1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 #include "gt/intel_ring.h" 35 #include "gt/intel_rps.h" 36 37 #include "i915_active.h" 38 #include "i915_drv.h" 39 #include "i915_globals.h" 40 #include "i915_trace.h" 41 #include "intel_pm.h" 42 43 struct execute_cb { 44 struct list_head link; 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_dependencies; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 static void i915_fence_release(struct dma_fence *fence) 106 { 107 struct i915_request *rq = to_request(fence); 108 109 /* 110 * The request is put onto a RCU freelist (i.e. the address 111 * is immediately reused), mark the fences as being freed now. 112 * Otherwise the debugobjects for the fences are only marked as 113 * freed when the slab cache itself is freed, and so we would get 114 * caught trying to reuse dead objects. 115 */ 116 i915_sw_fence_fini(&rq->submit); 117 i915_sw_fence_fini(&rq->semaphore); 118 119 kmem_cache_free(global.slab_requests, rq); 120 } 121 122 const struct dma_fence_ops i915_fence_ops = { 123 .get_driver_name = i915_fence_get_driver_name, 124 .get_timeline_name = i915_fence_get_timeline_name, 125 .enable_signaling = i915_fence_enable_signaling, 126 .signaled = i915_fence_signaled, 127 .wait = i915_fence_wait, 128 .release = i915_fence_release, 129 }; 130 131 static void irq_execute_cb(struct irq_work *wrk) 132 { 133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 134 135 i915_sw_fence_complete(cb->fence); 136 kmem_cache_free(global.slab_execute_cbs, cb); 137 } 138 139 static void irq_execute_cb_hook(struct irq_work *wrk) 140 { 141 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 142 143 cb->hook(container_of(cb->fence, struct i915_request, submit), 144 &cb->signal->fence); 145 i915_request_put(cb->signal); 146 147 irq_execute_cb(wrk); 148 } 149 150 static void __notify_execute_cb(struct i915_request *rq) 151 { 152 struct execute_cb *cb; 153 154 lockdep_assert_held(&rq->lock); 155 156 if (list_empty(&rq->execute_cb)) 157 return; 158 159 list_for_each_entry(cb, &rq->execute_cb, link) 160 irq_work_queue(&cb->work); 161 162 /* 163 * XXX Rollback on __i915_request_unsubmit() 164 * 165 * In the future, perhaps when we have an active time-slicing scheduler, 166 * it will be interesting to unsubmit parallel execution and remove 167 * busywaits from the GPU until their master is restarted. This is 168 * quite hairy, we have to carefully rollback the fence and do a 169 * preempt-to-idle cycle on the target engine, all the while the 170 * master execute_cb may refire. 171 */ 172 INIT_LIST_HEAD(&rq->execute_cb); 173 } 174 175 static inline void 176 remove_from_client(struct i915_request *request) 177 { 178 struct drm_i915_file_private *file_priv; 179 180 if (!READ_ONCE(request->file_priv)) 181 return; 182 183 rcu_read_lock(); 184 file_priv = xchg(&request->file_priv, NULL); 185 if (file_priv) { 186 spin_lock(&file_priv->mm.lock); 187 list_del(&request->client_link); 188 spin_unlock(&file_priv->mm.lock); 189 } 190 rcu_read_unlock(); 191 } 192 193 static void free_capture_list(struct i915_request *request) 194 { 195 struct i915_capture_list *capture; 196 197 capture = fetch_and_zero(&request->capture_list); 198 while (capture) { 199 struct i915_capture_list *next = capture->next; 200 201 kfree(capture); 202 capture = next; 203 } 204 } 205 206 static void remove_from_engine(struct i915_request *rq) 207 { 208 struct intel_engine_cs *engine, *locked; 209 210 /* 211 * Virtual engines complicate acquiring the engine timeline lock, 212 * as their rq->engine pointer is not stable until under that 213 * engine lock. The simple ploy we use is to take the lock then 214 * check that the rq still belongs to the newly locked engine. 215 */ 216 locked = READ_ONCE(rq->engine); 217 spin_lock_irq(&locked->active.lock); 218 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 219 spin_unlock(&locked->active.lock); 220 spin_lock(&engine->active.lock); 221 locked = engine; 222 } 223 list_del_init(&rq->sched.link); 224 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 225 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 226 spin_unlock_irq(&locked->active.lock); 227 } 228 229 bool i915_request_retire(struct i915_request *rq) 230 { 231 if (!i915_request_completed(rq)) 232 return false; 233 234 RQ_TRACE(rq, "\n"); 235 236 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 237 trace_i915_request_retire(rq); 238 239 /* 240 * We know the GPU must have read the request to have 241 * sent us the seqno + interrupt, so use the position 242 * of tail of the request to update the last known position 243 * of the GPU head. 244 * 245 * Note this requires that we are always called in request 246 * completion order. 247 */ 248 GEM_BUG_ON(!list_is_first(&rq->link, 249 &i915_request_timeline(rq)->requests)); 250 rq->ring->head = rq->postfix; 251 252 /* 253 * We only loosely track inflight requests across preemption, 254 * and so we may find ourselves attempting to retire a _completed_ 255 * request that we have removed from the HW and put back on a run 256 * queue. 257 */ 258 remove_from_engine(rq); 259 260 spin_lock_irq(&rq->lock); 261 i915_request_mark_complete(rq); 262 if (!i915_request_signaled(rq)) 263 dma_fence_signal_locked(&rq->fence); 264 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 265 i915_request_cancel_breadcrumb(rq); 266 if (i915_request_has_waitboost(rq)) { 267 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 268 atomic_dec(&rq->engine->gt->rps.num_waiters); 269 } 270 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 271 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 272 __notify_execute_cb(rq); 273 } 274 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 275 spin_unlock_irq(&rq->lock); 276 277 remove_from_client(rq); 278 list_del_rcu(&rq->link); 279 280 intel_context_exit(rq->context); 281 intel_context_unpin(rq->context); 282 283 free_capture_list(rq); 284 i915_sched_node_fini(&rq->sched); 285 i915_request_put(rq); 286 287 return true; 288 } 289 290 void i915_request_retire_upto(struct i915_request *rq) 291 { 292 struct intel_timeline * const tl = i915_request_timeline(rq); 293 struct i915_request *tmp; 294 295 RQ_TRACE(rq, "\n"); 296 297 GEM_BUG_ON(!i915_request_completed(rq)); 298 299 do { 300 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 301 } while (i915_request_retire(tmp) && tmp != rq); 302 } 303 304 static int 305 __await_execution(struct i915_request *rq, 306 struct i915_request *signal, 307 void (*hook)(struct i915_request *rq, 308 struct dma_fence *signal), 309 gfp_t gfp) 310 { 311 struct execute_cb *cb; 312 313 if (i915_request_is_active(signal)) { 314 if (hook) 315 hook(rq, &signal->fence); 316 return 0; 317 } 318 319 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 320 if (!cb) 321 return -ENOMEM; 322 323 cb->fence = &rq->submit; 324 i915_sw_fence_await(cb->fence); 325 init_irq_work(&cb->work, irq_execute_cb); 326 327 if (hook) { 328 cb->hook = hook; 329 cb->signal = i915_request_get(signal); 330 cb->work.func = irq_execute_cb_hook; 331 } 332 333 spin_lock_irq(&signal->lock); 334 if (i915_request_is_active(signal)) { 335 if (hook) { 336 hook(rq, &signal->fence); 337 i915_request_put(signal); 338 } 339 i915_sw_fence_complete(cb->fence); 340 kmem_cache_free(global.slab_execute_cbs, cb); 341 } else { 342 list_add_tail(&cb->link, &signal->execute_cb); 343 } 344 spin_unlock_irq(&signal->lock); 345 346 /* Copy across semaphore status as we need the same behaviour */ 347 rq->sched.flags |= signal->sched.flags; 348 return 0; 349 } 350 351 bool __i915_request_submit(struct i915_request *request) 352 { 353 struct intel_engine_cs *engine = request->engine; 354 bool result = false; 355 356 RQ_TRACE(request, "\n"); 357 358 GEM_BUG_ON(!irqs_disabled()); 359 lockdep_assert_held(&engine->active.lock); 360 361 /* 362 * With the advent of preempt-to-busy, we frequently encounter 363 * requests that we have unsubmitted from HW, but left running 364 * until the next ack and so have completed in the meantime. On 365 * resubmission of that completed request, we can skip 366 * updating the payload, and execlists can even skip submitting 367 * the request. 368 * 369 * We must remove the request from the caller's priority queue, 370 * and the caller must only call us when the request is in their 371 * priority queue, under the active.lock. This ensures that the 372 * request has *not* yet been retired and we can safely move 373 * the request into the engine->active.list where it will be 374 * dropped upon retiring. (Otherwise if resubmit a *retired* 375 * request, this would be a horrible use-after-free.) 376 */ 377 if (i915_request_completed(request)) 378 goto xfer; 379 380 if (intel_context_is_banned(request->context)) 381 i915_request_skip(request, -EIO); 382 383 /* 384 * Are we using semaphores when the gpu is already saturated? 385 * 386 * Using semaphores incurs a cost in having the GPU poll a 387 * memory location, busywaiting for it to change. The continual 388 * memory reads can have a noticeable impact on the rest of the 389 * system with the extra bus traffic, stalling the cpu as it too 390 * tries to access memory across the bus (perf stat -e bus-cycles). 391 * 392 * If we installed a semaphore on this request and we only submit 393 * the request after the signaler completed, that indicates the 394 * system is overloaded and using semaphores at this time only 395 * increases the amount of work we are doing. If so, we disable 396 * further use of semaphores until we are idle again, whence we 397 * optimistically try again. 398 */ 399 if (request->sched.semaphores && 400 i915_sw_fence_signaled(&request->semaphore)) 401 engine->saturated |= request->sched.semaphores; 402 403 engine->emit_fini_breadcrumb(request, 404 request->ring->vaddr + request->postfix); 405 406 trace_i915_request_execute(request); 407 engine->serial++; 408 result = true; 409 410 xfer: /* We may be recursing from the signal callback of another i915 fence */ 411 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 412 413 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 414 list_move_tail(&request->sched.link, &engine->active.requests); 415 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 416 } 417 418 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 419 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 420 !i915_request_enable_breadcrumb(request)) 421 intel_engine_signal_breadcrumbs(engine); 422 423 __notify_execute_cb(request); 424 425 spin_unlock(&request->lock); 426 427 return result; 428 } 429 430 void i915_request_submit(struct i915_request *request) 431 { 432 struct intel_engine_cs *engine = request->engine; 433 unsigned long flags; 434 435 /* Will be called from irq-context when using foreign fences. */ 436 spin_lock_irqsave(&engine->active.lock, flags); 437 438 __i915_request_submit(request); 439 440 spin_unlock_irqrestore(&engine->active.lock, flags); 441 } 442 443 void __i915_request_unsubmit(struct i915_request *request) 444 { 445 struct intel_engine_cs *engine = request->engine; 446 447 RQ_TRACE(request, "\n"); 448 449 GEM_BUG_ON(!irqs_disabled()); 450 lockdep_assert_held(&engine->active.lock); 451 452 /* 453 * Only unwind in reverse order, required so that the per-context list 454 * is kept in seqno/ring order. 455 */ 456 457 /* We may be recursing from the signal callback of another i915 fence */ 458 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 459 460 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 461 i915_request_cancel_breadcrumb(request); 462 463 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 464 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 465 466 spin_unlock(&request->lock); 467 468 /* We've already spun, don't charge on resubmitting. */ 469 if (request->sched.semaphores && i915_request_started(request)) { 470 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 471 request->sched.semaphores = 0; 472 } 473 474 /* 475 * We don't need to wake_up any waiters on request->execute, they 476 * will get woken by any other event or us re-adding this request 477 * to the engine timeline (__i915_request_submit()). The waiters 478 * should be quite adapt at finding that the request now has a new 479 * global_seqno to the one they went to sleep on. 480 */ 481 } 482 483 void i915_request_unsubmit(struct i915_request *request) 484 { 485 struct intel_engine_cs *engine = request->engine; 486 unsigned long flags; 487 488 /* Will be called from irq-context when using foreign fences. */ 489 spin_lock_irqsave(&engine->active.lock, flags); 490 491 __i915_request_unsubmit(request); 492 493 spin_unlock_irqrestore(&engine->active.lock, flags); 494 } 495 496 static int __i915_sw_fence_call 497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 498 { 499 struct i915_request *request = 500 container_of(fence, typeof(*request), submit); 501 502 switch (state) { 503 case FENCE_COMPLETE: 504 trace_i915_request_submit(request); 505 506 if (unlikely(fence->error)) 507 i915_request_skip(request, fence->error); 508 509 /* 510 * We need to serialize use of the submit_request() callback 511 * with its hotplugging performed during an emergency 512 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 513 * critical section in order to force i915_gem_set_wedged() to 514 * wait until the submit_request() is completed before 515 * proceeding. 516 */ 517 rcu_read_lock(); 518 request->engine->submit_request(request); 519 rcu_read_unlock(); 520 break; 521 522 case FENCE_FREE: 523 i915_request_put(request); 524 break; 525 } 526 527 return NOTIFY_DONE; 528 } 529 530 static int __i915_sw_fence_call 531 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 532 { 533 struct i915_request *request = 534 container_of(fence, typeof(*request), semaphore); 535 536 switch (state) { 537 case FENCE_COMPLETE: 538 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 539 break; 540 541 case FENCE_FREE: 542 i915_request_put(request); 543 break; 544 } 545 546 return NOTIFY_DONE; 547 } 548 549 static void retire_requests(struct intel_timeline *tl) 550 { 551 struct i915_request *rq, *rn; 552 553 list_for_each_entry_safe(rq, rn, &tl->requests, link) 554 if (!i915_request_retire(rq)) 555 break; 556 } 557 558 static noinline struct i915_request * 559 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 560 { 561 struct i915_request *rq; 562 563 if (list_empty(&tl->requests)) 564 goto out; 565 566 if (!gfpflags_allow_blocking(gfp)) 567 goto out; 568 569 /* Move our oldest request to the slab-cache (if not in use!) */ 570 rq = list_first_entry(&tl->requests, typeof(*rq), link); 571 i915_request_retire(rq); 572 573 rq = kmem_cache_alloc(global.slab_requests, 574 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 575 if (rq) 576 return rq; 577 578 /* Ratelimit ourselves to prevent oom from malicious clients */ 579 rq = list_last_entry(&tl->requests, typeof(*rq), link); 580 cond_synchronize_rcu(rq->rcustate); 581 582 /* Retire our old requests in the hope that we free some */ 583 retire_requests(tl); 584 585 out: 586 return kmem_cache_alloc(global.slab_requests, gfp); 587 } 588 589 static void __i915_request_ctor(void *arg) 590 { 591 struct i915_request *rq = arg; 592 593 spin_lock_init(&rq->lock); 594 i915_sched_node_init(&rq->sched); 595 i915_sw_fence_init(&rq->submit, submit_notify); 596 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 597 598 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 599 600 rq->file_priv = NULL; 601 rq->capture_list = NULL; 602 603 INIT_LIST_HEAD(&rq->execute_cb); 604 } 605 606 struct i915_request * 607 __i915_request_create(struct intel_context *ce, gfp_t gfp) 608 { 609 struct intel_timeline *tl = ce->timeline; 610 struct i915_request *rq; 611 u32 seqno; 612 int ret; 613 614 might_sleep_if(gfpflags_allow_blocking(gfp)); 615 616 /* Check that the caller provided an already pinned context */ 617 __intel_context_pin(ce); 618 619 /* 620 * Beware: Dragons be flying overhead. 621 * 622 * We use RCU to look up requests in flight. The lookups may 623 * race with the request being allocated from the slab freelist. 624 * That is the request we are writing to here, may be in the process 625 * of being read by __i915_active_request_get_rcu(). As such, 626 * we have to be very careful when overwriting the contents. During 627 * the RCU lookup, we change chase the request->engine pointer, 628 * read the request->global_seqno and increment the reference count. 629 * 630 * The reference count is incremented atomically. If it is zero, 631 * the lookup knows the request is unallocated and complete. Otherwise, 632 * it is either still in use, or has been reallocated and reset 633 * with dma_fence_init(). This increment is safe for release as we 634 * check that the request we have a reference to and matches the active 635 * request. 636 * 637 * Before we increment the refcount, we chase the request->engine 638 * pointer. We must not call kmem_cache_zalloc() or else we set 639 * that pointer to NULL and cause a crash during the lookup. If 640 * we see the request is completed (based on the value of the 641 * old engine and seqno), the lookup is complete and reports NULL. 642 * If we decide the request is not completed (new engine or seqno), 643 * then we grab a reference and double check that it is still the 644 * active request - which it won't be and restart the lookup. 645 * 646 * Do not use kmem_cache_zalloc() here! 647 */ 648 rq = kmem_cache_alloc(global.slab_requests, 649 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 650 if (unlikely(!rq)) { 651 rq = request_alloc_slow(tl, gfp); 652 if (!rq) { 653 ret = -ENOMEM; 654 goto err_unreserve; 655 } 656 } 657 658 rq->i915 = ce->engine->i915; 659 rq->context = ce; 660 rq->engine = ce->engine; 661 rq->ring = ce->ring; 662 rq->execution_mask = ce->engine->mask; 663 664 kref_init(&rq->fence.refcount); 665 rq->fence.flags = 0; 666 rq->fence.error = 0; 667 INIT_LIST_HEAD(&rq->fence.cb_list); 668 669 ret = intel_timeline_get_seqno(tl, rq, &seqno); 670 if (ret) 671 goto err_free; 672 673 rq->fence.context = tl->fence_context; 674 rq->fence.seqno = seqno; 675 676 RCU_INIT_POINTER(rq->timeline, tl); 677 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 678 rq->hwsp_seqno = tl->hwsp_seqno; 679 680 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 681 682 /* We bump the ref for the fence chain */ 683 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 684 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 685 686 i915_sched_node_reinit(&rq->sched); 687 688 /* No zalloc, everything must be cleared after use */ 689 rq->batch = NULL; 690 GEM_BUG_ON(rq->file_priv); 691 GEM_BUG_ON(rq->capture_list); 692 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 693 694 /* 695 * Reserve space in the ring buffer for all the commands required to 696 * eventually emit this request. This is to guarantee that the 697 * i915_request_add() call can't fail. Note that the reserve may need 698 * to be redone if the request is not actually submitted straight 699 * away, e.g. because a GPU scheduler has deferred it. 700 * 701 * Note that due to how we add reserved_space to intel_ring_begin() 702 * we need to double our request to ensure that if we need to wrap 703 * around inside i915_request_add() there is sufficient space at 704 * the beginning of the ring as well. 705 */ 706 rq->reserved_space = 707 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 708 709 /* 710 * Record the position of the start of the request so that 711 * should we detect the updated seqno part-way through the 712 * GPU processing the request, we never over-estimate the 713 * position of the head. 714 */ 715 rq->head = rq->ring->emit; 716 717 ret = rq->engine->request_alloc(rq); 718 if (ret) 719 goto err_unwind; 720 721 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 722 723 intel_context_mark_active(ce); 724 list_add_tail_rcu(&rq->link, &tl->requests); 725 726 return rq; 727 728 err_unwind: 729 ce->ring->emit = rq->head; 730 731 /* Make sure we didn't add ourselves to external state before freeing */ 732 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 733 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 734 735 err_free: 736 kmem_cache_free(global.slab_requests, rq); 737 err_unreserve: 738 intel_context_unpin(ce); 739 return ERR_PTR(ret); 740 } 741 742 struct i915_request * 743 i915_request_create(struct intel_context *ce) 744 { 745 struct i915_request *rq; 746 struct intel_timeline *tl; 747 748 tl = intel_context_timeline_lock(ce); 749 if (IS_ERR(tl)) 750 return ERR_CAST(tl); 751 752 /* Move our oldest request to the slab-cache (if not in use!) */ 753 rq = list_first_entry(&tl->requests, typeof(*rq), link); 754 if (!list_is_last(&rq->link, &tl->requests)) 755 i915_request_retire(rq); 756 757 intel_context_enter(ce); 758 rq = __i915_request_create(ce, GFP_KERNEL); 759 intel_context_exit(ce); /* active reference transferred to request */ 760 if (IS_ERR(rq)) 761 goto err_unlock; 762 763 /* Check that we do not interrupt ourselves with a new request */ 764 rq->cookie = lockdep_pin_lock(&tl->mutex); 765 766 return rq; 767 768 err_unlock: 769 intel_context_timeline_unlock(tl); 770 return rq; 771 } 772 773 static int 774 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 775 { 776 struct dma_fence *fence; 777 int err; 778 779 GEM_BUG_ON(i915_request_timeline(rq) == 780 rcu_access_pointer(signal->timeline)); 781 782 if (i915_request_started(signal)) 783 return 0; 784 785 fence = NULL; 786 rcu_read_lock(); 787 spin_lock_irq(&signal->lock); 788 do { 789 struct list_head *pos = READ_ONCE(signal->link.prev); 790 struct i915_request *prev; 791 792 /* Confirm signal has not been retired, the link is valid */ 793 if (unlikely(i915_request_started(signal))) 794 break; 795 796 /* Is signal the earliest request on its timeline? */ 797 if (pos == &rcu_dereference(signal->timeline)->requests) 798 break; 799 800 /* 801 * Peek at the request before us in the timeline. That 802 * request will only be valid before it is retired, so 803 * after acquiring a reference to it, confirm that it is 804 * still part of the signaler's timeline. 805 */ 806 prev = list_entry(pos, typeof(*prev), link); 807 if (!i915_request_get_rcu(prev)) 808 break; 809 810 /* After the strong barrier, confirm prev is still attached */ 811 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 812 i915_request_put(prev); 813 break; 814 } 815 816 fence = &prev->fence; 817 } while (0); 818 spin_unlock_irq(&signal->lock); 819 rcu_read_unlock(); 820 if (!fence) 821 return 0; 822 823 err = 0; 824 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 825 err = i915_sw_fence_await_dma_fence(&rq->submit, 826 fence, 0, 827 I915_FENCE_GFP); 828 dma_fence_put(fence); 829 830 return err; 831 } 832 833 static intel_engine_mask_t 834 already_busywaiting(struct i915_request *rq) 835 { 836 /* 837 * Polling a semaphore causes bus traffic, delaying other users of 838 * both the GPU and CPU. We want to limit the impact on others, 839 * while taking advantage of early submission to reduce GPU 840 * latency. Therefore we restrict ourselves to not using more 841 * than one semaphore from each source, and not using a semaphore 842 * if we have detected the engine is saturated (i.e. would not be 843 * submitted early and cause bus traffic reading an already passed 844 * semaphore). 845 * 846 * See the are-we-too-late? check in __i915_request_submit(). 847 */ 848 return rq->sched.semaphores | rq->engine->saturated; 849 } 850 851 static int 852 __emit_semaphore_wait(struct i915_request *to, 853 struct i915_request *from, 854 u32 seqno) 855 { 856 const int has_token = INTEL_GEN(to->i915) >= 12; 857 u32 hwsp_offset; 858 int len, err; 859 u32 *cs; 860 861 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 862 863 /* We need to pin the signaler's HWSP until we are finished reading. */ 864 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 865 if (err) 866 return err; 867 868 len = 4; 869 if (has_token) 870 len += 2; 871 872 cs = intel_ring_begin(to, len); 873 if (IS_ERR(cs)) 874 return PTR_ERR(cs); 875 876 /* 877 * Using greater-than-or-equal here means we have to worry 878 * about seqno wraparound. To side step that issue, we swap 879 * the timeline HWSP upon wrapping, so that everyone listening 880 * for the old (pre-wrap) values do not see the much smaller 881 * (post-wrap) values than they were expecting (and so wait 882 * forever). 883 */ 884 *cs++ = (MI_SEMAPHORE_WAIT | 885 MI_SEMAPHORE_GLOBAL_GTT | 886 MI_SEMAPHORE_POLL | 887 MI_SEMAPHORE_SAD_GTE_SDD) + 888 has_token; 889 *cs++ = seqno; 890 *cs++ = hwsp_offset; 891 *cs++ = 0; 892 if (has_token) { 893 *cs++ = 0; 894 *cs++ = MI_NOOP; 895 } 896 897 intel_ring_advance(to, cs); 898 return 0; 899 } 900 901 static int 902 emit_semaphore_wait(struct i915_request *to, 903 struct i915_request *from, 904 gfp_t gfp) 905 { 906 /* Just emit the first semaphore we see as request space is limited. */ 907 if (already_busywaiting(to) & from->engine->mask) 908 goto await_fence; 909 910 if (i915_request_await_start(to, from) < 0) 911 goto await_fence; 912 913 /* Only submit our spinner after the signaler is running! */ 914 if (__await_execution(to, from, NULL, gfp)) 915 goto await_fence; 916 917 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 918 goto await_fence; 919 920 to->sched.semaphores |= from->engine->mask; 921 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 922 return 0; 923 924 await_fence: 925 return i915_sw_fence_await_dma_fence(&to->submit, 926 &from->fence, 0, 927 I915_FENCE_GFP); 928 } 929 930 static int 931 i915_request_await_request(struct i915_request *to, struct i915_request *from) 932 { 933 int ret; 934 935 GEM_BUG_ON(to == from); 936 GEM_BUG_ON(to->timeline == from->timeline); 937 938 if (i915_request_completed(from)) 939 return 0; 940 941 if (to->engine->schedule) { 942 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 943 if (ret < 0) 944 return ret; 945 } 946 947 if (to->engine == from->engine) 948 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 949 &from->submit, 950 I915_FENCE_GFP); 951 else if (intel_context_use_semaphores(to->context)) 952 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 953 else 954 ret = i915_sw_fence_await_dma_fence(&to->submit, 955 &from->fence, 0, 956 I915_FENCE_GFP); 957 if (ret < 0) 958 return ret; 959 960 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 961 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 962 &from->fence, 0, 963 I915_FENCE_GFP); 964 if (ret < 0) 965 return ret; 966 } 967 968 return 0; 969 } 970 971 int 972 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 973 { 974 struct dma_fence **child = &fence; 975 unsigned int nchild = 1; 976 int ret; 977 978 /* 979 * Note that if the fence-array was created in signal-on-any mode, 980 * we should *not* decompose it into its individual fences. However, 981 * we don't currently store which mode the fence-array is operating 982 * in. Fortunately, the only user of signal-on-any is private to 983 * amdgpu and we should not see any incoming fence-array from 984 * sync-file being in signal-on-any mode. 985 */ 986 if (dma_fence_is_array(fence)) { 987 struct dma_fence_array *array = to_dma_fence_array(fence); 988 989 child = array->fences; 990 nchild = array->num_fences; 991 GEM_BUG_ON(!nchild); 992 } 993 994 do { 995 fence = *child++; 996 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 997 i915_sw_fence_set_error_once(&rq->submit, fence->error); 998 continue; 999 } 1000 1001 /* 1002 * Requests on the same timeline are explicitly ordered, along 1003 * with their dependencies, by i915_request_add() which ensures 1004 * that requests are submitted in-order through each ring. 1005 */ 1006 if (fence->context == rq->fence.context) 1007 continue; 1008 1009 /* Squash repeated waits to the same timelines */ 1010 if (fence->context && 1011 intel_timeline_sync_is_later(i915_request_timeline(rq), 1012 fence)) 1013 continue; 1014 1015 if (dma_fence_is_i915(fence)) 1016 ret = i915_request_await_request(rq, to_request(fence)); 1017 else 1018 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1019 fence->context ? I915_FENCE_TIMEOUT : 0, 1020 I915_FENCE_GFP); 1021 if (ret < 0) 1022 return ret; 1023 1024 /* Record the latest fence used against each timeline */ 1025 if (fence->context) 1026 intel_timeline_sync_set(i915_request_timeline(rq), 1027 fence); 1028 } while (--nchild); 1029 1030 return 0; 1031 } 1032 1033 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1034 struct dma_fence *fence) 1035 { 1036 return __intel_timeline_sync_is_later(tl, 1037 fence->context, 1038 fence->seqno - 1); 1039 } 1040 1041 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1042 const struct dma_fence *fence) 1043 { 1044 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1045 } 1046 1047 static int 1048 __i915_request_await_execution(struct i915_request *to, 1049 struct i915_request *from, 1050 void (*hook)(struct i915_request *rq, 1051 struct dma_fence *signal)) 1052 { 1053 int err; 1054 1055 /* Submit both requests at the same time */ 1056 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1057 if (err) 1058 return err; 1059 1060 /* Squash repeated depenendices to the same timelines */ 1061 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1062 &from->fence)) 1063 return 0; 1064 1065 /* Ensure both start together [after all semaphores in signal] */ 1066 if (intel_engine_has_semaphores(to->engine)) 1067 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1068 else 1069 err = i915_request_await_start(to, from); 1070 if (err < 0) 1071 return err; 1072 1073 /* Couple the dependency tree for PI on this exposed to->fence */ 1074 if (to->engine->schedule) { 1075 err = i915_sched_node_add_dependency(&to->sched, &from->sched); 1076 if (err < 0) 1077 return err; 1078 } 1079 1080 return intel_timeline_sync_set_start(i915_request_timeline(to), 1081 &from->fence); 1082 } 1083 1084 int 1085 i915_request_await_execution(struct i915_request *rq, 1086 struct dma_fence *fence, 1087 void (*hook)(struct i915_request *rq, 1088 struct dma_fence *signal)) 1089 { 1090 struct dma_fence **child = &fence; 1091 unsigned int nchild = 1; 1092 int ret; 1093 1094 if (dma_fence_is_array(fence)) { 1095 struct dma_fence_array *array = to_dma_fence_array(fence); 1096 1097 /* XXX Error for signal-on-any fence arrays */ 1098 1099 child = array->fences; 1100 nchild = array->num_fences; 1101 GEM_BUG_ON(!nchild); 1102 } 1103 1104 do { 1105 fence = *child++; 1106 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1107 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1108 continue; 1109 } 1110 1111 /* 1112 * We don't squash repeated fence dependencies here as we 1113 * want to run our callback in all cases. 1114 */ 1115 1116 if (dma_fence_is_i915(fence)) 1117 ret = __i915_request_await_execution(rq, 1118 to_request(fence), 1119 hook); 1120 else 1121 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1122 I915_FENCE_TIMEOUT, 1123 GFP_KERNEL); 1124 if (ret < 0) 1125 return ret; 1126 } while (--nchild); 1127 1128 return 0; 1129 } 1130 1131 /** 1132 * i915_request_await_object - set this request to (async) wait upon a bo 1133 * @to: request we are wishing to use 1134 * @obj: object which may be in use on another ring. 1135 * @write: whether the wait is on behalf of a writer 1136 * 1137 * This code is meant to abstract object synchronization with the GPU. 1138 * Conceptually we serialise writes between engines inside the GPU. 1139 * We only allow one engine to write into a buffer at any time, but 1140 * multiple readers. To ensure each has a coherent view of memory, we must: 1141 * 1142 * - If there is an outstanding write request to the object, the new 1143 * request must wait for it to complete (either CPU or in hw, requests 1144 * on the same ring will be naturally ordered). 1145 * 1146 * - If we are a write request (pending_write_domain is set), the new 1147 * request must wait for outstanding read requests to complete. 1148 * 1149 * Returns 0 if successful, else propagates up the lower layer error. 1150 */ 1151 int 1152 i915_request_await_object(struct i915_request *to, 1153 struct drm_i915_gem_object *obj, 1154 bool write) 1155 { 1156 struct dma_fence *excl; 1157 int ret = 0; 1158 1159 if (write) { 1160 struct dma_fence **shared; 1161 unsigned int count, i; 1162 1163 ret = dma_resv_get_fences_rcu(obj->base.resv, 1164 &excl, &count, &shared); 1165 if (ret) 1166 return ret; 1167 1168 for (i = 0; i < count; i++) { 1169 ret = i915_request_await_dma_fence(to, shared[i]); 1170 if (ret) 1171 break; 1172 1173 dma_fence_put(shared[i]); 1174 } 1175 1176 for (; i < count; i++) 1177 dma_fence_put(shared[i]); 1178 kfree(shared); 1179 } else { 1180 excl = dma_resv_get_excl_rcu(obj->base.resv); 1181 } 1182 1183 if (excl) { 1184 if (ret == 0) 1185 ret = i915_request_await_dma_fence(to, excl); 1186 1187 dma_fence_put(excl); 1188 } 1189 1190 return ret; 1191 } 1192 1193 void i915_request_skip(struct i915_request *rq, int error) 1194 { 1195 void *vaddr = rq->ring->vaddr; 1196 u32 head; 1197 1198 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1199 dma_fence_set_error(&rq->fence, error); 1200 1201 if (rq->infix == rq->postfix) 1202 return; 1203 1204 /* 1205 * As this request likely depends on state from the lost 1206 * context, clear out all the user operations leaving the 1207 * breadcrumb at the end (so we get the fence notifications). 1208 */ 1209 head = rq->infix; 1210 if (rq->postfix < head) { 1211 memset(vaddr + head, 0, rq->ring->size - head); 1212 head = 0; 1213 } 1214 memset(vaddr + head, 0, rq->postfix - head); 1215 rq->infix = rq->postfix; 1216 } 1217 1218 static struct i915_request * 1219 __i915_request_add_to_timeline(struct i915_request *rq) 1220 { 1221 struct intel_timeline *timeline = i915_request_timeline(rq); 1222 struct i915_request *prev; 1223 1224 /* 1225 * Dependency tracking and request ordering along the timeline 1226 * is special cased so that we can eliminate redundant ordering 1227 * operations while building the request (we know that the timeline 1228 * itself is ordered, and here we guarantee it). 1229 * 1230 * As we know we will need to emit tracking along the timeline, 1231 * we embed the hooks into our request struct -- at the cost of 1232 * having to have specialised no-allocation interfaces (which will 1233 * be beneficial elsewhere). 1234 * 1235 * A second benefit to open-coding i915_request_await_request is 1236 * that we can apply a slight variant of the rules specialised 1237 * for timelines that jump between engines (such as virtual engines). 1238 * If we consider the case of virtual engine, we must emit a dma-fence 1239 * to prevent scheduling of the second request until the first is 1240 * complete (to maximise our greedy late load balancing) and this 1241 * precludes optimising to use semaphores serialisation of a single 1242 * timeline across engines. 1243 */ 1244 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1245 &rq->fence)); 1246 if (prev && !i915_request_completed(prev)) { 1247 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1248 i915_sw_fence_await_sw_fence(&rq->submit, 1249 &prev->submit, 1250 &rq->submitq); 1251 else 1252 __i915_sw_fence_await_dma_fence(&rq->submit, 1253 &prev->fence, 1254 &rq->dmaq); 1255 if (rq->engine->schedule) 1256 __i915_sched_node_add_dependency(&rq->sched, 1257 &prev->sched, 1258 &rq->dep, 1259 0); 1260 } 1261 1262 /* 1263 * Make sure that no request gazumped us - if it was allocated after 1264 * our i915_request_alloc() and called __i915_request_add() before 1265 * us, the timeline will hold its seqno which is later than ours. 1266 */ 1267 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1268 1269 return prev; 1270 } 1271 1272 /* 1273 * NB: This function is not allowed to fail. Doing so would mean the the 1274 * request is not being tracked for completion but the work itself is 1275 * going to happen on the hardware. This would be a Bad Thing(tm). 1276 */ 1277 struct i915_request *__i915_request_commit(struct i915_request *rq) 1278 { 1279 struct intel_engine_cs *engine = rq->engine; 1280 struct intel_ring *ring = rq->ring; 1281 u32 *cs; 1282 1283 RQ_TRACE(rq, "\n"); 1284 1285 /* 1286 * To ensure that this call will not fail, space for its emissions 1287 * should already have been reserved in the ring buffer. Let the ring 1288 * know that it is time to use that space up. 1289 */ 1290 GEM_BUG_ON(rq->reserved_space > ring->space); 1291 rq->reserved_space = 0; 1292 rq->emitted_jiffies = jiffies; 1293 1294 /* 1295 * Record the position of the start of the breadcrumb so that 1296 * should we detect the updated seqno part-way through the 1297 * GPU processing the request, we never over-estimate the 1298 * position of the ring's HEAD. 1299 */ 1300 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1301 GEM_BUG_ON(IS_ERR(cs)); 1302 rq->postfix = intel_ring_offset(rq, cs); 1303 1304 return __i915_request_add_to_timeline(rq); 1305 } 1306 1307 void __i915_request_queue(struct i915_request *rq, 1308 const struct i915_sched_attr *attr) 1309 { 1310 /* 1311 * Let the backend know a new request has arrived that may need 1312 * to adjust the existing execution schedule due to a high priority 1313 * request - i.e. we may want to preempt the current request in order 1314 * to run a high priority dependency chain *before* we can execute this 1315 * request. 1316 * 1317 * This is called before the request is ready to run so that we can 1318 * decide whether to preempt the entire chain so that it is ready to 1319 * run at the earliest possible convenience. 1320 */ 1321 i915_sw_fence_commit(&rq->semaphore); 1322 if (attr && rq->engine->schedule) 1323 rq->engine->schedule(rq, attr); 1324 i915_sw_fence_commit(&rq->submit); 1325 } 1326 1327 void i915_request_add(struct i915_request *rq) 1328 { 1329 struct intel_timeline * const tl = i915_request_timeline(rq); 1330 struct i915_sched_attr attr = {}; 1331 struct i915_request *prev; 1332 1333 lockdep_assert_held(&tl->mutex); 1334 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1335 1336 trace_i915_request_add(rq); 1337 1338 prev = __i915_request_commit(rq); 1339 1340 if (rcu_access_pointer(rq->context->gem_context)) 1341 attr = i915_request_gem_context(rq)->sched; 1342 1343 /* 1344 * Boost actual workloads past semaphores! 1345 * 1346 * With semaphores we spin on one engine waiting for another, 1347 * simply to reduce the latency of starting our work when 1348 * the signaler completes. However, if there is any other 1349 * work that we could be doing on this engine instead, that 1350 * is better utilisation and will reduce the overall duration 1351 * of the current work. To avoid PI boosting a semaphore 1352 * far in the distance past over useful work, we keep a history 1353 * of any semaphore use along our dependency chain. 1354 */ 1355 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1356 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1357 1358 /* 1359 * Boost priorities to new clients (new request flows). 1360 * 1361 * Allow interactive/synchronous clients to jump ahead of 1362 * the bulk clients. (FQ_CODEL) 1363 */ 1364 if (list_empty(&rq->sched.signalers_list)) 1365 attr.priority |= I915_PRIORITY_WAIT; 1366 1367 local_bh_disable(); 1368 __i915_request_queue(rq, &attr); 1369 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1370 1371 /* 1372 * In typical scenarios, we do not expect the previous request on 1373 * the timeline to be still tracked by timeline->last_request if it 1374 * has been completed. If the completed request is still here, that 1375 * implies that request retirement is a long way behind submission, 1376 * suggesting that we haven't been retiring frequently enough from 1377 * the combination of retire-before-alloc, waiters and the background 1378 * retirement worker. So if the last request on this timeline was 1379 * already completed, do a catch up pass, flushing the retirement queue 1380 * up to this client. Since we have now moved the heaviest operations 1381 * during retirement onto secondary workers, such as freeing objects 1382 * or contexts, retiring a bunch of requests is mostly list management 1383 * (and cache misses), and so we should not be overly penalizing this 1384 * client by performing excess work, though we may still performing 1385 * work on behalf of others -- but instead we should benefit from 1386 * improved resource management. (Well, that's the theory at least.) 1387 */ 1388 if (prev && 1389 i915_request_completed(prev) && 1390 rcu_access_pointer(prev->timeline) == tl) 1391 i915_request_retire_upto(prev); 1392 1393 mutex_unlock(&tl->mutex); 1394 } 1395 1396 static unsigned long local_clock_us(unsigned int *cpu) 1397 { 1398 unsigned long t; 1399 1400 /* 1401 * Cheaply and approximately convert from nanoseconds to microseconds. 1402 * The result and subsequent calculations are also defined in the same 1403 * approximate microseconds units. The principal source of timing 1404 * error here is from the simple truncation. 1405 * 1406 * Note that local_clock() is only defined wrt to the current CPU; 1407 * the comparisons are no longer valid if we switch CPUs. Instead of 1408 * blocking preemption for the entire busywait, we can detect the CPU 1409 * switch and use that as indicator of system load and a reason to 1410 * stop busywaiting, see busywait_stop(). 1411 */ 1412 *cpu = get_cpu(); 1413 t = local_clock() >> 10; 1414 put_cpu(); 1415 1416 return t; 1417 } 1418 1419 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1420 { 1421 unsigned int this_cpu; 1422 1423 if (time_after(local_clock_us(&this_cpu), timeout)) 1424 return true; 1425 1426 return this_cpu != cpu; 1427 } 1428 1429 static bool __i915_spin_request(const struct i915_request * const rq, 1430 int state, unsigned long timeout_us) 1431 { 1432 unsigned int cpu; 1433 1434 /* 1435 * Only wait for the request if we know it is likely to complete. 1436 * 1437 * We don't track the timestamps around requests, nor the average 1438 * request length, so we do not have a good indicator that this 1439 * request will complete within the timeout. What we do know is the 1440 * order in which requests are executed by the context and so we can 1441 * tell if the request has been started. If the request is not even 1442 * running yet, it is a fair assumption that it will not complete 1443 * within our relatively short timeout. 1444 */ 1445 if (!i915_request_is_running(rq)) 1446 return false; 1447 1448 /* 1449 * When waiting for high frequency requests, e.g. during synchronous 1450 * rendering split between the CPU and GPU, the finite amount of time 1451 * required to set up the irq and wait upon it limits the response 1452 * rate. By busywaiting on the request completion for a short while we 1453 * can service the high frequency waits as quick as possible. However, 1454 * if it is a slow request, we want to sleep as quickly as possible. 1455 * The tradeoff between waiting and sleeping is roughly the time it 1456 * takes to sleep on a request, on the order of a microsecond. 1457 */ 1458 1459 timeout_us += local_clock_us(&cpu); 1460 do { 1461 if (i915_request_completed(rq)) 1462 return true; 1463 1464 if (signal_pending_state(state, current)) 1465 break; 1466 1467 if (busywait_stop(timeout_us, cpu)) 1468 break; 1469 1470 cpu_relax(); 1471 } while (!need_resched()); 1472 1473 return false; 1474 } 1475 1476 struct request_wait { 1477 struct dma_fence_cb cb; 1478 struct task_struct *tsk; 1479 }; 1480 1481 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1482 { 1483 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1484 1485 wake_up_process(wait->tsk); 1486 } 1487 1488 /** 1489 * i915_request_wait - wait until execution of request has finished 1490 * @rq: the request to wait upon 1491 * @flags: how to wait 1492 * @timeout: how long to wait in jiffies 1493 * 1494 * i915_request_wait() waits for the request to be completed, for a 1495 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1496 * unbounded wait). 1497 * 1498 * Returns the remaining time (in jiffies) if the request completed, which may 1499 * be zero or -ETIME if the request is unfinished after the timeout expires. 1500 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1501 * pending before the request completes. 1502 */ 1503 long i915_request_wait(struct i915_request *rq, 1504 unsigned int flags, 1505 long timeout) 1506 { 1507 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1508 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1509 struct request_wait wait; 1510 1511 might_sleep(); 1512 GEM_BUG_ON(timeout < 0); 1513 1514 if (dma_fence_is_signaled(&rq->fence)) 1515 return timeout; 1516 1517 if (!timeout) 1518 return -ETIME; 1519 1520 trace_i915_request_wait_begin(rq, flags); 1521 1522 /* 1523 * We must never wait on the GPU while holding a lock as we 1524 * may need to perform a GPU reset. So while we don't need to 1525 * serialise wait/reset with an explicit lock, we do want 1526 * lockdep to detect potential dependency cycles. 1527 */ 1528 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1529 1530 /* 1531 * Optimistic spin before touching IRQs. 1532 * 1533 * We may use a rather large value here to offset the penalty of 1534 * switching away from the active task. Frequently, the client will 1535 * wait upon an old swapbuffer to throttle itself to remain within a 1536 * frame of the gpu. If the client is running in lockstep with the gpu, 1537 * then it should not be waiting long at all, and a sleep now will incur 1538 * extra scheduler latency in producing the next frame. To try to 1539 * avoid adding the cost of enabling/disabling the interrupt to the 1540 * short wait, we first spin to see if the request would have completed 1541 * in the time taken to setup the interrupt. 1542 * 1543 * We need upto 5us to enable the irq, and upto 20us to hide the 1544 * scheduler latency of a context switch, ignoring the secondary 1545 * impacts from a context switch such as cache eviction. 1546 * 1547 * The scheme used for low-latency IO is called "hybrid interrupt 1548 * polling". The suggestion there is to sleep until just before you 1549 * expect to be woken by the device interrupt and then poll for its 1550 * completion. That requires having a good predictor for the request 1551 * duration, which we currently lack. 1552 */ 1553 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) && 1554 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1555 dma_fence_signal(&rq->fence); 1556 goto out; 1557 } 1558 1559 /* 1560 * This client is about to stall waiting for the GPU. In many cases 1561 * this is undesirable and limits the throughput of the system, as 1562 * many clients cannot continue processing user input/output whilst 1563 * blocked. RPS autotuning may take tens of milliseconds to respond 1564 * to the GPU load and thus incurs additional latency for the client. 1565 * We can circumvent that by promoting the GPU frequency to maximum 1566 * before we sleep. This makes the GPU throttle up much more quickly 1567 * (good for benchmarks and user experience, e.g. window animations), 1568 * but at a cost of spending more power processing the workload 1569 * (bad for battery). 1570 */ 1571 if (flags & I915_WAIT_PRIORITY) { 1572 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1573 intel_rps_boost(rq); 1574 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1575 } 1576 1577 wait.tsk = current; 1578 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1579 goto out; 1580 1581 for (;;) { 1582 set_current_state(state); 1583 1584 if (i915_request_completed(rq)) { 1585 dma_fence_signal(&rq->fence); 1586 break; 1587 } 1588 1589 if (signal_pending_state(state, current)) { 1590 timeout = -ERESTARTSYS; 1591 break; 1592 } 1593 1594 if (!timeout) { 1595 timeout = -ETIME; 1596 break; 1597 } 1598 1599 intel_engine_flush_submission(rq->engine); 1600 timeout = io_schedule_timeout(timeout); 1601 } 1602 __set_current_state(TASK_RUNNING); 1603 1604 dma_fence_remove_callback(&rq->fence, &wait.cb); 1605 1606 out: 1607 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1608 trace_i915_request_wait_end(rq); 1609 return timeout; 1610 } 1611 1612 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1613 #include "selftests/mock_request.c" 1614 #include "selftests/i915_request.c" 1615 #endif 1616 1617 static void i915_global_request_shrink(void) 1618 { 1619 kmem_cache_shrink(global.slab_dependencies); 1620 kmem_cache_shrink(global.slab_execute_cbs); 1621 kmem_cache_shrink(global.slab_requests); 1622 } 1623 1624 static void i915_global_request_exit(void) 1625 { 1626 kmem_cache_destroy(global.slab_dependencies); 1627 kmem_cache_destroy(global.slab_execute_cbs); 1628 kmem_cache_destroy(global.slab_requests); 1629 } 1630 1631 static struct i915_global_request global = { { 1632 .shrink = i915_global_request_shrink, 1633 .exit = i915_global_request_exit, 1634 } }; 1635 1636 int __init i915_global_request_init(void) 1637 { 1638 global.slab_requests = 1639 kmem_cache_create("i915_request", 1640 sizeof(struct i915_request), 1641 __alignof__(struct i915_request), 1642 SLAB_HWCACHE_ALIGN | 1643 SLAB_RECLAIM_ACCOUNT | 1644 SLAB_TYPESAFE_BY_RCU, 1645 __i915_request_ctor); 1646 if (!global.slab_requests) 1647 return -ENOMEM; 1648 1649 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1650 SLAB_HWCACHE_ALIGN | 1651 SLAB_RECLAIM_ACCOUNT | 1652 SLAB_TYPESAFE_BY_RCU); 1653 if (!global.slab_execute_cbs) 1654 goto err_requests; 1655 1656 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1657 SLAB_HWCACHE_ALIGN | 1658 SLAB_RECLAIM_ACCOUNT); 1659 if (!global.slab_dependencies) 1660 goto err_execute_cbs; 1661 1662 i915_global_register(&global.base); 1663 return 0; 1664 1665 err_execute_cbs: 1666 kmem_cache_destroy(global.slab_execute_cbs); 1667 err_requests: 1668 kmem_cache_destroy(global.slab_requests); 1669 return -ENOMEM; 1670 } 1671