1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33 
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_gpu_commands.h"
40 #include "gt/intel_reset.h"
41 #include "gt/intel_ring.h"
42 #include "gt/intel_rps.h"
43 
44 #include "i915_active.h"
45 #include "i915_deps.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_pm.h"
49 
50 struct execute_cb {
51 	struct irq_work work;
52 	struct i915_sw_fence *fence;
53 	struct i915_request *signal;
54 };
55 
56 static struct kmem_cache *slab_requests;
57 static struct kmem_cache *slab_execute_cbs;
58 
59 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
60 {
61 	return dev_name(to_request(fence)->engine->i915->drm.dev);
62 }
63 
64 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
65 {
66 	const struct i915_gem_context *ctx;
67 
68 	/*
69 	 * The timeline struct (as part of the ppgtt underneath a context)
70 	 * may be freed when the request is no longer in use by the GPU.
71 	 * We could extend the life of a context to beyond that of all
72 	 * fences, possibly keeping the hw resource around indefinitely,
73 	 * or we just give them a false name. Since
74 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
75 	 * lie seems justifiable.
76 	 */
77 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
78 		return "signaled";
79 
80 	ctx = i915_request_gem_context(to_request(fence));
81 	if (!ctx)
82 		return "[" DRIVER_NAME "]";
83 
84 	return ctx->name;
85 }
86 
87 static bool i915_fence_signaled(struct dma_fence *fence)
88 {
89 	return i915_request_completed(to_request(fence));
90 }
91 
92 static bool i915_fence_enable_signaling(struct dma_fence *fence)
93 {
94 	return i915_request_enable_breadcrumb(to_request(fence));
95 }
96 
97 static signed long i915_fence_wait(struct dma_fence *fence,
98 				   bool interruptible,
99 				   signed long timeout)
100 {
101 	return i915_request_wait_timeout(to_request(fence),
102 					 interruptible | I915_WAIT_PRIORITY,
103 					 timeout);
104 }
105 
106 struct kmem_cache *i915_request_slab_cache(void)
107 {
108 	return slab_requests;
109 }
110 
111 static void i915_fence_release(struct dma_fence *fence)
112 {
113 	struct i915_request *rq = to_request(fence);
114 
115 	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
116 		   rq->guc_prio != GUC_PRIO_FINI);
117 
118 	i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
119 	if (i915_vma_snapshot_present(&rq->batch_snapshot))
120 		i915_vma_snapshot_put_onstack(&rq->batch_snapshot);
121 
122 	/*
123 	 * The request is put onto a RCU freelist (i.e. the address
124 	 * is immediately reused), mark the fences as being freed now.
125 	 * Otherwise the debugobjects for the fences are only marked as
126 	 * freed when the slab cache itself is freed, and so we would get
127 	 * caught trying to reuse dead objects.
128 	 */
129 	i915_sw_fence_fini(&rq->submit);
130 	i915_sw_fence_fini(&rq->semaphore);
131 
132 	/*
133 	 * Keep one request on each engine for reserved use under mempressure,
134 	 * do not use with virtual engines as this really is only needed for
135 	 * kernel contexts.
136 	 */
137 	if (!intel_engine_is_virtual(rq->engine) &&
138 	    !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
139 		intel_context_put(rq->context);
140 		return;
141 	}
142 
143 	intel_context_put(rq->context);
144 
145 	kmem_cache_free(slab_requests, rq);
146 }
147 
148 const struct dma_fence_ops i915_fence_ops = {
149 	.get_driver_name = i915_fence_get_driver_name,
150 	.get_timeline_name = i915_fence_get_timeline_name,
151 	.enable_signaling = i915_fence_enable_signaling,
152 	.signaled = i915_fence_signaled,
153 	.wait = i915_fence_wait,
154 	.release = i915_fence_release,
155 };
156 
157 static void irq_execute_cb(struct irq_work *wrk)
158 {
159 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
160 
161 	i915_sw_fence_complete(cb->fence);
162 	kmem_cache_free(slab_execute_cbs, cb);
163 }
164 
165 static __always_inline void
166 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
167 {
168 	struct execute_cb *cb, *cn;
169 
170 	if (llist_empty(&rq->execute_cb))
171 		return;
172 
173 	llist_for_each_entry_safe(cb, cn,
174 				  llist_del_all(&rq->execute_cb),
175 				  work.node.llist)
176 		fn(&cb->work);
177 }
178 
179 static void __notify_execute_cb_irq(struct i915_request *rq)
180 {
181 	__notify_execute_cb(rq, irq_work_queue);
182 }
183 
184 static bool irq_work_imm(struct irq_work *wrk)
185 {
186 	wrk->func(wrk);
187 	return false;
188 }
189 
190 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
191 {
192 	__notify_execute_cb(rq, irq_work_imm);
193 }
194 
195 static void __i915_request_fill(struct i915_request *rq, u8 val)
196 {
197 	void *vaddr = rq->ring->vaddr;
198 	u32 head;
199 
200 	head = rq->infix;
201 	if (rq->postfix < head) {
202 		memset(vaddr + head, val, rq->ring->size - head);
203 		head = 0;
204 	}
205 	memset(vaddr + head, val, rq->postfix - head);
206 }
207 
208 /**
209  * i915_request_active_engine
210  * @rq: request to inspect
211  * @active: pointer in which to return the active engine
212  *
213  * Fills the currently active engine to the @active pointer if the request
214  * is active and still not completed.
215  *
216  * Returns true if request was active or false otherwise.
217  */
218 bool
219 i915_request_active_engine(struct i915_request *rq,
220 			   struct intel_engine_cs **active)
221 {
222 	struct intel_engine_cs *engine, *locked;
223 	bool ret = false;
224 
225 	/*
226 	 * Serialise with __i915_request_submit() so that it sees
227 	 * is-banned?, or we know the request is already inflight.
228 	 *
229 	 * Note that rq->engine is unstable, and so we double
230 	 * check that we have acquired the lock on the final engine.
231 	 */
232 	locked = READ_ONCE(rq->engine);
233 	spin_lock_irq(&locked->sched_engine->lock);
234 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
235 		spin_unlock(&locked->sched_engine->lock);
236 		locked = engine;
237 		spin_lock(&locked->sched_engine->lock);
238 	}
239 
240 	if (i915_request_is_active(rq)) {
241 		if (!__i915_request_is_complete(rq))
242 			*active = locked;
243 		ret = true;
244 	}
245 
246 	spin_unlock_irq(&locked->sched_engine->lock);
247 
248 	return ret;
249 }
250 
251 static void __rq_init_watchdog(struct i915_request *rq)
252 {
253 	rq->watchdog.timer.function = NULL;
254 }
255 
256 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
257 {
258 	struct i915_request *rq =
259 		container_of(hrtimer, struct i915_request, watchdog.timer);
260 	struct intel_gt *gt = rq->engine->gt;
261 
262 	if (!i915_request_completed(rq)) {
263 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
264 			schedule_work(&gt->watchdog.work);
265 	} else {
266 		i915_request_put(rq);
267 	}
268 
269 	return HRTIMER_NORESTART;
270 }
271 
272 static void __rq_arm_watchdog(struct i915_request *rq)
273 {
274 	struct i915_request_watchdog *wdg = &rq->watchdog;
275 	struct intel_context *ce = rq->context;
276 
277 	if (!ce->watchdog.timeout_us)
278 		return;
279 
280 	i915_request_get(rq);
281 
282 	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
283 	wdg->timer.function = __rq_watchdog_expired;
284 	hrtimer_start_range_ns(&wdg->timer,
285 			       ns_to_ktime(ce->watchdog.timeout_us *
286 					   NSEC_PER_USEC),
287 			       NSEC_PER_MSEC,
288 			       HRTIMER_MODE_REL);
289 }
290 
291 static void __rq_cancel_watchdog(struct i915_request *rq)
292 {
293 	struct i915_request_watchdog *wdg = &rq->watchdog;
294 
295 	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
296 		i915_request_put(rq);
297 }
298 
299 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
300 
301 /**
302  * i915_request_free_capture_list - Free a capture list
303  * @capture: Pointer to the first list item or NULL
304  *
305  */
306 void i915_request_free_capture_list(struct i915_capture_list *capture)
307 {
308 	while (capture) {
309 		struct i915_capture_list *next = capture->next;
310 
311 		i915_vma_snapshot_put(capture->vma_snapshot);
312 		kfree(capture);
313 		capture = next;
314 	}
315 }
316 
317 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
318 
319 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
320 
321 #else
322 
323 #define i915_request_free_capture_list(_a) do {} while (0)
324 
325 #define assert_capture_list_is_null(_a) do {} while (0)
326 
327 #define clear_capture_list(_rq) do {} while (0)
328 
329 #endif
330 
331 bool i915_request_retire(struct i915_request *rq)
332 {
333 	if (!__i915_request_is_complete(rq))
334 		return false;
335 
336 	RQ_TRACE(rq, "\n");
337 
338 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
339 	trace_i915_request_retire(rq);
340 	i915_request_mark_complete(rq);
341 
342 	__rq_cancel_watchdog(rq);
343 
344 	/*
345 	 * We know the GPU must have read the request to have
346 	 * sent us the seqno + interrupt, so use the position
347 	 * of tail of the request to update the last known position
348 	 * of the GPU head.
349 	 *
350 	 * Note this requires that we are always called in request
351 	 * completion order.
352 	 */
353 	GEM_BUG_ON(!list_is_first(&rq->link,
354 				  &i915_request_timeline(rq)->requests));
355 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
356 		/* Poison before we release our space in the ring */
357 		__i915_request_fill(rq, POISON_FREE);
358 	rq->ring->head = rq->postfix;
359 
360 	if (!i915_request_signaled(rq)) {
361 		spin_lock_irq(&rq->lock);
362 		dma_fence_signal_locked(&rq->fence);
363 		spin_unlock_irq(&rq->lock);
364 	}
365 
366 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
367 		intel_rps_dec_waiters(&rq->engine->gt->rps);
368 
369 	/*
370 	 * We only loosely track inflight requests across preemption,
371 	 * and so we may find ourselves attempting to retire a _completed_
372 	 * request that we have removed from the HW and put back on a run
373 	 * queue.
374 	 *
375 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
376 	 * after removing the breadcrumb and signaling it, so that we do not
377 	 * inadvertently attach the breadcrumb to a completed request.
378 	 */
379 	rq->engine->remove_active_request(rq);
380 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
381 
382 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
383 
384 	intel_context_exit(rq->context);
385 	intel_context_unpin(rq->context);
386 
387 	i915_sched_node_fini(&rq->sched);
388 	i915_request_put(rq);
389 
390 	return true;
391 }
392 
393 void i915_request_retire_upto(struct i915_request *rq)
394 {
395 	struct intel_timeline * const tl = i915_request_timeline(rq);
396 	struct i915_request *tmp;
397 
398 	RQ_TRACE(rq, "\n");
399 	GEM_BUG_ON(!__i915_request_is_complete(rq));
400 
401 	do {
402 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
403 		GEM_BUG_ON(!i915_request_completed(tmp));
404 	} while (i915_request_retire(tmp) && tmp != rq);
405 }
406 
407 static struct i915_request * const *
408 __engine_active(struct intel_engine_cs *engine)
409 {
410 	return READ_ONCE(engine->execlists.active);
411 }
412 
413 static bool __request_in_flight(const struct i915_request *signal)
414 {
415 	struct i915_request * const *port, *rq;
416 	bool inflight = false;
417 
418 	if (!i915_request_is_ready(signal))
419 		return false;
420 
421 	/*
422 	 * Even if we have unwound the request, it may still be on
423 	 * the GPU (preempt-to-busy). If that request is inside an
424 	 * unpreemptible critical section, it will not be removed. Some
425 	 * GPU functions may even be stuck waiting for the paired request
426 	 * (__await_execution) to be submitted and cannot be preempted
427 	 * until the bond is executing.
428 	 *
429 	 * As we know that there are always preemption points between
430 	 * requests, we know that only the currently executing request
431 	 * may be still active even though we have cleared the flag.
432 	 * However, we can't rely on our tracking of ELSP[0] to know
433 	 * which request is currently active and so maybe stuck, as
434 	 * the tracking maybe an event behind. Instead assume that
435 	 * if the context is still inflight, then it is still active
436 	 * even if the active flag has been cleared.
437 	 *
438 	 * To further complicate matters, if there a pending promotion, the HW
439 	 * may either perform a context switch to the second inflight execlists,
440 	 * or it may switch to the pending set of execlists. In the case of the
441 	 * latter, it may send the ACK and we process the event copying the
442 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
443 	 * this implies the HW is arbitrating and not struck in *active, we do
444 	 * not worry about complete accuracy, but we do require no read/write
445 	 * tearing of the pointer [the read of the pointer must be valid, even
446 	 * as the array is being overwritten, for which we require the writes
447 	 * to avoid tearing.]
448 	 *
449 	 * Note that the read of *execlists->active may race with the promotion
450 	 * of execlists->pending[] to execlists->inflight[], overwritting
451 	 * the value at *execlists->active. This is fine. The promotion implies
452 	 * that we received an ACK from the HW, and so the context is not
453 	 * stuck -- if we do not see ourselves in *active, the inflight status
454 	 * is valid. If instead we see ourselves being copied into *active,
455 	 * we are inflight and may signal the callback.
456 	 */
457 	if (!intel_context_inflight(signal->context))
458 		return false;
459 
460 	rcu_read_lock();
461 	for (port = __engine_active(signal->engine);
462 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
463 	     port++) {
464 		if (rq->context == signal->context) {
465 			inflight = i915_seqno_passed(rq->fence.seqno,
466 						     signal->fence.seqno);
467 			break;
468 		}
469 	}
470 	rcu_read_unlock();
471 
472 	return inflight;
473 }
474 
475 static int
476 __await_execution(struct i915_request *rq,
477 		  struct i915_request *signal,
478 		  gfp_t gfp)
479 {
480 	struct execute_cb *cb;
481 
482 	if (i915_request_is_active(signal))
483 		return 0;
484 
485 	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
486 	if (!cb)
487 		return -ENOMEM;
488 
489 	cb->fence = &rq->submit;
490 	i915_sw_fence_await(cb->fence);
491 	init_irq_work(&cb->work, irq_execute_cb);
492 
493 	/*
494 	 * Register the callback first, then see if the signaler is already
495 	 * active. This ensures that if we race with the
496 	 * __notify_execute_cb from i915_request_submit() and we are not
497 	 * included in that list, we get a second bite of the cherry and
498 	 * execute it ourselves. After this point, a future
499 	 * i915_request_submit() will notify us.
500 	 *
501 	 * In i915_request_retire() we set the ACTIVE bit on a completed
502 	 * request (then flush the execute_cb). So by registering the
503 	 * callback first, then checking the ACTIVE bit, we serialise with
504 	 * the completed/retired request.
505 	 */
506 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
507 		if (i915_request_is_active(signal) ||
508 		    __request_in_flight(signal))
509 			i915_request_notify_execute_cb_imm(signal);
510 	}
511 
512 	return 0;
513 }
514 
515 static bool fatal_error(int error)
516 {
517 	switch (error) {
518 	case 0: /* not an error! */
519 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
520 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
521 		return false;
522 	default:
523 		return true;
524 	}
525 }
526 
527 void __i915_request_skip(struct i915_request *rq)
528 {
529 	GEM_BUG_ON(!fatal_error(rq->fence.error));
530 
531 	if (rq->infix == rq->postfix)
532 		return;
533 
534 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
535 
536 	/*
537 	 * As this request likely depends on state from the lost
538 	 * context, clear out all the user operations leaving the
539 	 * breadcrumb at the end (so we get the fence notifications).
540 	 */
541 	__i915_request_fill(rq, 0);
542 	rq->infix = rq->postfix;
543 }
544 
545 bool i915_request_set_error_once(struct i915_request *rq, int error)
546 {
547 	int old;
548 
549 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
550 
551 	if (i915_request_signaled(rq))
552 		return false;
553 
554 	old = READ_ONCE(rq->fence.error);
555 	do {
556 		if (fatal_error(old))
557 			return false;
558 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
559 
560 	return true;
561 }
562 
563 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
564 {
565 	if (__i915_request_is_complete(rq))
566 		return NULL;
567 
568 	GEM_BUG_ON(i915_request_signaled(rq));
569 
570 	/* As soon as the request is completed, it may be retired */
571 	rq = i915_request_get(rq);
572 
573 	i915_request_set_error_once(rq, -EIO);
574 	i915_request_mark_complete(rq);
575 
576 	return rq;
577 }
578 
579 bool __i915_request_submit(struct i915_request *request)
580 {
581 	struct intel_engine_cs *engine = request->engine;
582 	bool result = false;
583 
584 	RQ_TRACE(request, "\n");
585 
586 	GEM_BUG_ON(!irqs_disabled());
587 	lockdep_assert_held(&engine->sched_engine->lock);
588 
589 	/*
590 	 * With the advent of preempt-to-busy, we frequently encounter
591 	 * requests that we have unsubmitted from HW, but left running
592 	 * until the next ack and so have completed in the meantime. On
593 	 * resubmission of that completed request, we can skip
594 	 * updating the payload, and execlists can even skip submitting
595 	 * the request.
596 	 *
597 	 * We must remove the request from the caller's priority queue,
598 	 * and the caller must only call us when the request is in their
599 	 * priority queue, under the sched_engine->lock. This ensures that the
600 	 * request has *not* yet been retired and we can safely move
601 	 * the request into the engine->active.list where it will be
602 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
603 	 * request, this would be a horrible use-after-free.)
604 	 */
605 	if (__i915_request_is_complete(request)) {
606 		list_del_init(&request->sched.link);
607 		goto active;
608 	}
609 
610 	if (unlikely(intel_context_is_banned(request->context)))
611 		i915_request_set_error_once(request, -EIO);
612 
613 	if (unlikely(fatal_error(request->fence.error)))
614 		__i915_request_skip(request);
615 
616 	/*
617 	 * Are we using semaphores when the gpu is already saturated?
618 	 *
619 	 * Using semaphores incurs a cost in having the GPU poll a
620 	 * memory location, busywaiting for it to change. The continual
621 	 * memory reads can have a noticeable impact on the rest of the
622 	 * system with the extra bus traffic, stalling the cpu as it too
623 	 * tries to access memory across the bus (perf stat -e bus-cycles).
624 	 *
625 	 * If we installed a semaphore on this request and we only submit
626 	 * the request after the signaler completed, that indicates the
627 	 * system is overloaded and using semaphores at this time only
628 	 * increases the amount of work we are doing. If so, we disable
629 	 * further use of semaphores until we are idle again, whence we
630 	 * optimistically try again.
631 	 */
632 	if (request->sched.semaphores &&
633 	    i915_sw_fence_signaled(&request->semaphore))
634 		engine->saturated |= request->sched.semaphores;
635 
636 	engine->emit_fini_breadcrumb(request,
637 				     request->ring->vaddr + request->postfix);
638 
639 	trace_i915_request_execute(request);
640 	if (engine->bump_serial)
641 		engine->bump_serial(engine);
642 	else
643 		engine->serial++;
644 
645 	result = true;
646 
647 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
648 	engine->add_active_request(request);
649 active:
650 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
651 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
652 
653 	/*
654 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
655 	 *
656 	 * In the future, perhaps when we have an active time-slicing scheduler,
657 	 * it will be interesting to unsubmit parallel execution and remove
658 	 * busywaits from the GPU until their master is restarted. This is
659 	 * quite hairy, we have to carefully rollback the fence and do a
660 	 * preempt-to-idle cycle on the target engine, all the while the
661 	 * master execute_cb may refire.
662 	 */
663 	__notify_execute_cb_irq(request);
664 
665 	/* We may be recursing from the signal callback of another i915 fence */
666 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
667 		i915_request_enable_breadcrumb(request);
668 
669 	return result;
670 }
671 
672 void i915_request_submit(struct i915_request *request)
673 {
674 	struct intel_engine_cs *engine = request->engine;
675 	unsigned long flags;
676 
677 	/* Will be called from irq-context when using foreign fences. */
678 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
679 
680 	__i915_request_submit(request);
681 
682 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
683 }
684 
685 void __i915_request_unsubmit(struct i915_request *request)
686 {
687 	struct intel_engine_cs *engine = request->engine;
688 
689 	/*
690 	 * Only unwind in reverse order, required so that the per-context list
691 	 * is kept in seqno/ring order.
692 	 */
693 	RQ_TRACE(request, "\n");
694 
695 	GEM_BUG_ON(!irqs_disabled());
696 	lockdep_assert_held(&engine->sched_engine->lock);
697 
698 	/*
699 	 * Before we remove this breadcrumb from the signal list, we have
700 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
701 	 * attach itself. We first mark the request as no longer active and
702 	 * make sure that is visible to other cores, and then remove the
703 	 * breadcrumb if attached.
704 	 */
705 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
706 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
707 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
708 		i915_request_cancel_breadcrumb(request);
709 
710 	/* We've already spun, don't charge on resubmitting. */
711 	if (request->sched.semaphores && __i915_request_has_started(request))
712 		request->sched.semaphores = 0;
713 
714 	/*
715 	 * We don't need to wake_up any waiters on request->execute, they
716 	 * will get woken by any other event or us re-adding this request
717 	 * to the engine timeline (__i915_request_submit()). The waiters
718 	 * should be quite adapt at finding that the request now has a new
719 	 * global_seqno to the one they went to sleep on.
720 	 */
721 }
722 
723 void i915_request_unsubmit(struct i915_request *request)
724 {
725 	struct intel_engine_cs *engine = request->engine;
726 	unsigned long flags;
727 
728 	/* Will be called from irq-context when using foreign fences. */
729 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
730 
731 	__i915_request_unsubmit(request);
732 
733 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
734 }
735 
736 void i915_request_cancel(struct i915_request *rq, int error)
737 {
738 	if (!i915_request_set_error_once(rq, error))
739 		return;
740 
741 	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
742 
743 	intel_context_cancel_request(rq->context, rq);
744 }
745 
746 static int
747 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
748 {
749 	struct i915_request *request =
750 		container_of(fence, typeof(*request), submit);
751 
752 	switch (state) {
753 	case FENCE_COMPLETE:
754 		trace_i915_request_submit(request);
755 
756 		if (unlikely(fence->error))
757 			i915_request_set_error_once(request, fence->error);
758 		else
759 			__rq_arm_watchdog(request);
760 
761 		/*
762 		 * We need to serialize use of the submit_request() callback
763 		 * with its hotplugging performed during an emergency
764 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
765 		 * critical section in order to force i915_gem_set_wedged() to
766 		 * wait until the submit_request() is completed before
767 		 * proceeding.
768 		 */
769 		rcu_read_lock();
770 		request->engine->submit_request(request);
771 		rcu_read_unlock();
772 		break;
773 
774 	case FENCE_FREE:
775 		i915_request_put(request);
776 		break;
777 	}
778 
779 	return NOTIFY_DONE;
780 }
781 
782 static int
783 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
784 {
785 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
786 
787 	switch (state) {
788 	case FENCE_COMPLETE:
789 		break;
790 
791 	case FENCE_FREE:
792 		i915_request_put(rq);
793 		break;
794 	}
795 
796 	return NOTIFY_DONE;
797 }
798 
799 static void retire_requests(struct intel_timeline *tl)
800 {
801 	struct i915_request *rq, *rn;
802 
803 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
804 		if (!i915_request_retire(rq))
805 			break;
806 }
807 
808 static noinline struct i915_request *
809 request_alloc_slow(struct intel_timeline *tl,
810 		   struct i915_request **rsvd,
811 		   gfp_t gfp)
812 {
813 	struct i915_request *rq;
814 
815 	/* If we cannot wait, dip into our reserves */
816 	if (!gfpflags_allow_blocking(gfp)) {
817 		rq = xchg(rsvd, NULL);
818 		if (!rq) /* Use the normal failure path for one final WARN */
819 			goto out;
820 
821 		return rq;
822 	}
823 
824 	if (list_empty(&tl->requests))
825 		goto out;
826 
827 	/* Move our oldest request to the slab-cache (if not in use!) */
828 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
829 	i915_request_retire(rq);
830 
831 	rq = kmem_cache_alloc(slab_requests,
832 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
833 	if (rq)
834 		return rq;
835 
836 	/* Ratelimit ourselves to prevent oom from malicious clients */
837 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
838 	cond_synchronize_rcu(rq->rcustate);
839 
840 	/* Retire our old requests in the hope that we free some */
841 	retire_requests(tl);
842 
843 out:
844 	return kmem_cache_alloc(slab_requests, gfp);
845 }
846 
847 static void __i915_request_ctor(void *arg)
848 {
849 	struct i915_request *rq = arg;
850 
851 	spin_lock_init(&rq->lock);
852 	i915_sched_node_init(&rq->sched);
853 	i915_sw_fence_init(&rq->submit, submit_notify);
854 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
855 
856 	clear_capture_list(rq);
857 	rq->batch_snapshot.present = false;
858 
859 	init_llist_head(&rq->execute_cb);
860 }
861 
862 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
863 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
864 #else
865 #define clear_batch_ptr(_a) do {} while (0)
866 #endif
867 
868 struct i915_request *
869 __i915_request_create(struct intel_context *ce, gfp_t gfp)
870 {
871 	struct intel_timeline *tl = ce->timeline;
872 	struct i915_request *rq;
873 	u32 seqno;
874 	int ret;
875 
876 	might_alloc(gfp);
877 
878 	/* Check that the caller provided an already pinned context */
879 	__intel_context_pin(ce);
880 
881 	/*
882 	 * Beware: Dragons be flying overhead.
883 	 *
884 	 * We use RCU to look up requests in flight. The lookups may
885 	 * race with the request being allocated from the slab freelist.
886 	 * That is the request we are writing to here, may be in the process
887 	 * of being read by __i915_active_request_get_rcu(). As such,
888 	 * we have to be very careful when overwriting the contents. During
889 	 * the RCU lookup, we change chase the request->engine pointer,
890 	 * read the request->global_seqno and increment the reference count.
891 	 *
892 	 * The reference count is incremented atomically. If it is zero,
893 	 * the lookup knows the request is unallocated and complete. Otherwise,
894 	 * it is either still in use, or has been reallocated and reset
895 	 * with dma_fence_init(). This increment is safe for release as we
896 	 * check that the request we have a reference to and matches the active
897 	 * request.
898 	 *
899 	 * Before we increment the refcount, we chase the request->engine
900 	 * pointer. We must not call kmem_cache_zalloc() or else we set
901 	 * that pointer to NULL and cause a crash during the lookup. If
902 	 * we see the request is completed (based on the value of the
903 	 * old engine and seqno), the lookup is complete and reports NULL.
904 	 * If we decide the request is not completed (new engine or seqno),
905 	 * then we grab a reference and double check that it is still the
906 	 * active request - which it won't be and restart the lookup.
907 	 *
908 	 * Do not use kmem_cache_zalloc() here!
909 	 */
910 	rq = kmem_cache_alloc(slab_requests,
911 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
912 	if (unlikely(!rq)) {
913 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
914 		if (!rq) {
915 			ret = -ENOMEM;
916 			goto err_unreserve;
917 		}
918 	}
919 
920 	/*
921 	 * Hold a reference to the intel_context over life of an i915_request.
922 	 * Without this an i915_request can exist after the context has been
923 	 * destroyed (e.g. request retired, context closed, but user space holds
924 	 * a reference to the request from an out fence). In the case of GuC
925 	 * submission + virtual engine, the engine that the request references
926 	 * is also destroyed which can trigger bad pointer dref in fence ops
927 	 * (e.g. i915_fence_get_driver_name). We could likely change these
928 	 * functions to avoid touching the engine but let's just be safe and
929 	 * hold the intel_context reference. In execlist mode the request always
930 	 * eventually points to a physical engine so this isn't an issue.
931 	 */
932 	rq->context = intel_context_get(ce);
933 	rq->engine = ce->engine;
934 	rq->ring = ce->ring;
935 	rq->execution_mask = ce->engine->mask;
936 
937 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
938 	if (ret)
939 		goto err_free;
940 
941 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
942 		       tl->fence_context, seqno);
943 
944 	RCU_INIT_POINTER(rq->timeline, tl);
945 	rq->hwsp_seqno = tl->hwsp_seqno;
946 	GEM_BUG_ON(__i915_request_is_complete(rq));
947 
948 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
949 
950 	rq->guc_prio = GUC_PRIO_INIT;
951 
952 	/* We bump the ref for the fence chain */
953 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
954 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
955 
956 	i915_sched_node_reinit(&rq->sched);
957 
958 	/* No zalloc, everything must be cleared after use */
959 	clear_batch_ptr(rq);
960 	__rq_init_watchdog(rq);
961 	assert_capture_list_is_null(rq);
962 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
963 	GEM_BUG_ON(i915_vma_snapshot_present(&rq->batch_snapshot));
964 
965 	/*
966 	 * Reserve space in the ring buffer for all the commands required to
967 	 * eventually emit this request. This is to guarantee that the
968 	 * i915_request_add() call can't fail. Note that the reserve may need
969 	 * to be redone if the request is not actually submitted straight
970 	 * away, e.g. because a GPU scheduler has deferred it.
971 	 *
972 	 * Note that due to how we add reserved_space to intel_ring_begin()
973 	 * we need to double our request to ensure that if we need to wrap
974 	 * around inside i915_request_add() there is sufficient space at
975 	 * the beginning of the ring as well.
976 	 */
977 	rq->reserved_space =
978 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
979 
980 	/*
981 	 * Record the position of the start of the request so that
982 	 * should we detect the updated seqno part-way through the
983 	 * GPU processing the request, we never over-estimate the
984 	 * position of the head.
985 	 */
986 	rq->head = rq->ring->emit;
987 
988 	ret = rq->engine->request_alloc(rq);
989 	if (ret)
990 		goto err_unwind;
991 
992 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
993 
994 	intel_context_mark_active(ce);
995 	list_add_tail_rcu(&rq->link, &tl->requests);
996 
997 	return rq;
998 
999 err_unwind:
1000 	ce->ring->emit = rq->head;
1001 
1002 	/* Make sure we didn't add ourselves to external state before freeing */
1003 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1004 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1005 
1006 err_free:
1007 	intel_context_put(ce);
1008 	kmem_cache_free(slab_requests, rq);
1009 err_unreserve:
1010 	intel_context_unpin(ce);
1011 	return ERR_PTR(ret);
1012 }
1013 
1014 struct i915_request *
1015 i915_request_create(struct intel_context *ce)
1016 {
1017 	struct i915_request *rq;
1018 	struct intel_timeline *tl;
1019 
1020 	tl = intel_context_timeline_lock(ce);
1021 	if (IS_ERR(tl))
1022 		return ERR_CAST(tl);
1023 
1024 	/* Move our oldest request to the slab-cache (if not in use!) */
1025 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1026 	if (!list_is_last(&rq->link, &tl->requests))
1027 		i915_request_retire(rq);
1028 
1029 	intel_context_enter(ce);
1030 	rq = __i915_request_create(ce, GFP_KERNEL);
1031 	intel_context_exit(ce); /* active reference transferred to request */
1032 	if (IS_ERR(rq))
1033 		goto err_unlock;
1034 
1035 	/* Check that we do not interrupt ourselves with a new request */
1036 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1037 
1038 	return rq;
1039 
1040 err_unlock:
1041 	intel_context_timeline_unlock(tl);
1042 	return rq;
1043 }
1044 
1045 static int
1046 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1047 {
1048 	struct dma_fence *fence;
1049 	int err;
1050 
1051 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1052 		return 0;
1053 
1054 	if (i915_request_started(signal))
1055 		return 0;
1056 
1057 	/*
1058 	 * The caller holds a reference on @signal, but we do not serialise
1059 	 * against it being retired and removed from the lists.
1060 	 *
1061 	 * We do not hold a reference to the request before @signal, and
1062 	 * so must be very careful to ensure that it is not _recycled_ as
1063 	 * we follow the link backwards.
1064 	 */
1065 	fence = NULL;
1066 	rcu_read_lock();
1067 	do {
1068 		struct list_head *pos = READ_ONCE(signal->link.prev);
1069 		struct i915_request *prev;
1070 
1071 		/* Confirm signal has not been retired, the link is valid */
1072 		if (unlikely(__i915_request_has_started(signal)))
1073 			break;
1074 
1075 		/* Is signal the earliest request on its timeline? */
1076 		if (pos == &rcu_dereference(signal->timeline)->requests)
1077 			break;
1078 
1079 		/*
1080 		 * Peek at the request before us in the timeline. That
1081 		 * request will only be valid before it is retired, so
1082 		 * after acquiring a reference to it, confirm that it is
1083 		 * still part of the signaler's timeline.
1084 		 */
1085 		prev = list_entry(pos, typeof(*prev), link);
1086 		if (!i915_request_get_rcu(prev))
1087 			break;
1088 
1089 		/* After the strong barrier, confirm prev is still attached */
1090 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1091 			i915_request_put(prev);
1092 			break;
1093 		}
1094 
1095 		fence = &prev->fence;
1096 	} while (0);
1097 	rcu_read_unlock();
1098 	if (!fence)
1099 		return 0;
1100 
1101 	err = 0;
1102 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1103 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1104 						    fence, 0,
1105 						    I915_FENCE_GFP);
1106 	dma_fence_put(fence);
1107 
1108 	return err;
1109 }
1110 
1111 static intel_engine_mask_t
1112 already_busywaiting(struct i915_request *rq)
1113 {
1114 	/*
1115 	 * Polling a semaphore causes bus traffic, delaying other users of
1116 	 * both the GPU and CPU. We want to limit the impact on others,
1117 	 * while taking advantage of early submission to reduce GPU
1118 	 * latency. Therefore we restrict ourselves to not using more
1119 	 * than one semaphore from each source, and not using a semaphore
1120 	 * if we have detected the engine is saturated (i.e. would not be
1121 	 * submitted early and cause bus traffic reading an already passed
1122 	 * semaphore).
1123 	 *
1124 	 * See the are-we-too-late? check in __i915_request_submit().
1125 	 */
1126 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1127 }
1128 
1129 static int
1130 __emit_semaphore_wait(struct i915_request *to,
1131 		      struct i915_request *from,
1132 		      u32 seqno)
1133 {
1134 	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1135 	u32 hwsp_offset;
1136 	int len, err;
1137 	u32 *cs;
1138 
1139 	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1140 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1141 
1142 	/* We need to pin the signaler's HWSP until we are finished reading. */
1143 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1144 	if (err)
1145 		return err;
1146 
1147 	len = 4;
1148 	if (has_token)
1149 		len += 2;
1150 
1151 	cs = intel_ring_begin(to, len);
1152 	if (IS_ERR(cs))
1153 		return PTR_ERR(cs);
1154 
1155 	/*
1156 	 * Using greater-than-or-equal here means we have to worry
1157 	 * about seqno wraparound. To side step that issue, we swap
1158 	 * the timeline HWSP upon wrapping, so that everyone listening
1159 	 * for the old (pre-wrap) values do not see the much smaller
1160 	 * (post-wrap) values than they were expecting (and so wait
1161 	 * forever).
1162 	 */
1163 	*cs++ = (MI_SEMAPHORE_WAIT |
1164 		 MI_SEMAPHORE_GLOBAL_GTT |
1165 		 MI_SEMAPHORE_POLL |
1166 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1167 		has_token;
1168 	*cs++ = seqno;
1169 	*cs++ = hwsp_offset;
1170 	*cs++ = 0;
1171 	if (has_token) {
1172 		*cs++ = 0;
1173 		*cs++ = MI_NOOP;
1174 	}
1175 
1176 	intel_ring_advance(to, cs);
1177 	return 0;
1178 }
1179 
1180 static bool
1181 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1182 {
1183 	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1184 }
1185 
1186 static int
1187 emit_semaphore_wait(struct i915_request *to,
1188 		    struct i915_request *from,
1189 		    gfp_t gfp)
1190 {
1191 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1192 	struct i915_sw_fence *wait = &to->submit;
1193 
1194 	if (!can_use_semaphore_wait(to, from))
1195 		goto await_fence;
1196 
1197 	if (!intel_context_use_semaphores(to->context))
1198 		goto await_fence;
1199 
1200 	if (i915_request_has_initial_breadcrumb(to))
1201 		goto await_fence;
1202 
1203 	/*
1204 	 * If this or its dependents are waiting on an external fence
1205 	 * that may fail catastrophically, then we want to avoid using
1206 	 * sempahores as they bypass the fence signaling metadata, and we
1207 	 * lose the fence->error propagation.
1208 	 */
1209 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1210 		goto await_fence;
1211 
1212 	/* Just emit the first semaphore we see as request space is limited. */
1213 	if (already_busywaiting(to) & mask)
1214 		goto await_fence;
1215 
1216 	if (i915_request_await_start(to, from) < 0)
1217 		goto await_fence;
1218 
1219 	/* Only submit our spinner after the signaler is running! */
1220 	if (__await_execution(to, from, gfp))
1221 		goto await_fence;
1222 
1223 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1224 		goto await_fence;
1225 
1226 	to->sched.semaphores |= mask;
1227 	wait = &to->semaphore;
1228 
1229 await_fence:
1230 	return i915_sw_fence_await_dma_fence(wait,
1231 					     &from->fence, 0,
1232 					     I915_FENCE_GFP);
1233 }
1234 
1235 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1236 					  struct dma_fence *fence)
1237 {
1238 	return __intel_timeline_sync_is_later(tl,
1239 					      fence->context,
1240 					      fence->seqno - 1);
1241 }
1242 
1243 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1244 					 const struct dma_fence *fence)
1245 {
1246 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1247 }
1248 
1249 static int
1250 __i915_request_await_execution(struct i915_request *to,
1251 			       struct i915_request *from)
1252 {
1253 	int err;
1254 
1255 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1256 
1257 	/* Submit both requests at the same time */
1258 	err = __await_execution(to, from, I915_FENCE_GFP);
1259 	if (err)
1260 		return err;
1261 
1262 	/* Squash repeated depenendices to the same timelines */
1263 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1264 					  &from->fence))
1265 		return 0;
1266 
1267 	/*
1268 	 * Wait until the start of this request.
1269 	 *
1270 	 * The execution cb fires when we submit the request to HW. But in
1271 	 * many cases this may be long before the request itself is ready to
1272 	 * run (consider that we submit 2 requests for the same context, where
1273 	 * the request of interest is behind an indefinite spinner). So we hook
1274 	 * up to both to reduce our queues and keep the execution lag minimised
1275 	 * in the worst case, though we hope that the await_start is elided.
1276 	 */
1277 	err = i915_request_await_start(to, from);
1278 	if (err < 0)
1279 		return err;
1280 
1281 	/*
1282 	 * Ensure both start together [after all semaphores in signal]
1283 	 *
1284 	 * Now that we are queued to the HW at roughly the same time (thanks
1285 	 * to the execute cb) and are ready to run at roughly the same time
1286 	 * (thanks to the await start), our signaler may still be indefinitely
1287 	 * delayed by waiting on a semaphore from a remote engine. If our
1288 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1289 	 * want to start our payload until our signaler also starts theirs.
1290 	 * So we wait.
1291 	 *
1292 	 * However, there is also a second condition for which we need to wait
1293 	 * for the precise start of the signaler. Consider that the signaler
1294 	 * was submitted in a chain of requests following another context
1295 	 * (with just an ordinary intra-engine fence dependency between the
1296 	 * two). In this case the signaler is queued to HW, but not for
1297 	 * immediate execution, and so we must wait until it reaches the
1298 	 * active slot.
1299 	 */
1300 	if (can_use_semaphore_wait(to, from) &&
1301 	    intel_engine_has_semaphores(to->engine) &&
1302 	    !i915_request_has_initial_breadcrumb(to)) {
1303 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1304 		if (err < 0)
1305 			return err;
1306 	}
1307 
1308 	/* Couple the dependency tree for PI on this exposed to->fence */
1309 	if (to->engine->sched_engine->schedule) {
1310 		err = i915_sched_node_add_dependency(&to->sched,
1311 						     &from->sched,
1312 						     I915_DEPENDENCY_WEAK);
1313 		if (err < 0)
1314 			return err;
1315 	}
1316 
1317 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1318 					     &from->fence);
1319 }
1320 
1321 static void mark_external(struct i915_request *rq)
1322 {
1323 	/*
1324 	 * The downside of using semaphores is that we lose metadata passing
1325 	 * along the signaling chain. This is particularly nasty when we
1326 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1327 	 * fatal errors we want to scrub the request before it is executed,
1328 	 * which means that we cannot preload the request onto HW and have
1329 	 * it wait upon a semaphore.
1330 	 */
1331 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1332 }
1333 
1334 static int
1335 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1336 {
1337 	mark_external(rq);
1338 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1339 					     i915_fence_context_timeout(rq->engine->i915,
1340 									fence->context),
1341 					     I915_FENCE_GFP);
1342 }
1343 
1344 static int
1345 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1346 {
1347 	struct dma_fence *iter;
1348 	int err = 0;
1349 
1350 	if (!to_dma_fence_chain(fence))
1351 		return __i915_request_await_external(rq, fence);
1352 
1353 	dma_fence_chain_for_each(iter, fence) {
1354 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1355 
1356 		if (!dma_fence_is_i915(chain->fence)) {
1357 			err = __i915_request_await_external(rq, iter);
1358 			break;
1359 		}
1360 
1361 		err = i915_request_await_dma_fence(rq, chain->fence);
1362 		if (err < 0)
1363 			break;
1364 	}
1365 
1366 	dma_fence_put(iter);
1367 	return err;
1368 }
1369 
1370 static inline bool is_parallel_rq(struct i915_request *rq)
1371 {
1372 	return intel_context_is_parallel(rq->context);
1373 }
1374 
1375 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1376 {
1377 	return intel_context_to_parent(rq->context);
1378 }
1379 
1380 static bool is_same_parallel_context(struct i915_request *to,
1381 				     struct i915_request *from)
1382 {
1383 	if (is_parallel_rq(to))
1384 		return request_to_parent(to) == request_to_parent(from);
1385 
1386 	return false;
1387 }
1388 
1389 int
1390 i915_request_await_execution(struct i915_request *rq,
1391 			     struct dma_fence *fence)
1392 {
1393 	struct dma_fence **child = &fence;
1394 	unsigned int nchild = 1;
1395 	int ret;
1396 
1397 	if (dma_fence_is_array(fence)) {
1398 		struct dma_fence_array *array = to_dma_fence_array(fence);
1399 
1400 		/* XXX Error for signal-on-any fence arrays */
1401 
1402 		child = array->fences;
1403 		nchild = array->num_fences;
1404 		GEM_BUG_ON(!nchild);
1405 	}
1406 
1407 	do {
1408 		fence = *child++;
1409 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1410 			continue;
1411 
1412 		if (fence->context == rq->fence.context)
1413 			continue;
1414 
1415 		/*
1416 		 * We don't squash repeated fence dependencies here as we
1417 		 * want to run our callback in all cases.
1418 		 */
1419 
1420 		if (dma_fence_is_i915(fence)) {
1421 			if (is_same_parallel_context(rq, to_request(fence)))
1422 				continue;
1423 			ret = __i915_request_await_execution(rq,
1424 							     to_request(fence));
1425 		} else {
1426 			ret = i915_request_await_external(rq, fence);
1427 		}
1428 		if (ret < 0)
1429 			return ret;
1430 	} while (--nchild);
1431 
1432 	return 0;
1433 }
1434 
1435 static int
1436 await_request_submit(struct i915_request *to, struct i915_request *from)
1437 {
1438 	/*
1439 	 * If we are waiting on a virtual engine, then it may be
1440 	 * constrained to execute on a single engine *prior* to submission.
1441 	 * When it is submitted, it will be first submitted to the virtual
1442 	 * engine and then passed to the physical engine. We cannot allow
1443 	 * the waiter to be submitted immediately to the physical engine
1444 	 * as it may then bypass the virtual request.
1445 	 */
1446 	if (to->engine == READ_ONCE(from->engine))
1447 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1448 							&from->submit,
1449 							I915_FENCE_GFP);
1450 	else
1451 		return __i915_request_await_execution(to, from);
1452 }
1453 
1454 static int
1455 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1456 {
1457 	int ret;
1458 
1459 	GEM_BUG_ON(to == from);
1460 	GEM_BUG_ON(to->timeline == from->timeline);
1461 
1462 	if (i915_request_completed(from)) {
1463 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1464 		return 0;
1465 	}
1466 
1467 	if (to->engine->sched_engine->schedule) {
1468 		ret = i915_sched_node_add_dependency(&to->sched,
1469 						     &from->sched,
1470 						     I915_DEPENDENCY_EXTERNAL);
1471 		if (ret < 0)
1472 			return ret;
1473 	}
1474 
1475 	if (!intel_engine_uses_guc(to->engine) &&
1476 	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1477 		ret = await_request_submit(to, from);
1478 	else
1479 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1480 	if (ret < 0)
1481 		return ret;
1482 
1483 	return 0;
1484 }
1485 
1486 int
1487 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1488 {
1489 	struct dma_fence **child = &fence;
1490 	unsigned int nchild = 1;
1491 	int ret;
1492 
1493 	/*
1494 	 * Note that if the fence-array was created in signal-on-any mode,
1495 	 * we should *not* decompose it into its individual fences. However,
1496 	 * we don't currently store which mode the fence-array is operating
1497 	 * in. Fortunately, the only user of signal-on-any is private to
1498 	 * amdgpu and we should not see any incoming fence-array from
1499 	 * sync-file being in signal-on-any mode.
1500 	 */
1501 	if (dma_fence_is_array(fence)) {
1502 		struct dma_fence_array *array = to_dma_fence_array(fence);
1503 
1504 		child = array->fences;
1505 		nchild = array->num_fences;
1506 		GEM_BUG_ON(!nchild);
1507 	}
1508 
1509 	do {
1510 		fence = *child++;
1511 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1512 			continue;
1513 
1514 		/*
1515 		 * Requests on the same timeline are explicitly ordered, along
1516 		 * with their dependencies, by i915_request_add() which ensures
1517 		 * that requests are submitted in-order through each ring.
1518 		 */
1519 		if (fence->context == rq->fence.context)
1520 			continue;
1521 
1522 		/* Squash repeated waits to the same timelines */
1523 		if (fence->context &&
1524 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1525 						 fence))
1526 			continue;
1527 
1528 		if (dma_fence_is_i915(fence)) {
1529 			if (is_same_parallel_context(rq, to_request(fence)))
1530 				continue;
1531 			ret = i915_request_await_request(rq, to_request(fence));
1532 		} else {
1533 			ret = i915_request_await_external(rq, fence);
1534 		}
1535 		if (ret < 0)
1536 			return ret;
1537 
1538 		/* Record the latest fence used against each timeline */
1539 		if (fence->context)
1540 			intel_timeline_sync_set(i915_request_timeline(rq),
1541 						fence);
1542 	} while (--nchild);
1543 
1544 	return 0;
1545 }
1546 
1547 /**
1548  * i915_request_await_deps - set this request to (async) wait upon a struct
1549  * i915_deps dma_fence collection
1550  * @rq: request we are wishing to use
1551  * @deps: The struct i915_deps containing the dependencies.
1552  *
1553  * Returns 0 if successful, negative error code on error.
1554  */
1555 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1556 {
1557 	int i, err;
1558 
1559 	for (i = 0; i < deps->num_deps; ++i) {
1560 		err = i915_request_await_dma_fence(rq, deps->fences[i]);
1561 		if (err)
1562 			return err;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 /**
1569  * i915_request_await_object - set this request to (async) wait upon a bo
1570  * @to: request we are wishing to use
1571  * @obj: object which may be in use on another ring.
1572  * @write: whether the wait is on behalf of a writer
1573  *
1574  * This code is meant to abstract object synchronization with the GPU.
1575  * Conceptually we serialise writes between engines inside the GPU.
1576  * We only allow one engine to write into a buffer at any time, but
1577  * multiple readers. To ensure each has a coherent view of memory, we must:
1578  *
1579  * - If there is an outstanding write request to the object, the new
1580  *   request must wait for it to complete (either CPU or in hw, requests
1581  *   on the same ring will be naturally ordered).
1582  *
1583  * - If we are a write request (pending_write_domain is set), the new
1584  *   request must wait for outstanding read requests to complete.
1585  *
1586  * Returns 0 if successful, else propagates up the lower layer error.
1587  */
1588 int
1589 i915_request_await_object(struct i915_request *to,
1590 			  struct drm_i915_gem_object *obj,
1591 			  bool write)
1592 {
1593 	struct dma_resv_iter cursor;
1594 	struct dma_fence *fence;
1595 	int ret = 0;
1596 
1597 	dma_resv_for_each_fence(&cursor, obj->base.resv, write, fence) {
1598 		ret = i915_request_await_dma_fence(to, fence);
1599 		if (ret)
1600 			break;
1601 	}
1602 
1603 	return ret;
1604 }
1605 
1606 static struct i915_request *
1607 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1608 					struct intel_timeline *timeline)
1609 {
1610 	struct i915_request *prev;
1611 
1612 	GEM_BUG_ON(!is_parallel_rq(rq));
1613 
1614 	prev = request_to_parent(rq)->parallel.last_rq;
1615 	if (prev) {
1616 		if (!__i915_request_is_complete(prev)) {
1617 			i915_sw_fence_await_sw_fence(&rq->submit,
1618 						     &prev->submit,
1619 						     &rq->submitq);
1620 
1621 			if (rq->engine->sched_engine->schedule)
1622 				__i915_sched_node_add_dependency(&rq->sched,
1623 								 &prev->sched,
1624 								 &rq->dep,
1625 								 0);
1626 		}
1627 		i915_request_put(prev);
1628 	}
1629 
1630 	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1631 
1632 	return to_request(__i915_active_fence_set(&timeline->last_request,
1633 						  &rq->fence));
1634 }
1635 
1636 static struct i915_request *
1637 __i915_request_ensure_ordering(struct i915_request *rq,
1638 			       struct intel_timeline *timeline)
1639 {
1640 	struct i915_request *prev;
1641 
1642 	GEM_BUG_ON(is_parallel_rq(rq));
1643 
1644 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1645 						  &rq->fence));
1646 
1647 	if (prev && !__i915_request_is_complete(prev)) {
1648 		bool uses_guc = intel_engine_uses_guc(rq->engine);
1649 		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1650 					  rq->engine->mask);
1651 		bool same_context = prev->context == rq->context;
1652 
1653 		/*
1654 		 * The requests are supposed to be kept in order. However,
1655 		 * we need to be wary in case the timeline->last_request
1656 		 * is used as a barrier for external modification to this
1657 		 * context.
1658 		 */
1659 		GEM_BUG_ON(same_context &&
1660 			   i915_seqno_passed(prev->fence.seqno,
1661 					     rq->fence.seqno));
1662 
1663 		if ((same_context && uses_guc) || (!uses_guc && pow2))
1664 			i915_sw_fence_await_sw_fence(&rq->submit,
1665 						     &prev->submit,
1666 						     &rq->submitq);
1667 		else
1668 			__i915_sw_fence_await_dma_fence(&rq->submit,
1669 							&prev->fence,
1670 							&rq->dmaq);
1671 		if (rq->engine->sched_engine->schedule)
1672 			__i915_sched_node_add_dependency(&rq->sched,
1673 							 &prev->sched,
1674 							 &rq->dep,
1675 							 0);
1676 	}
1677 
1678 	return prev;
1679 }
1680 
1681 static struct i915_request *
1682 __i915_request_add_to_timeline(struct i915_request *rq)
1683 {
1684 	struct intel_timeline *timeline = i915_request_timeline(rq);
1685 	struct i915_request *prev;
1686 
1687 	/*
1688 	 * Dependency tracking and request ordering along the timeline
1689 	 * is special cased so that we can eliminate redundant ordering
1690 	 * operations while building the request (we know that the timeline
1691 	 * itself is ordered, and here we guarantee it).
1692 	 *
1693 	 * As we know we will need to emit tracking along the timeline,
1694 	 * we embed the hooks into our request struct -- at the cost of
1695 	 * having to have specialised no-allocation interfaces (which will
1696 	 * be beneficial elsewhere).
1697 	 *
1698 	 * A second benefit to open-coding i915_request_await_request is
1699 	 * that we can apply a slight variant of the rules specialised
1700 	 * for timelines that jump between engines (such as virtual engines).
1701 	 * If we consider the case of virtual engine, we must emit a dma-fence
1702 	 * to prevent scheduling of the second request until the first is
1703 	 * complete (to maximise our greedy late load balancing) and this
1704 	 * precludes optimising to use semaphores serialisation of a single
1705 	 * timeline across engines.
1706 	 *
1707 	 * We do not order parallel submission requests on the timeline as each
1708 	 * parallel submission context has its own timeline and the ordering
1709 	 * rules for parallel requests are that they must be submitted in the
1710 	 * order received from the execbuf IOCTL. So rather than using the
1711 	 * timeline we store a pointer to last request submitted in the
1712 	 * relationship in the gem context and insert a submission fence
1713 	 * between that request and request passed into this function or
1714 	 * alternatively we use completion fence if gem context has a single
1715 	 * timeline and this is the first submission of an execbuf IOCTL.
1716 	 */
1717 	if (likely(!is_parallel_rq(rq)))
1718 		prev = __i915_request_ensure_ordering(rq, timeline);
1719 	else
1720 		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1721 
1722 	/*
1723 	 * Make sure that no request gazumped us - if it was allocated after
1724 	 * our i915_request_alloc() and called __i915_request_add() before
1725 	 * us, the timeline will hold its seqno which is later than ours.
1726 	 */
1727 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1728 
1729 	return prev;
1730 }
1731 
1732 /*
1733  * NB: This function is not allowed to fail. Doing so would mean the the
1734  * request is not being tracked for completion but the work itself is
1735  * going to happen on the hardware. This would be a Bad Thing(tm).
1736  */
1737 struct i915_request *__i915_request_commit(struct i915_request *rq)
1738 {
1739 	struct intel_engine_cs *engine = rq->engine;
1740 	struct intel_ring *ring = rq->ring;
1741 	u32 *cs;
1742 
1743 	RQ_TRACE(rq, "\n");
1744 
1745 	/*
1746 	 * To ensure that this call will not fail, space for its emissions
1747 	 * should already have been reserved in the ring buffer. Let the ring
1748 	 * know that it is time to use that space up.
1749 	 */
1750 	GEM_BUG_ON(rq->reserved_space > ring->space);
1751 	rq->reserved_space = 0;
1752 	rq->emitted_jiffies = jiffies;
1753 
1754 	/*
1755 	 * Record the position of the start of the breadcrumb so that
1756 	 * should we detect the updated seqno part-way through the
1757 	 * GPU processing the request, we never over-estimate the
1758 	 * position of the ring's HEAD.
1759 	 */
1760 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1761 	GEM_BUG_ON(IS_ERR(cs));
1762 	rq->postfix = intel_ring_offset(rq, cs);
1763 
1764 	return __i915_request_add_to_timeline(rq);
1765 }
1766 
1767 void __i915_request_queue_bh(struct i915_request *rq)
1768 {
1769 	i915_sw_fence_commit(&rq->semaphore);
1770 	i915_sw_fence_commit(&rq->submit);
1771 }
1772 
1773 void __i915_request_queue(struct i915_request *rq,
1774 			  const struct i915_sched_attr *attr)
1775 {
1776 	/*
1777 	 * Let the backend know a new request has arrived that may need
1778 	 * to adjust the existing execution schedule due to a high priority
1779 	 * request - i.e. we may want to preempt the current request in order
1780 	 * to run a high priority dependency chain *before* we can execute this
1781 	 * request.
1782 	 *
1783 	 * This is called before the request is ready to run so that we can
1784 	 * decide whether to preempt the entire chain so that it is ready to
1785 	 * run at the earliest possible convenience.
1786 	 */
1787 	if (attr && rq->engine->sched_engine->schedule)
1788 		rq->engine->sched_engine->schedule(rq, attr);
1789 
1790 	local_bh_disable();
1791 	__i915_request_queue_bh(rq);
1792 	local_bh_enable(); /* kick tasklets */
1793 }
1794 
1795 void i915_request_add(struct i915_request *rq)
1796 {
1797 	struct intel_timeline * const tl = i915_request_timeline(rq);
1798 	struct i915_sched_attr attr = {};
1799 	struct i915_gem_context *ctx;
1800 
1801 	lockdep_assert_held(&tl->mutex);
1802 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1803 
1804 	trace_i915_request_add(rq);
1805 	__i915_request_commit(rq);
1806 
1807 	/* XXX placeholder for selftests */
1808 	rcu_read_lock();
1809 	ctx = rcu_dereference(rq->context->gem_context);
1810 	if (ctx)
1811 		attr = ctx->sched;
1812 	rcu_read_unlock();
1813 
1814 	__i915_request_queue(rq, &attr);
1815 
1816 	mutex_unlock(&tl->mutex);
1817 }
1818 
1819 static unsigned long local_clock_ns(unsigned int *cpu)
1820 {
1821 	unsigned long t;
1822 
1823 	/*
1824 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1825 	 * The result and subsequent calculations are also defined in the same
1826 	 * approximate microseconds units. The principal source of timing
1827 	 * error here is from the simple truncation.
1828 	 *
1829 	 * Note that local_clock() is only defined wrt to the current CPU;
1830 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1831 	 * blocking preemption for the entire busywait, we can detect the CPU
1832 	 * switch and use that as indicator of system load and a reason to
1833 	 * stop busywaiting, see busywait_stop().
1834 	 */
1835 	*cpu = get_cpu();
1836 	t = local_clock();
1837 	put_cpu();
1838 
1839 	return t;
1840 }
1841 
1842 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1843 {
1844 	unsigned int this_cpu;
1845 
1846 	if (time_after(local_clock_ns(&this_cpu), timeout))
1847 		return true;
1848 
1849 	return this_cpu != cpu;
1850 }
1851 
1852 static bool __i915_spin_request(struct i915_request * const rq, int state)
1853 {
1854 	unsigned long timeout_ns;
1855 	unsigned int cpu;
1856 
1857 	/*
1858 	 * Only wait for the request if we know it is likely to complete.
1859 	 *
1860 	 * We don't track the timestamps around requests, nor the average
1861 	 * request length, so we do not have a good indicator that this
1862 	 * request will complete within the timeout. What we do know is the
1863 	 * order in which requests are executed by the context and so we can
1864 	 * tell if the request has been started. If the request is not even
1865 	 * running yet, it is a fair assumption that it will not complete
1866 	 * within our relatively short timeout.
1867 	 */
1868 	if (!i915_request_is_running(rq))
1869 		return false;
1870 
1871 	/*
1872 	 * When waiting for high frequency requests, e.g. during synchronous
1873 	 * rendering split between the CPU and GPU, the finite amount of time
1874 	 * required to set up the irq and wait upon it limits the response
1875 	 * rate. By busywaiting on the request completion for a short while we
1876 	 * can service the high frequency waits as quick as possible. However,
1877 	 * if it is a slow request, we want to sleep as quickly as possible.
1878 	 * The tradeoff between waiting and sleeping is roughly the time it
1879 	 * takes to sleep on a request, on the order of a microsecond.
1880 	 */
1881 
1882 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1883 	timeout_ns += local_clock_ns(&cpu);
1884 	do {
1885 		if (dma_fence_is_signaled(&rq->fence))
1886 			return true;
1887 
1888 		if (signal_pending_state(state, current))
1889 			break;
1890 
1891 		if (busywait_stop(timeout_ns, cpu))
1892 			break;
1893 
1894 		cpu_relax();
1895 	} while (!need_resched());
1896 
1897 	return false;
1898 }
1899 
1900 struct request_wait {
1901 	struct dma_fence_cb cb;
1902 	struct task_struct *tsk;
1903 };
1904 
1905 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1906 {
1907 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1908 
1909 	wake_up_process(fetch_and_zero(&wait->tsk));
1910 }
1911 
1912 /**
1913  * i915_request_wait_timeout - wait until execution of request has finished
1914  * @rq: the request to wait upon
1915  * @flags: how to wait
1916  * @timeout: how long to wait in jiffies
1917  *
1918  * i915_request_wait_timeout() waits for the request to be completed, for a
1919  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1920  * unbounded wait).
1921  *
1922  * Returns the remaining time (in jiffies) if the request completed, which may
1923  * be zero if the request is unfinished after the timeout expires.
1924  * If the timeout is 0, it will return 1 if the fence is signaled.
1925  *
1926  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1927  * pending before the request completes.
1928  *
1929  * NOTE: This function has the same wait semantics as dma-fence.
1930  */
1931 long i915_request_wait_timeout(struct i915_request *rq,
1932 			       unsigned int flags,
1933 			       long timeout)
1934 {
1935 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1936 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1937 	struct request_wait wait;
1938 
1939 	might_sleep();
1940 	GEM_BUG_ON(timeout < 0);
1941 
1942 	if (dma_fence_is_signaled(&rq->fence))
1943 		return timeout ?: 1;
1944 
1945 	if (!timeout)
1946 		return -ETIME;
1947 
1948 	trace_i915_request_wait_begin(rq, flags);
1949 
1950 	/*
1951 	 * We must never wait on the GPU while holding a lock as we
1952 	 * may need to perform a GPU reset. So while we don't need to
1953 	 * serialise wait/reset with an explicit lock, we do want
1954 	 * lockdep to detect potential dependency cycles.
1955 	 */
1956 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1957 
1958 	/*
1959 	 * Optimistic spin before touching IRQs.
1960 	 *
1961 	 * We may use a rather large value here to offset the penalty of
1962 	 * switching away from the active task. Frequently, the client will
1963 	 * wait upon an old swapbuffer to throttle itself to remain within a
1964 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1965 	 * then it should not be waiting long at all, and a sleep now will incur
1966 	 * extra scheduler latency in producing the next frame. To try to
1967 	 * avoid adding the cost of enabling/disabling the interrupt to the
1968 	 * short wait, we first spin to see if the request would have completed
1969 	 * in the time taken to setup the interrupt.
1970 	 *
1971 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1972 	 * scheduler latency of a context switch, ignoring the secondary
1973 	 * impacts from a context switch such as cache eviction.
1974 	 *
1975 	 * The scheme used for low-latency IO is called "hybrid interrupt
1976 	 * polling". The suggestion there is to sleep until just before you
1977 	 * expect to be woken by the device interrupt and then poll for its
1978 	 * completion. That requires having a good predictor for the request
1979 	 * duration, which we currently lack.
1980 	 */
1981 	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
1982 	    __i915_spin_request(rq, state))
1983 		goto out;
1984 
1985 	/*
1986 	 * This client is about to stall waiting for the GPU. In many cases
1987 	 * this is undesirable and limits the throughput of the system, as
1988 	 * many clients cannot continue processing user input/output whilst
1989 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1990 	 * to the GPU load and thus incurs additional latency for the client.
1991 	 * We can circumvent that by promoting the GPU frequency to maximum
1992 	 * before we sleep. This makes the GPU throttle up much more quickly
1993 	 * (good for benchmarks and user experience, e.g. window animations),
1994 	 * but at a cost of spending more power processing the workload
1995 	 * (bad for battery).
1996 	 */
1997 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1998 		intel_rps_boost(rq);
1999 
2000 	wait.tsk = current;
2001 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2002 		goto out;
2003 
2004 	/*
2005 	 * Flush the submission tasklet, but only if it may help this request.
2006 	 *
2007 	 * We sometimes experience some latency between the HW interrupts and
2008 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2009 	 * be due to lazy CS events), so lets run the tasklet manually if there
2010 	 * is a chance it may submit this request. If the request is not ready
2011 	 * to run, as it is waiting for other fences to be signaled, flushing
2012 	 * the tasklet is busy work without any advantage for this client.
2013 	 *
2014 	 * If the HW is being lazy, this is the last chance before we go to
2015 	 * sleep to catch any pending events. We will check periodically in
2016 	 * the heartbeat to flush the submission tasklets as a last resort
2017 	 * for unhappy HW.
2018 	 */
2019 	if (i915_request_is_ready(rq))
2020 		__intel_engine_flush_submission(rq->engine, false);
2021 
2022 	for (;;) {
2023 		set_current_state(state);
2024 
2025 		if (dma_fence_is_signaled(&rq->fence))
2026 			break;
2027 
2028 		if (signal_pending_state(state, current)) {
2029 			timeout = -ERESTARTSYS;
2030 			break;
2031 		}
2032 
2033 		if (!timeout) {
2034 			timeout = -ETIME;
2035 			break;
2036 		}
2037 
2038 		timeout = io_schedule_timeout(timeout);
2039 	}
2040 	__set_current_state(TASK_RUNNING);
2041 
2042 	if (READ_ONCE(wait.tsk))
2043 		dma_fence_remove_callback(&rq->fence, &wait.cb);
2044 	GEM_BUG_ON(!list_empty(&wait.cb.node));
2045 
2046 out:
2047 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2048 	trace_i915_request_wait_end(rq);
2049 	return timeout;
2050 }
2051 
2052 /**
2053  * i915_request_wait - wait until execution of request has finished
2054  * @rq: the request to wait upon
2055  * @flags: how to wait
2056  * @timeout: how long to wait in jiffies
2057  *
2058  * i915_request_wait() waits for the request to be completed, for a
2059  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2060  * unbounded wait).
2061  *
2062  * Returns the remaining time (in jiffies) if the request completed, which may
2063  * be zero or -ETIME if the request is unfinished after the timeout expires.
2064  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2065  * pending before the request completes.
2066  *
2067  * NOTE: This function behaves differently from dma-fence wait semantics for
2068  * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2069  */
2070 long i915_request_wait(struct i915_request *rq,
2071 		       unsigned int flags,
2072 		       long timeout)
2073 {
2074 	long ret = i915_request_wait_timeout(rq, flags, timeout);
2075 
2076 	if (!ret)
2077 		return -ETIME;
2078 
2079 	if (ret > 0 && !timeout)
2080 		return 0;
2081 
2082 	return ret;
2083 }
2084 
2085 static int print_sched_attr(const struct i915_sched_attr *attr,
2086 			    char *buf, int x, int len)
2087 {
2088 	if (attr->priority == I915_PRIORITY_INVALID)
2089 		return x;
2090 
2091 	x += snprintf(buf + x, len - x,
2092 		      " prio=%d", attr->priority);
2093 
2094 	return x;
2095 }
2096 
2097 static char queue_status(const struct i915_request *rq)
2098 {
2099 	if (i915_request_is_active(rq))
2100 		return 'E';
2101 
2102 	if (i915_request_is_ready(rq))
2103 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2104 
2105 	return 'U';
2106 }
2107 
2108 static const char *run_status(const struct i915_request *rq)
2109 {
2110 	if (__i915_request_is_complete(rq))
2111 		return "!";
2112 
2113 	if (__i915_request_has_started(rq))
2114 		return "*";
2115 
2116 	if (!i915_sw_fence_signaled(&rq->semaphore))
2117 		return "&";
2118 
2119 	return "";
2120 }
2121 
2122 static const char *fence_status(const struct i915_request *rq)
2123 {
2124 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2125 		return "+";
2126 
2127 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2128 		return "-";
2129 
2130 	return "";
2131 }
2132 
2133 void i915_request_show(struct drm_printer *m,
2134 		       const struct i915_request *rq,
2135 		       const char *prefix,
2136 		       int indent)
2137 {
2138 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2139 	char buf[80] = "";
2140 	int x = 0;
2141 
2142 	/*
2143 	 * The prefix is used to show the queue status, for which we use
2144 	 * the following flags:
2145 	 *
2146 	 *  U [Unready]
2147 	 *    - initial status upon being submitted by the user
2148 	 *
2149 	 *    - the request is not ready for execution as it is waiting
2150 	 *      for external fences
2151 	 *
2152 	 *  R [Ready]
2153 	 *    - all fences the request was waiting on have been signaled,
2154 	 *      and the request is now ready for execution and will be
2155 	 *      in a backend queue
2156 	 *
2157 	 *    - a ready request may still need to wait on semaphores
2158 	 *      [internal fences]
2159 	 *
2160 	 *  V [Ready/virtual]
2161 	 *    - same as ready, but queued over multiple backends
2162 	 *
2163 	 *  E [Executing]
2164 	 *    - the request has been transferred from the backend queue and
2165 	 *      submitted for execution on HW
2166 	 *
2167 	 *    - a completed request may still be regarded as executing, its
2168 	 *      status may not be updated until it is retired and removed
2169 	 *      from the lists
2170 	 */
2171 
2172 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2173 
2174 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2175 		   prefix, indent, "                ",
2176 		   queue_status(rq),
2177 		   rq->fence.context, rq->fence.seqno,
2178 		   run_status(rq),
2179 		   fence_status(rq),
2180 		   buf,
2181 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2182 		   name);
2183 }
2184 
2185 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2186 {
2187 	u32 ring = ENGINE_READ(engine, RING_START);
2188 
2189 	return ring == i915_ggtt_offset(rq->ring->vma);
2190 }
2191 
2192 static bool match_ring(struct i915_request *rq)
2193 {
2194 	struct intel_engine_cs *engine;
2195 	bool found;
2196 	int i;
2197 
2198 	if (!intel_engine_is_virtual(rq->engine))
2199 		return engine_match_ring(rq->engine, rq);
2200 
2201 	found = false;
2202 	i = 0;
2203 	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2204 		found = engine_match_ring(engine, rq);
2205 		if (found)
2206 			break;
2207 	}
2208 
2209 	return found;
2210 }
2211 
2212 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2213 {
2214 	if (i915_request_completed(rq))
2215 		return I915_REQUEST_COMPLETE;
2216 
2217 	if (!i915_request_started(rq))
2218 		return I915_REQUEST_PENDING;
2219 
2220 	if (match_ring(rq))
2221 		return I915_REQUEST_ACTIVE;
2222 
2223 	return I915_REQUEST_QUEUED;
2224 }
2225 
2226 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2227 #include "selftests/mock_request.c"
2228 #include "selftests/i915_request.c"
2229 #endif
2230 
2231 void i915_request_module_exit(void)
2232 {
2233 	kmem_cache_destroy(slab_execute_cbs);
2234 	kmem_cache_destroy(slab_requests);
2235 }
2236 
2237 int __init i915_request_module_init(void)
2238 {
2239 	slab_requests =
2240 		kmem_cache_create("i915_request",
2241 				  sizeof(struct i915_request),
2242 				  __alignof__(struct i915_request),
2243 				  SLAB_HWCACHE_ALIGN |
2244 				  SLAB_RECLAIM_ACCOUNT |
2245 				  SLAB_TYPESAFE_BY_RCU,
2246 				  __i915_request_ctor);
2247 	if (!slab_requests)
2248 		return -ENOMEM;
2249 
2250 	slab_execute_cbs = KMEM_CACHE(execute_cb,
2251 					     SLAB_HWCACHE_ALIGN |
2252 					     SLAB_RECLAIM_ACCOUNT |
2253 					     SLAB_TYPESAFE_BY_RCU);
2254 	if (!slab_execute_cbs)
2255 		goto err_requests;
2256 
2257 	return 0;
2258 
2259 err_requests:
2260 	kmem_cache_destroy(slab_requests);
2261 	return -ENOMEM;
2262 }
2263