xref: /openbmc/linux/drivers/gpu/drm/i915/i915_request.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30 
31 #include "i915_drv.h"
32 
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35 	return "i915";
36 }
37 
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40 	/*
41 	 * The timeline struct (as part of the ppgtt underneath a context)
42 	 * may be freed when the request is no longer in use by the GPU.
43 	 * We could extend the life of a context to beyond that of all
44 	 * fences, possibly keeping the hw resource around indefinitely,
45 	 * or we just give them a false name. Since
46 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
47 	 * lie seems justifiable.
48 	 */
49 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
50 		return "signaled";
51 
52 	return to_request(fence)->timeline->name;
53 }
54 
55 static bool i915_fence_signaled(struct dma_fence *fence)
56 {
57 	return i915_request_completed(to_request(fence));
58 }
59 
60 static bool i915_fence_enable_signaling(struct dma_fence *fence)
61 {
62 	return intel_engine_enable_signaling(to_request(fence), true);
63 }
64 
65 static signed long i915_fence_wait(struct dma_fence *fence,
66 				   bool interruptible,
67 				   signed long timeout)
68 {
69 	return i915_request_wait(to_request(fence), interruptible, timeout);
70 }
71 
72 static void i915_fence_release(struct dma_fence *fence)
73 {
74 	struct i915_request *rq = to_request(fence);
75 
76 	/*
77 	 * The request is put onto a RCU freelist (i.e. the address
78 	 * is immediately reused), mark the fences as being freed now.
79 	 * Otherwise the debugobjects for the fences are only marked as
80 	 * freed when the slab cache itself is freed, and so we would get
81 	 * caught trying to reuse dead objects.
82 	 */
83 	i915_sw_fence_fini(&rq->submit);
84 
85 	kmem_cache_free(rq->i915->requests, rq);
86 }
87 
88 const struct dma_fence_ops i915_fence_ops = {
89 	.get_driver_name = i915_fence_get_driver_name,
90 	.get_timeline_name = i915_fence_get_timeline_name,
91 	.enable_signaling = i915_fence_enable_signaling,
92 	.signaled = i915_fence_signaled,
93 	.wait = i915_fence_wait,
94 	.release = i915_fence_release,
95 };
96 
97 static inline void
98 i915_request_remove_from_client(struct i915_request *request)
99 {
100 	struct drm_i915_file_private *file_priv;
101 
102 	file_priv = request->file_priv;
103 	if (!file_priv)
104 		return;
105 
106 	spin_lock(&file_priv->mm.lock);
107 	if (request->file_priv) {
108 		list_del(&request->client_link);
109 		request->file_priv = NULL;
110 	}
111 	spin_unlock(&file_priv->mm.lock);
112 }
113 
114 static struct i915_dependency *
115 i915_dependency_alloc(struct drm_i915_private *i915)
116 {
117 	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
118 }
119 
120 static void
121 i915_dependency_free(struct drm_i915_private *i915,
122 		     struct i915_dependency *dep)
123 {
124 	kmem_cache_free(i915->dependencies, dep);
125 }
126 
127 static void
128 __i915_sched_node_add_dependency(struct i915_sched_node *node,
129 				 struct i915_sched_node *signal,
130 				 struct i915_dependency *dep,
131 				 unsigned long flags)
132 {
133 	INIT_LIST_HEAD(&dep->dfs_link);
134 	list_add(&dep->wait_link, &signal->waiters_list);
135 	list_add(&dep->signal_link, &node->signalers_list);
136 	dep->signaler = signal;
137 	dep->flags = flags;
138 }
139 
140 static int
141 i915_sched_node_add_dependency(struct drm_i915_private *i915,
142 			       struct i915_sched_node *node,
143 			       struct i915_sched_node *signal)
144 {
145 	struct i915_dependency *dep;
146 
147 	dep = i915_dependency_alloc(i915);
148 	if (!dep)
149 		return -ENOMEM;
150 
151 	__i915_sched_node_add_dependency(node, signal, dep,
152 					 I915_DEPENDENCY_ALLOC);
153 	return 0;
154 }
155 
156 static void
157 i915_sched_node_fini(struct drm_i915_private *i915,
158 		     struct i915_sched_node *node)
159 {
160 	struct i915_dependency *dep, *tmp;
161 
162 	GEM_BUG_ON(!list_empty(&node->link));
163 
164 	/*
165 	 * Everyone we depended upon (the fences we wait to be signaled)
166 	 * should retire before us and remove themselves from our list.
167 	 * However, retirement is run independently on each timeline and
168 	 * so we may be called out-of-order.
169 	 */
170 	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
171 		GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
172 		GEM_BUG_ON(!list_empty(&dep->dfs_link));
173 
174 		list_del(&dep->wait_link);
175 		if (dep->flags & I915_DEPENDENCY_ALLOC)
176 			i915_dependency_free(i915, dep);
177 	}
178 
179 	/* Remove ourselves from everyone who depends upon us */
180 	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
181 		GEM_BUG_ON(dep->signaler != node);
182 		GEM_BUG_ON(!list_empty(&dep->dfs_link));
183 
184 		list_del(&dep->signal_link);
185 		if (dep->flags & I915_DEPENDENCY_ALLOC)
186 			i915_dependency_free(i915, dep);
187 	}
188 }
189 
190 static void
191 i915_sched_node_init(struct i915_sched_node *node)
192 {
193 	INIT_LIST_HEAD(&node->signalers_list);
194 	INIT_LIST_HEAD(&node->waiters_list);
195 	INIT_LIST_HEAD(&node->link);
196 	node->attr.priority = I915_PRIORITY_INVALID;
197 }
198 
199 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
200 {
201 	struct intel_engine_cs *engine;
202 	struct i915_timeline *timeline;
203 	enum intel_engine_id id;
204 	int ret;
205 
206 	/* Carefully retire all requests without writing to the rings */
207 	ret = i915_gem_wait_for_idle(i915,
208 				     I915_WAIT_INTERRUPTIBLE |
209 				     I915_WAIT_LOCKED);
210 	if (ret)
211 		return ret;
212 
213 	GEM_BUG_ON(i915->gt.active_requests);
214 
215 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
216 	for_each_engine(engine, i915, id) {
217 		GEM_TRACE("%s seqno %d (current %d) -> %d\n",
218 			  engine->name,
219 			  engine->timeline.seqno,
220 			  intel_engine_get_seqno(engine),
221 			  seqno);
222 
223 		if (!i915_seqno_passed(seqno, engine->timeline.seqno)) {
224 			/* Flush any waiters before we reuse the seqno */
225 			intel_engine_disarm_breadcrumbs(engine);
226 			intel_engine_init_hangcheck(engine);
227 			GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
228 		}
229 
230 		/* Check we are idle before we fiddle with hw state! */
231 		GEM_BUG_ON(!intel_engine_is_idle(engine));
232 		GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request));
233 
234 		/* Finally reset hw state */
235 		intel_engine_init_global_seqno(engine, seqno);
236 		engine->timeline.seqno = seqno;
237 	}
238 
239 	list_for_each_entry(timeline, &i915->gt.timelines, link)
240 		memset(timeline->global_sync, 0, sizeof(timeline->global_sync));
241 
242 	i915->gt.request_serial = seqno;
243 
244 	return 0;
245 }
246 
247 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
248 {
249 	struct drm_i915_private *i915 = to_i915(dev);
250 
251 	lockdep_assert_held(&i915->drm.struct_mutex);
252 
253 	if (seqno == 0)
254 		return -EINVAL;
255 
256 	/* HWS page needs to be set less than what we will inject to ring */
257 	return reset_all_global_seqno(i915, seqno - 1);
258 }
259 
260 static int reserve_gt(struct drm_i915_private *i915)
261 {
262 	int ret;
263 
264 	/*
265 	 * Reservation is fine until we may need to wrap around
266 	 *
267 	 * By incrementing the serial for every request, we know that no
268 	 * individual engine may exceed that serial (as each is reset to 0
269 	 * on any wrap). This protects even the most pessimistic of migrations
270 	 * of every request from all engines onto just one.
271 	 */
272 	while (unlikely(++i915->gt.request_serial == 0)) {
273 		ret = reset_all_global_seqno(i915, 0);
274 		if (ret) {
275 			i915->gt.request_serial--;
276 			return ret;
277 		}
278 	}
279 
280 	if (!i915->gt.active_requests++)
281 		i915_gem_unpark(i915);
282 
283 	return 0;
284 }
285 
286 static void unreserve_gt(struct drm_i915_private *i915)
287 {
288 	GEM_BUG_ON(!i915->gt.active_requests);
289 	if (!--i915->gt.active_requests)
290 		i915_gem_park(i915);
291 }
292 
293 void i915_gem_retire_noop(struct i915_gem_active *active,
294 			  struct i915_request *request)
295 {
296 	/* Space left intentionally blank */
297 }
298 
299 static void advance_ring(struct i915_request *request)
300 {
301 	struct intel_ring *ring = request->ring;
302 	unsigned int tail;
303 
304 	/*
305 	 * We know the GPU must have read the request to have
306 	 * sent us the seqno + interrupt, so use the position
307 	 * of tail of the request to update the last known position
308 	 * of the GPU head.
309 	 *
310 	 * Note this requires that we are always called in request
311 	 * completion order.
312 	 */
313 	GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
314 	if (list_is_last(&request->ring_link, &ring->request_list)) {
315 		/*
316 		 * We may race here with execlists resubmitting this request
317 		 * as we retire it. The resubmission will move the ring->tail
318 		 * forwards (to request->wa_tail). We either read the
319 		 * current value that was written to hw, or the value that
320 		 * is just about to be. Either works, if we miss the last two
321 		 * noops - they are safe to be replayed on a reset.
322 		 */
323 		tail = READ_ONCE(request->tail);
324 		list_del(&ring->active_link);
325 	} else {
326 		tail = request->postfix;
327 	}
328 	list_del_init(&request->ring_link);
329 
330 	ring->head = tail;
331 }
332 
333 static void free_capture_list(struct i915_request *request)
334 {
335 	struct i915_capture_list *capture;
336 
337 	capture = request->capture_list;
338 	while (capture) {
339 		struct i915_capture_list *next = capture->next;
340 
341 		kfree(capture);
342 		capture = next;
343 	}
344 }
345 
346 static void __retire_engine_request(struct intel_engine_cs *engine,
347 				    struct i915_request *rq)
348 {
349 	GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
350 		  __func__, engine->name,
351 		  rq->fence.context, rq->fence.seqno,
352 		  rq->global_seqno,
353 		  intel_engine_get_seqno(engine));
354 
355 	GEM_BUG_ON(!i915_request_completed(rq));
356 
357 	local_irq_disable();
358 
359 	spin_lock(&engine->timeline.lock);
360 	GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
361 	list_del_init(&rq->link);
362 	spin_unlock(&engine->timeline.lock);
363 
364 	spin_lock(&rq->lock);
365 	if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
366 		dma_fence_signal_locked(&rq->fence);
367 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
368 		intel_engine_cancel_signaling(rq);
369 	if (rq->waitboost) {
370 		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
371 		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
372 	}
373 	spin_unlock(&rq->lock);
374 
375 	local_irq_enable();
376 
377 	/*
378 	 * The backing object for the context is done after switching to the
379 	 * *next* context. Therefore we cannot retire the previous context until
380 	 * the next context has already started running. However, since we
381 	 * cannot take the required locks at i915_request_submit() we
382 	 * defer the unpinning of the active context to now, retirement of
383 	 * the subsequent request.
384 	 */
385 	if (engine->last_retired_context)
386 		intel_context_unpin(engine->last_retired_context, engine);
387 	engine->last_retired_context = rq->ctx;
388 }
389 
390 static void __retire_engine_upto(struct intel_engine_cs *engine,
391 				 struct i915_request *rq)
392 {
393 	struct i915_request *tmp;
394 
395 	if (list_empty(&rq->link))
396 		return;
397 
398 	do {
399 		tmp = list_first_entry(&engine->timeline.requests,
400 				       typeof(*tmp), link);
401 
402 		GEM_BUG_ON(tmp->engine != engine);
403 		__retire_engine_request(engine, tmp);
404 	} while (tmp != rq);
405 }
406 
407 static void i915_request_retire(struct i915_request *request)
408 {
409 	struct i915_gem_active *active, *next;
410 
411 	GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
412 		  request->engine->name,
413 		  request->fence.context, request->fence.seqno,
414 		  request->global_seqno,
415 		  intel_engine_get_seqno(request->engine));
416 
417 	lockdep_assert_held(&request->i915->drm.struct_mutex);
418 	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
419 	GEM_BUG_ON(!i915_request_completed(request));
420 
421 	trace_i915_request_retire(request);
422 
423 	advance_ring(request);
424 	free_capture_list(request);
425 
426 	/*
427 	 * Walk through the active list, calling retire on each. This allows
428 	 * objects to track their GPU activity and mark themselves as idle
429 	 * when their *last* active request is completed (updating state
430 	 * tracking lists for eviction, active references for GEM, etc).
431 	 *
432 	 * As the ->retire() may free the node, we decouple it first and
433 	 * pass along the auxiliary information (to avoid dereferencing
434 	 * the node after the callback).
435 	 */
436 	list_for_each_entry_safe(active, next, &request->active_list, link) {
437 		/*
438 		 * In microbenchmarks or focusing upon time inside the kernel,
439 		 * we may spend an inordinate amount of time simply handling
440 		 * the retirement of requests and processing their callbacks.
441 		 * Of which, this loop itself is particularly hot due to the
442 		 * cache misses when jumping around the list of i915_gem_active.
443 		 * So we try to keep this loop as streamlined as possible and
444 		 * also prefetch the next i915_gem_active to try and hide
445 		 * the likely cache miss.
446 		 */
447 		prefetchw(next);
448 
449 		INIT_LIST_HEAD(&active->link);
450 		RCU_INIT_POINTER(active->request, NULL);
451 
452 		active->retire(active, request);
453 	}
454 
455 	i915_request_remove_from_client(request);
456 
457 	/* Retirement decays the ban score as it is a sign of ctx progress */
458 	atomic_dec_if_positive(&request->ctx->ban_score);
459 	intel_context_unpin(request->ctx, request->engine);
460 
461 	__retire_engine_upto(request->engine, request);
462 
463 	unreserve_gt(request->i915);
464 
465 	i915_sched_node_fini(request->i915, &request->sched);
466 	i915_request_put(request);
467 }
468 
469 void i915_request_retire_upto(struct i915_request *rq)
470 {
471 	struct intel_ring *ring = rq->ring;
472 	struct i915_request *tmp;
473 
474 	GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
475 		  rq->engine->name,
476 		  rq->fence.context, rq->fence.seqno,
477 		  rq->global_seqno,
478 		  intel_engine_get_seqno(rq->engine));
479 
480 	lockdep_assert_held(&rq->i915->drm.struct_mutex);
481 	GEM_BUG_ON(!i915_request_completed(rq));
482 
483 	if (list_empty(&rq->ring_link))
484 		return;
485 
486 	do {
487 		tmp = list_first_entry(&ring->request_list,
488 				       typeof(*tmp), ring_link);
489 
490 		i915_request_retire(tmp);
491 	} while (tmp != rq);
492 }
493 
494 static u32 timeline_get_seqno(struct i915_timeline *tl)
495 {
496 	return ++tl->seqno;
497 }
498 
499 static void move_to_timeline(struct i915_request *request,
500 			     struct i915_timeline *timeline)
501 {
502 	GEM_BUG_ON(request->timeline == &request->engine->timeline);
503 	lockdep_assert_held(&request->engine->timeline.lock);
504 
505 	spin_lock_nested(&request->timeline->lock, SINGLE_DEPTH_NESTING);
506 	list_move_tail(&request->link, &timeline->requests);
507 	spin_unlock(&request->timeline->lock);
508 }
509 
510 void __i915_request_submit(struct i915_request *request)
511 {
512 	struct intel_engine_cs *engine = request->engine;
513 	u32 seqno;
514 
515 	GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
516 		  engine->name,
517 		  request->fence.context, request->fence.seqno,
518 		  engine->timeline.seqno + 1,
519 		  intel_engine_get_seqno(engine));
520 
521 	GEM_BUG_ON(!irqs_disabled());
522 	lockdep_assert_held(&engine->timeline.lock);
523 
524 	GEM_BUG_ON(request->global_seqno);
525 
526 	seqno = timeline_get_seqno(&engine->timeline);
527 	GEM_BUG_ON(!seqno);
528 	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
529 
530 	/* We may be recursing from the signal callback of another i915 fence */
531 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
532 	request->global_seqno = seqno;
533 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
534 		intel_engine_enable_signaling(request, false);
535 	spin_unlock(&request->lock);
536 
537 	engine->emit_breadcrumb(request,
538 				request->ring->vaddr + request->postfix);
539 
540 	/* Transfer from per-context onto the global per-engine timeline */
541 	move_to_timeline(request, &engine->timeline);
542 
543 	trace_i915_request_execute(request);
544 
545 	wake_up_all(&request->execute);
546 }
547 
548 void i915_request_submit(struct i915_request *request)
549 {
550 	struct intel_engine_cs *engine = request->engine;
551 	unsigned long flags;
552 
553 	/* Will be called from irq-context when using foreign fences. */
554 	spin_lock_irqsave(&engine->timeline.lock, flags);
555 
556 	__i915_request_submit(request);
557 
558 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
559 }
560 
561 void __i915_request_unsubmit(struct i915_request *request)
562 {
563 	struct intel_engine_cs *engine = request->engine;
564 
565 	GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
566 		  engine->name,
567 		  request->fence.context, request->fence.seqno,
568 		  request->global_seqno,
569 		  intel_engine_get_seqno(engine));
570 
571 	GEM_BUG_ON(!irqs_disabled());
572 	lockdep_assert_held(&engine->timeline.lock);
573 
574 	/*
575 	 * Only unwind in reverse order, required so that the per-context list
576 	 * is kept in seqno/ring order.
577 	 */
578 	GEM_BUG_ON(!request->global_seqno);
579 	GEM_BUG_ON(request->global_seqno != engine->timeline.seqno);
580 	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
581 				     request->global_seqno));
582 	engine->timeline.seqno--;
583 
584 	/* We may be recursing from the signal callback of another i915 fence */
585 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
586 	request->global_seqno = 0;
587 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
588 		intel_engine_cancel_signaling(request);
589 	spin_unlock(&request->lock);
590 
591 	/* Transfer back from the global per-engine timeline to per-context */
592 	move_to_timeline(request, request->timeline);
593 
594 	/*
595 	 * We don't need to wake_up any waiters on request->execute, they
596 	 * will get woken by any other event or us re-adding this request
597 	 * to the engine timeline (__i915_request_submit()). The waiters
598 	 * should be quite adapt at finding that the request now has a new
599 	 * global_seqno to the one they went to sleep on.
600 	 */
601 }
602 
603 void i915_request_unsubmit(struct i915_request *request)
604 {
605 	struct intel_engine_cs *engine = request->engine;
606 	unsigned long flags;
607 
608 	/* Will be called from irq-context when using foreign fences. */
609 	spin_lock_irqsave(&engine->timeline.lock, flags);
610 
611 	__i915_request_unsubmit(request);
612 
613 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
614 }
615 
616 static int __i915_sw_fence_call
617 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
618 {
619 	struct i915_request *request =
620 		container_of(fence, typeof(*request), submit);
621 
622 	switch (state) {
623 	case FENCE_COMPLETE:
624 		trace_i915_request_submit(request);
625 		/*
626 		 * We need to serialize use of the submit_request() callback
627 		 * with its hotplugging performed during an emergency
628 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
629 		 * critical section in order to force i915_gem_set_wedged() to
630 		 * wait until the submit_request() is completed before
631 		 * proceeding.
632 		 */
633 		rcu_read_lock();
634 		request->engine->submit_request(request);
635 		rcu_read_unlock();
636 		break;
637 
638 	case FENCE_FREE:
639 		i915_request_put(request);
640 		break;
641 	}
642 
643 	return NOTIFY_DONE;
644 }
645 
646 /**
647  * i915_request_alloc - allocate a request structure
648  *
649  * @engine: engine that we wish to issue the request on.
650  * @ctx: context that the request will be associated with.
651  *
652  * Returns a pointer to the allocated request if successful,
653  * or an error code if not.
654  */
655 struct i915_request *
656 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
657 {
658 	struct drm_i915_private *i915 = engine->i915;
659 	struct i915_request *rq;
660 	struct intel_ring *ring;
661 	int ret;
662 
663 	lockdep_assert_held(&i915->drm.struct_mutex);
664 
665 	/*
666 	 * Preempt contexts are reserved for exclusive use to inject a
667 	 * preemption context switch. They are never to be used for any trivial
668 	 * request!
669 	 */
670 	GEM_BUG_ON(ctx == i915->preempt_context);
671 
672 	/*
673 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
674 	 * EIO if the GPU is already wedged.
675 	 */
676 	if (i915_terminally_wedged(&i915->gpu_error))
677 		return ERR_PTR(-EIO);
678 
679 	/*
680 	 * Pinning the contexts may generate requests in order to acquire
681 	 * GGTT space, so do this first before we reserve a seqno for
682 	 * ourselves.
683 	 */
684 	ring = intel_context_pin(ctx, engine);
685 	if (IS_ERR(ring))
686 		return ERR_CAST(ring);
687 	GEM_BUG_ON(!ring);
688 
689 	ret = reserve_gt(i915);
690 	if (ret)
691 		goto err_unpin;
692 
693 	ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
694 	if (ret)
695 		goto err_unreserve;
696 
697 	/* Move our oldest request to the slab-cache (if not in use!) */
698 	rq = list_first_entry(&ring->request_list, typeof(*rq), ring_link);
699 	if (!list_is_last(&rq->ring_link, &ring->request_list) &&
700 	    i915_request_completed(rq))
701 		i915_request_retire(rq);
702 
703 	/*
704 	 * Beware: Dragons be flying overhead.
705 	 *
706 	 * We use RCU to look up requests in flight. The lookups may
707 	 * race with the request being allocated from the slab freelist.
708 	 * That is the request we are writing to here, may be in the process
709 	 * of being read by __i915_gem_active_get_rcu(). As such,
710 	 * we have to be very careful when overwriting the contents. During
711 	 * the RCU lookup, we change chase the request->engine pointer,
712 	 * read the request->global_seqno and increment the reference count.
713 	 *
714 	 * The reference count is incremented atomically. If it is zero,
715 	 * the lookup knows the request is unallocated and complete. Otherwise,
716 	 * it is either still in use, or has been reallocated and reset
717 	 * with dma_fence_init(). This increment is safe for release as we
718 	 * check that the request we have a reference to and matches the active
719 	 * request.
720 	 *
721 	 * Before we increment the refcount, we chase the request->engine
722 	 * pointer. We must not call kmem_cache_zalloc() or else we set
723 	 * that pointer to NULL and cause a crash during the lookup. If
724 	 * we see the request is completed (based on the value of the
725 	 * old engine and seqno), the lookup is complete and reports NULL.
726 	 * If we decide the request is not completed (new engine or seqno),
727 	 * then we grab a reference and double check that it is still the
728 	 * active request - which it won't be and restart the lookup.
729 	 *
730 	 * Do not use kmem_cache_zalloc() here!
731 	 */
732 	rq = kmem_cache_alloc(i915->requests,
733 			      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
734 	if (unlikely(!rq)) {
735 		/* Ratelimit ourselves to prevent oom from malicious clients */
736 		ret = i915_gem_wait_for_idle(i915,
737 					     I915_WAIT_LOCKED |
738 					     I915_WAIT_INTERRUPTIBLE);
739 		if (ret)
740 			goto err_unreserve;
741 
742 		/*
743 		 * We've forced the client to stall and catch up with whatever
744 		 * backlog there might have been. As we are assuming that we
745 		 * caused the mempressure, now is an opportune time to
746 		 * recover as much memory from the request pool as is possible.
747 		 * Having already penalized the client to stall, we spend
748 		 * a little extra time to re-optimise page allocation.
749 		 */
750 		kmem_cache_shrink(i915->requests);
751 		rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
752 
753 		rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
754 		if (!rq) {
755 			ret = -ENOMEM;
756 			goto err_unreserve;
757 		}
758 	}
759 
760 	INIT_LIST_HEAD(&rq->active_list);
761 	rq->i915 = i915;
762 	rq->engine = engine;
763 	rq->ctx = ctx;
764 	rq->ring = ring;
765 	rq->timeline = ring->timeline;
766 	GEM_BUG_ON(rq->timeline == &engine->timeline);
767 
768 	spin_lock_init(&rq->lock);
769 	dma_fence_init(&rq->fence,
770 		       &i915_fence_ops,
771 		       &rq->lock,
772 		       rq->timeline->fence_context,
773 		       timeline_get_seqno(rq->timeline));
774 
775 	/* We bump the ref for the fence chain */
776 	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
777 	init_waitqueue_head(&rq->execute);
778 
779 	i915_sched_node_init(&rq->sched);
780 
781 	/* No zalloc, must clear what we need by hand */
782 	rq->global_seqno = 0;
783 	rq->signaling.wait.seqno = 0;
784 	rq->file_priv = NULL;
785 	rq->batch = NULL;
786 	rq->capture_list = NULL;
787 	rq->waitboost = false;
788 
789 	/*
790 	 * Reserve space in the ring buffer for all the commands required to
791 	 * eventually emit this request. This is to guarantee that the
792 	 * i915_request_add() call can't fail. Note that the reserve may need
793 	 * to be redone if the request is not actually submitted straight
794 	 * away, e.g. because a GPU scheduler has deferred it.
795 	 */
796 	rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
797 	GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
798 
799 	/*
800 	 * Record the position of the start of the request so that
801 	 * should we detect the updated seqno part-way through the
802 	 * GPU processing the request, we never over-estimate the
803 	 * position of the head.
804 	 */
805 	rq->head = rq->ring->emit;
806 
807 	/* Unconditionally invalidate GPU caches and TLBs. */
808 	ret = engine->emit_flush(rq, EMIT_INVALIDATE);
809 	if (ret)
810 		goto err_unwind;
811 
812 	ret = engine->request_alloc(rq);
813 	if (ret)
814 		goto err_unwind;
815 
816 	/* Keep a second pin for the dual retirement along engine and ring */
817 	__intel_context_pin(rq->ctx, engine);
818 
819 	/* Check that we didn't interrupt ourselves with a new request */
820 	GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
821 	return rq;
822 
823 err_unwind:
824 	rq->ring->emit = rq->head;
825 
826 	/* Make sure we didn't add ourselves to external state before freeing */
827 	GEM_BUG_ON(!list_empty(&rq->active_list));
828 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
829 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
830 
831 	kmem_cache_free(i915->requests, rq);
832 err_unreserve:
833 	unreserve_gt(i915);
834 err_unpin:
835 	intel_context_unpin(ctx, engine);
836 	return ERR_PTR(ret);
837 }
838 
839 static int
840 i915_request_await_request(struct i915_request *to, struct i915_request *from)
841 {
842 	int ret;
843 
844 	GEM_BUG_ON(to == from);
845 	GEM_BUG_ON(to->timeline == from->timeline);
846 
847 	if (i915_request_completed(from))
848 		return 0;
849 
850 	if (to->engine->schedule) {
851 		ret = i915_sched_node_add_dependency(to->i915,
852 						     &to->sched,
853 						     &from->sched);
854 		if (ret < 0)
855 			return ret;
856 	}
857 
858 	if (to->engine == from->engine) {
859 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
860 						       &from->submit,
861 						       I915_FENCE_GFP);
862 		return ret < 0 ? ret : 0;
863 	}
864 
865 	if (to->engine->semaphore.sync_to) {
866 		u32 seqno;
867 
868 		GEM_BUG_ON(!from->engine->semaphore.signal);
869 
870 		seqno = i915_request_global_seqno(from);
871 		if (!seqno)
872 			goto await_dma_fence;
873 
874 		if (seqno <= to->timeline->global_sync[from->engine->id])
875 			return 0;
876 
877 		trace_i915_gem_ring_sync_to(to, from);
878 		ret = to->engine->semaphore.sync_to(to, from);
879 		if (ret)
880 			return ret;
881 
882 		to->timeline->global_sync[from->engine->id] = seqno;
883 		return 0;
884 	}
885 
886 await_dma_fence:
887 	ret = i915_sw_fence_await_dma_fence(&to->submit,
888 					    &from->fence, 0,
889 					    I915_FENCE_GFP);
890 	return ret < 0 ? ret : 0;
891 }
892 
893 int
894 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
895 {
896 	struct dma_fence **child = &fence;
897 	unsigned int nchild = 1;
898 	int ret;
899 
900 	/*
901 	 * Note that if the fence-array was created in signal-on-any mode,
902 	 * we should *not* decompose it into its individual fences. However,
903 	 * we don't currently store which mode the fence-array is operating
904 	 * in. Fortunately, the only user of signal-on-any is private to
905 	 * amdgpu and we should not see any incoming fence-array from
906 	 * sync-file being in signal-on-any mode.
907 	 */
908 	if (dma_fence_is_array(fence)) {
909 		struct dma_fence_array *array = to_dma_fence_array(fence);
910 
911 		child = array->fences;
912 		nchild = array->num_fences;
913 		GEM_BUG_ON(!nchild);
914 	}
915 
916 	do {
917 		fence = *child++;
918 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
919 			continue;
920 
921 		/*
922 		 * Requests on the same timeline are explicitly ordered, along
923 		 * with their dependencies, by i915_request_add() which ensures
924 		 * that requests are submitted in-order through each ring.
925 		 */
926 		if (fence->context == rq->fence.context)
927 			continue;
928 
929 		/* Squash repeated waits to the same timelines */
930 		if (fence->context != rq->i915->mm.unordered_timeline &&
931 		    i915_timeline_sync_is_later(rq->timeline, fence))
932 			continue;
933 
934 		if (dma_fence_is_i915(fence))
935 			ret = i915_request_await_request(rq, to_request(fence));
936 		else
937 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
938 							    I915_FENCE_TIMEOUT,
939 							    I915_FENCE_GFP);
940 		if (ret < 0)
941 			return ret;
942 
943 		/* Record the latest fence used against each timeline */
944 		if (fence->context != rq->i915->mm.unordered_timeline)
945 			i915_timeline_sync_set(rq->timeline, fence);
946 	} while (--nchild);
947 
948 	return 0;
949 }
950 
951 /**
952  * i915_request_await_object - set this request to (async) wait upon a bo
953  * @to: request we are wishing to use
954  * @obj: object which may be in use on another ring.
955  * @write: whether the wait is on behalf of a writer
956  *
957  * This code is meant to abstract object synchronization with the GPU.
958  * Conceptually we serialise writes between engines inside the GPU.
959  * We only allow one engine to write into a buffer at any time, but
960  * multiple readers. To ensure each has a coherent view of memory, we must:
961  *
962  * - If there is an outstanding write request to the object, the new
963  *   request must wait for it to complete (either CPU or in hw, requests
964  *   on the same ring will be naturally ordered).
965  *
966  * - If we are a write request (pending_write_domain is set), the new
967  *   request must wait for outstanding read requests to complete.
968  *
969  * Returns 0 if successful, else propagates up the lower layer error.
970  */
971 int
972 i915_request_await_object(struct i915_request *to,
973 			  struct drm_i915_gem_object *obj,
974 			  bool write)
975 {
976 	struct dma_fence *excl;
977 	int ret = 0;
978 
979 	if (write) {
980 		struct dma_fence **shared;
981 		unsigned int count, i;
982 
983 		ret = reservation_object_get_fences_rcu(obj->resv,
984 							&excl, &count, &shared);
985 		if (ret)
986 			return ret;
987 
988 		for (i = 0; i < count; i++) {
989 			ret = i915_request_await_dma_fence(to, shared[i]);
990 			if (ret)
991 				break;
992 
993 			dma_fence_put(shared[i]);
994 		}
995 
996 		for (; i < count; i++)
997 			dma_fence_put(shared[i]);
998 		kfree(shared);
999 	} else {
1000 		excl = reservation_object_get_excl_rcu(obj->resv);
1001 	}
1002 
1003 	if (excl) {
1004 		if (ret == 0)
1005 			ret = i915_request_await_dma_fence(to, excl);
1006 
1007 		dma_fence_put(excl);
1008 	}
1009 
1010 	return ret;
1011 }
1012 
1013 /*
1014  * NB: This function is not allowed to fail. Doing so would mean the the
1015  * request is not being tracked for completion but the work itself is
1016  * going to happen on the hardware. This would be a Bad Thing(tm).
1017  */
1018 void __i915_request_add(struct i915_request *request, bool flush_caches)
1019 {
1020 	struct intel_engine_cs *engine = request->engine;
1021 	struct intel_ring *ring = request->ring;
1022 	struct i915_timeline *timeline = request->timeline;
1023 	struct i915_request *prev;
1024 	u32 *cs;
1025 	int err;
1026 
1027 	GEM_TRACE("%s fence %llx:%d\n",
1028 		  engine->name, request->fence.context, request->fence.seqno);
1029 
1030 	lockdep_assert_held(&request->i915->drm.struct_mutex);
1031 	trace_i915_request_add(request);
1032 
1033 	/*
1034 	 * Make sure that no request gazumped us - if it was allocated after
1035 	 * our i915_request_alloc() and called __i915_request_add() before
1036 	 * us, the timeline will hold its seqno which is later than ours.
1037 	 */
1038 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1039 
1040 	/*
1041 	 * To ensure that this call will not fail, space for its emissions
1042 	 * should already have been reserved in the ring buffer. Let the ring
1043 	 * know that it is time to use that space up.
1044 	 */
1045 	request->reserved_space = 0;
1046 
1047 	/*
1048 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1049 	 * after having emitted the batchbuffer command. Hence we need to fix
1050 	 * things up similar to emitting the lazy request. The difference here
1051 	 * is that the flush _must_ happen before the next request, no matter
1052 	 * what.
1053 	 */
1054 	if (flush_caches) {
1055 		err = engine->emit_flush(request, EMIT_FLUSH);
1056 
1057 		/* Not allowed to fail! */
1058 		WARN(err, "engine->emit_flush() failed: %d!\n", err);
1059 	}
1060 
1061 	/*
1062 	 * Record the position of the start of the breadcrumb so that
1063 	 * should we detect the updated seqno part-way through the
1064 	 * GPU processing the request, we never over-estimate the
1065 	 * position of the ring's HEAD.
1066 	 */
1067 	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1068 	GEM_BUG_ON(IS_ERR(cs));
1069 	request->postfix = intel_ring_offset(request, cs);
1070 
1071 	/*
1072 	 * Seal the request and mark it as pending execution. Note that
1073 	 * we may inspect this state, without holding any locks, during
1074 	 * hangcheck. Hence we apply the barrier to ensure that we do not
1075 	 * see a more recent value in the hws than we are tracking.
1076 	 */
1077 
1078 	prev = i915_gem_active_raw(&timeline->last_request,
1079 				   &request->i915->drm.struct_mutex);
1080 	if (prev && !i915_request_completed(prev)) {
1081 		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1082 					     &request->submitq);
1083 		if (engine->schedule)
1084 			__i915_sched_node_add_dependency(&request->sched,
1085 							 &prev->sched,
1086 							 &request->dep,
1087 							 0);
1088 	}
1089 
1090 	spin_lock_irq(&timeline->lock);
1091 	list_add_tail(&request->link, &timeline->requests);
1092 	spin_unlock_irq(&timeline->lock);
1093 
1094 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1095 	i915_gem_active_set(&timeline->last_request, request);
1096 
1097 	list_add_tail(&request->ring_link, &ring->request_list);
1098 	if (list_is_first(&request->ring_link, &ring->request_list))
1099 		list_add(&ring->active_link, &request->i915->gt.active_rings);
1100 	request->emitted_jiffies = jiffies;
1101 
1102 	/*
1103 	 * Let the backend know a new request has arrived that may need
1104 	 * to adjust the existing execution schedule due to a high priority
1105 	 * request - i.e. we may want to preempt the current request in order
1106 	 * to run a high priority dependency chain *before* we can execute this
1107 	 * request.
1108 	 *
1109 	 * This is called before the request is ready to run so that we can
1110 	 * decide whether to preempt the entire chain so that it is ready to
1111 	 * run at the earliest possible convenience.
1112 	 */
1113 	local_bh_disable();
1114 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1115 	if (engine->schedule)
1116 		engine->schedule(request, &request->ctx->sched);
1117 	rcu_read_unlock();
1118 	i915_sw_fence_commit(&request->submit);
1119 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1120 
1121 	/*
1122 	 * In typical scenarios, we do not expect the previous request on
1123 	 * the timeline to be still tracked by timeline->last_request if it
1124 	 * has been completed. If the completed request is still here, that
1125 	 * implies that request retirement is a long way behind submission,
1126 	 * suggesting that we haven't been retiring frequently enough from
1127 	 * the combination of retire-before-alloc, waiters and the background
1128 	 * retirement worker. So if the last request on this timeline was
1129 	 * already completed, do a catch up pass, flushing the retirement queue
1130 	 * up to this client. Since we have now moved the heaviest operations
1131 	 * during retirement onto secondary workers, such as freeing objects
1132 	 * or contexts, retiring a bunch of requests is mostly list management
1133 	 * (and cache misses), and so we should not be overly penalizing this
1134 	 * client by performing excess work, though we may still performing
1135 	 * work on behalf of others -- but instead we should benefit from
1136 	 * improved resource management. (Well, that's the theory at least.)
1137 	 */
1138 	if (prev && i915_request_completed(prev))
1139 		i915_request_retire_upto(prev);
1140 }
1141 
1142 static unsigned long local_clock_us(unsigned int *cpu)
1143 {
1144 	unsigned long t;
1145 
1146 	/*
1147 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1148 	 * The result and subsequent calculations are also defined in the same
1149 	 * approximate microseconds units. The principal source of timing
1150 	 * error here is from the simple truncation.
1151 	 *
1152 	 * Note that local_clock() is only defined wrt to the current CPU;
1153 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1154 	 * blocking preemption for the entire busywait, we can detect the CPU
1155 	 * switch and use that as indicator of system load and a reason to
1156 	 * stop busywaiting, see busywait_stop().
1157 	 */
1158 	*cpu = get_cpu();
1159 	t = local_clock() >> 10;
1160 	put_cpu();
1161 
1162 	return t;
1163 }
1164 
1165 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1166 {
1167 	unsigned int this_cpu;
1168 
1169 	if (time_after(local_clock_us(&this_cpu), timeout))
1170 		return true;
1171 
1172 	return this_cpu != cpu;
1173 }
1174 
1175 static bool __i915_spin_request(const struct i915_request *rq,
1176 				u32 seqno, int state, unsigned long timeout_us)
1177 {
1178 	struct intel_engine_cs *engine = rq->engine;
1179 	unsigned int irq, cpu;
1180 
1181 	GEM_BUG_ON(!seqno);
1182 
1183 	/*
1184 	 * Only wait for the request if we know it is likely to complete.
1185 	 *
1186 	 * We don't track the timestamps around requests, nor the average
1187 	 * request length, so we do not have a good indicator that this
1188 	 * request will complete within the timeout. What we do know is the
1189 	 * order in which requests are executed by the engine and so we can
1190 	 * tell if the request has started. If the request hasn't started yet,
1191 	 * it is a fair assumption that it will not complete within our
1192 	 * relatively short timeout.
1193 	 */
1194 	if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1195 		return false;
1196 
1197 	/*
1198 	 * When waiting for high frequency requests, e.g. during synchronous
1199 	 * rendering split between the CPU and GPU, the finite amount of time
1200 	 * required to set up the irq and wait upon it limits the response
1201 	 * rate. By busywaiting on the request completion for a short while we
1202 	 * can service the high frequency waits as quick as possible. However,
1203 	 * if it is a slow request, we want to sleep as quickly as possible.
1204 	 * The tradeoff between waiting and sleeping is roughly the time it
1205 	 * takes to sleep on a request, on the order of a microsecond.
1206 	 */
1207 
1208 	irq = atomic_read(&engine->irq_count);
1209 	timeout_us += local_clock_us(&cpu);
1210 	do {
1211 		if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1212 			return seqno == i915_request_global_seqno(rq);
1213 
1214 		/*
1215 		 * Seqno are meant to be ordered *before* the interrupt. If
1216 		 * we see an interrupt without a corresponding seqno advance,
1217 		 * assume we won't see one in the near future but require
1218 		 * the engine->seqno_barrier() to fixup coherency.
1219 		 */
1220 		if (atomic_read(&engine->irq_count) != irq)
1221 			break;
1222 
1223 		if (signal_pending_state(state, current))
1224 			break;
1225 
1226 		if (busywait_stop(timeout_us, cpu))
1227 			break;
1228 
1229 		cpu_relax();
1230 	} while (!need_resched());
1231 
1232 	return false;
1233 }
1234 
1235 static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1236 {
1237 	struct i915_gpu_error *error = &request->i915->gpu_error;
1238 
1239 	if (likely(!i915_reset_handoff(error)))
1240 		return false;
1241 
1242 	__set_current_state(TASK_RUNNING);
1243 	i915_reset(request->i915, error->stalled_mask, error->reason);
1244 	return true;
1245 }
1246 
1247 /**
1248  * i915_request_wait - wait until execution of request has finished
1249  * @rq: the request to wait upon
1250  * @flags: how to wait
1251  * @timeout: how long to wait in jiffies
1252  *
1253  * i915_request_wait() waits for the request to be completed, for a
1254  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1255  * unbounded wait).
1256  *
1257  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1258  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1259  * must not specify that the wait is locked.
1260  *
1261  * Returns the remaining time (in jiffies) if the request completed, which may
1262  * be zero or -ETIME if the request is unfinished after the timeout expires.
1263  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1264  * pending before the request completes.
1265  */
1266 long i915_request_wait(struct i915_request *rq,
1267 		       unsigned int flags,
1268 		       long timeout)
1269 {
1270 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1271 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1272 	wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1273 	DEFINE_WAIT_FUNC(reset, default_wake_function);
1274 	DEFINE_WAIT_FUNC(exec, default_wake_function);
1275 	struct intel_wait wait;
1276 
1277 	might_sleep();
1278 #if IS_ENABLED(CONFIG_LOCKDEP)
1279 	GEM_BUG_ON(debug_locks &&
1280 		   !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1281 		   !!(flags & I915_WAIT_LOCKED));
1282 #endif
1283 	GEM_BUG_ON(timeout < 0);
1284 
1285 	if (i915_request_completed(rq))
1286 		return timeout;
1287 
1288 	if (!timeout)
1289 		return -ETIME;
1290 
1291 	trace_i915_request_wait_begin(rq, flags);
1292 
1293 	add_wait_queue(&rq->execute, &exec);
1294 	if (flags & I915_WAIT_LOCKED)
1295 		add_wait_queue(errq, &reset);
1296 
1297 	intel_wait_init(&wait, rq);
1298 
1299 restart:
1300 	do {
1301 		set_current_state(state);
1302 		if (intel_wait_update_request(&wait, rq))
1303 			break;
1304 
1305 		if (flags & I915_WAIT_LOCKED &&
1306 		    __i915_wait_request_check_and_reset(rq))
1307 			continue;
1308 
1309 		if (signal_pending_state(state, current)) {
1310 			timeout = -ERESTARTSYS;
1311 			goto complete;
1312 		}
1313 
1314 		if (!timeout) {
1315 			timeout = -ETIME;
1316 			goto complete;
1317 		}
1318 
1319 		timeout = io_schedule_timeout(timeout);
1320 	} while (1);
1321 
1322 	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1323 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1324 
1325 	/* Optimistic short spin before touching IRQs */
1326 	if (__i915_spin_request(rq, wait.seqno, state, 5))
1327 		goto complete;
1328 
1329 	set_current_state(state);
1330 	if (intel_engine_add_wait(rq->engine, &wait))
1331 		/*
1332 		 * In order to check that we haven't missed the interrupt
1333 		 * as we enabled it, we need to kick ourselves to do a
1334 		 * coherent check on the seqno before we sleep.
1335 		 */
1336 		goto wakeup;
1337 
1338 	if (flags & I915_WAIT_LOCKED)
1339 		__i915_wait_request_check_and_reset(rq);
1340 
1341 	for (;;) {
1342 		if (signal_pending_state(state, current)) {
1343 			timeout = -ERESTARTSYS;
1344 			break;
1345 		}
1346 
1347 		if (!timeout) {
1348 			timeout = -ETIME;
1349 			break;
1350 		}
1351 
1352 		timeout = io_schedule_timeout(timeout);
1353 
1354 		if (intel_wait_complete(&wait) &&
1355 		    intel_wait_check_request(&wait, rq))
1356 			break;
1357 
1358 		set_current_state(state);
1359 
1360 wakeup:
1361 		/*
1362 		 * Carefully check if the request is complete, giving time
1363 		 * for the seqno to be visible following the interrupt.
1364 		 * We also have to check in case we are kicked by the GPU
1365 		 * reset in order to drop the struct_mutex.
1366 		 */
1367 		if (__i915_request_irq_complete(rq))
1368 			break;
1369 
1370 		/*
1371 		 * If the GPU is hung, and we hold the lock, reset the GPU
1372 		 * and then check for completion. On a full reset, the engine's
1373 		 * HW seqno will be advanced passed us and we are complete.
1374 		 * If we do a partial reset, we have to wait for the GPU to
1375 		 * resume and update the breadcrumb.
1376 		 *
1377 		 * If we don't hold the mutex, we can just wait for the worker
1378 		 * to come along and update the breadcrumb (either directly
1379 		 * itself, or indirectly by recovering the GPU).
1380 		 */
1381 		if (flags & I915_WAIT_LOCKED &&
1382 		    __i915_wait_request_check_and_reset(rq))
1383 			continue;
1384 
1385 		/* Only spin if we know the GPU is processing this request */
1386 		if (__i915_spin_request(rq, wait.seqno, state, 2))
1387 			break;
1388 
1389 		if (!intel_wait_check_request(&wait, rq)) {
1390 			intel_engine_remove_wait(rq->engine, &wait);
1391 			goto restart;
1392 		}
1393 	}
1394 
1395 	intel_engine_remove_wait(rq->engine, &wait);
1396 complete:
1397 	__set_current_state(TASK_RUNNING);
1398 	if (flags & I915_WAIT_LOCKED)
1399 		remove_wait_queue(errq, &reset);
1400 	remove_wait_queue(&rq->execute, &exec);
1401 	trace_i915_request_wait_end(rq);
1402 
1403 	return timeout;
1404 }
1405 
1406 static void ring_retire_requests(struct intel_ring *ring)
1407 {
1408 	struct i915_request *request, *next;
1409 
1410 	list_for_each_entry_safe(request, next,
1411 				 &ring->request_list, ring_link) {
1412 		if (!i915_request_completed(request))
1413 			break;
1414 
1415 		i915_request_retire(request);
1416 	}
1417 }
1418 
1419 void i915_retire_requests(struct drm_i915_private *i915)
1420 {
1421 	struct intel_ring *ring, *tmp;
1422 
1423 	lockdep_assert_held(&i915->drm.struct_mutex);
1424 
1425 	if (!i915->gt.active_requests)
1426 		return;
1427 
1428 	list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
1429 		ring_retire_requests(ring);
1430 }
1431 
1432 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1433 #include "selftests/mock_request.c"
1434 #include "selftests/i915_request.c"
1435 #endif
1436