering along the timeline
1496 	 * is special cased so that we can eliminate redundant ordering
1497 	 * operations while building the request (we know that the timeline
1498 	 * itself is ordered, and here we guarantee it).
1499 	 *
1500 	 * As we know we will need to emit tracking along the timeline,
1501 	 * we embed the hooks into our request struct -- at the cost of
1502 	 * having to have specialised no-allocation interfaces (which will
1503 	 * be beneficial elsewhere).
1504 	 *
1505 	 * A second benefit to open-coding i915_request_await_request is
1506 	 * that we can apply a slight variant of the rules specialised
1507 	 * for timelines that jump between engines (such as virtual engines).
1508 	 * If we consider the case of virtual engine, we must emit a dma-fence
1509 	 * to prevent scheduling of the second request until the first is
1510 	 * complete (to maximise our greedy late load balancing) and this
1511 	 * precludes optimising to use semaphores serialisation of a single
1512 	 * timeline across engines.
1513 	 */
1514 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1515 						  &rq->fence));
1516 	if (prev && !i915_request_completed(prev)) {
1517 		/*
1518 		 * The requests are supposed to be kept in order. However,
1519 		 * we need to be wary in case the timeline->last_request
1520 		 * is used as a barrier for external modification to this
1521 		 * context.
1522 		 */
1523 		GEM_BUG_ON(prev->context == rq->context &&
1524 			   i915_seqno_passed(prev->fence.seqno,
1525 					     rq->fence.seqno));
1526 
1527 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1528 			i915_sw_fence_await_sw_fence(&rq->submit,
1529 						     &prev->submit,
1530 						     &rq->submitq);
1531 		else
1532 			__i915_sw_fence_await_dma_fence(&rq->submit,
1533 							&prev->fence,
1534 							&rq->dmaq);
1535 		if (rq->engine->schedule)
1536 			__i915_sched_node_add_dependency(&rq->sched,
1537 							 &prev->sched,
1538 							 &rq->dep,
1539 							 0);
1540 	}
1541 
1542 	/*
1543 	 * Make sure that no request gazumped us - if it was allocated after
1544 	 * our i915_request_alloc() and called __i915_request_add() before
1545 	 * us, the timeline will hold its seqno which is later than ours.
1546 	 */
1547 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1548 
1549 	return prev;
1550 }
1551 
1552 /*
1553  * NB: This function is not allowed to fail. Doing so would mean the the
1554  * request is not being tracked for completion but the work itself is
1555  * going to happen on the hardware. This would be a Bad Thing(tm).
1556  */
1557 struct i915_request *__i915_request_commit(struct i915_request *rq)
1558 {
1559 	struct intel_engine_cs *engine = rq->engine;
1560 	struct intel_ring *ring = rq->ring;
1561 	u32 *cs;
1562 
1563 	RQ_TRACE(rq, "\n");
1564 
1565 	/*
1566 	 * To ensure that this call will not fail, space for its emissions
1567 	 * should already have been reserved in the ring buffer. Let the ring
1568 	 * know that it is time to use that space up.
1569 	 */
1570 	GEM_BUG_ON(rq->reserved_space > ring->space);
1571 	rq->reserved_space = 0;
1572 	rq->emitted_jiffies = jiffies;
1573 
1574 	/*
1575 	 * Record the position of the start of the breadcrumb so that
1576 	 * should we detect the updated seqno part-way through the
1577 	 * GPU processing the request, we never over-estimate the
1578 	 * position of the ring's HEAD.
1579 	 */
1580 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1581 	GEM_BUG_ON(IS_ERR(cs));
1582 	rq->postfix = intel_ring_offset(rq, cs);
1583 
1584 	return __i915_request_add_to_timeline(rq);
1585 }
1586 
1587 void __i915_request_queue(struct i915_request *rq,
1588 			  const struct i915_sched_attr *attr)
1589 {
1590 	/*
1591 	 * Let the backend know a new request has arrived that may need
1592 	 * to adjust the existing execution schedule due to a high priority
1593 	 * request - i.e. we may want to preempt the current request in order
1594 	 * to run a high priority dependency chain *before* we can execute this
1595 	 * request.
1596 	 *
1597 	 * This is called before the request is ready to run so that we can
1598 	 * decide whether to preempt the entire chain so that it is ready to
1599 	 * run at the earliest possible convenience.
1600 	 */
1601 	if (attr && rq->engine->schedule)
1602 		rq->engine->schedule(rq, attr);
1603 	i915_sw_fence_commit(&rq->semaphore);
1604 	i915_sw_fence_commit(&rq->submit);
1605 }
1606 
1607 void i915_request_add(struct i915_request *rq)
1608 {
1609 	struct intel_timeline * const tl = i915_request_timeline(rq);
1610 	struct i915_sched_attr attr = {};
1611 	struct i915_gem_context *ctx;
1612 
1613 	lockdep_assert_held(&tl->mutex);
1614 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1615 
1616 	trace_i915_request_add(rq);
1617 	__i915_request_commit(rq);
1618 
1619 	/* XXX placeholder for selftests */
1620 	rcu_read_lock();
1621 	ctx = rcu_dereference(rq->context->gem_context);
1622 	if (ctx)
1623 		attr = ctx->sched;
1624 	rcu_read_unlock();
1625 
1626 	__i915_request_queue(rq, &attr);
1627 
1628 	mutex_unlock(&tl->mutex);
1629 }
1630 
1631 static unsigned long local_clock_ns(unsigned int *cpu)
1632 {
1633 	unsigned long t;
1634 
1635 	/*
1636 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1637 	 * The result and subsequent calculations are also defined in the same
1638 	 * approximate microseconds units. The principal source of timing
1639 	 * error here is from the simple truncation.
1640 	 *
1641 	 * Note that local_clock() is only defined wrt to the current CPU;
1642 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1643 	 * blocking preemption for the entire busywait, we can detect the CPU
1644 	 * switch and use that as indicator of system load and a reason to
1645 	 * stop busywaiting, see busywait_stop().
1646 	 */
1647 	*cpu = get_cpu();
1648 	t = local_clock();
1649 	put_cpu();
1650 
1651 	return t;
1652 }
1653 
1654 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1655 {
1656 	unsigned int this_cpu;
1657 
1658 	if (time_after(local_clock_ns(&this_cpu), timeout))
1659 		return true;
1660 
1661 	return this_cpu != cpu;
1662 }
1663 
1664 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1665 {
1666 	unsigned long timeout_ns;
1667 	unsigned int cpu;
1668 
1669 	/*
1670 	 * Only wait for the request if we know it is likely to complete.
1671 	 *
1672 	 * We don't track the timestamps around requests, nor the average
1673 	 * request length, so we do not have a good indicator that this
1674 	 * request will complete within the timeout. What we do know is the
1675 	 * order in which requests are executed by the context and so we can
1676 	 * tell if the request has been started. If the request is not even
1677 	 * running yet, it is a fair assumption that it will not complete
1678 	 * within our relatively short timeout.
1679 	 */
1680 	if (!i915_request_is_running(rq))
1681 		return false;
1682 
1683 	/*
1684 	 * When waiting for high frequency requests, e.g. during synchronous
1685 	 * rendering split between the CPU and GPU, the finite amount of time
1686 	 * required to set up the irq and wait upon it limits the response
1687 	 * rate. By busywaiting on the request completion for a short while we
1688 	 * can service the high frequency waits as quick as possible. However,
1689 	 * if it is a slow request, we want to sleep as quickly as possible.
1690 	 * The tradeoff between waiting and sleeping is roughly the time it
1691 	 * takes to sleep on a request, on the order of a microsecond.
1692 	 */
1693 
1694 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1695 	timeout_ns += local_clock_ns(&cpu);
1696 	do {
1697 		if (i915_request_completed(rq))
1698 			return true;
1699 
1700 		if (signal_pending_state(state, current))
1701 			break;
1702 
1703 		if (busywait_stop(timeout_ns, cpu))
1704 			break;
1705 
1706 		cpu_relax();
1707 	} while (!need_resched());
1708 
1709 	return false;
1710 }
1711 
1712 struct request_wait {
1713 	struct dma_fence_cb cb;
1714 	struct task_struct *tsk;
1715 };
1716 
1717 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1718 {
1719 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1720 
1721 	wake_up_process(wait->tsk);
1722 }
1723 
1724 /**
1725  * i915_request_wait - wait until execution of request has finished
1726  * @rq: the request to wait upon
1727  * @flags: how to wait
1728  * @timeout: how long to wait in jiffies
1729  *
1730  * i915_request_wait() waits for the request to be completed, for a
1731  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1732  * unbounded wait).
1733  *
1734  * Returns the remaining time (in jiffies) if the request completed, which may
1735  * be zero or -ETIME if the request is unfinished after the timeout expires.
1736  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1737  * pending before the request completes.
1738  */
1739 long i915_request_wait(struct i915_request *rq,
1740 		       unsigned int flags,
1741 		       long timeout)
1742 {
1743 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1744 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1745 	struct request_wait wait;
1746 
1747 	might_sleep();
1748 	GEM_BUG_ON(timeout < 0);
1749 
1750 	if (dma_fence_is_signaled(&rq->fence))
1751 		return timeout;
1752 
1753 	if (!timeout)
1754 		return -ETIME;
1755 
1756 	trace_i915_request_wait_begin(rq, flags);
1757 
1758 	/*
1759 	 * We must never wait on the GPU while holding a lock as we
1760 	 * may need to perform a GPU reset. So while we don't need to
1761 	 * serialise wait/reset with an explicit lock, we do want
1762 	 * lockdep to detect potential dependency cycles.
1763 	 */
1764 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1765 
1766 	/*
1767 	 * Optimistic spin before touching IRQs.
1768 	 *
1769 	 * We may use a rather large value here to offset the penalty of
1770 	 * switching away from the active task. Frequently, the client will
1771 	 * wait upon an old swapbuffer to throttle itself to remain within a
1772 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1773 	 * then it should not be waiting long at all, and a sleep now will incur
1774 	 * extra scheduler latency in producing the next frame. To try to
1775 	 * avoid adding the cost of enabling/disabling the interrupt to the
1776 	 * short wait, we first spin to see if the request would have completed
1777 	 * in the time taken to setup the interrupt.
1778 	 *
1779 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1780 	 * scheduler latency of a context switch, ignoring the secondary
1781 	 * impacts from a context switch such as cache eviction.
1782 	 *
1783 	 * The scheme used for low-latency IO is called "hybrid interrupt
1784 	 * polling". The suggestion there is to sleep until just before you
1785 	 * expect to be woken by the device interrupt and then poll for its
1786 	 * completion. That requires having a good predictor for the request
1787 	 * duration, which we currently lack.
1788 	 */
1789 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1790 	    __i915_spin_request(rq, state)) {
1791 		dma_fence_signal(&rq->fence);
1792 		goto out;
1793 	}
1794 
1795 	/*
1796 	 * This client is about to stall waiting for the GPU. In many cases
1797 	 * this is undesirable and limits the throughput of the system, as
1798 	 * many clients cannot continue processing user input/output whilst
1799 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1800 	 * to the GPU load and thus incurs additional latency for the client.
1801 	 * We can circumvent that by promoting the GPU frequency to maximum
1802 	 * before we sleep. This makes the GPU throttle up much more quickly
1803 	 * (good for benchmarks and user experience, e.g. window animations),
1804 	 * but at a cost of spending more power processing the workload
1805 	 * (bad for battery).
1806 	 */
1807 	if (flags & I915_WAIT_PRIORITY) {
1808 		if (!i915_request_started(rq) &&
1809 		    INTEL_GEN(rq->engine->i915) >= 6)
1810 			intel_rps_boost(rq);
1811 	}
1812 
1813 	wait.tsk = current;
1814 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1815 		goto out;
1816 
1817 	for (;;) {
1818 		set_current_state(state);
1819 
1820 		if (i915_request_completed(rq)) {
1821 			dma_fence_signal(&rq->fence);
1822 			break;
1823 		}
1824 
1825 		intel_engine_flush_submission(rq->engine);
1826 
1827 		if (signal_pending_state(state, current)) {
1828 			timeout = -ERESTARTSYS;
1829 			break;
1830 		}
1831 
1832 		if (!timeout) {
1833 			timeout = -ETIME;
1834 			break;
1835 		}
1836 
1837 		timeout = io_schedule_timeout(timeout);
1838 	}
1839 	__set_current_state(TASK_RUNNING);
1840 
1841 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1842 
1843 out:
1844 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1845 	trace_i915_request_wait_end(rq);
1846 	return timeout;
1847 }
1848 
1849 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1850 #include "selftests/mock_request.c"
1851 #include "selftests/i915_request.c"
1852 #endif
1853 
1854 static void i915_global_request_shrink(void)
1855 {
1856 	kmem_cache_shrink(global.slab_execute_cbs);
1857 	kmem_cache_shrink(global.slab_requests);
1858 }
1859 
1860 static void i915_global_request_exit(void)
1861 {
1862 	kmem_cache_destroy(global.slab_execute_cbs);
1863 	kmem_cache_destroy(global.slab_requests);
1864 }
1865 
1866 static struct i915_global_request global = { {
1867 	.shrink = i915_global_request_shrink,
1868 	.exit = i915_global_request_exit,
1869 } };
1870 
1871 int __init i915_global_request_init(void)
1872 {
1873 	global.slab_requests =
1874 		kmem_cache_create("i915_request",
1875 				  sizeof(struct i915_request),
1876 				  __alignof__(struct i915_request),
1877 				  SLAB_HWCACHE_ALIGN |
1878 				  SLAB_RECLAIM_ACCOUNT |
1879 				  SLAB_TYPESAFE_BY_RCU,
1880 				  __i915_request_ctor);
1881 	if (!global.slab_requests)
1882 		return -ENOMEM;
1883 
1884 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1885 					     SLAB_HWCACHE_ALIGN |
1886 					     SLAB_RECLAIM_ACCOUNT |
1887 					     SLAB_TYPESAFE_BY_RCU);
1888 	if (!global.slab_execute_cbs)
1889 		goto err_requests;
1890 
1891 	i915_global_register(&global.base);
1892 	return 0;
1893 
1894 err_requests:
1895 	kmem_cache_destroy(global.slab_requests);
1896 	return -ENOMEM;
1897 }
1898