1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_engine.h"
37 #include "gt/intel_engine_heartbeat.h"
38 #include "gt/intel_gpu_commands.h"
39 #include "gt/intel_reset.h"
40 #include "gt/intel_ring.h"
41 #include "gt/intel_rps.h"
42 
43 #include "i915_active.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_pm.h"
47 
48 struct execute_cb {
49 	struct irq_work work;
50 	struct i915_sw_fence *fence;
51 	struct i915_request *signal;
52 };
53 
54 static struct kmem_cache *slab_requests;
55 static struct kmem_cache *slab_execute_cbs;
56 
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 	return dev_name(to_request(fence)->engine->i915->drm.dev);
60 }
61 
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 	const struct i915_gem_context *ctx;
65 
66 	/*
67 	 * The timeline struct (as part of the ppgtt underneath a context)
68 	 * may be freed when the request is no longer in use by the GPU.
69 	 * We could extend the life of a context to beyond that of all
70 	 * fences, possibly keeping the hw resource around indefinitely,
71 	 * or we just give them a false name. Since
72 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 	 * lie seems justifiable.
74 	 */
75 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 		return "signaled";
77 
78 	ctx = i915_request_gem_context(to_request(fence));
79 	if (!ctx)
80 		return "[" DRIVER_NAME "]";
81 
82 	return ctx->name;
83 }
84 
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 	return i915_request_completed(to_request(fence));
88 }
89 
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 	return i915_request_enable_breadcrumb(to_request(fence));
93 }
94 
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 				   bool interruptible,
97 				   signed long timeout)
98 {
99 	return i915_request_wait(to_request(fence),
100 				 interruptible | I915_WAIT_PRIORITY,
101 				 timeout);
102 }
103 
104 struct kmem_cache *i915_request_slab_cache(void)
105 {
106 	return slab_requests;
107 }
108 
109 static void i915_fence_release(struct dma_fence *fence)
110 {
111 	struct i915_request *rq = to_request(fence);
112 
113 	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
114 		   rq->guc_prio != GUC_PRIO_FINI);
115 
116 	/*
117 	 * The request is put onto a RCU freelist (i.e. the address
118 	 * is immediately reused), mark the fences as being freed now.
119 	 * Otherwise the debugobjects for the fences are only marked as
120 	 * freed when the slab cache itself is freed, and so we would get
121 	 * caught trying to reuse dead objects.
122 	 */
123 	i915_sw_fence_fini(&rq->submit);
124 	i915_sw_fence_fini(&rq->semaphore);
125 
126 	/*
127 	 * Keep one request on each engine for reserved use under mempressure,
128 	 * do not use with virtual engines as this really is only needed for
129 	 * kernel contexts.
130 	 */
131 	if (!intel_engine_is_virtual(rq->engine) &&
132 	    !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
133 		intel_context_put(rq->context);
134 		return;
135 	}
136 
137 	intel_context_put(rq->context);
138 
139 	kmem_cache_free(slab_requests, rq);
140 }
141 
142 const struct dma_fence_ops i915_fence_ops = {
143 	.get_driver_name = i915_fence_get_driver_name,
144 	.get_timeline_name = i915_fence_get_timeline_name,
145 	.enable_signaling = i915_fence_enable_signaling,
146 	.signaled = i915_fence_signaled,
147 	.wait = i915_fence_wait,
148 	.release = i915_fence_release,
149 };
150 
151 static void irq_execute_cb(struct irq_work *wrk)
152 {
153 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
154 
155 	i915_sw_fence_complete(cb->fence);
156 	kmem_cache_free(slab_execute_cbs, cb);
157 }
158 
159 static __always_inline void
160 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
161 {
162 	struct execute_cb *cb, *cn;
163 
164 	if (llist_empty(&rq->execute_cb))
165 		return;
166 
167 	llist_for_each_entry_safe(cb, cn,
168 				  llist_del_all(&rq->execute_cb),
169 				  work.node.llist)
170 		fn(&cb->work);
171 }
172 
173 static void __notify_execute_cb_irq(struct i915_request *rq)
174 {
175 	__notify_execute_cb(rq, irq_work_queue);
176 }
177 
178 static bool irq_work_imm(struct irq_work *wrk)
179 {
180 	wrk->func(wrk);
181 	return false;
182 }
183 
184 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
185 {
186 	__notify_execute_cb(rq, irq_work_imm);
187 }
188 
189 static void free_capture_list(struct i915_request *request)
190 {
191 	struct i915_capture_list *capture;
192 
193 	capture = fetch_and_zero(&request->capture_list);
194 	while (capture) {
195 		struct i915_capture_list *next = capture->next;
196 
197 		kfree(capture);
198 		capture = next;
199 	}
200 }
201 
202 static void __i915_request_fill(struct i915_request *rq, u8 val)
203 {
204 	void *vaddr = rq->ring->vaddr;
205 	u32 head;
206 
207 	head = rq->infix;
208 	if (rq->postfix < head) {
209 		memset(vaddr + head, val, rq->ring->size - head);
210 		head = 0;
211 	}
212 	memset(vaddr + head, val, rq->postfix - head);
213 }
214 
215 /**
216  * i915_request_active_engine
217  * @rq: request to inspect
218  * @active: pointer in which to return the active engine
219  *
220  * Fills the currently active engine to the @active pointer if the request
221  * is active and still not completed.
222  *
223  * Returns true if request was active or false otherwise.
224  */
225 bool
226 i915_request_active_engine(struct i915_request *rq,
227 			   struct intel_engine_cs **active)
228 {
229 	struct intel_engine_cs *engine, *locked;
230 	bool ret = false;
231 
232 	/*
233 	 * Serialise with __i915_request_submit() so that it sees
234 	 * is-banned?, or we know the request is already inflight.
235 	 *
236 	 * Note that rq->engine is unstable, and so we double
237 	 * check that we have acquired the lock on the final engine.
238 	 */
239 	locked = READ_ONCE(rq->engine);
240 	spin_lock_irq(&locked->sched_engine->lock);
241 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
242 		spin_unlock(&locked->sched_engine->lock);
243 		locked = engine;
244 		spin_lock(&locked->sched_engine->lock);
245 	}
246 
247 	if (i915_request_is_active(rq)) {
248 		if (!__i915_request_is_complete(rq))
249 			*active = locked;
250 		ret = true;
251 	}
252 
253 	spin_unlock_irq(&locked->sched_engine->lock);
254 
255 	return ret;
256 }
257 
258 static void __rq_init_watchdog(struct i915_request *rq)
259 {
260 	rq->watchdog.timer.function = NULL;
261 }
262 
263 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
264 {
265 	struct i915_request *rq =
266 		container_of(hrtimer, struct i915_request, watchdog.timer);
267 	struct intel_gt *gt = rq->engine->gt;
268 
269 	if (!i915_request_completed(rq)) {
270 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
271 			schedule_work(&gt->watchdog.work);
272 	} else {
273 		i915_request_put(rq);
274 	}
275 
276 	return HRTIMER_NORESTART;
277 }
278 
279 static void __rq_arm_watchdog(struct i915_request *rq)
280 {
281 	struct i915_request_watchdog *wdg = &rq->watchdog;
282 	struct intel_context *ce = rq->context;
283 
284 	if (!ce->watchdog.timeout_us)
285 		return;
286 
287 	i915_request_get(rq);
288 
289 	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
290 	wdg->timer.function = __rq_watchdog_expired;
291 	hrtimer_start_range_ns(&wdg->timer,
292 			       ns_to_ktime(ce->watchdog.timeout_us *
293 					   NSEC_PER_USEC),
294 			       NSEC_PER_MSEC,
295 			       HRTIMER_MODE_REL);
296 }
297 
298 static void __rq_cancel_watchdog(struct i915_request *rq)
299 {
300 	struct i915_request_watchdog *wdg = &rq->watchdog;
301 
302 	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
303 		i915_request_put(rq);
304 }
305 
306 bool i915_request_retire(struct i915_request *rq)
307 {
308 	if (!__i915_request_is_complete(rq))
309 		return false;
310 
311 	RQ_TRACE(rq, "\n");
312 
313 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
314 	trace_i915_request_retire(rq);
315 	i915_request_mark_complete(rq);
316 
317 	__rq_cancel_watchdog(rq);
318 
319 	/*
320 	 * We know the GPU must have read the request to have
321 	 * sent us the seqno + interrupt, so use the position
322 	 * of tail of the request to update the last known position
323 	 * of the GPU head.
324 	 *
325 	 * Note this requires that we are always called in request
326 	 * completion order.
327 	 */
328 	GEM_BUG_ON(!list_is_first(&rq->link,
329 				  &i915_request_timeline(rq)->requests));
330 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
331 		/* Poison before we release our space in the ring */
332 		__i915_request_fill(rq, POISON_FREE);
333 	rq->ring->head = rq->postfix;
334 
335 	if (!i915_request_signaled(rq)) {
336 		spin_lock_irq(&rq->lock);
337 		dma_fence_signal_locked(&rq->fence);
338 		spin_unlock_irq(&rq->lock);
339 	}
340 
341 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
342 		atomic_dec(&rq->engine->gt->rps.num_waiters);
343 
344 	/*
345 	 * We only loosely track inflight requests across preemption,
346 	 * and so we may find ourselves attempting to retire a _completed_
347 	 * request that we have removed from the HW and put back on a run
348 	 * queue.
349 	 *
350 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
351 	 * after removing the breadcrumb and signaling it, so that we do not
352 	 * inadvertently attach the breadcrumb to a completed request.
353 	 */
354 	rq->engine->remove_active_request(rq);
355 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
356 
357 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
358 
359 	intel_context_exit(rq->context);
360 	intel_context_unpin(rq->context);
361 
362 	free_capture_list(rq);
363 	i915_sched_node_fini(&rq->sched);
364 	i915_request_put(rq);
365 
366 	return true;
367 }
368 
369 void i915_request_retire_upto(struct i915_request *rq)
370 {
371 	struct intel_timeline * const tl = i915_request_timeline(rq);
372 	struct i915_request *tmp;
373 
374 	RQ_TRACE(rq, "\n");
375 	GEM_BUG_ON(!__i915_request_is_complete(rq));
376 
377 	do {
378 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
379 		GEM_BUG_ON(!i915_request_completed(tmp));
380 	} while (i915_request_retire(tmp) && tmp != rq);
381 }
382 
383 static struct i915_request * const *
384 __engine_active(struct intel_engine_cs *engine)
385 {
386 	return READ_ONCE(engine->execlists.active);
387 }
388 
389 static bool __request_in_flight(const struct i915_request *signal)
390 {
391 	struct i915_request * const *port, *rq;
392 	bool inflight = false;
393 
394 	if (!i915_request_is_ready(signal))
395 		return false;
396 
397 	/*
398 	 * Even if we have unwound the request, it may still be on
399 	 * the GPU (preempt-to-busy). If that request is inside an
400 	 * unpreemptible critical section, it will not be removed. Some
401 	 * GPU functions may even be stuck waiting for the paired request
402 	 * (__await_execution) to be submitted and cannot be preempted
403 	 * until the bond is executing.
404 	 *
405 	 * As we know that there are always preemption points between
406 	 * requests, we know that only the currently executing request
407 	 * may be still active even though we have cleared the flag.
408 	 * However, we can't rely on our tracking of ELSP[0] to know
409 	 * which request is currently active and so maybe stuck, as
410 	 * the tracking maybe an event behind. Instead assume that
411 	 * if the context is still inflight, then it is still active
412 	 * even if the active flag has been cleared.
413 	 *
414 	 * To further complicate matters, if there a pending promotion, the HW
415 	 * may either perform a context switch to the second inflight execlists,
416 	 * or it may switch to the pending set of execlists. In the case of the
417 	 * latter, it may send the ACK and we process the event copying the
418 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
419 	 * this implies the HW is arbitrating and not struck in *active, we do
420 	 * not worry about complete accuracy, but we do require no read/write
421 	 * tearing of the pointer [the read of the pointer must be valid, even
422 	 * as the array is being overwritten, for which we require the writes
423 	 * to avoid tearing.]
424 	 *
425 	 * Note that the read of *execlists->active may race with the promotion
426 	 * of execlists->pending[] to execlists->inflight[], overwritting
427 	 * the value at *execlists->active. This is fine. The promotion implies
428 	 * that we received an ACK from the HW, and so the context is not
429 	 * stuck -- if we do not see ourselves in *active, the inflight status
430 	 * is valid. If instead we see ourselves being copied into *active,
431 	 * we are inflight and may signal the callback.
432 	 */
433 	if (!intel_context_inflight(signal->context))
434 		return false;
435 
436 	rcu_read_lock();
437 	for (port = __engine_active(signal->engine);
438 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
439 	     port++) {
440 		if (rq->context == signal->context) {
441 			inflight = i915_seqno_passed(rq->fence.seqno,
442 						     signal->fence.seqno);
443 			break;
444 		}
445 	}
446 	rcu_read_unlock();
447 
448 	return inflight;
449 }
450 
451 static int
452 __await_execution(struct i915_request *rq,
453 		  struct i915_request *signal,
454 		  gfp_t gfp)
455 {
456 	struct execute_cb *cb;
457 
458 	if (i915_request_is_active(signal))
459 		return 0;
460 
461 	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
462 	if (!cb)
463 		return -ENOMEM;
464 
465 	cb->fence = &rq->submit;
466 	i915_sw_fence_await(cb->fence);
467 	init_irq_work(&cb->work, irq_execute_cb);
468 
469 	/*
470 	 * Register the callback first, then see if the signaler is already
471 	 * active. This ensures that if we race with the
472 	 * __notify_execute_cb from i915_request_submit() and we are not
473 	 * included in that list, we get a second bite of the cherry and
474 	 * execute it ourselves. After this point, a future
475 	 * i915_request_submit() will notify us.
476 	 *
477 	 * In i915_request_retire() we set the ACTIVE bit on a completed
478 	 * request (then flush the execute_cb). So by registering the
479 	 * callback first, then checking the ACTIVE bit, we serialise with
480 	 * the completed/retired request.
481 	 */
482 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
483 		if (i915_request_is_active(signal) ||
484 		    __request_in_flight(signal))
485 			i915_request_notify_execute_cb_imm(signal);
486 	}
487 
488 	return 0;
489 }
490 
491 static bool fatal_error(int error)
492 {
493 	switch (error) {
494 	case 0: /* not an error! */
495 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
496 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
497 		return false;
498 	default:
499 		return true;
500 	}
501 }
502 
503 void __i915_request_skip(struct i915_request *rq)
504 {
505 	GEM_BUG_ON(!fatal_error(rq->fence.error));
506 
507 	if (rq->infix == rq->postfix)
508 		return;
509 
510 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
511 
512 	/*
513 	 * As this request likely depends on state from the lost
514 	 * context, clear out all the user operations leaving the
515 	 * breadcrumb at the end (so we get the fence notifications).
516 	 */
517 	__i915_request_fill(rq, 0);
518 	rq->infix = rq->postfix;
519 }
520 
521 bool i915_request_set_error_once(struct i915_request *rq, int error)
522 {
523 	int old;
524 
525 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
526 
527 	if (i915_request_signaled(rq))
528 		return false;
529 
530 	old = READ_ONCE(rq->fence.error);
531 	do {
532 		if (fatal_error(old))
533 			return false;
534 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
535 
536 	return true;
537 }
538 
539 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
540 {
541 	if (__i915_request_is_complete(rq))
542 		return NULL;
543 
544 	GEM_BUG_ON(i915_request_signaled(rq));
545 
546 	/* As soon as the request is completed, it may be retired */
547 	rq = i915_request_get(rq);
548 
549 	i915_request_set_error_once(rq, -EIO);
550 	i915_request_mark_complete(rq);
551 
552 	return rq;
553 }
554 
555 bool __i915_request_submit(struct i915_request *request)
556 {
557 	struct intel_engine_cs *engine = request->engine;
558 	bool result = false;
559 
560 	RQ_TRACE(request, "\n");
561 
562 	GEM_BUG_ON(!irqs_disabled());
563 	lockdep_assert_held(&engine->sched_engine->lock);
564 
565 	/*
566 	 * With the advent of preempt-to-busy, we frequently encounter
567 	 * requests that we have unsubmitted from HW, but left running
568 	 * until the next ack and so have completed in the meantime. On
569 	 * resubmission of that completed request, we can skip
570 	 * updating the payload, and execlists can even skip submitting
571 	 * the request.
572 	 *
573 	 * We must remove the request from the caller's priority queue,
574 	 * and the caller must only call us when the request is in their
575 	 * priority queue, under the sched_engine->lock. This ensures that the
576 	 * request has *not* yet been retired and we can safely move
577 	 * the request into the engine->active.list where it will be
578 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
579 	 * request, this would be a horrible use-after-free.)
580 	 */
581 	if (__i915_request_is_complete(request)) {
582 		list_del_init(&request->sched.link);
583 		goto active;
584 	}
585 
586 	if (unlikely(intel_context_is_banned(request->context)))
587 		i915_request_set_error_once(request, -EIO);
588 
589 	if (unlikely(fatal_error(request->fence.error)))
590 		__i915_request_skip(request);
591 
592 	/*
593 	 * Are we using semaphores when the gpu is already saturated?
594 	 *
595 	 * Using semaphores incurs a cost in having the GPU poll a
596 	 * memory location, busywaiting for it to change. The continual
597 	 * memory reads can have a noticeable impact on the rest of the
598 	 * system with the extra bus traffic, stalling the cpu as it too
599 	 * tries to access memory across the bus (perf stat -e bus-cycles).
600 	 *
601 	 * If we installed a semaphore on this request and we only submit
602 	 * the request after the signaler completed, that indicates the
603 	 * system is overloaded and using semaphores at this time only
604 	 * increases the amount of work we are doing. If so, we disable
605 	 * further use of semaphores until we are idle again, whence we
606 	 * optimistically try again.
607 	 */
608 	if (request->sched.semaphores &&
609 	    i915_sw_fence_signaled(&request->semaphore))
610 		engine->saturated |= request->sched.semaphores;
611 
612 	engine->emit_fini_breadcrumb(request,
613 				     request->ring->vaddr + request->postfix);
614 
615 	trace_i915_request_execute(request);
616 	if (engine->bump_serial)
617 		engine->bump_serial(engine);
618 	else
619 		engine->serial++;
620 
621 	result = true;
622 
623 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
624 	engine->add_active_request(request);
625 active:
626 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
627 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
628 
629 	/*
630 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
631 	 *
632 	 * In the future, perhaps when we have an active time-slicing scheduler,
633 	 * it will be interesting to unsubmit parallel execution and remove
634 	 * busywaits from the GPU until their master is restarted. This is
635 	 * quite hairy, we have to carefully rollback the fence and do a
636 	 * preempt-to-idle cycle on the target engine, all the while the
637 	 * master execute_cb may refire.
638 	 */
639 	__notify_execute_cb_irq(request);
640 
641 	/* We may be recursing from the signal callback of another i915 fence */
642 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643 		i915_request_enable_breadcrumb(request);
644 
645 	return result;
646 }
647 
648 void i915_request_submit(struct i915_request *request)
649 {
650 	struct intel_engine_cs *engine = request->engine;
651 	unsigned long flags;
652 
653 	/* Will be called from irq-context when using foreign fences. */
654 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
655 
656 	__i915_request_submit(request);
657 
658 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
659 }
660 
661 void __i915_request_unsubmit(struct i915_request *request)
662 {
663 	struct intel_engine_cs *engine = request->engine;
664 
665 	/*
666 	 * Only unwind in reverse order, required so that the per-context list
667 	 * is kept in seqno/ring order.
668 	 */
669 	RQ_TRACE(request, "\n");
670 
671 	GEM_BUG_ON(!irqs_disabled());
672 	lockdep_assert_held(&engine->sched_engine->lock);
673 
674 	/*
675 	 * Before we remove this breadcrumb from the signal list, we have
676 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
677 	 * attach itself. We first mark the request as no longer active and
678 	 * make sure that is visible to other cores, and then remove the
679 	 * breadcrumb if attached.
680 	 */
681 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
682 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
683 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
684 		i915_request_cancel_breadcrumb(request);
685 
686 	/* We've already spun, don't charge on resubmitting. */
687 	if (request->sched.semaphores && __i915_request_has_started(request))
688 		request->sched.semaphores = 0;
689 
690 	/*
691 	 * We don't need to wake_up any waiters on request->execute, they
692 	 * will get woken by any other event or us re-adding this request
693 	 * to the engine timeline (__i915_request_submit()). The waiters
694 	 * should be quite adapt at finding that the request now has a new
695 	 * global_seqno to the one they went to sleep on.
696 	 */
697 }
698 
699 void i915_request_unsubmit(struct i915_request *request)
700 {
701 	struct intel_engine_cs *engine = request->engine;
702 	unsigned long flags;
703 
704 	/* Will be called from irq-context when using foreign fences. */
705 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
706 
707 	__i915_request_unsubmit(request);
708 
709 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
710 }
711 
712 void i915_request_cancel(struct i915_request *rq, int error)
713 {
714 	if (!i915_request_set_error_once(rq, error))
715 		return;
716 
717 	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
718 
719 	intel_context_cancel_request(rq->context, rq);
720 }
721 
722 static int __i915_sw_fence_call
723 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
724 {
725 	struct i915_request *request =
726 		container_of(fence, typeof(*request), submit);
727 
728 	switch (state) {
729 	case FENCE_COMPLETE:
730 		trace_i915_request_submit(request);
731 
732 		if (unlikely(fence->error))
733 			i915_request_set_error_once(request, fence->error);
734 		else
735 			__rq_arm_watchdog(request);
736 
737 		/*
738 		 * We need to serialize use of the submit_request() callback
739 		 * with its hotplugging performed during an emergency
740 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
741 		 * critical section in order to force i915_gem_set_wedged() to
742 		 * wait until the submit_request() is completed before
743 		 * proceeding.
744 		 */
745 		rcu_read_lock();
746 		request->engine->submit_request(request);
747 		rcu_read_unlock();
748 		break;
749 
750 	case FENCE_FREE:
751 		i915_request_put(request);
752 		break;
753 	}
754 
755 	return NOTIFY_DONE;
756 }
757 
758 static int __i915_sw_fence_call
759 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
760 {
761 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
762 
763 	switch (state) {
764 	case FENCE_COMPLETE:
765 		break;
766 
767 	case FENCE_FREE:
768 		i915_request_put(rq);
769 		break;
770 	}
771 
772 	return NOTIFY_DONE;
773 }
774 
775 static void retire_requests(struct intel_timeline *tl)
776 {
777 	struct i915_request *rq, *rn;
778 
779 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
780 		if (!i915_request_retire(rq))
781 			break;
782 }
783 
784 static noinline struct i915_request *
785 request_alloc_slow(struct intel_timeline *tl,
786 		   struct i915_request **rsvd,
787 		   gfp_t gfp)
788 {
789 	struct i915_request *rq;
790 
791 	/* If we cannot wait, dip into our reserves */
792 	if (!gfpflags_allow_blocking(gfp)) {
793 		rq = xchg(rsvd, NULL);
794 		if (!rq) /* Use the normal failure path for one final WARN */
795 			goto out;
796 
797 		return rq;
798 	}
799 
800 	if (list_empty(&tl->requests))
801 		goto out;
802 
803 	/* Move our oldest request to the slab-cache (if not in use!) */
804 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
805 	i915_request_retire(rq);
806 
807 	rq = kmem_cache_alloc(slab_requests,
808 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
809 	if (rq)
810 		return rq;
811 
812 	/* Ratelimit ourselves to prevent oom from malicious clients */
813 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
814 	cond_synchronize_rcu(rq->rcustate);
815 
816 	/* Retire our old requests in the hope that we free some */
817 	retire_requests(tl);
818 
819 out:
820 	return kmem_cache_alloc(slab_requests, gfp);
821 }
822 
823 static void __i915_request_ctor(void *arg)
824 {
825 	struct i915_request *rq = arg;
826 
827 	spin_lock_init(&rq->lock);
828 	i915_sched_node_init(&rq->sched);
829 	i915_sw_fence_init(&rq->submit, submit_notify);
830 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
831 
832 	rq->capture_list = NULL;
833 
834 	init_llist_head(&rq->execute_cb);
835 }
836 
837 struct i915_request *
838 __i915_request_create(struct intel_context *ce, gfp_t gfp)
839 {
840 	struct intel_timeline *tl = ce->timeline;
841 	struct i915_request *rq;
842 	u32 seqno;
843 	int ret;
844 
845 	might_alloc(gfp);
846 
847 	/* Check that the caller provided an already pinned context */
848 	__intel_context_pin(ce);
849 
850 	/*
851 	 * Beware: Dragons be flying overhead.
852 	 *
853 	 * We use RCU to look up requests in flight. The lookups may
854 	 * race with the request being allocated from the slab freelist.
855 	 * That is the request we are writing to here, may be in the process
856 	 * of being read by __i915_active_request_get_rcu(). As such,
857 	 * we have to be very careful when overwriting the contents. During
858 	 * the RCU lookup, we change chase the request->engine pointer,
859 	 * read the request->global_seqno and increment the reference count.
860 	 *
861 	 * The reference count is incremented atomically. If it is zero,
862 	 * the lookup knows the request is unallocated and complete. Otherwise,
863 	 * it is either still in use, or has been reallocated and reset
864 	 * with dma_fence_init(). This increment is safe for release as we
865 	 * check that the request we have a reference to and matches the active
866 	 * request.
867 	 *
868 	 * Before we increment the refcount, we chase the request->engine
869 	 * pointer. We must not call kmem_cache_zalloc() or else we set
870 	 * that pointer to NULL and cause a crash during the lookup. If
871 	 * we see the request is completed (based on the value of the
872 	 * old engine and seqno), the lookup is complete and reports NULL.
873 	 * If we decide the request is not completed (new engine or seqno),
874 	 * then we grab a reference and double check that it is still the
875 	 * active request - which it won't be and restart the lookup.
876 	 *
877 	 * Do not use kmem_cache_zalloc() here!
878 	 */
879 	rq = kmem_cache_alloc(slab_requests,
880 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
881 	if (unlikely(!rq)) {
882 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
883 		if (!rq) {
884 			ret = -ENOMEM;
885 			goto err_unreserve;
886 		}
887 	}
888 
889 	/*
890 	 * Hold a reference to the intel_context over life of an i915_request.
891 	 * Without this an i915_request can exist after the context has been
892 	 * destroyed (e.g. request retired, context closed, but user space holds
893 	 * a reference to the request from an out fence). In the case of GuC
894 	 * submission + virtual engine, the engine that the request references
895 	 * is also destroyed which can trigger bad pointer dref in fence ops
896 	 * (e.g. i915_fence_get_driver_name). We could likely change these
897 	 * functions to avoid touching the engine but let's just be safe and
898 	 * hold the intel_context reference. In execlist mode the request always
899 	 * eventually points to a physical engine so this isn't an issue.
900 	 */
901 	rq->context = intel_context_get(ce);
902 	rq->engine = ce->engine;
903 	rq->ring = ce->ring;
904 	rq->execution_mask = ce->engine->mask;
905 
906 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
907 	if (ret)
908 		goto err_free;
909 
910 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
911 		       tl->fence_context, seqno);
912 
913 	RCU_INIT_POINTER(rq->timeline, tl);
914 	rq->hwsp_seqno = tl->hwsp_seqno;
915 	GEM_BUG_ON(__i915_request_is_complete(rq));
916 
917 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
918 
919 	rq->guc_prio = GUC_PRIO_INIT;
920 
921 	/* We bump the ref for the fence chain */
922 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
923 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
924 
925 	i915_sched_node_reinit(&rq->sched);
926 
927 	/* No zalloc, everything must be cleared after use */
928 	rq->batch = NULL;
929 	__rq_init_watchdog(rq);
930 	GEM_BUG_ON(rq->capture_list);
931 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
932 
933 	/*
934 	 * Reserve space in the ring buffer for all the commands required to
935 	 * eventually emit this request. This is to guarantee that the
936 	 * i915_request_add() call can't fail. Note that the reserve may need
937 	 * to be redone if the request is not actually submitted straight
938 	 * away, e.g. because a GPU scheduler has deferred it.
939 	 *
940 	 * Note that due to how we add reserved_space to intel_ring_begin()
941 	 * we need to double our request to ensure that if we need to wrap
942 	 * around inside i915_request_add() there is sufficient space at
943 	 * the beginning of the ring as well.
944 	 */
945 	rq->reserved_space =
946 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
947 
948 	/*
949 	 * Record the position of the start of the request so that
950 	 * should we detect the updated seqno part-way through the
951 	 * GPU processing the request, we never over-estimate the
952 	 * position of the head.
953 	 */
954 	rq->head = rq->ring->emit;
955 
956 	ret = rq->engine->request_alloc(rq);
957 	if (ret)
958 		goto err_unwind;
959 
960 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
961 
962 	intel_context_mark_active(ce);
963 	list_add_tail_rcu(&rq->link, &tl->requests);
964 
965 	return rq;
966 
967 err_unwind:
968 	ce->ring->emit = rq->head;
969 
970 	/* Make sure we didn't add ourselves to external state before freeing */
971 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
972 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
973 
974 err_free:
975 	intel_context_put(ce);
976 	kmem_cache_free(slab_requests, rq);
977 err_unreserve:
978 	intel_context_unpin(ce);
979 	return ERR_PTR(ret);
980 }
981 
982 struct i915_request *
983 i915_request_create(struct intel_context *ce)
984 {
985 	struct i915_request *rq;
986 	struct intel_timeline *tl;
987 
988 	tl = intel_context_timeline_lock(ce);
989 	if (IS_ERR(tl))
990 		return ERR_CAST(tl);
991 
992 	/* Move our oldest request to the slab-cache (if not in use!) */
993 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
994 	if (!list_is_last(&rq->link, &tl->requests))
995 		i915_request_retire(rq);
996 
997 	intel_context_enter(ce);
998 	rq = __i915_request_create(ce, GFP_KERNEL);
999 	intel_context_exit(ce); /* active reference transferred to request */
1000 	if (IS_ERR(rq))
1001 		goto err_unlock;
1002 
1003 	/* Check that we do not interrupt ourselves with a new request */
1004 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1005 
1006 	return rq;
1007 
1008 err_unlock:
1009 	intel_context_timeline_unlock(tl);
1010 	return rq;
1011 }
1012 
1013 static int
1014 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1015 {
1016 	struct dma_fence *fence;
1017 	int err;
1018 
1019 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1020 		return 0;
1021 
1022 	if (i915_request_started(signal))
1023 		return 0;
1024 
1025 	/*
1026 	 * The caller holds a reference on @signal, but we do not serialise
1027 	 * against it being retired and removed from the lists.
1028 	 *
1029 	 * We do not hold a reference to the request before @signal, and
1030 	 * so must be very careful to ensure that it is not _recycled_ as
1031 	 * we follow the link backwards.
1032 	 */
1033 	fence = NULL;
1034 	rcu_read_lock();
1035 	do {
1036 		struct list_head *pos = READ_ONCE(signal->link.prev);
1037 		struct i915_request *prev;
1038 
1039 		/* Confirm signal has not been retired, the link is valid */
1040 		if (unlikely(__i915_request_has_started(signal)))
1041 			break;
1042 
1043 		/* Is signal the earliest request on its timeline? */
1044 		if (pos == &rcu_dereference(signal->timeline)->requests)
1045 			break;
1046 
1047 		/*
1048 		 * Peek at the request before us in the timeline. That
1049 		 * request will only be valid before it is retired, so
1050 		 * after acquiring a reference to it, confirm that it is
1051 		 * still part of the signaler's timeline.
1052 		 */
1053 		prev = list_entry(pos, typeof(*prev), link);
1054 		if (!i915_request_get_rcu(prev))
1055 			break;
1056 
1057 		/* After the strong barrier, confirm prev is still attached */
1058 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1059 			i915_request_put(prev);
1060 			break;
1061 		}
1062 
1063 		fence = &prev->fence;
1064 	} while (0);
1065 	rcu_read_unlock();
1066 	if (!fence)
1067 		return 0;
1068 
1069 	err = 0;
1070 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1071 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1072 						    fence, 0,
1073 						    I915_FENCE_GFP);
1074 	dma_fence_put(fence);
1075 
1076 	return err;
1077 }
1078 
1079 static intel_engine_mask_t
1080 already_busywaiting(struct i915_request *rq)
1081 {
1082 	/*
1083 	 * Polling a semaphore causes bus traffic, delaying other users of
1084 	 * both the GPU and CPU. We want to limit the impact on others,
1085 	 * while taking advantage of early submission to reduce GPU
1086 	 * latency. Therefore we restrict ourselves to not using more
1087 	 * than one semaphore from each source, and not using a semaphore
1088 	 * if we have detected the engine is saturated (i.e. would not be
1089 	 * submitted early and cause bus traffic reading an already passed
1090 	 * semaphore).
1091 	 *
1092 	 * See the are-we-too-late? check in __i915_request_submit().
1093 	 */
1094 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1095 }
1096 
1097 static int
1098 __emit_semaphore_wait(struct i915_request *to,
1099 		      struct i915_request *from,
1100 		      u32 seqno)
1101 {
1102 	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1103 	u32 hwsp_offset;
1104 	int len, err;
1105 	u32 *cs;
1106 
1107 	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1108 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1109 
1110 	/* We need to pin the signaler's HWSP until we are finished reading. */
1111 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1112 	if (err)
1113 		return err;
1114 
1115 	len = 4;
1116 	if (has_token)
1117 		len += 2;
1118 
1119 	cs = intel_ring_begin(to, len);
1120 	if (IS_ERR(cs))
1121 		return PTR_ERR(cs);
1122 
1123 	/*
1124 	 * Using greater-than-or-equal here means we have to worry
1125 	 * about seqno wraparound. To side step that issue, we swap
1126 	 * the timeline HWSP upon wrapping, so that everyone listening
1127 	 * for the old (pre-wrap) values do not see the much smaller
1128 	 * (post-wrap) values than they were expecting (and so wait
1129 	 * forever).
1130 	 */
1131 	*cs++ = (MI_SEMAPHORE_WAIT |
1132 		 MI_SEMAPHORE_GLOBAL_GTT |
1133 		 MI_SEMAPHORE_POLL |
1134 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1135 		has_token;
1136 	*cs++ = seqno;
1137 	*cs++ = hwsp_offset;
1138 	*cs++ = 0;
1139 	if (has_token) {
1140 		*cs++ = 0;
1141 		*cs++ = MI_NOOP;
1142 	}
1143 
1144 	intel_ring_advance(to, cs);
1145 	return 0;
1146 }
1147 
1148 static bool
1149 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1150 {
1151 	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1152 }
1153 
1154 static int
1155 emit_semaphore_wait(struct i915_request *to,
1156 		    struct i915_request *from,
1157 		    gfp_t gfp)
1158 {
1159 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1160 	struct i915_sw_fence *wait = &to->submit;
1161 
1162 	if (!can_use_semaphore_wait(to, from))
1163 		goto await_fence;
1164 
1165 	if (!intel_context_use_semaphores(to->context))
1166 		goto await_fence;
1167 
1168 	if (i915_request_has_initial_breadcrumb(to))
1169 		goto await_fence;
1170 
1171 	/*
1172 	 * If this or its dependents are waiting on an external fence
1173 	 * that may fail catastrophically, then we want to avoid using
1174 	 * sempahores as they bypass the fence signaling metadata, and we
1175 	 * lose the fence->error propagation.
1176 	 */
1177 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1178 		goto await_fence;
1179 
1180 	/* Just emit the first semaphore we see as request space is limited. */
1181 	if (already_busywaiting(to) & mask)
1182 		goto await_fence;
1183 
1184 	if (i915_request_await_start(to, from) < 0)
1185 		goto await_fence;
1186 
1187 	/* Only submit our spinner after the signaler is running! */
1188 	if (__await_execution(to, from, gfp))
1189 		goto await_fence;
1190 
1191 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1192 		goto await_fence;
1193 
1194 	to->sched.semaphores |= mask;
1195 	wait = &to->semaphore;
1196 
1197 await_fence:
1198 	return i915_sw_fence_await_dma_fence(wait,
1199 					     &from->fence, 0,
1200 					     I915_FENCE_GFP);
1201 }
1202 
1203 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1204 					  struct dma_fence *fence)
1205 {
1206 	return __intel_timeline_sync_is_later(tl,
1207 					      fence->context,
1208 					      fence->seqno - 1);
1209 }
1210 
1211 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1212 					 const struct dma_fence *fence)
1213 {
1214 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1215 }
1216 
1217 static int
1218 __i915_request_await_execution(struct i915_request *to,
1219 			       struct i915_request *from)
1220 {
1221 	int err;
1222 
1223 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1224 
1225 	/* Submit both requests at the same time */
1226 	err = __await_execution(to, from, I915_FENCE_GFP);
1227 	if (err)
1228 		return err;
1229 
1230 	/* Squash repeated depenendices to the same timelines */
1231 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1232 					  &from->fence))
1233 		return 0;
1234 
1235 	/*
1236 	 * Wait until the start of this request.
1237 	 *
1238 	 * The execution cb fires when we submit the request to HW. But in
1239 	 * many cases this may be long before the request itself is ready to
1240 	 * run (consider that we submit 2 requests for the same context, where
1241 	 * the request of interest is behind an indefinite spinner). So we hook
1242 	 * up to both to reduce our queues and keep the execution lag minimised
1243 	 * in the worst case, though we hope that the await_start is elided.
1244 	 */
1245 	err = i915_request_await_start(to, from);
1246 	if (err < 0)
1247 		return err;
1248 
1249 	/*
1250 	 * Ensure both start together [after all semaphores in signal]
1251 	 *
1252 	 * Now that we are queued to the HW at roughly the same time (thanks
1253 	 * to the execute cb) and are ready to run at roughly the same time
1254 	 * (thanks to the await start), our signaler may still be indefinitely
1255 	 * delayed by waiting on a semaphore from a remote engine. If our
1256 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1257 	 * want to start our payload until our signaler also starts theirs.
1258 	 * So we wait.
1259 	 *
1260 	 * However, there is also a second condition for which we need to wait
1261 	 * for the precise start of the signaler. Consider that the signaler
1262 	 * was submitted in a chain of requests following another context
1263 	 * (with just an ordinary intra-engine fence dependency between the
1264 	 * two). In this case the signaler is queued to HW, but not for
1265 	 * immediate execution, and so we must wait until it reaches the
1266 	 * active slot.
1267 	 */
1268 	if (can_use_semaphore_wait(to, from) &&
1269 	    intel_engine_has_semaphores(to->engine) &&
1270 	    !i915_request_has_initial_breadcrumb(to)) {
1271 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1272 		if (err < 0)
1273 			return err;
1274 	}
1275 
1276 	/* Couple the dependency tree for PI on this exposed to->fence */
1277 	if (to->engine->sched_engine->schedule) {
1278 		err = i915_sched_node_add_dependency(&to->sched,
1279 						     &from->sched,
1280 						     I915_DEPENDENCY_WEAK);
1281 		if (err < 0)
1282 			return err;
1283 	}
1284 
1285 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1286 					     &from->fence);
1287 }
1288 
1289 static void mark_external(struct i915_request *rq)
1290 {
1291 	/*
1292 	 * The downside of using semaphores is that we lose metadata passing
1293 	 * along the signaling chain. This is particularly nasty when we
1294 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1295 	 * fatal errors we want to scrub the request before it is executed,
1296 	 * which means that we cannot preload the request onto HW and have
1297 	 * it wait upon a semaphore.
1298 	 */
1299 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1300 }
1301 
1302 static int
1303 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1304 {
1305 	mark_external(rq);
1306 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1307 					     i915_fence_context_timeout(rq->engine->i915,
1308 									fence->context),
1309 					     I915_FENCE_GFP);
1310 }
1311 
1312 static int
1313 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1314 {
1315 	struct dma_fence *iter;
1316 	int err = 0;
1317 
1318 	if (!to_dma_fence_chain(fence))
1319 		return __i915_request_await_external(rq, fence);
1320 
1321 	dma_fence_chain_for_each(iter, fence) {
1322 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1323 
1324 		if (!dma_fence_is_i915(chain->fence)) {
1325 			err = __i915_request_await_external(rq, iter);
1326 			break;
1327 		}
1328 
1329 		err = i915_request_await_dma_fence(rq, chain->fence);
1330 		if (err < 0)
1331 			break;
1332 	}
1333 
1334 	dma_fence_put(iter);
1335 	return err;
1336 }
1337 
1338 static inline bool is_parallel_rq(struct i915_request *rq)
1339 {
1340 	return intel_context_is_parallel(rq->context);
1341 }
1342 
1343 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1344 {
1345 	return intel_context_to_parent(rq->context);
1346 }
1347 
1348 static bool is_same_parallel_context(struct i915_request *to,
1349 				     struct i915_request *from)
1350 {
1351 	if (is_parallel_rq(to))
1352 		return request_to_parent(to) == request_to_parent(from);
1353 
1354 	return false;
1355 }
1356 
1357 int
1358 i915_request_await_execution(struct i915_request *rq,
1359 			     struct dma_fence *fence)
1360 {
1361 	struct dma_fence **child = &fence;
1362 	unsigned int nchild = 1;
1363 	int ret;
1364 
1365 	if (dma_fence_is_array(fence)) {
1366 		struct dma_fence_array *array = to_dma_fence_array(fence);
1367 
1368 		/* XXX Error for signal-on-any fence arrays */
1369 
1370 		child = array->fences;
1371 		nchild = array->num_fences;
1372 		GEM_BUG_ON(!nchild);
1373 	}
1374 
1375 	do {
1376 		fence = *child++;
1377 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1378 			continue;
1379 
1380 		if (fence->context == rq->fence.context)
1381 			continue;
1382 
1383 		/*
1384 		 * We don't squash repeated fence dependencies here as we
1385 		 * want to run our callback in all cases.
1386 		 */
1387 
1388 		if (dma_fence_is_i915(fence)) {
1389 			if (is_same_parallel_context(rq, to_request(fence)))
1390 				continue;
1391 			ret = __i915_request_await_execution(rq,
1392 							     to_request(fence));
1393 		} else {
1394 			ret = i915_request_await_external(rq, fence);
1395 		}
1396 		if (ret < 0)
1397 			return ret;
1398 	} while (--nchild);
1399 
1400 	return 0;
1401 }
1402 
1403 static int
1404 await_request_submit(struct i915_request *to, struct i915_request *from)
1405 {
1406 	/*
1407 	 * If we are waiting on a virtual engine, then it may be
1408 	 * constrained to execute on a single engine *prior* to submission.
1409 	 * When it is submitted, it will be first submitted to the virtual
1410 	 * engine and then passed to the physical engine. We cannot allow
1411 	 * the waiter to be submitted immediately to the physical engine
1412 	 * as it may then bypass the virtual request.
1413 	 */
1414 	if (to->engine == READ_ONCE(from->engine))
1415 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1416 							&from->submit,
1417 							I915_FENCE_GFP);
1418 	else
1419 		return __i915_request_await_execution(to, from);
1420 }
1421 
1422 static int
1423 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1424 {
1425 	int ret;
1426 
1427 	GEM_BUG_ON(to == from);
1428 	GEM_BUG_ON(to->timeline == from->timeline);
1429 
1430 	if (i915_request_completed(from)) {
1431 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1432 		return 0;
1433 	}
1434 
1435 	if (to->engine->sched_engine->schedule) {
1436 		ret = i915_sched_node_add_dependency(&to->sched,
1437 						     &from->sched,
1438 						     I915_DEPENDENCY_EXTERNAL);
1439 		if (ret < 0)
1440 			return ret;
1441 	}
1442 
1443 	if (!intel_engine_uses_guc(to->engine) &&
1444 	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1445 		ret = await_request_submit(to, from);
1446 	else
1447 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1448 	if (ret < 0)
1449 		return ret;
1450 
1451 	return 0;
1452 }
1453 
1454 int
1455 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1456 {
1457 	struct dma_fence **child = &fence;
1458 	unsigned int nchild = 1;
1459 	int ret;
1460 
1461 	/*
1462 	 * Note that if the fence-array was created in signal-on-any mode,
1463 	 * we should *not* decompose it into its individual fences. However,
1464 	 * we don't currently store which mode the fence-array is operating
1465 	 * in. Fortunately, the only user of signal-on-any is private to
1466 	 * amdgpu and we should not see any incoming fence-array from
1467 	 * sync-file being in signal-on-any mode.
1468 	 */
1469 	if (dma_fence_is_array(fence)) {
1470 		struct dma_fence_array *array = to_dma_fence_array(fence);
1471 
1472 		child = array->fences;
1473 		nchild = array->num_fences;
1474 		GEM_BUG_ON(!nchild);
1475 	}
1476 
1477 	do {
1478 		fence = *child++;
1479 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1480 			continue;
1481 
1482 		/*
1483 		 * Requests on the same timeline are explicitly ordered, along
1484 		 * with their dependencies, by i915_request_add() which ensures
1485 		 * that requests are submitted in-order through each ring.
1486 		 */
1487 		if (fence->context == rq->fence.context)
1488 			continue;
1489 
1490 		/* Squash repeated waits to the same timelines */
1491 		if (fence->context &&
1492 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1493 						 fence))
1494 			continue;
1495 
1496 		if (dma_fence_is_i915(fence)) {
1497 			if (is_same_parallel_context(rq, to_request(fence)))
1498 				continue;
1499 			ret = i915_request_await_request(rq, to_request(fence));
1500 		} else {
1501 			ret = i915_request_await_external(rq, fence);
1502 		}
1503 		if (ret < 0)
1504 			return ret;
1505 
1506 		/* Record the latest fence used against each timeline */
1507 		if (fence->context)
1508 			intel_timeline_sync_set(i915_request_timeline(rq),
1509 						fence);
1510 	} while (--nchild);
1511 
1512 	return 0;
1513 }
1514 
1515 /**
1516  * i915_request_await_object - set this request to (async) wait upon a bo
1517  * @to: request we are wishing to use
1518  * @obj: object which may be in use on another ring.
1519  * @write: whether the wait is on behalf of a writer
1520  *
1521  * This code is meant to abstract object synchronization with the GPU.
1522  * Conceptually we serialise writes between engines inside the GPU.
1523  * We only allow one engine to write into a buffer at any time, but
1524  * multiple readers. To ensure each has a coherent view of memory, we must:
1525  *
1526  * - If there is an outstanding write request to the object, the new
1527  *   request must wait for it to complete (either CPU or in hw, requests
1528  *   on the same ring will be naturally ordered).
1529  *
1530  * - If we are a write request (pending_write_domain is set), the new
1531  *   request must wait for outstanding read requests to complete.
1532  *
1533  * Returns 0 if successful, else propagates up the lower layer error.
1534  */
1535 int
1536 i915_request_await_object(struct i915_request *to,
1537 			  struct drm_i915_gem_object *obj,
1538 			  bool write)
1539 {
1540 	struct dma_resv_iter cursor;
1541 	struct dma_fence *fence;
1542 	int ret = 0;
1543 
1544 	dma_resv_for_each_fence(&cursor, obj->base.resv, write, fence) {
1545 		ret = i915_request_await_dma_fence(to, fence);
1546 		if (ret)
1547 			break;
1548 	}
1549 
1550 	return ret;
1551 }
1552 
1553 static struct i915_request *
1554 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1555 					struct intel_timeline *timeline)
1556 {
1557 	struct i915_request *prev;
1558 
1559 	GEM_BUG_ON(!is_parallel_rq(rq));
1560 
1561 	prev = request_to_parent(rq)->parallel.last_rq;
1562 	if (prev) {
1563 		if (!__i915_request_is_complete(prev)) {
1564 			i915_sw_fence_await_sw_fence(&rq->submit,
1565 						     &prev->submit,
1566 						     &rq->submitq);
1567 
1568 			if (rq->engine->sched_engine->schedule)
1569 				__i915_sched_node_add_dependency(&rq->sched,
1570 								 &prev->sched,
1571 								 &rq->dep,
1572 								 0);
1573 		}
1574 		i915_request_put(prev);
1575 	}
1576 
1577 	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1578 
1579 	return to_request(__i915_active_fence_set(&timeline->last_request,
1580 						  &rq->fence));
1581 }
1582 
1583 static struct i915_request *
1584 __i915_request_ensure_ordering(struct i915_request *rq,
1585 			       struct intel_timeline *timeline)
1586 {
1587 	struct i915_request *prev;
1588 
1589 	GEM_BUG_ON(is_parallel_rq(rq));
1590 
1591 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1592 						  &rq->fence));
1593 
1594 	if (prev && !__i915_request_is_complete(prev)) {
1595 		bool uses_guc = intel_engine_uses_guc(rq->engine);
1596 		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1597 					  rq->engine->mask);
1598 		bool same_context = prev->context == rq->context;
1599 
1600 		/*
1601 		 * The requests are supposed to be kept in order. However,
1602 		 * we need to be wary in case the timeline->last_request
1603 		 * is used as a barrier for external modification to this
1604 		 * context.
1605 		 */
1606 		GEM_BUG_ON(same_context &&
1607 			   i915_seqno_passed(prev->fence.seqno,
1608 					     rq->fence.seqno));
1609 
1610 		if ((same_context && uses_guc) || (!uses_guc && pow2))
1611 			i915_sw_fence_await_sw_fence(&rq->submit,
1612 						     &prev->submit,
1613 						     &rq->submitq);
1614 		else
1615 			__i915_sw_fence_await_dma_fence(&rq->submit,
1616 							&prev->fence,
1617 							&rq->dmaq);
1618 		if (rq->engine->sched_engine->schedule)
1619 			__i915_sched_node_add_dependency(&rq->sched,
1620 							 &prev->sched,
1621 							 &rq->dep,
1622 							 0);
1623 	}
1624 
1625 	return prev;
1626 }
1627 
1628 static struct i915_request *
1629 __i915_request_add_to_timeline(struct i915_request *rq)
1630 {
1631 	struct intel_timeline *timeline = i915_request_timeline(rq);
1632 	struct i915_request *prev;
1633 
1634 	/*
1635 	 * Dependency tracking and request ordering along the timeline
1636 	 * is special cased so that we can eliminate redundant ordering
1637 	 * operations while building the request (we know that the timeline
1638 	 * itself is ordered, and here we guarantee it).
1639 	 *
1640 	 * As we know we will need to emit tracking along the timeline,
1641 	 * we embed the hooks into our request struct -- at the cost of
1642 	 * having to have specialised no-allocation interfaces (which will
1643 	 * be beneficial elsewhere).
1644 	 *
1645 	 * A second benefit to open-coding i915_request_await_request is
1646 	 * that we can apply a slight variant of the rules specialised
1647 	 * for timelines that jump between engines (such as virtual engines).
1648 	 * If we consider the case of virtual engine, we must emit a dma-fence
1649 	 * to prevent scheduling of the second request until the first is
1650 	 * complete (to maximise our greedy late load balancing) and this
1651 	 * precludes optimising to use semaphores serialisation of a single
1652 	 * timeline across engines.
1653 	 *
1654 	 * We do not order parallel submission requests on the timeline as each
1655 	 * parallel submission context has its own timeline and the ordering
1656 	 * rules for parallel requests are that they must be submitted in the
1657 	 * order received from the execbuf IOCTL. So rather than using the
1658 	 * timeline we store a pointer to last request submitted in the
1659 	 * relationship in the gem context and insert a submission fence
1660 	 * between that request and request passed into this function or
1661 	 * alternatively we use completion fence if gem context has a single
1662 	 * timeline and this is the first submission of an execbuf IOCTL.
1663 	 */
1664 	if (likely(!is_parallel_rq(rq)))
1665 		prev = __i915_request_ensure_ordering(rq, timeline);
1666 	else
1667 		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1668 
1669 	/*
1670 	 * Make sure that no request gazumped us - if it was allocated after
1671 	 * our i915_request_alloc() and called __i915_request_add() before
1672 	 * us, the timeline will hold its seqno which is later than ours.
1673 	 */
1674 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1675 
1676 	return prev;
1677 }
1678 
1679 /*
1680  * NB: This function is not allowed to fail. Doing so would mean the the
1681  * request is not being tracked for completion but the work itself is
1682  * going to happen on the hardware. This would be a Bad Thing(tm).
1683  */
1684 struct i915_request *__i915_request_commit(struct i915_request *rq)
1685 {
1686 	struct intel_engine_cs *engine = rq->engine;
1687 	struct intel_ring *ring = rq->ring;
1688 	u32 *cs;
1689 
1690 	RQ_TRACE(rq, "\n");
1691 
1692 	/*
1693 	 * To ensure that this call will not fail, space for its emissions
1694 	 * should already have been reserved in the ring buffer. Let the ring
1695 	 * know that it is time to use that space up.
1696 	 */
1697 	GEM_BUG_ON(rq->reserved_space > ring->space);
1698 	rq->reserved_space = 0;
1699 	rq->emitted_jiffies = jiffies;
1700 
1701 	/*
1702 	 * Record the position of the start of the breadcrumb so that
1703 	 * should we detect the updated seqno part-way through the
1704 	 * GPU processing the request, we never over-estimate the
1705 	 * position of the ring's HEAD.
1706 	 */
1707 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1708 	GEM_BUG_ON(IS_ERR(cs));
1709 	rq->postfix = intel_ring_offset(rq, cs);
1710 
1711 	return __i915_request_add_to_timeline(rq);
1712 }
1713 
1714 void __i915_request_queue_bh(struct i915_request *rq)
1715 {
1716 	i915_sw_fence_commit(&rq->semaphore);
1717 	i915_sw_fence_commit(&rq->submit);
1718 }
1719 
1720 void __i915_request_queue(struct i915_request *rq,
1721 			  const struct i915_sched_attr *attr)
1722 {
1723 	/*
1724 	 * Let the backend know a new request has arrived that may need
1725 	 * to adjust the existing execution schedule due to a high priority
1726 	 * request - i.e. we may want to preempt the current request in order
1727 	 * to run a high priority dependency chain *before* we can execute this
1728 	 * request.
1729 	 *
1730 	 * This is called before the request is ready to run so that we can
1731 	 * decide whether to preempt the entire chain so that it is ready to
1732 	 * run at the earliest possible convenience.
1733 	 */
1734 	if (attr && rq->engine->sched_engine->schedule)
1735 		rq->engine->sched_engine->schedule(rq, attr);
1736 
1737 	local_bh_disable();
1738 	__i915_request_queue_bh(rq);
1739 	local_bh_enable(); /* kick tasklets */
1740 }
1741 
1742 void i915_request_add(struct i915_request *rq)
1743 {
1744 	struct intel_timeline * const tl = i915_request_timeline(rq);
1745 	struct i915_sched_attr attr = {};
1746 	struct i915_gem_context *ctx;
1747 
1748 	lockdep_assert_held(&tl->mutex);
1749 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1750 
1751 	trace_i915_request_add(rq);
1752 	__i915_request_commit(rq);
1753 
1754 	/* XXX placeholder for selftests */
1755 	rcu_read_lock();
1756 	ctx = rcu_dereference(rq->context->gem_context);
1757 	if (ctx)
1758 		attr = ctx->sched;
1759 	rcu_read_unlock();
1760 
1761 	__i915_request_queue(rq, &attr);
1762 
1763 	mutex_unlock(&tl->mutex);
1764 }
1765 
1766 static unsigned long local_clock_ns(unsigned int *cpu)
1767 {
1768 	unsigned long t;
1769 
1770 	/*
1771 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1772 	 * The result and subsequent calculations are also defined in the same
1773 	 * approximate microseconds units. The principal source of timing
1774 	 * error here is from the simple truncation.
1775 	 *
1776 	 * Note that local_clock() is only defined wrt to the current CPU;
1777 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1778 	 * blocking preemption for the entire busywait, we can detect the CPU
1779 	 * switch and use that as indicator of system load and a reason to
1780 	 * stop busywaiting, see busywait_stop().
1781 	 */
1782 	*cpu = get_cpu();
1783 	t = local_clock();
1784 	put_cpu();
1785 
1786 	return t;
1787 }
1788 
1789 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1790 {
1791 	unsigned int this_cpu;
1792 
1793 	if (time_after(local_clock_ns(&this_cpu), timeout))
1794 		return true;
1795 
1796 	return this_cpu != cpu;
1797 }
1798 
1799 static bool __i915_spin_request(struct i915_request * const rq, int state)
1800 {
1801 	unsigned long timeout_ns;
1802 	unsigned int cpu;
1803 
1804 	/*
1805 	 * Only wait for the request if we know it is likely to complete.
1806 	 *
1807 	 * We don't track the timestamps around requests, nor the average
1808 	 * request length, so we do not have a good indicator that this
1809 	 * request will complete within the timeout. What we do know is the
1810 	 * order in which requests are executed by the context and so we can
1811 	 * tell if the request has been started. If the request is not even
1812 	 * running yet, it is a fair assumption that it will not complete
1813 	 * within our relatively short timeout.
1814 	 */
1815 	if (!i915_request_is_running(rq))
1816 		return false;
1817 
1818 	/*
1819 	 * When waiting for high frequency requests, e.g. during synchronous
1820 	 * rendering split between the CPU and GPU, the finite amount of time
1821 	 * required to set up the irq and wait upon it limits the response
1822 	 * rate. By busywaiting on the request completion for a short while we
1823 	 * can service the high frequency waits as quick as possible. However,
1824 	 * if it is a slow request, we want to sleep as quickly as possible.
1825 	 * The tradeoff between waiting and sleeping is roughly the time it
1826 	 * takes to sleep on a request, on the order of a microsecond.
1827 	 */
1828 
1829 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1830 	timeout_ns += local_clock_ns(&cpu);
1831 	do {
1832 		if (dma_fence_is_signaled(&rq->fence))
1833 			return true;
1834 
1835 		if (signal_pending_state(state, current))
1836 			break;
1837 
1838 		if (busywait_stop(timeout_ns, cpu))
1839 			break;
1840 
1841 		cpu_relax();
1842 	} while (!need_resched());
1843 
1844 	return false;
1845 }
1846 
1847 struct request_wait {
1848 	struct dma_fence_cb cb;
1849 	struct task_struct *tsk;
1850 };
1851 
1852 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1853 {
1854 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1855 
1856 	wake_up_process(fetch_and_zero(&wait->tsk));
1857 }
1858 
1859 /**
1860  * i915_request_wait - wait until execution of request has finished
1861  * @rq: the request to wait upon
1862  * @flags: how to wait
1863  * @timeout: how long to wait in jiffies
1864  *
1865  * i915_request_wait() waits for the request to be completed, for a
1866  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1867  * unbounded wait).
1868  *
1869  * Returns the remaining time (in jiffies) if the request completed, which may
1870  * be zero or -ETIME if the request is unfinished after the timeout expires.
1871  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1872  * pending before the request completes.
1873  */
1874 long i915_request_wait(struct i915_request *rq,
1875 		       unsigned int flags,
1876 		       long timeout)
1877 {
1878 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1879 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1880 	struct request_wait wait;
1881 
1882 	might_sleep();
1883 	GEM_BUG_ON(timeout < 0);
1884 
1885 	if (dma_fence_is_signaled(&rq->fence))
1886 		return timeout;
1887 
1888 	if (!timeout)
1889 		return -ETIME;
1890 
1891 	trace_i915_request_wait_begin(rq, flags);
1892 
1893 	/*
1894 	 * We must never wait on the GPU while holding a lock as we
1895 	 * may need to perform a GPU reset. So while we don't need to
1896 	 * serialise wait/reset with an explicit lock, we do want
1897 	 * lockdep to detect potential dependency cycles.
1898 	 */
1899 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1900 
1901 	/*
1902 	 * Optimistic spin before touching IRQs.
1903 	 *
1904 	 * We may use a rather large value here to offset the penalty of
1905 	 * switching away from the active task. Frequently, the client will
1906 	 * wait upon an old swapbuffer to throttle itself to remain within a
1907 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1908 	 * then it should not be waiting long at all, and a sleep now will incur
1909 	 * extra scheduler latency in producing the next frame. To try to
1910 	 * avoid adding the cost of enabling/disabling the interrupt to the
1911 	 * short wait, we first spin to see if the request would have completed
1912 	 * in the time taken to setup the interrupt.
1913 	 *
1914 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1915 	 * scheduler latency of a context switch, ignoring the secondary
1916 	 * impacts from a context switch such as cache eviction.
1917 	 *
1918 	 * The scheme used for low-latency IO is called "hybrid interrupt
1919 	 * polling". The suggestion there is to sleep until just before you
1920 	 * expect to be woken by the device interrupt and then poll for its
1921 	 * completion. That requires having a good predictor for the request
1922 	 * duration, which we currently lack.
1923 	 */
1924 	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
1925 	    __i915_spin_request(rq, state))
1926 		goto out;
1927 
1928 	/*
1929 	 * This client is about to stall waiting for the GPU. In many cases
1930 	 * this is undesirable and limits the throughput of the system, as
1931 	 * many clients cannot continue processing user input/output whilst
1932 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1933 	 * to the GPU load and thus incurs additional latency for the client.
1934 	 * We can circumvent that by promoting the GPU frequency to maximum
1935 	 * before we sleep. This makes the GPU throttle up much more quickly
1936 	 * (good for benchmarks and user experience, e.g. window animations),
1937 	 * but at a cost of spending more power processing the workload
1938 	 * (bad for battery).
1939 	 */
1940 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1941 		intel_rps_boost(rq);
1942 
1943 	wait.tsk = current;
1944 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1945 		goto out;
1946 
1947 	/*
1948 	 * Flush the submission tasklet, but only if it may help this request.
1949 	 *
1950 	 * We sometimes experience some latency between the HW interrupts and
1951 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1952 	 * be due to lazy CS events), so lets run the tasklet manually if there
1953 	 * is a chance it may submit this request. If the request is not ready
1954 	 * to run, as it is waiting for other fences to be signaled, flushing
1955 	 * the tasklet is busy work without any advantage for this client.
1956 	 *
1957 	 * If the HW is being lazy, this is the last chance before we go to
1958 	 * sleep to catch any pending events. We will check periodically in
1959 	 * the heartbeat to flush the submission tasklets as a last resort
1960 	 * for unhappy HW.
1961 	 */
1962 	if (i915_request_is_ready(rq))
1963 		__intel_engine_flush_submission(rq->engine, false);
1964 
1965 	for (;;) {
1966 		set_current_state(state);
1967 
1968 		if (dma_fence_is_signaled(&rq->fence))
1969 			break;
1970 
1971 		if (signal_pending_state(state, current)) {
1972 			timeout = -ERESTARTSYS;
1973 			break;
1974 		}
1975 
1976 		if (!timeout) {
1977 			timeout = -ETIME;
1978 			break;
1979 		}
1980 
1981 		timeout = io_schedule_timeout(timeout);
1982 	}
1983 	__set_current_state(TASK_RUNNING);
1984 
1985 	if (READ_ONCE(wait.tsk))
1986 		dma_fence_remove_callback(&rq->fence, &wait.cb);
1987 	GEM_BUG_ON(!list_empty(&wait.cb.node));
1988 
1989 out:
1990 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1991 	trace_i915_request_wait_end(rq);
1992 	return timeout;
1993 }
1994 
1995 static int print_sched_attr(const struct i915_sched_attr *attr,
1996 			    char *buf, int x, int len)
1997 {
1998 	if (attr->priority == I915_PRIORITY_INVALID)
1999 		return x;
2000 
2001 	x += snprintf(buf + x, len - x,
2002 		      " prio=%d", attr->priority);
2003 
2004 	return x;
2005 }
2006 
2007 static char queue_status(const struct i915_request *rq)
2008 {
2009 	if (i915_request_is_active(rq))
2010 		return 'E';
2011 
2012 	if (i915_request_is_ready(rq))
2013 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2014 
2015 	return 'U';
2016 }
2017 
2018 static const char *run_status(const struct i915_request *rq)
2019 {
2020 	if (__i915_request_is_complete(rq))
2021 		return "!";
2022 
2023 	if (__i915_request_has_started(rq))
2024 		return "*";
2025 
2026 	if (!i915_sw_fence_signaled(&rq->semaphore))
2027 		return "&";
2028 
2029 	return "";
2030 }
2031 
2032 static const char *fence_status(const struct i915_request *rq)
2033 {
2034 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2035 		return "+";
2036 
2037 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2038 		return "-";
2039 
2040 	return "";
2041 }
2042 
2043 void i915_request_show(struct drm_printer *m,
2044 		       const struct i915_request *rq,
2045 		       const char *prefix,
2046 		       int indent)
2047 {
2048 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2049 	char buf[80] = "";
2050 	int x = 0;
2051 
2052 	/*
2053 	 * The prefix is used to show the queue status, for which we use
2054 	 * the following flags:
2055 	 *
2056 	 *  U [Unready]
2057 	 *    - initial status upon being submitted by the user
2058 	 *
2059 	 *    - the request is not ready for execution as it is waiting
2060 	 *      for external fences
2061 	 *
2062 	 *  R [Ready]
2063 	 *    - all fences the request was waiting on have been signaled,
2064 	 *      and the request is now ready for execution and will be
2065 	 *      in a backend queue
2066 	 *
2067 	 *    - a ready request may still need to wait on semaphores
2068 	 *      [internal fences]
2069 	 *
2070 	 *  V [Ready/virtual]
2071 	 *    - same as ready, but queued over multiple backends
2072 	 *
2073 	 *  E [Executing]
2074 	 *    - the request has been transferred from the backend queue and
2075 	 *      submitted for execution on HW
2076 	 *
2077 	 *    - a completed request may still be regarded as executing, its
2078 	 *      status may not be updated until it is retired and removed
2079 	 *      from the lists
2080 	 */
2081 
2082 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2083 
2084 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2085 		   prefix, indent, "                ",
2086 		   queue_status(rq),
2087 		   rq->fence.context, rq->fence.seqno,
2088 		   run_status(rq),
2089 		   fence_status(rq),
2090 		   buf,
2091 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2092 		   name);
2093 }
2094 
2095 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2096 {
2097 	u32 ring = ENGINE_READ(engine, RING_START);
2098 
2099 	return ring == i915_ggtt_offset(rq->ring->vma);
2100 }
2101 
2102 static bool match_ring(struct i915_request *rq)
2103 {
2104 	struct intel_engine_cs *engine;
2105 	bool found;
2106 	int i;
2107 
2108 	if (!intel_engine_is_virtual(rq->engine))
2109 		return engine_match_ring(rq->engine, rq);
2110 
2111 	found = false;
2112 	i = 0;
2113 	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2114 		found = engine_match_ring(engine, rq);
2115 		if (found)
2116 			break;
2117 	}
2118 
2119 	return found;
2120 }
2121 
2122 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2123 {
2124 	if (i915_request_completed(rq))
2125 		return I915_REQUEST_COMPLETE;
2126 
2127 	if (!i915_request_started(rq))
2128 		return I915_REQUEST_PENDING;
2129 
2130 	if (match_ring(rq))
2131 		return I915_REQUEST_ACTIVE;
2132 
2133 	return I915_REQUEST_QUEUED;
2134 }
2135 
2136 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2137 #include "selftests/mock_request.c"
2138 #include "selftests/i915_request.c"
2139 #endif
2140 
2141 void i915_request_module_exit(void)
2142 {
2143 	kmem_cache_destroy(slab_execute_cbs);
2144 	kmem_cache_destroy(slab_requests);
2145 }
2146 
2147 int __init i915_request_module_init(void)
2148 {
2149 	slab_requests =
2150 		kmem_cache_create("i915_request",
2151 				  sizeof(struct i915_request),
2152 				  __alignof__(struct i915_request),
2153 				  SLAB_HWCACHE_ALIGN |
2154 				  SLAB_RECLAIM_ACCOUNT |
2155 				  SLAB_TYPESAFE_BY_RCU,
2156 				  __i915_request_ctor);
2157 	if (!slab_requests)
2158 		return -ENOMEM;
2159 
2160 	slab_execute_cbs = KMEM_CACHE(execute_cb,
2161 					     SLAB_HWCACHE_ALIGN |
2162 					     SLAB_RECLAIM_ACCOUNT |
2163 					     SLAB_TYPESAFE_BY_RCU);
2164 	if (!slab_execute_cbs)
2165 		goto err_requests;
2166 
2167 	return 0;
2168 
2169 err_requests:
2170 	kmem_cache_destroy(slab_requests);
2171 	return -ENOMEM;
2172 }
2173