1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_context.h" 35 #include "gt/intel_ring.h" 36 #include "gt/intel_rps.h" 37 38 #include "i915_active.h" 39 #include "i915_drv.h" 40 #include "i915_globals.h" 41 #include "i915_trace.h" 42 #include "intel_pm.h" 43 44 struct execute_cb { 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_execute_cbs; 55 } global; 56 57 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 58 { 59 return dev_name(to_request(fence)->engine->i915->drm.dev); 60 } 61 62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 63 { 64 const struct i915_gem_context *ctx; 65 66 /* 67 * The timeline struct (as part of the ppgtt underneath a context) 68 * may be freed when the request is no longer in use by the GPU. 69 * We could extend the life of a context to beyond that of all 70 * fences, possibly keeping the hw resource around indefinitely, 71 * or we just give them a false name. Since 72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 73 * lie seems justifiable. 74 */ 75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 76 return "signaled"; 77 78 ctx = i915_request_gem_context(to_request(fence)); 79 if (!ctx) 80 return "[" DRIVER_NAME "]"; 81 82 return ctx->name; 83 } 84 85 static bool i915_fence_signaled(struct dma_fence *fence) 86 { 87 return i915_request_completed(to_request(fence)); 88 } 89 90 static bool i915_fence_enable_signaling(struct dma_fence *fence) 91 { 92 return i915_request_enable_breadcrumb(to_request(fence)); 93 } 94 95 static signed long i915_fence_wait(struct dma_fence *fence, 96 bool interruptible, 97 signed long timeout) 98 { 99 return i915_request_wait(to_request(fence), 100 interruptible | I915_WAIT_PRIORITY, 101 timeout); 102 } 103 104 struct kmem_cache *i915_request_slab_cache(void) 105 { 106 return global.slab_requests; 107 } 108 109 static void i915_fence_release(struct dma_fence *fence) 110 { 111 struct i915_request *rq = to_request(fence); 112 113 /* 114 * The request is put onto a RCU freelist (i.e. the address 115 * is immediately reused), mark the fences as being freed now. 116 * Otherwise the debugobjects for the fences are only marked as 117 * freed when the slab cache itself is freed, and so we would get 118 * caught trying to reuse dead objects. 119 */ 120 i915_sw_fence_fini(&rq->submit); 121 i915_sw_fence_fini(&rq->semaphore); 122 123 /* 124 * Keep one request on each engine for reserved use under mempressure 125 * 126 * We do not hold a reference to the engine here and so have to be 127 * very careful in what rq->engine we poke. The virtual engine is 128 * referenced via the rq->context and we released that ref during 129 * i915_request_retire(), ergo we must not dereference a virtual 130 * engine here. Not that we would want to, as the only consumer of 131 * the reserved engine->request_pool is the power management parking, 132 * which must-not-fail, and that is only run on the physical engines. 133 * 134 * Since the request must have been executed to be have completed, 135 * we know that it will have been processed by the HW and will 136 * not be unsubmitted again, so rq->engine and rq->execution_mask 137 * at this point is stable. rq->execution_mask will be a single 138 * bit if the last and _only_ engine it could execution on was a 139 * physical engine, if it's multiple bits then it started on and 140 * could still be on a virtual engine. Thus if the mask is not a 141 * power-of-two we assume that rq->engine may still be a virtual 142 * engine and so a dangling invalid pointer that we cannot dereference 143 * 144 * For example, consider the flow of a bonded request through a virtual 145 * engine. The request is created with a wide engine mask (all engines 146 * that we might execute on). On processing the bond, the request mask 147 * is reduced to one or more engines. If the request is subsequently 148 * bound to a single engine, it will then be constrained to only 149 * execute on that engine and never returned to the virtual engine 150 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 151 * know that if the rq->execution_mask is a single bit, rq->engine 152 * can be a physical engine with the exact corresponding mask. 153 */ 154 if (is_power_of_2(rq->execution_mask) && 155 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 156 return; 157 158 kmem_cache_free(global.slab_requests, rq); 159 } 160 161 const struct dma_fence_ops i915_fence_ops = { 162 .get_driver_name = i915_fence_get_driver_name, 163 .get_timeline_name = i915_fence_get_timeline_name, 164 .enable_signaling = i915_fence_enable_signaling, 165 .signaled = i915_fence_signaled, 166 .wait = i915_fence_wait, 167 .release = i915_fence_release, 168 }; 169 170 static void irq_execute_cb(struct irq_work *wrk) 171 { 172 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 173 174 i915_sw_fence_complete(cb->fence); 175 kmem_cache_free(global.slab_execute_cbs, cb); 176 } 177 178 static void irq_execute_cb_hook(struct irq_work *wrk) 179 { 180 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 181 182 cb->hook(container_of(cb->fence, struct i915_request, submit), 183 &cb->signal->fence); 184 i915_request_put(cb->signal); 185 186 irq_execute_cb(wrk); 187 } 188 189 static void __notify_execute_cb(struct i915_request *rq) 190 { 191 struct execute_cb *cb, *cn; 192 193 lockdep_assert_held(&rq->lock); 194 195 GEM_BUG_ON(!i915_request_is_active(rq)); 196 if (llist_empty(&rq->execute_cb)) 197 return; 198 199 llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode) 200 irq_work_queue(&cb->work); 201 202 /* 203 * XXX Rollback on __i915_request_unsubmit() 204 * 205 * In the future, perhaps when we have an active time-slicing scheduler, 206 * it will be interesting to unsubmit parallel execution and remove 207 * busywaits from the GPU until their master is restarted. This is 208 * quite hairy, we have to carefully rollback the fence and do a 209 * preempt-to-idle cycle on the target engine, all the while the 210 * master execute_cb may refire. 211 */ 212 init_llist_head(&rq->execute_cb); 213 } 214 215 static inline void 216 remove_from_client(struct i915_request *request) 217 { 218 struct drm_i915_file_private *file_priv; 219 220 if (!READ_ONCE(request->file_priv)) 221 return; 222 223 rcu_read_lock(); 224 file_priv = xchg(&request->file_priv, NULL); 225 if (file_priv) { 226 spin_lock(&file_priv->mm.lock); 227 list_del(&request->client_link); 228 spin_unlock(&file_priv->mm.lock); 229 } 230 rcu_read_unlock(); 231 } 232 233 static void free_capture_list(struct i915_request *request) 234 { 235 struct i915_capture_list *capture; 236 237 capture = fetch_and_zero(&request->capture_list); 238 while (capture) { 239 struct i915_capture_list *next = capture->next; 240 241 kfree(capture); 242 capture = next; 243 } 244 } 245 246 static void __i915_request_fill(struct i915_request *rq, u8 val) 247 { 248 void *vaddr = rq->ring->vaddr; 249 u32 head; 250 251 head = rq->infix; 252 if (rq->postfix < head) { 253 memset(vaddr + head, val, rq->ring->size - head); 254 head = 0; 255 } 256 memset(vaddr + head, val, rq->postfix - head); 257 } 258 259 static void remove_from_engine(struct i915_request *rq) 260 { 261 struct intel_engine_cs *engine, *locked; 262 263 /* 264 * Virtual engines complicate acquiring the engine timeline lock, 265 * as their rq->engine pointer is not stable until under that 266 * engine lock. The simple ploy we use is to take the lock then 267 * check that the rq still belongs to the newly locked engine. 268 */ 269 locked = READ_ONCE(rq->engine); 270 spin_lock_irq(&locked->active.lock); 271 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 272 spin_unlock(&locked->active.lock); 273 spin_lock(&engine->active.lock); 274 locked = engine; 275 } 276 list_del_init(&rq->sched.link); 277 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 278 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 279 spin_unlock_irq(&locked->active.lock); 280 } 281 282 bool i915_request_retire(struct i915_request *rq) 283 { 284 if (!i915_request_completed(rq)) 285 return false; 286 287 RQ_TRACE(rq, "\n"); 288 289 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 290 trace_i915_request_retire(rq); 291 292 /* 293 * We know the GPU must have read the request to have 294 * sent us the seqno + interrupt, so use the position 295 * of tail of the request to update the last known position 296 * of the GPU head. 297 * 298 * Note this requires that we are always called in request 299 * completion order. 300 */ 301 GEM_BUG_ON(!list_is_first(&rq->link, 302 &i915_request_timeline(rq)->requests)); 303 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 304 /* Poison before we release our space in the ring */ 305 __i915_request_fill(rq, POISON_FREE); 306 rq->ring->head = rq->postfix; 307 308 /* 309 * We only loosely track inflight requests across preemption, 310 * and so we may find ourselves attempting to retire a _completed_ 311 * request that we have removed from the HW and put back on a run 312 * queue. 313 */ 314 remove_from_engine(rq); 315 316 spin_lock_irq(&rq->lock); 317 i915_request_mark_complete(rq); 318 if (!i915_request_signaled(rq)) 319 dma_fence_signal_locked(&rq->fence); 320 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 321 i915_request_cancel_breadcrumb(rq); 322 if (i915_request_has_waitboost(rq)) { 323 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 324 atomic_dec(&rq->engine->gt->rps.num_waiters); 325 } 326 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 327 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 328 __notify_execute_cb(rq); 329 } 330 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 331 spin_unlock_irq(&rq->lock); 332 333 remove_from_client(rq); 334 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 335 336 intel_context_exit(rq->context); 337 intel_context_unpin(rq->context); 338 339 free_capture_list(rq); 340 i915_sched_node_fini(&rq->sched); 341 i915_request_put(rq); 342 343 return true; 344 } 345 346 void i915_request_retire_upto(struct i915_request *rq) 347 { 348 struct intel_timeline * const tl = i915_request_timeline(rq); 349 struct i915_request *tmp; 350 351 RQ_TRACE(rq, "\n"); 352 353 GEM_BUG_ON(!i915_request_completed(rq)); 354 355 do { 356 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 357 } while (i915_request_retire(tmp) && tmp != rq); 358 } 359 360 static void __llist_add(struct llist_node *node, struct llist_head *head) 361 { 362 node->next = head->first; 363 head->first = node; 364 } 365 366 static struct i915_request * const * 367 __engine_active(struct intel_engine_cs *engine) 368 { 369 return READ_ONCE(engine->execlists.active); 370 } 371 372 static bool __request_in_flight(const struct i915_request *signal) 373 { 374 struct i915_request * const *port, *rq; 375 bool inflight = false; 376 377 if (!i915_request_is_ready(signal)) 378 return false; 379 380 /* 381 * Even if we have unwound the request, it may still be on 382 * the GPU (preempt-to-busy). If that request is inside an 383 * unpreemptible critical section, it will not be removed. Some 384 * GPU functions may even be stuck waiting for the paired request 385 * (__await_execution) to be submitted and cannot be preempted 386 * until the bond is executing. 387 * 388 * As we know that there are always preemption points between 389 * requests, we know that only the currently executing request 390 * may be still active even though we have cleared the flag. 391 * However, we can't rely on our tracking of ELSP[0] to know 392 * which request is currently active and so maybe stuck, as 393 * the tracking maybe an event behind. Instead assume that 394 * if the context is still inflight, then it is still active 395 * even if the active flag has been cleared. 396 * 397 * To further complicate matters, if there a pending promotion, the HW 398 * may either perform a context switch to the second inflight execlists, 399 * or it may switch to the pending set of execlists. In the case of the 400 * latter, it may send the ACK and we process the event copying the 401 * pending[] over top of inflight[], _overwriting_ our *active. Since 402 * this implies the HW is arbitrating and not struck in *active, we do 403 * not worry about complete accuracy, but we do require no read/write 404 * tearing of the pointer [the read of the pointer must be valid, even 405 * as the array is being overwritten, for which we require the writes 406 * to avoid tearing.] 407 * 408 * Note that the read of *execlists->active may race with the promotion 409 * of execlists->pending[] to execlists->inflight[], overwritting 410 * the value at *execlists->active. This is fine. The promotion implies 411 * that we received an ACK from the HW, and so the context is not 412 * stuck -- if we do not see ourselves in *active, the inflight status 413 * is valid. If instead we see ourselves being copied into *active, 414 * we are inflight and may signal the callback. 415 */ 416 if (!intel_context_inflight(signal->context)) 417 return false; 418 419 rcu_read_lock(); 420 for (port = __engine_active(signal->engine); 421 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 422 port++) { 423 if (rq->context == signal->context) { 424 inflight = i915_seqno_passed(rq->fence.seqno, 425 signal->fence.seqno); 426 break; 427 } 428 } 429 rcu_read_unlock(); 430 431 return inflight; 432 } 433 434 static int 435 __await_execution(struct i915_request *rq, 436 struct i915_request *signal, 437 void (*hook)(struct i915_request *rq, 438 struct dma_fence *signal), 439 gfp_t gfp) 440 { 441 struct execute_cb *cb; 442 443 if (i915_request_is_active(signal)) { 444 if (hook) 445 hook(rq, &signal->fence); 446 return 0; 447 } 448 449 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 450 if (!cb) 451 return -ENOMEM; 452 453 cb->fence = &rq->submit; 454 i915_sw_fence_await(cb->fence); 455 init_irq_work(&cb->work, irq_execute_cb); 456 457 if (hook) { 458 cb->hook = hook; 459 cb->signal = i915_request_get(signal); 460 cb->work.func = irq_execute_cb_hook; 461 } 462 463 spin_lock_irq(&signal->lock); 464 if (i915_request_is_active(signal) || __request_in_flight(signal)) { 465 if (hook) { 466 hook(rq, &signal->fence); 467 i915_request_put(signal); 468 } 469 i915_sw_fence_complete(cb->fence); 470 kmem_cache_free(global.slab_execute_cbs, cb); 471 } else { 472 __llist_add(&cb->work.llnode, &signal->execute_cb); 473 } 474 spin_unlock_irq(&signal->lock); 475 476 return 0; 477 } 478 479 static bool fatal_error(int error) 480 { 481 switch (error) { 482 case 0: /* not an error! */ 483 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 484 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 485 return false; 486 default: 487 return true; 488 } 489 } 490 491 void __i915_request_skip(struct i915_request *rq) 492 { 493 GEM_BUG_ON(!fatal_error(rq->fence.error)); 494 495 if (rq->infix == rq->postfix) 496 return; 497 498 /* 499 * As this request likely depends on state from the lost 500 * context, clear out all the user operations leaving the 501 * breadcrumb at the end (so we get the fence notifications). 502 */ 503 __i915_request_fill(rq, 0); 504 rq->infix = rq->postfix; 505 } 506 507 void i915_request_set_error_once(struct i915_request *rq, int error) 508 { 509 int old; 510 511 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 512 513 if (i915_request_signaled(rq)) 514 return; 515 516 old = READ_ONCE(rq->fence.error); 517 do { 518 if (fatal_error(old)) 519 return; 520 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 521 } 522 523 bool __i915_request_submit(struct i915_request *request) 524 { 525 struct intel_engine_cs *engine = request->engine; 526 bool result = false; 527 528 RQ_TRACE(request, "\n"); 529 530 GEM_BUG_ON(!irqs_disabled()); 531 lockdep_assert_held(&engine->active.lock); 532 533 /* 534 * With the advent of preempt-to-busy, we frequently encounter 535 * requests that we have unsubmitted from HW, but left running 536 * until the next ack and so have completed in the meantime. On 537 * resubmission of that completed request, we can skip 538 * updating the payload, and execlists can even skip submitting 539 * the request. 540 * 541 * We must remove the request from the caller's priority queue, 542 * and the caller must only call us when the request is in their 543 * priority queue, under the active.lock. This ensures that the 544 * request has *not* yet been retired and we can safely move 545 * the request into the engine->active.list where it will be 546 * dropped upon retiring. (Otherwise if resubmit a *retired* 547 * request, this would be a horrible use-after-free.) 548 */ 549 if (i915_request_completed(request)) 550 goto xfer; 551 552 if (unlikely(intel_context_is_banned(request->context))) 553 i915_request_set_error_once(request, -EIO); 554 if (unlikely(fatal_error(request->fence.error))) 555 __i915_request_skip(request); 556 557 /* 558 * Are we using semaphores when the gpu is already saturated? 559 * 560 * Using semaphores incurs a cost in having the GPU poll a 561 * memory location, busywaiting for it to change. The continual 562 * memory reads can have a noticeable impact on the rest of the 563 * system with the extra bus traffic, stalling the cpu as it too 564 * tries to access memory across the bus (perf stat -e bus-cycles). 565 * 566 * If we installed a semaphore on this request and we only submit 567 * the request after the signaler completed, that indicates the 568 * system is overloaded and using semaphores at this time only 569 * increases the amount of work we are doing. If so, we disable 570 * further use of semaphores until we are idle again, whence we 571 * optimistically try again. 572 */ 573 if (request->sched.semaphores && 574 i915_sw_fence_signaled(&request->semaphore)) 575 engine->saturated |= request->sched.semaphores; 576 577 engine->emit_fini_breadcrumb(request, 578 request->ring->vaddr + request->postfix); 579 580 trace_i915_request_execute(request); 581 engine->serial++; 582 result = true; 583 584 xfer: 585 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 586 list_move_tail(&request->sched.link, &engine->active.requests); 587 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 588 } 589 590 /* We may be recursing from the signal callback of another i915 fence */ 591 if (!i915_request_signaled(request)) { 592 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 593 594 __notify_execute_cb(request); 595 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 596 &request->fence.flags) && 597 !i915_request_enable_breadcrumb(request)) 598 intel_engine_signal_breadcrumbs(engine); 599 600 spin_unlock(&request->lock); 601 GEM_BUG_ON(!llist_empty(&request->execute_cb)); 602 } 603 604 return result; 605 } 606 607 void i915_request_submit(struct i915_request *request) 608 { 609 struct intel_engine_cs *engine = request->engine; 610 unsigned long flags; 611 612 /* Will be called from irq-context when using foreign fences. */ 613 spin_lock_irqsave(&engine->active.lock, flags); 614 615 __i915_request_submit(request); 616 617 spin_unlock_irqrestore(&engine->active.lock, flags); 618 } 619 620 void __i915_request_unsubmit(struct i915_request *request) 621 { 622 struct intel_engine_cs *engine = request->engine; 623 624 RQ_TRACE(request, "\n"); 625 626 GEM_BUG_ON(!irqs_disabled()); 627 lockdep_assert_held(&engine->active.lock); 628 629 /* 630 * Only unwind in reverse order, required so that the per-context list 631 * is kept in seqno/ring order. 632 */ 633 634 /* We may be recursing from the signal callback of another i915 fence */ 635 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 636 637 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 638 i915_request_cancel_breadcrumb(request); 639 640 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 641 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 642 643 spin_unlock(&request->lock); 644 645 /* We've already spun, don't charge on resubmitting. */ 646 if (request->sched.semaphores && i915_request_started(request)) 647 request->sched.semaphores = 0; 648 649 /* 650 * We don't need to wake_up any waiters on request->execute, they 651 * will get woken by any other event or us re-adding this request 652 * to the engine timeline (__i915_request_submit()). The waiters 653 * should be quite adapt at finding that the request now has a new 654 * global_seqno to the one they went to sleep on. 655 */ 656 } 657 658 void i915_request_unsubmit(struct i915_request *request) 659 { 660 struct intel_engine_cs *engine = request->engine; 661 unsigned long flags; 662 663 /* Will be called from irq-context when using foreign fences. */ 664 spin_lock_irqsave(&engine->active.lock, flags); 665 666 __i915_request_unsubmit(request); 667 668 spin_unlock_irqrestore(&engine->active.lock, flags); 669 } 670 671 static int __i915_sw_fence_call 672 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 673 { 674 struct i915_request *request = 675 container_of(fence, typeof(*request), submit); 676 677 switch (state) { 678 case FENCE_COMPLETE: 679 trace_i915_request_submit(request); 680 681 if (unlikely(fence->error)) 682 i915_request_set_error_once(request, fence->error); 683 684 /* 685 * We need to serialize use of the submit_request() callback 686 * with its hotplugging performed during an emergency 687 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 688 * critical section in order to force i915_gem_set_wedged() to 689 * wait until the submit_request() is completed before 690 * proceeding. 691 */ 692 rcu_read_lock(); 693 request->engine->submit_request(request); 694 rcu_read_unlock(); 695 break; 696 697 case FENCE_FREE: 698 i915_request_put(request); 699 break; 700 } 701 702 return NOTIFY_DONE; 703 } 704 705 static int __i915_sw_fence_call 706 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 707 { 708 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 709 710 switch (state) { 711 case FENCE_COMPLETE: 712 break; 713 714 case FENCE_FREE: 715 i915_request_put(rq); 716 break; 717 } 718 719 return NOTIFY_DONE; 720 } 721 722 static void retire_requests(struct intel_timeline *tl) 723 { 724 struct i915_request *rq, *rn; 725 726 list_for_each_entry_safe(rq, rn, &tl->requests, link) 727 if (!i915_request_retire(rq)) 728 break; 729 } 730 731 static noinline struct i915_request * 732 request_alloc_slow(struct intel_timeline *tl, 733 struct i915_request **rsvd, 734 gfp_t gfp) 735 { 736 struct i915_request *rq; 737 738 /* If we cannot wait, dip into our reserves */ 739 if (!gfpflags_allow_blocking(gfp)) { 740 rq = xchg(rsvd, NULL); 741 if (!rq) /* Use the normal failure path for one final WARN */ 742 goto out; 743 744 return rq; 745 } 746 747 if (list_empty(&tl->requests)) 748 goto out; 749 750 /* Move our oldest request to the slab-cache (if not in use!) */ 751 rq = list_first_entry(&tl->requests, typeof(*rq), link); 752 i915_request_retire(rq); 753 754 rq = kmem_cache_alloc(global.slab_requests, 755 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 756 if (rq) 757 return rq; 758 759 /* Ratelimit ourselves to prevent oom from malicious clients */ 760 rq = list_last_entry(&tl->requests, typeof(*rq), link); 761 cond_synchronize_rcu(rq->rcustate); 762 763 /* Retire our old requests in the hope that we free some */ 764 retire_requests(tl); 765 766 out: 767 return kmem_cache_alloc(global.slab_requests, gfp); 768 } 769 770 static void __i915_request_ctor(void *arg) 771 { 772 struct i915_request *rq = arg; 773 774 spin_lock_init(&rq->lock); 775 i915_sched_node_init(&rq->sched); 776 i915_sw_fence_init(&rq->submit, submit_notify); 777 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 778 779 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 780 781 rq->file_priv = NULL; 782 rq->capture_list = NULL; 783 784 init_llist_head(&rq->execute_cb); 785 } 786 787 struct i915_request * 788 __i915_request_create(struct intel_context *ce, gfp_t gfp) 789 { 790 struct intel_timeline *tl = ce->timeline; 791 struct i915_request *rq; 792 u32 seqno; 793 int ret; 794 795 might_sleep_if(gfpflags_allow_blocking(gfp)); 796 797 /* Check that the caller provided an already pinned context */ 798 __intel_context_pin(ce); 799 800 /* 801 * Beware: Dragons be flying overhead. 802 * 803 * We use RCU to look up requests in flight. The lookups may 804 * race with the request being allocated from the slab freelist. 805 * That is the request we are writing to here, may be in the process 806 * of being read by __i915_active_request_get_rcu(). As such, 807 * we have to be very careful when overwriting the contents. During 808 * the RCU lookup, we change chase the request->engine pointer, 809 * read the request->global_seqno and increment the reference count. 810 * 811 * The reference count is incremented atomically. If it is zero, 812 * the lookup knows the request is unallocated and complete. Otherwise, 813 * it is either still in use, or has been reallocated and reset 814 * with dma_fence_init(). This increment is safe for release as we 815 * check that the request we have a reference to and matches the active 816 * request. 817 * 818 * Before we increment the refcount, we chase the request->engine 819 * pointer. We must not call kmem_cache_zalloc() or else we set 820 * that pointer to NULL and cause a crash during the lookup. If 821 * we see the request is completed (based on the value of the 822 * old engine and seqno), the lookup is complete and reports NULL. 823 * If we decide the request is not completed (new engine or seqno), 824 * then we grab a reference and double check that it is still the 825 * active request - which it won't be and restart the lookup. 826 * 827 * Do not use kmem_cache_zalloc() here! 828 */ 829 rq = kmem_cache_alloc(global.slab_requests, 830 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 831 if (unlikely(!rq)) { 832 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 833 if (!rq) { 834 ret = -ENOMEM; 835 goto err_unreserve; 836 } 837 } 838 839 rq->context = ce; 840 rq->engine = ce->engine; 841 rq->ring = ce->ring; 842 rq->execution_mask = ce->engine->mask; 843 844 kref_init(&rq->fence.refcount); 845 rq->fence.flags = 0; 846 rq->fence.error = 0; 847 INIT_LIST_HEAD(&rq->fence.cb_list); 848 849 ret = intel_timeline_get_seqno(tl, rq, &seqno); 850 if (ret) 851 goto err_free; 852 853 rq->fence.context = tl->fence_context; 854 rq->fence.seqno = seqno; 855 856 RCU_INIT_POINTER(rq->timeline, tl); 857 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 858 rq->hwsp_seqno = tl->hwsp_seqno; 859 GEM_BUG_ON(i915_request_completed(rq)); 860 861 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 862 863 /* We bump the ref for the fence chain */ 864 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 865 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 866 867 i915_sched_node_reinit(&rq->sched); 868 869 /* No zalloc, everything must be cleared after use */ 870 rq->batch = NULL; 871 GEM_BUG_ON(rq->file_priv); 872 GEM_BUG_ON(rq->capture_list); 873 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 874 875 /* 876 * Reserve space in the ring buffer for all the commands required to 877 * eventually emit this request. This is to guarantee that the 878 * i915_request_add() call can't fail. Note that the reserve may need 879 * to be redone if the request is not actually submitted straight 880 * away, e.g. because a GPU scheduler has deferred it. 881 * 882 * Note that due to how we add reserved_space to intel_ring_begin() 883 * we need to double our request to ensure that if we need to wrap 884 * around inside i915_request_add() there is sufficient space at 885 * the beginning of the ring as well. 886 */ 887 rq->reserved_space = 888 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 889 890 /* 891 * Record the position of the start of the request so that 892 * should we detect the updated seqno part-way through the 893 * GPU processing the request, we never over-estimate the 894 * position of the head. 895 */ 896 rq->head = rq->ring->emit; 897 898 ret = rq->engine->request_alloc(rq); 899 if (ret) 900 goto err_unwind; 901 902 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 903 904 intel_context_mark_active(ce); 905 list_add_tail_rcu(&rq->link, &tl->requests); 906 907 return rq; 908 909 err_unwind: 910 ce->ring->emit = rq->head; 911 912 /* Make sure we didn't add ourselves to external state before freeing */ 913 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 914 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 915 916 err_free: 917 kmem_cache_free(global.slab_requests, rq); 918 err_unreserve: 919 intel_context_unpin(ce); 920 return ERR_PTR(ret); 921 } 922 923 struct i915_request * 924 i915_request_create(struct intel_context *ce) 925 { 926 struct i915_request *rq; 927 struct intel_timeline *tl; 928 929 tl = intel_context_timeline_lock(ce); 930 if (IS_ERR(tl)) 931 return ERR_CAST(tl); 932 933 /* Move our oldest request to the slab-cache (if not in use!) */ 934 rq = list_first_entry(&tl->requests, typeof(*rq), link); 935 if (!list_is_last(&rq->link, &tl->requests)) 936 i915_request_retire(rq); 937 938 intel_context_enter(ce); 939 rq = __i915_request_create(ce, GFP_KERNEL); 940 intel_context_exit(ce); /* active reference transferred to request */ 941 if (IS_ERR(rq)) 942 goto err_unlock; 943 944 /* Check that we do not interrupt ourselves with a new request */ 945 rq->cookie = lockdep_pin_lock(&tl->mutex); 946 947 return rq; 948 949 err_unlock: 950 intel_context_timeline_unlock(tl); 951 return rq; 952 } 953 954 static int 955 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 956 { 957 struct dma_fence *fence; 958 int err; 959 960 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 961 return 0; 962 963 if (i915_request_started(signal)) 964 return 0; 965 966 fence = NULL; 967 rcu_read_lock(); 968 spin_lock_irq(&signal->lock); 969 do { 970 struct list_head *pos = READ_ONCE(signal->link.prev); 971 struct i915_request *prev; 972 973 /* Confirm signal has not been retired, the link is valid */ 974 if (unlikely(i915_request_started(signal))) 975 break; 976 977 /* Is signal the earliest request on its timeline? */ 978 if (pos == &rcu_dereference(signal->timeline)->requests) 979 break; 980 981 /* 982 * Peek at the request before us in the timeline. That 983 * request will only be valid before it is retired, so 984 * after acquiring a reference to it, confirm that it is 985 * still part of the signaler's timeline. 986 */ 987 prev = list_entry(pos, typeof(*prev), link); 988 if (!i915_request_get_rcu(prev)) 989 break; 990 991 /* After the strong barrier, confirm prev is still attached */ 992 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 993 i915_request_put(prev); 994 break; 995 } 996 997 fence = &prev->fence; 998 } while (0); 999 spin_unlock_irq(&signal->lock); 1000 rcu_read_unlock(); 1001 if (!fence) 1002 return 0; 1003 1004 err = 0; 1005 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1006 err = i915_sw_fence_await_dma_fence(&rq->submit, 1007 fence, 0, 1008 I915_FENCE_GFP); 1009 dma_fence_put(fence); 1010 1011 return err; 1012 } 1013 1014 static intel_engine_mask_t 1015 already_busywaiting(struct i915_request *rq) 1016 { 1017 /* 1018 * Polling a semaphore causes bus traffic, delaying other users of 1019 * both the GPU and CPU. We want to limit the impact on others, 1020 * while taking advantage of early submission to reduce GPU 1021 * latency. Therefore we restrict ourselves to not using more 1022 * than one semaphore from each source, and not using a semaphore 1023 * if we have detected the engine is saturated (i.e. would not be 1024 * submitted early and cause bus traffic reading an already passed 1025 * semaphore). 1026 * 1027 * See the are-we-too-late? check in __i915_request_submit(). 1028 */ 1029 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1030 } 1031 1032 static int 1033 __emit_semaphore_wait(struct i915_request *to, 1034 struct i915_request *from, 1035 u32 seqno) 1036 { 1037 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1038 u32 hwsp_offset; 1039 int len, err; 1040 u32 *cs; 1041 1042 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1043 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1044 1045 /* We need to pin the signaler's HWSP until we are finished reading. */ 1046 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1047 if (err) 1048 return err; 1049 1050 len = 4; 1051 if (has_token) 1052 len += 2; 1053 1054 cs = intel_ring_begin(to, len); 1055 if (IS_ERR(cs)) 1056 return PTR_ERR(cs); 1057 1058 /* 1059 * Using greater-than-or-equal here means we have to worry 1060 * about seqno wraparound. To side step that issue, we swap 1061 * the timeline HWSP upon wrapping, so that everyone listening 1062 * for the old (pre-wrap) values do not see the much smaller 1063 * (post-wrap) values than they were expecting (and so wait 1064 * forever). 1065 */ 1066 *cs++ = (MI_SEMAPHORE_WAIT | 1067 MI_SEMAPHORE_GLOBAL_GTT | 1068 MI_SEMAPHORE_POLL | 1069 MI_SEMAPHORE_SAD_GTE_SDD) + 1070 has_token; 1071 *cs++ = seqno; 1072 *cs++ = hwsp_offset; 1073 *cs++ = 0; 1074 if (has_token) { 1075 *cs++ = 0; 1076 *cs++ = MI_NOOP; 1077 } 1078 1079 intel_ring_advance(to, cs); 1080 return 0; 1081 } 1082 1083 static int 1084 emit_semaphore_wait(struct i915_request *to, 1085 struct i915_request *from, 1086 gfp_t gfp) 1087 { 1088 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1089 struct i915_sw_fence *wait = &to->submit; 1090 1091 if (!intel_context_use_semaphores(to->context)) 1092 goto await_fence; 1093 1094 if (i915_request_has_initial_breadcrumb(to)) 1095 goto await_fence; 1096 1097 if (!rcu_access_pointer(from->hwsp_cacheline)) 1098 goto await_fence; 1099 1100 /* 1101 * If this or its dependents are waiting on an external fence 1102 * that may fail catastrophically, then we want to avoid using 1103 * sempahores as they bypass the fence signaling metadata, and we 1104 * lose the fence->error propagation. 1105 */ 1106 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1107 goto await_fence; 1108 1109 /* Just emit the first semaphore we see as request space is limited. */ 1110 if (already_busywaiting(to) & mask) 1111 goto await_fence; 1112 1113 if (i915_request_await_start(to, from) < 0) 1114 goto await_fence; 1115 1116 /* Only submit our spinner after the signaler is running! */ 1117 if (__await_execution(to, from, NULL, gfp)) 1118 goto await_fence; 1119 1120 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1121 goto await_fence; 1122 1123 to->sched.semaphores |= mask; 1124 wait = &to->semaphore; 1125 1126 await_fence: 1127 return i915_sw_fence_await_dma_fence(wait, 1128 &from->fence, 0, 1129 I915_FENCE_GFP); 1130 } 1131 1132 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1133 struct dma_fence *fence) 1134 { 1135 return __intel_timeline_sync_is_later(tl, 1136 fence->context, 1137 fence->seqno - 1); 1138 } 1139 1140 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1141 const struct dma_fence *fence) 1142 { 1143 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1144 } 1145 1146 static int 1147 __i915_request_await_execution(struct i915_request *to, 1148 struct i915_request *from, 1149 void (*hook)(struct i915_request *rq, 1150 struct dma_fence *signal)) 1151 { 1152 int err; 1153 1154 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1155 1156 /* Submit both requests at the same time */ 1157 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1158 if (err) 1159 return err; 1160 1161 /* Squash repeated depenendices to the same timelines */ 1162 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1163 &from->fence)) 1164 return 0; 1165 1166 /* 1167 * Wait until the start of this request. 1168 * 1169 * The execution cb fires when we submit the request to HW. But in 1170 * many cases this may be long before the request itself is ready to 1171 * run (consider that we submit 2 requests for the same context, where 1172 * the request of interest is behind an indefinite spinner). So we hook 1173 * up to both to reduce our queues and keep the execution lag minimised 1174 * in the worst case, though we hope that the await_start is elided. 1175 */ 1176 err = i915_request_await_start(to, from); 1177 if (err < 0) 1178 return err; 1179 1180 /* 1181 * Ensure both start together [after all semaphores in signal] 1182 * 1183 * Now that we are queued to the HW at roughly the same time (thanks 1184 * to the execute cb) and are ready to run at roughly the same time 1185 * (thanks to the await start), our signaler may still be indefinitely 1186 * delayed by waiting on a semaphore from a remote engine. If our 1187 * signaler depends on a semaphore, so indirectly do we, and we do not 1188 * want to start our payload until our signaler also starts theirs. 1189 * So we wait. 1190 * 1191 * However, there is also a second condition for which we need to wait 1192 * for the precise start of the signaler. Consider that the signaler 1193 * was submitted in a chain of requests following another context 1194 * (with just an ordinary intra-engine fence dependency between the 1195 * two). In this case the signaler is queued to HW, but not for 1196 * immediate execution, and so we must wait until it reaches the 1197 * active slot. 1198 */ 1199 if (intel_engine_has_semaphores(to->engine) && 1200 !i915_request_has_initial_breadcrumb(to)) { 1201 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1202 if (err < 0) 1203 return err; 1204 } 1205 1206 /* Couple the dependency tree for PI on this exposed to->fence */ 1207 if (to->engine->schedule) { 1208 err = i915_sched_node_add_dependency(&to->sched, 1209 &from->sched, 1210 I915_DEPENDENCY_WEAK); 1211 if (err < 0) 1212 return err; 1213 } 1214 1215 return intel_timeline_sync_set_start(i915_request_timeline(to), 1216 &from->fence); 1217 } 1218 1219 static void mark_external(struct i915_request *rq) 1220 { 1221 /* 1222 * The downside of using semaphores is that we lose metadata passing 1223 * along the signaling chain. This is particularly nasty when we 1224 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1225 * fatal errors we want to scrub the request before it is executed, 1226 * which means that we cannot preload the request onto HW and have 1227 * it wait upon a semaphore. 1228 */ 1229 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1230 } 1231 1232 static int 1233 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1234 { 1235 mark_external(rq); 1236 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1237 i915_fence_context_timeout(rq->engine->i915, 1238 fence->context), 1239 I915_FENCE_GFP); 1240 } 1241 1242 static int 1243 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1244 { 1245 struct dma_fence *iter; 1246 int err = 0; 1247 1248 if (!to_dma_fence_chain(fence)) 1249 return __i915_request_await_external(rq, fence); 1250 1251 dma_fence_chain_for_each(iter, fence) { 1252 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1253 1254 if (!dma_fence_is_i915(chain->fence)) { 1255 err = __i915_request_await_external(rq, iter); 1256 break; 1257 } 1258 1259 err = i915_request_await_dma_fence(rq, chain->fence); 1260 if (err < 0) 1261 break; 1262 } 1263 1264 dma_fence_put(iter); 1265 return err; 1266 } 1267 1268 int 1269 i915_request_await_execution(struct i915_request *rq, 1270 struct dma_fence *fence, 1271 void (*hook)(struct i915_request *rq, 1272 struct dma_fence *signal)) 1273 { 1274 struct dma_fence **child = &fence; 1275 unsigned int nchild = 1; 1276 int ret; 1277 1278 if (dma_fence_is_array(fence)) { 1279 struct dma_fence_array *array = to_dma_fence_array(fence); 1280 1281 /* XXX Error for signal-on-any fence arrays */ 1282 1283 child = array->fences; 1284 nchild = array->num_fences; 1285 GEM_BUG_ON(!nchild); 1286 } 1287 1288 do { 1289 fence = *child++; 1290 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1291 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1292 continue; 1293 } 1294 1295 if (fence->context == rq->fence.context) 1296 continue; 1297 1298 /* 1299 * We don't squash repeated fence dependencies here as we 1300 * want to run our callback in all cases. 1301 */ 1302 1303 if (dma_fence_is_i915(fence)) 1304 ret = __i915_request_await_execution(rq, 1305 to_request(fence), 1306 hook); 1307 else 1308 ret = i915_request_await_external(rq, fence); 1309 if (ret < 0) 1310 return ret; 1311 } while (--nchild); 1312 1313 return 0; 1314 } 1315 1316 static int 1317 await_request_submit(struct i915_request *to, struct i915_request *from) 1318 { 1319 /* 1320 * If we are waiting on a virtual engine, then it may be 1321 * constrained to execute on a single engine *prior* to submission. 1322 * When it is submitted, it will be first submitted to the virtual 1323 * engine and then passed to the physical engine. We cannot allow 1324 * the waiter to be submitted immediately to the physical engine 1325 * as it may then bypass the virtual request. 1326 */ 1327 if (to->engine == READ_ONCE(from->engine)) 1328 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1329 &from->submit, 1330 I915_FENCE_GFP); 1331 else 1332 return __i915_request_await_execution(to, from, NULL); 1333 } 1334 1335 static int 1336 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1337 { 1338 int ret; 1339 1340 GEM_BUG_ON(to == from); 1341 GEM_BUG_ON(to->timeline == from->timeline); 1342 1343 if (i915_request_completed(from)) { 1344 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1345 return 0; 1346 } 1347 1348 if (to->engine->schedule) { 1349 ret = i915_sched_node_add_dependency(&to->sched, 1350 &from->sched, 1351 I915_DEPENDENCY_EXTERNAL); 1352 if (ret < 0) 1353 return ret; 1354 } 1355 1356 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1357 ret = await_request_submit(to, from); 1358 else 1359 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1360 if (ret < 0) 1361 return ret; 1362 1363 return 0; 1364 } 1365 1366 int 1367 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1368 { 1369 struct dma_fence **child = &fence; 1370 unsigned int nchild = 1; 1371 int ret; 1372 1373 /* 1374 * Note that if the fence-array was created in signal-on-any mode, 1375 * we should *not* decompose it into its individual fences. However, 1376 * we don't currently store which mode the fence-array is operating 1377 * in. Fortunately, the only user of signal-on-any is private to 1378 * amdgpu and we should not see any incoming fence-array from 1379 * sync-file being in signal-on-any mode. 1380 */ 1381 if (dma_fence_is_array(fence)) { 1382 struct dma_fence_array *array = to_dma_fence_array(fence); 1383 1384 child = array->fences; 1385 nchild = array->num_fences; 1386 GEM_BUG_ON(!nchild); 1387 } 1388 1389 do { 1390 fence = *child++; 1391 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1392 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1393 continue; 1394 } 1395 1396 /* 1397 * Requests on the same timeline are explicitly ordered, along 1398 * with their dependencies, by i915_request_add() which ensures 1399 * that requests are submitted in-order through each ring. 1400 */ 1401 if (fence->context == rq->fence.context) 1402 continue; 1403 1404 /* Squash repeated waits to the same timelines */ 1405 if (fence->context && 1406 intel_timeline_sync_is_later(i915_request_timeline(rq), 1407 fence)) 1408 continue; 1409 1410 if (dma_fence_is_i915(fence)) 1411 ret = i915_request_await_request(rq, to_request(fence)); 1412 else 1413 ret = i915_request_await_external(rq, fence); 1414 if (ret < 0) 1415 return ret; 1416 1417 /* Record the latest fence used against each timeline */ 1418 if (fence->context) 1419 intel_timeline_sync_set(i915_request_timeline(rq), 1420 fence); 1421 } while (--nchild); 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * i915_request_await_object - set this request to (async) wait upon a bo 1428 * @to: request we are wishing to use 1429 * @obj: object which may be in use on another ring. 1430 * @write: whether the wait is on behalf of a writer 1431 * 1432 * This code is meant to abstract object synchronization with the GPU. 1433 * Conceptually we serialise writes between engines inside the GPU. 1434 * We only allow one engine to write into a buffer at any time, but 1435 * multiple readers. To ensure each has a coherent view of memory, we must: 1436 * 1437 * - If there is an outstanding write request to the object, the new 1438 * request must wait for it to complete (either CPU or in hw, requests 1439 * on the same ring will be naturally ordered). 1440 * 1441 * - If we are a write request (pending_write_domain is set), the new 1442 * request must wait for outstanding read requests to complete. 1443 * 1444 * Returns 0 if successful, else propagates up the lower layer error. 1445 */ 1446 int 1447 i915_request_await_object(struct i915_request *to, 1448 struct drm_i915_gem_object *obj, 1449 bool write) 1450 { 1451 struct dma_fence *excl; 1452 int ret = 0; 1453 1454 if (write) { 1455 struct dma_fence **shared; 1456 unsigned int count, i; 1457 1458 ret = dma_resv_get_fences_rcu(obj->base.resv, 1459 &excl, &count, &shared); 1460 if (ret) 1461 return ret; 1462 1463 for (i = 0; i < count; i++) { 1464 ret = i915_request_await_dma_fence(to, shared[i]); 1465 if (ret) 1466 break; 1467 1468 dma_fence_put(shared[i]); 1469 } 1470 1471 for (; i < count; i++) 1472 dma_fence_put(shared[i]); 1473 kfree(shared); 1474 } else { 1475 excl = dma_resv_get_excl_rcu(obj->base.resv); 1476 } 1477 1478 if (excl) { 1479 if (ret == 0) 1480 ret = i915_request_await_dma_fence(to, excl); 1481 1482 dma_fence_put(excl); 1483 } 1484 1485 return ret; 1486 } 1487 1488 static struct i915_request * 1489 __i915_request_add_to_timeline(struct i915_request *rq) 1490 { 1491 struct intel_timeline *timeline = i915_request_timeline(rq); 1492 struct i915_request *prev; 1493 1494 /* 1495 * Dependency tracking and request ordering along the timeline 1496 * is special cased so that we can eliminate redundant ordering 1497 * operations while building the request (we know that the timeline 1498 * itself is ordered, and here we guarantee it). 1499 * 1500 * As we know we will need to emit tracking along the timeline, 1501 * we embed the hooks into our request struct -- at the cost of 1502 * having to have specialised no-allocation interfaces (which will 1503 * be beneficial elsewhere). 1504 * 1505 * A second benefit to open-coding i915_request_await_request is 1506 * that we can apply a slight variant of the rules specialised 1507 * for timelines that jump between engines (such as virtual engines). 1508 * If we consider the case of virtual engine, we must emit a dma-fence 1509 * to prevent scheduling of the second request until the first is 1510 * complete (to maximise our greedy late load balancing) and this 1511 * precludes optimising to use semaphores serialisation of a single 1512 * timeline across engines. 1513 */ 1514 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1515 &rq->fence)); 1516 if (prev && !i915_request_completed(prev)) { 1517 /* 1518 * The requests are supposed to be kept in order. However, 1519 * we need to be wary in case the timeline->last_request 1520 * is used as a barrier for external modification to this 1521 * context. 1522 */ 1523 GEM_BUG_ON(prev->context == rq->context && 1524 i915_seqno_passed(prev->fence.seqno, 1525 rq->fence.seqno)); 1526 1527 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1528 i915_sw_fence_await_sw_fence(&rq->submit, 1529 &prev->submit, 1530 &rq->submitq); 1531 else 1532 __i915_sw_fence_await_dma_fence(&rq->submit, 1533 &prev->fence, 1534 &rq->dmaq); 1535 if (rq->engine->schedule) 1536 __i915_sched_node_add_dependency(&rq->sched, 1537 &prev->sched, 1538 &rq->dep, 1539 0); 1540 } 1541 1542 /* 1543 * Make sure that no request gazumped us - if it was allocated after 1544 * our i915_request_alloc() and called __i915_request_add() before 1545 * us, the timeline will hold its seqno which is later than ours. 1546 */ 1547 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1548 1549 return prev; 1550 } 1551 1552 /* 1553 * NB: This function is not allowed to fail. Doing so would mean the the 1554 * request is not being tracked for completion but the work itself is 1555 * going to happen on the hardware. This would be a Bad Thing(tm). 1556 */ 1557 struct i915_request *__i915_request_commit(struct i915_request *rq) 1558 { 1559 struct intel_engine_cs *engine = rq->engine; 1560 struct intel_ring *ring = rq->ring; 1561 u32 *cs; 1562 1563 RQ_TRACE(rq, "\n"); 1564 1565 /* 1566 * To ensure that this call will not fail, space for its emissions 1567 * should already have been reserved in the ring buffer. Let the ring 1568 * know that it is time to use that space up. 1569 */ 1570 GEM_BUG_ON(rq->reserved_space > ring->space); 1571 rq->reserved_space = 0; 1572 rq->emitted_jiffies = jiffies; 1573 1574 /* 1575 * Record the position of the start of the breadcrumb so that 1576 * should we detect the updated seqno part-way through the 1577 * GPU processing the request, we never over-estimate the 1578 * position of the ring's HEAD. 1579 */ 1580 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1581 GEM_BUG_ON(IS_ERR(cs)); 1582 rq->postfix = intel_ring_offset(rq, cs); 1583 1584 return __i915_request_add_to_timeline(rq); 1585 } 1586 1587 void __i915_request_queue(struct i915_request *rq, 1588 const struct i915_sched_attr *attr) 1589 { 1590 /* 1591 * Let the backend know a new request has arrived that may need 1592 * to adjust the existing execution schedule due to a high priority 1593 * request - i.e. we may want to preempt the current request in order 1594 * to run a high priority dependency chain *before* we can execute this 1595 * request. 1596 * 1597 * This is called before the request is ready to run so that we can 1598 * decide whether to preempt the entire chain so that it is ready to 1599 * run at the earliest possible convenience. 1600 */ 1601 if (attr && rq->engine->schedule) 1602 rq->engine->schedule(rq, attr); 1603 i915_sw_fence_commit(&rq->semaphore); 1604 i915_sw_fence_commit(&rq->submit); 1605 } 1606 1607 void i915_request_add(struct i915_request *rq) 1608 { 1609 struct intel_timeline * const tl = i915_request_timeline(rq); 1610 struct i915_sched_attr attr = {}; 1611 struct i915_gem_context *ctx; 1612 1613 lockdep_assert_held(&tl->mutex); 1614 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1615 1616 trace_i915_request_add(rq); 1617 __i915_request_commit(rq); 1618 1619 /* XXX placeholder for selftests */ 1620 rcu_read_lock(); 1621 ctx = rcu_dereference(rq->context->gem_context); 1622 if (ctx) 1623 attr = ctx->sched; 1624 rcu_read_unlock(); 1625 1626 __i915_request_queue(rq, &attr); 1627 1628 mutex_unlock(&tl->mutex); 1629 } 1630 1631 static unsigned long local_clock_ns(unsigned int *cpu) 1632 { 1633 unsigned long t; 1634 1635 /* 1636 * Cheaply and approximately convert from nanoseconds to microseconds. 1637 * The result and subsequent calculations are also defined in the same 1638 * approximate microseconds units. The principal source of timing 1639 * error here is from the simple truncation. 1640 * 1641 * Note that local_clock() is only defined wrt to the current CPU; 1642 * the comparisons are no longer valid if we switch CPUs. Instead of 1643 * blocking preemption for the entire busywait, we can detect the CPU 1644 * switch and use that as indicator of system load and a reason to 1645 * stop busywaiting, see busywait_stop(). 1646 */ 1647 *cpu = get_cpu(); 1648 t = local_clock(); 1649 put_cpu(); 1650 1651 return t; 1652 } 1653 1654 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1655 { 1656 unsigned int this_cpu; 1657 1658 if (time_after(local_clock_ns(&this_cpu), timeout)) 1659 return true; 1660 1661 return this_cpu != cpu; 1662 } 1663 1664 static bool __i915_spin_request(const struct i915_request * const rq, int state) 1665 { 1666 unsigned long timeout_ns; 1667 unsigned int cpu; 1668 1669 /* 1670 * Only wait for the request if we know it is likely to complete. 1671 * 1672 * We don't track the timestamps around requests, nor the average 1673 * request length, so we do not have a good indicator that this 1674 * request will complete within the timeout. What we do know is the 1675 * order in which requests are executed by the context and so we can 1676 * tell if the request has been started. If the request is not even 1677 * running yet, it is a fair assumption that it will not complete 1678 * within our relatively short timeout. 1679 */ 1680 if (!i915_request_is_running(rq)) 1681 return false; 1682 1683 /* 1684 * When waiting for high frequency requests, e.g. during synchronous 1685 * rendering split between the CPU and GPU, the finite amount of time 1686 * required to set up the irq and wait upon it limits the response 1687 * rate. By busywaiting on the request completion for a short while we 1688 * can service the high frequency waits as quick as possible. However, 1689 * if it is a slow request, we want to sleep as quickly as possible. 1690 * The tradeoff between waiting and sleeping is roughly the time it 1691 * takes to sleep on a request, on the order of a microsecond. 1692 */ 1693 1694 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1695 timeout_ns += local_clock_ns(&cpu); 1696 do { 1697 if (i915_request_completed(rq)) 1698 return true; 1699 1700 if (signal_pending_state(state, current)) 1701 break; 1702 1703 if (busywait_stop(timeout_ns, cpu)) 1704 break; 1705 1706 cpu_relax(); 1707 } while (!need_resched()); 1708 1709 return false; 1710 } 1711 1712 struct request_wait { 1713 struct dma_fence_cb cb; 1714 struct task_struct *tsk; 1715 }; 1716 1717 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1718 { 1719 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1720 1721 wake_up_process(wait->tsk); 1722 } 1723 1724 /** 1725 * i915_request_wait - wait until execution of request has finished 1726 * @rq: the request to wait upon 1727 * @flags: how to wait 1728 * @timeout: how long to wait in jiffies 1729 * 1730 * i915_request_wait() waits for the request to be completed, for a 1731 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1732 * unbounded wait). 1733 * 1734 * Returns the remaining time (in jiffies) if the request completed, which may 1735 * be zero or -ETIME if the request is unfinished after the timeout expires. 1736 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1737 * pending before the request completes. 1738 */ 1739 long i915_request_wait(struct i915_request *rq, 1740 unsigned int flags, 1741 long timeout) 1742 { 1743 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1744 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1745 struct request_wait wait; 1746 1747 might_sleep(); 1748 GEM_BUG_ON(timeout < 0); 1749 1750 if (dma_fence_is_signaled(&rq->fence)) 1751 return timeout; 1752 1753 if (!timeout) 1754 return -ETIME; 1755 1756 trace_i915_request_wait_begin(rq, flags); 1757 1758 /* 1759 * We must never wait on the GPU while holding a lock as we 1760 * may need to perform a GPU reset. So while we don't need to 1761 * serialise wait/reset with an explicit lock, we do want 1762 * lockdep to detect potential dependency cycles. 1763 */ 1764 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1765 1766 /* 1767 * Optimistic spin before touching IRQs. 1768 * 1769 * We may use a rather large value here to offset the penalty of 1770 * switching away from the active task. Frequently, the client will 1771 * wait upon an old swapbuffer to throttle itself to remain within a 1772 * frame of the gpu. If the client is running in lockstep with the gpu, 1773 * then it should not be waiting long at all, and a sleep now will incur 1774 * extra scheduler latency in producing the next frame. To try to 1775 * avoid adding the cost of enabling/disabling the interrupt to the 1776 * short wait, we first spin to see if the request would have completed 1777 * in the time taken to setup the interrupt. 1778 * 1779 * We need upto 5us to enable the irq, and upto 20us to hide the 1780 * scheduler latency of a context switch, ignoring the secondary 1781 * impacts from a context switch such as cache eviction. 1782 * 1783 * The scheme used for low-latency IO is called "hybrid interrupt 1784 * polling". The suggestion there is to sleep until just before you 1785 * expect to be woken by the device interrupt and then poll for its 1786 * completion. That requires having a good predictor for the request 1787 * duration, which we currently lack. 1788 */ 1789 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1790 __i915_spin_request(rq, state)) { 1791 dma_fence_signal(&rq->fence); 1792 goto out; 1793 } 1794 1795 /* 1796 * This client is about to stall waiting for the GPU. In many cases 1797 * this is undesirable and limits the throughput of the system, as 1798 * many clients cannot continue processing user input/output whilst 1799 * blocked. RPS autotuning may take tens of milliseconds to respond 1800 * to the GPU load and thus incurs additional latency for the client. 1801 * We can circumvent that by promoting the GPU frequency to maximum 1802 * before we sleep. This makes the GPU throttle up much more quickly 1803 * (good for benchmarks and user experience, e.g. window animations), 1804 * but at a cost of spending more power processing the workload 1805 * (bad for battery). 1806 */ 1807 if (flags & I915_WAIT_PRIORITY) { 1808 if (!i915_request_started(rq) && 1809 INTEL_GEN(rq->engine->i915) >= 6) 1810 intel_rps_boost(rq); 1811 } 1812 1813 wait.tsk = current; 1814 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1815 goto out; 1816 1817 for (;;) { 1818 set_current_state(state); 1819 1820 if (i915_request_completed(rq)) { 1821 dma_fence_signal(&rq->fence); 1822 break; 1823 } 1824 1825 intel_engine_flush_submission(rq->engine); 1826 1827 if (signal_pending_state(state, current)) { 1828 timeout = -ERESTARTSYS; 1829 break; 1830 } 1831 1832 if (!timeout) { 1833 timeout = -ETIME; 1834 break; 1835 } 1836 1837 timeout = io_schedule_timeout(timeout); 1838 } 1839 __set_current_state(TASK_RUNNING); 1840 1841 dma_fence_remove_callback(&rq->fence, &wait.cb); 1842 1843 out: 1844 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1845 trace_i915_request_wait_end(rq); 1846 return timeout; 1847 } 1848 1849 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1850 #include "selftests/mock_request.c" 1851 #include "selftests/i915_request.c" 1852 #endif 1853 1854 static void i915_global_request_shrink(void) 1855 { 1856 kmem_cache_shrink(global.slab_execute_cbs); 1857 kmem_cache_shrink(global.slab_requests); 1858 } 1859 1860 static void i915_global_request_exit(void) 1861 { 1862 kmem_cache_destroy(global.slab_execute_cbs); 1863 kmem_cache_destroy(global.slab_requests); 1864 } 1865 1866 static struct i915_global_request global = { { 1867 .shrink = i915_global_request_shrink, 1868 .exit = i915_global_request_exit, 1869 } }; 1870 1871 int __init i915_global_request_init(void) 1872 { 1873 global.slab_requests = 1874 kmem_cache_create("i915_request", 1875 sizeof(struct i915_request), 1876 __alignof__(struct i915_request), 1877 SLAB_HWCACHE_ALIGN | 1878 SLAB_RECLAIM_ACCOUNT | 1879 SLAB_TYPESAFE_BY_RCU, 1880 __i915_request_ctor); 1881 if (!global.slab_requests) 1882 return -ENOMEM; 1883 1884 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1885 SLAB_HWCACHE_ALIGN | 1886 SLAB_RECLAIM_ACCOUNT | 1887 SLAB_TYPESAFE_BY_RCU); 1888 if (!global.slab_execute_cbs) 1889 goto err_requests; 1890 1891 i915_global_register(&global.base); 1892 return 0; 1893 1894 err_requests: 1895 kmem_cache_destroy(global.slab_requests); 1896 return -ENOMEM; 1897 } 1898