1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30 
31 #include "i915_drv.h"
32 
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35 	return "i915";
36 }
37 
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40 	/*
41 	 * The timeline struct (as part of the ppgtt underneath a context)
42 	 * may be freed when the request is no longer in use by the GPU.
43 	 * We could extend the life of a context to beyond that of all
44 	 * fences, possibly keeping the hw resource around indefinitely,
45 	 * or we just give them a false name. Since
46 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
47 	 * lie seems justifiable.
48 	 */
49 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
50 		return "signaled";
51 
52 	return to_request(fence)->timeline->name;
53 }
54 
55 static bool i915_fence_signaled(struct dma_fence *fence)
56 {
57 	return i915_request_completed(to_request(fence));
58 }
59 
60 static bool i915_fence_enable_signaling(struct dma_fence *fence)
61 {
62 	return intel_engine_enable_signaling(to_request(fence), true);
63 }
64 
65 static signed long i915_fence_wait(struct dma_fence *fence,
66 				   bool interruptible,
67 				   signed long timeout)
68 {
69 	return i915_request_wait(to_request(fence), interruptible, timeout);
70 }
71 
72 static void i915_fence_release(struct dma_fence *fence)
73 {
74 	struct i915_request *rq = to_request(fence);
75 
76 	/*
77 	 * The request is put onto a RCU freelist (i.e. the address
78 	 * is immediately reused), mark the fences as being freed now.
79 	 * Otherwise the debugobjects for the fences are only marked as
80 	 * freed when the slab cache itself is freed, and so we would get
81 	 * caught trying to reuse dead objects.
82 	 */
83 	i915_sw_fence_fini(&rq->submit);
84 
85 	kmem_cache_free(rq->i915->requests, rq);
86 }
87 
88 const struct dma_fence_ops i915_fence_ops = {
89 	.get_driver_name = i915_fence_get_driver_name,
90 	.get_timeline_name = i915_fence_get_timeline_name,
91 	.enable_signaling = i915_fence_enable_signaling,
92 	.signaled = i915_fence_signaled,
93 	.wait = i915_fence_wait,
94 	.release = i915_fence_release,
95 };
96 
97 static inline void
98 i915_request_remove_from_client(struct i915_request *request)
99 {
100 	struct drm_i915_file_private *file_priv;
101 
102 	file_priv = request->file_priv;
103 	if (!file_priv)
104 		return;
105 
106 	spin_lock(&file_priv->mm.lock);
107 	if (request->file_priv) {
108 		list_del(&request->client_link);
109 		request->file_priv = NULL;
110 	}
111 	spin_unlock(&file_priv->mm.lock);
112 }
113 
114 static struct i915_dependency *
115 i915_dependency_alloc(struct drm_i915_private *i915)
116 {
117 	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
118 }
119 
120 static void
121 i915_dependency_free(struct drm_i915_private *i915,
122 		     struct i915_dependency *dep)
123 {
124 	kmem_cache_free(i915->dependencies, dep);
125 }
126 
127 static void
128 __i915_sched_node_add_dependency(struct i915_sched_node *node,
129 				 struct i915_sched_node *signal,
130 				 struct i915_dependency *dep,
131 				 unsigned long flags)
132 {
133 	INIT_LIST_HEAD(&dep->dfs_link);
134 	list_add(&dep->wait_link, &signal->waiters_list);
135 	list_add(&dep->signal_link, &node->signalers_list);
136 	dep->signaler = signal;
137 	dep->flags = flags;
138 }
139 
140 static int
141 i915_sched_node_add_dependency(struct drm_i915_private *i915,
142 			       struct i915_sched_node *node,
143 			       struct i915_sched_node *signal)
144 {
145 	struct i915_dependency *dep;
146 
147 	dep = i915_dependency_alloc(i915);
148 	if (!dep)
149 		return -ENOMEM;
150 
151 	__i915_sched_node_add_dependency(node, signal, dep,
152 					 I915_DEPENDENCY_ALLOC);
153 	return 0;
154 }
155 
156 static void
157 i915_sched_node_fini(struct drm_i915_private *i915,
158 		     struct i915_sched_node *node)
159 {
160 	struct i915_dependency *dep, *tmp;
161 
162 	GEM_BUG_ON(!list_empty(&node->link));
163 
164 	/*
165 	 * Everyone we depended upon (the fences we wait to be signaled)
166 	 * should retire before us and remove themselves from our list.
167 	 * However, retirement is run independently on each timeline and
168 	 * so we may be called out-of-order.
169 	 */
170 	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
171 		GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
172 		GEM_BUG_ON(!list_empty(&dep->dfs_link));
173 
174 		list_del(&dep->wait_link);
175 		if (dep->flags & I915_DEPENDENCY_ALLOC)
176 			i915_dependency_free(i915, dep);
177 	}
178 
179 	/* Remove ourselves from everyone who depends upon us */
180 	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
181 		GEM_BUG_ON(dep->signaler != node);
182 		GEM_BUG_ON(!list_empty(&dep->dfs_link));
183 
184 		list_del(&dep->signal_link);
185 		if (dep->flags & I915_DEPENDENCY_ALLOC)
186 			i915_dependency_free(i915, dep);
187 	}
188 }
189 
190 static void
191 i915_sched_node_init(struct i915_sched_node *node)
192 {
193 	INIT_LIST_HEAD(&node->signalers_list);
194 	INIT_LIST_HEAD(&node->waiters_list);
195 	INIT_LIST_HEAD(&node->link);
196 	node->attr.priority = I915_PRIORITY_INVALID;
197 }
198 
199 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
200 {
201 	struct intel_engine_cs *engine;
202 	struct i915_timeline *timeline;
203 	enum intel_engine_id id;
204 	int ret;
205 
206 	/* Carefully retire all requests without writing to the rings */
207 	ret = i915_gem_wait_for_idle(i915,
208 				     I915_WAIT_INTERRUPTIBLE |
209 				     I915_WAIT_LOCKED);
210 	if (ret)
211 		return ret;
212 
213 	GEM_BUG_ON(i915->gt.active_requests);
214 
215 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
216 	for_each_engine(engine, i915, id) {
217 		GEM_TRACE("%s seqno %d (current %d) -> %d\n",
218 			  engine->name,
219 			  engine->timeline.seqno,
220 			  intel_engine_get_seqno(engine),
221 			  seqno);
222 
223 		if (!i915_seqno_passed(seqno, engine->timeline.seqno)) {
224 			/* Flush any waiters before we reuse the seqno */
225 			intel_engine_disarm_breadcrumbs(engine);
226 			intel_engine_init_hangcheck(engine);
227 			GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
228 		}
229 
230 		/* Check we are idle before we fiddle with hw state! */
231 		GEM_BUG_ON(!intel_engine_is_idle(engine));
232 		GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request));
233 
234 		/* Finally reset hw state */
235 		intel_engine_init_global_seqno(engine, seqno);
236 		engine->timeline.seqno = seqno;
237 	}
238 
239 	list_for_each_entry(timeline, &i915->gt.timelines, link)
240 		memset(timeline->global_sync, 0, sizeof(timeline->global_sync));
241 
242 	i915->gt.request_serial = seqno;
243 
244 	return 0;
245 }
246 
247 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
248 {
249 	struct drm_i915_private *i915 = to_i915(dev);
250 
251 	lockdep_assert_held(&i915->drm.struct_mutex);
252 
253 	if (seqno == 0)
254 		return -EINVAL;
255 
256 	/* HWS page needs to be set less than what we will inject to ring */
257 	return reset_all_global_seqno(i915, seqno - 1);
258 }
259 
260 static int reserve_gt(struct drm_i915_private *i915)
261 {
262 	int ret;
263 
264 	/*
265 	 * Reservation is fine until we may need to wrap around
266 	 *
267 	 * By incrementing the serial for every request, we know that no
268 	 * individual engine may exceed that serial (as each is reset to 0
269 	 * on any wrap). This protects even the most pessimistic of migrations
270 	 * of every request from all engines onto just one.
271 	 */
272 	while (unlikely(++i915->gt.request_serial == 0)) {
273 		ret = reset_all_global_seqno(i915, 0);
274 		if (ret) {
275 			i915->gt.request_serial--;
276 			return ret;
277 		}
278 	}
279 
280 	if (!i915->gt.active_requests++)
281 		i915_gem_unpark(i915);
282 
283 	return 0;
284 }
285 
286 static void unreserve_gt(struct drm_i915_private *i915)
287 {
288 	GEM_BUG_ON(!i915->gt.active_requests);
289 	if (!--i915->gt.active_requests)
290 		i915_gem_park(i915);
291 }
292 
293 void i915_gem_retire_noop(struct i915_gem_active *active,
294 			  struct i915_request *request)
295 {
296 	/* Space left intentionally blank */
297 }
298 
299 static void advance_ring(struct i915_request *request)
300 {
301 	struct intel_ring *ring = request->ring;
302 	unsigned int tail;
303 
304 	/*
305 	 * We know the GPU must have read the request to have
306 	 * sent us the seqno + interrupt, so use the position
307 	 * of tail of the request to update the last known position
308 	 * of the GPU head.
309 	 *
310 	 * Note this requires that we are always called in request
311 	 * completion order.
312 	 */
313 	GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
314 	if (list_is_last(&request->ring_link, &ring->request_list)) {
315 		/*
316 		 * We may race here with execlists resubmitting this request
317 		 * as we retire it. The resubmission will move the ring->tail
318 		 * forwards (to request->wa_tail). We either read the
319 		 * current value that was written to hw, or the value that
320 		 * is just about to be. Either works, if we miss the last two
321 		 * noops - they are safe to be replayed on a reset.
322 		 */
323 		GEM_TRACE("marking %s as inactive\n", ring->timeline->name);
324 		tail = READ_ONCE(request->tail);
325 		list_del(&ring->active_link);
326 	} else {
327 		tail = request->postfix;
328 	}
329 	list_del_init(&request->ring_link);
330 
331 	ring->head = tail;
332 }
333 
334 static void free_capture_list(struct i915_request *request)
335 {
336 	struct i915_capture_list *capture;
337 
338 	capture = request->capture_list;
339 	while (capture) {
340 		struct i915_capture_list *next = capture->next;
341 
342 		kfree(capture);
343 		capture = next;
344 	}
345 }
346 
347 static void __retire_engine_request(struct intel_engine_cs *engine,
348 				    struct i915_request *rq)
349 {
350 	GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
351 		  __func__, engine->name,
352 		  rq->fence.context, rq->fence.seqno,
353 		  rq->global_seqno,
354 		  intel_engine_get_seqno(engine));
355 
356 	GEM_BUG_ON(!i915_request_completed(rq));
357 
358 	local_irq_disable();
359 
360 	spin_lock(&engine->timeline.lock);
361 	GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
362 	list_del_init(&rq->link);
363 	spin_unlock(&engine->timeline.lock);
364 
365 	spin_lock(&rq->lock);
366 	if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
367 		dma_fence_signal_locked(&rq->fence);
368 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
369 		intel_engine_cancel_signaling(rq);
370 	if (rq->waitboost) {
371 		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
372 		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
373 	}
374 	spin_unlock(&rq->lock);
375 
376 	local_irq_enable();
377 
378 	/*
379 	 * The backing object for the context is done after switching to the
380 	 * *next* context. Therefore we cannot retire the previous context until
381 	 * the next context has already started running. However, since we
382 	 * cannot take the required locks at i915_request_submit() we
383 	 * defer the unpinning of the active context to now, retirement of
384 	 * the subsequent request.
385 	 */
386 	if (engine->last_retired_context)
387 		intel_context_unpin(engine->last_retired_context);
388 	engine->last_retired_context = rq->hw_context;
389 }
390 
391 static void __retire_engine_upto(struct intel_engine_cs *engine,
392 				 struct i915_request *rq)
393 {
394 	struct i915_request *tmp;
395 
396 	if (list_empty(&rq->link))
397 		return;
398 
399 	do {
400 		tmp = list_first_entry(&engine->timeline.requests,
401 				       typeof(*tmp), link);
402 
403 		GEM_BUG_ON(tmp->engine != engine);
404 		__retire_engine_request(engine, tmp);
405 	} while (tmp != rq);
406 }
407 
408 static void i915_request_retire(struct i915_request *request)
409 {
410 	struct i915_gem_active *active, *next;
411 
412 	GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
413 		  request->engine->name,
414 		  request->fence.context, request->fence.seqno,
415 		  request->global_seqno,
416 		  intel_engine_get_seqno(request->engine));
417 
418 	lockdep_assert_held(&request->i915->drm.struct_mutex);
419 	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
420 	GEM_BUG_ON(!i915_request_completed(request));
421 
422 	trace_i915_request_retire(request);
423 
424 	advance_ring(request);
425 	free_capture_list(request);
426 
427 	/*
428 	 * Walk through the active list, calling retire on each. This allows
429 	 * objects to track their GPU activity and mark themselves as idle
430 	 * when their *last* active request is completed (updating state
431 	 * tracking lists for eviction, active references for GEM, etc).
432 	 *
433 	 * As the ->retire() may free the node, we decouple it first and
434 	 * pass along the auxiliary information (to avoid dereferencing
435 	 * the node after the callback).
436 	 */
437 	list_for_each_entry_safe(active, next, &request->active_list, link) {
438 		/*
439 		 * In microbenchmarks or focusing upon time inside the kernel,
440 		 * we may spend an inordinate amount of time simply handling
441 		 * the retirement of requests and processing their callbacks.
442 		 * Of which, this loop itself is particularly hot due to the
443 		 * cache misses when jumping around the list of i915_gem_active.
444 		 * So we try to keep this loop as streamlined as possible and
445 		 * also prefetch the next i915_gem_active to try and hide
446 		 * the likely cache miss.
447 		 */
448 		prefetchw(next);
449 
450 		INIT_LIST_HEAD(&active->link);
451 		RCU_INIT_POINTER(active->request, NULL);
452 
453 		active->retire(active, request);
454 	}
455 
456 	i915_request_remove_from_client(request);
457 
458 	/* Retirement decays the ban score as it is a sign of ctx progress */
459 	atomic_dec_if_positive(&request->gem_context->ban_score);
460 	intel_context_unpin(request->hw_context);
461 
462 	__retire_engine_upto(request->engine, request);
463 
464 	unreserve_gt(request->i915);
465 
466 	i915_sched_node_fini(request->i915, &request->sched);
467 	i915_request_put(request);
468 }
469 
470 void i915_request_retire_upto(struct i915_request *rq)
471 {
472 	struct intel_ring *ring = rq->ring;
473 	struct i915_request *tmp;
474 
475 	GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
476 		  rq->engine->name,
477 		  rq->fence.context, rq->fence.seqno,
478 		  rq->global_seqno,
479 		  intel_engine_get_seqno(rq->engine));
480 
481 	lockdep_assert_held(&rq->i915->drm.struct_mutex);
482 	GEM_BUG_ON(!i915_request_completed(rq));
483 
484 	if (list_empty(&rq->ring_link))
485 		return;
486 
487 	do {
488 		tmp = list_first_entry(&ring->request_list,
489 				       typeof(*tmp), ring_link);
490 
491 		i915_request_retire(tmp);
492 	} while (tmp != rq);
493 }
494 
495 static u32 timeline_get_seqno(struct i915_timeline *tl)
496 {
497 	return ++tl->seqno;
498 }
499 
500 static void move_to_timeline(struct i915_request *request,
501 			     struct i915_timeline *timeline)
502 {
503 	GEM_BUG_ON(request->timeline == &request->engine->timeline);
504 	lockdep_assert_held(&request->engine->timeline.lock);
505 
506 	spin_lock_nested(&request->timeline->lock, SINGLE_DEPTH_NESTING);
507 	list_move_tail(&request->link, &timeline->requests);
508 	spin_unlock(&request->timeline->lock);
509 }
510 
511 void __i915_request_submit(struct i915_request *request)
512 {
513 	struct intel_engine_cs *engine = request->engine;
514 	u32 seqno;
515 
516 	GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
517 		  engine->name,
518 		  request->fence.context, request->fence.seqno,
519 		  engine->timeline.seqno + 1,
520 		  intel_engine_get_seqno(engine));
521 
522 	GEM_BUG_ON(!irqs_disabled());
523 	lockdep_assert_held(&engine->timeline.lock);
524 
525 	GEM_BUG_ON(request->global_seqno);
526 
527 	seqno = timeline_get_seqno(&engine->timeline);
528 	GEM_BUG_ON(!seqno);
529 	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
530 
531 	/* We may be recursing from the signal callback of another i915 fence */
532 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
533 	request->global_seqno = seqno;
534 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
535 		intel_engine_enable_signaling(request, false);
536 	spin_unlock(&request->lock);
537 
538 	engine->emit_breadcrumb(request,
539 				request->ring->vaddr + request->postfix);
540 
541 	/* Transfer from per-context onto the global per-engine timeline */
542 	move_to_timeline(request, &engine->timeline);
543 
544 	trace_i915_request_execute(request);
545 
546 	wake_up_all(&request->execute);
547 }
548 
549 void i915_request_submit(struct i915_request *request)
550 {
551 	struct intel_engine_cs *engine = request->engine;
552 	unsigned long flags;
553 
554 	/* Will be called from irq-context when using foreign fences. */
555 	spin_lock_irqsave(&engine->timeline.lock, flags);
556 
557 	__i915_request_submit(request);
558 
559 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
560 }
561 
562 void __i915_request_unsubmit(struct i915_request *request)
563 {
564 	struct intel_engine_cs *engine = request->engine;
565 
566 	GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
567 		  engine->name,
568 		  request->fence.context, request->fence.seqno,
569 		  request->global_seqno,
570 		  intel_engine_get_seqno(engine));
571 
572 	GEM_BUG_ON(!irqs_disabled());
573 	lockdep_assert_held(&engine->timeline.lock);
574 
575 	/*
576 	 * Only unwind in reverse order, required so that the per-context list
577 	 * is kept in seqno/ring order.
578 	 */
579 	GEM_BUG_ON(!request->global_seqno);
580 	GEM_BUG_ON(request->global_seqno != engine->timeline.seqno);
581 	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
582 				     request->global_seqno));
583 	engine->timeline.seqno--;
584 
585 	/* We may be recursing from the signal callback of another i915 fence */
586 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
587 	request->global_seqno = 0;
588 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
589 		intel_engine_cancel_signaling(request);
590 	spin_unlock(&request->lock);
591 
592 	/* Transfer back from the global per-engine timeline to per-context */
593 	move_to_timeline(request, request->timeline);
594 
595 	/*
596 	 * We don't need to wake_up any waiters on request->execute, they
597 	 * will get woken by any other event or us re-adding this request
598 	 * to the engine timeline (__i915_request_submit()). The waiters
599 	 * should be quite adapt at finding that the request now has a new
600 	 * global_seqno to the one they went to sleep on.
601 	 */
602 }
603 
604 void i915_request_unsubmit(struct i915_request *request)
605 {
606 	struct intel_engine_cs *engine = request->engine;
607 	unsigned long flags;
608 
609 	/* Will be called from irq-context when using foreign fences. */
610 	spin_lock_irqsave(&engine->timeline.lock, flags);
611 
612 	__i915_request_unsubmit(request);
613 
614 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
615 }
616 
617 static int __i915_sw_fence_call
618 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
619 {
620 	struct i915_request *request =
621 		container_of(fence, typeof(*request), submit);
622 
623 	switch (state) {
624 	case FENCE_COMPLETE:
625 		trace_i915_request_submit(request);
626 		/*
627 		 * We need to serialize use of the submit_request() callback
628 		 * with its hotplugging performed during an emergency
629 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
630 		 * critical section in order to force i915_gem_set_wedged() to
631 		 * wait until the submit_request() is completed before
632 		 * proceeding.
633 		 */
634 		rcu_read_lock();
635 		request->engine->submit_request(request);
636 		rcu_read_unlock();
637 		break;
638 
639 	case FENCE_FREE:
640 		i915_request_put(request);
641 		break;
642 	}
643 
644 	return NOTIFY_DONE;
645 }
646 
647 /**
648  * i915_request_alloc - allocate a request structure
649  *
650  * @engine: engine that we wish to issue the request on.
651  * @ctx: context that the request will be associated with.
652  *
653  * Returns a pointer to the allocated request if successful,
654  * or an error code if not.
655  */
656 struct i915_request *
657 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
658 {
659 	struct drm_i915_private *i915 = engine->i915;
660 	struct i915_request *rq;
661 	struct intel_context *ce;
662 	int ret;
663 
664 	lockdep_assert_held(&i915->drm.struct_mutex);
665 
666 	/*
667 	 * Preempt contexts are reserved for exclusive use to inject a
668 	 * preemption context switch. They are never to be used for any trivial
669 	 * request!
670 	 */
671 	GEM_BUG_ON(ctx == i915->preempt_context);
672 
673 	/*
674 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
675 	 * EIO if the GPU is already wedged.
676 	 */
677 	if (i915_terminally_wedged(&i915->gpu_error))
678 		return ERR_PTR(-EIO);
679 
680 	/*
681 	 * Pinning the contexts may generate requests in order to acquire
682 	 * GGTT space, so do this first before we reserve a seqno for
683 	 * ourselves.
684 	 */
685 	ce = intel_context_pin(ctx, engine);
686 	if (IS_ERR(ce))
687 		return ERR_CAST(ce);
688 
689 	ret = reserve_gt(i915);
690 	if (ret)
691 		goto err_unpin;
692 
693 	ret = intel_ring_wait_for_space(ce->ring, MIN_SPACE_FOR_ADD_REQUEST);
694 	if (ret)
695 		goto err_unreserve;
696 
697 	/* Move our oldest request to the slab-cache (if not in use!) */
698 	rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
699 	if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
700 	    i915_request_completed(rq))
701 		i915_request_retire(rq);
702 
703 	/*
704 	 * Beware: Dragons be flying overhead.
705 	 *
706 	 * We use RCU to look up requests in flight. The lookups may
707 	 * race with the request being allocated from the slab freelist.
708 	 * That is the request we are writing to here, may be in the process
709 	 * of being read by __i915_gem_active_get_rcu(). As such,
710 	 * we have to be very careful when overwriting the contents. During
711 	 * the RCU lookup, we change chase the request->engine pointer,
712 	 * read the request->global_seqno and increment the reference count.
713 	 *
714 	 * The reference count is incremented atomically. If it is zero,
715 	 * the lookup knows the request is unallocated and complete. Otherwise,
716 	 * it is either still in use, or has been reallocated and reset
717 	 * with dma_fence_init(). This increment is safe for release as we
718 	 * check that the request we have a reference to and matches the active
719 	 * request.
720 	 *
721 	 * Before we increment the refcount, we chase the request->engine
722 	 * pointer. We must not call kmem_cache_zalloc() or else we set
723 	 * that pointer to NULL and cause a crash during the lookup. If
724 	 * we see the request is completed (based on the value of the
725 	 * old engine and seqno), the lookup is complete and reports NULL.
726 	 * If we decide the request is not completed (new engine or seqno),
727 	 * then we grab a reference and double check that it is still the
728 	 * active request - which it won't be and restart the lookup.
729 	 *
730 	 * Do not use kmem_cache_zalloc() here!
731 	 */
732 	rq = kmem_cache_alloc(i915->requests,
733 			      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
734 	if (unlikely(!rq)) {
735 		/* Ratelimit ourselves to prevent oom from malicious clients */
736 		ret = i915_gem_wait_for_idle(i915,
737 					     I915_WAIT_LOCKED |
738 					     I915_WAIT_INTERRUPTIBLE);
739 		if (ret)
740 			goto err_unreserve;
741 
742 		/*
743 		 * We've forced the client to stall and catch up with whatever
744 		 * backlog there might have been. As we are assuming that we
745 		 * caused the mempressure, now is an opportune time to
746 		 * recover as much memory from the request pool as is possible.
747 		 * Having already penalized the client to stall, we spend
748 		 * a little extra time to re-optimise page allocation.
749 		 */
750 		kmem_cache_shrink(i915->requests);
751 		rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
752 
753 		rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
754 		if (!rq) {
755 			ret = -ENOMEM;
756 			goto err_unreserve;
757 		}
758 	}
759 
760 	INIT_LIST_HEAD(&rq->active_list);
761 	rq->i915 = i915;
762 	rq->engine = engine;
763 	rq->gem_context = ctx;
764 	rq->hw_context = ce;
765 	rq->ring = ce->ring;
766 	rq->timeline = ce->ring->timeline;
767 	GEM_BUG_ON(rq->timeline == &engine->timeline);
768 
769 	spin_lock_init(&rq->lock);
770 	dma_fence_init(&rq->fence,
771 		       &i915_fence_ops,
772 		       &rq->lock,
773 		       rq->timeline->fence_context,
774 		       timeline_get_seqno(rq->timeline));
775 
776 	/* We bump the ref for the fence chain */
777 	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
778 	init_waitqueue_head(&rq->execute);
779 
780 	i915_sched_node_init(&rq->sched);
781 
782 	/* No zalloc, must clear what we need by hand */
783 	rq->global_seqno = 0;
784 	rq->signaling.wait.seqno = 0;
785 	rq->file_priv = NULL;
786 	rq->batch = NULL;
787 	rq->capture_list = NULL;
788 	rq->waitboost = false;
789 
790 	/*
791 	 * Reserve space in the ring buffer for all the commands required to
792 	 * eventually emit this request. This is to guarantee that the
793 	 * i915_request_add() call can't fail. Note that the reserve may need
794 	 * to be redone if the request is not actually submitted straight
795 	 * away, e.g. because a GPU scheduler has deferred it.
796 	 */
797 	rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
798 	GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
799 
800 	/*
801 	 * Record the position of the start of the request so that
802 	 * should we detect the updated seqno part-way through the
803 	 * GPU processing the request, we never over-estimate the
804 	 * position of the head.
805 	 */
806 	rq->head = rq->ring->emit;
807 
808 	/* Unconditionally invalidate GPU caches and TLBs. */
809 	ret = engine->emit_flush(rq, EMIT_INVALIDATE);
810 	if (ret)
811 		goto err_unwind;
812 
813 	ret = engine->request_alloc(rq);
814 	if (ret)
815 		goto err_unwind;
816 
817 	/* Keep a second pin for the dual retirement along engine and ring */
818 	__intel_context_pin(ce);
819 
820 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
821 
822 	/* Check that we didn't interrupt ourselves with a new request */
823 	GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
824 	return rq;
825 
826 err_unwind:
827 	ce->ring->emit = rq->head;
828 
829 	/* Make sure we didn't add ourselves to external state before freeing */
830 	GEM_BUG_ON(!list_empty(&rq->active_list));
831 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
832 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
833 
834 	kmem_cache_free(i915->requests, rq);
835 err_unreserve:
836 	unreserve_gt(i915);
837 err_unpin:
838 	intel_context_unpin(ce);
839 	return ERR_PTR(ret);
840 }
841 
842 static int
843 i915_request_await_request(struct i915_request *to, struct i915_request *from)
844 {
845 	int ret;
846 
847 	GEM_BUG_ON(to == from);
848 	GEM_BUG_ON(to->timeline == from->timeline);
849 
850 	if (i915_request_completed(from))
851 		return 0;
852 
853 	if (to->engine->schedule) {
854 		ret = i915_sched_node_add_dependency(to->i915,
855 						     &to->sched,
856 						     &from->sched);
857 		if (ret < 0)
858 			return ret;
859 	}
860 
861 	if (to->engine == from->engine) {
862 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
863 						       &from->submit,
864 						       I915_FENCE_GFP);
865 		return ret < 0 ? ret : 0;
866 	}
867 
868 	if (to->engine->semaphore.sync_to) {
869 		u32 seqno;
870 
871 		GEM_BUG_ON(!from->engine->semaphore.signal);
872 
873 		seqno = i915_request_global_seqno(from);
874 		if (!seqno)
875 			goto await_dma_fence;
876 
877 		if (seqno <= to->timeline->global_sync[from->engine->id])
878 			return 0;
879 
880 		trace_i915_gem_ring_sync_to(to, from);
881 		ret = to->engine->semaphore.sync_to(to, from);
882 		if (ret)
883 			return ret;
884 
885 		to->timeline->global_sync[from->engine->id] = seqno;
886 		return 0;
887 	}
888 
889 await_dma_fence:
890 	ret = i915_sw_fence_await_dma_fence(&to->submit,
891 					    &from->fence, 0,
892 					    I915_FENCE_GFP);
893 	return ret < 0 ? ret : 0;
894 }
895 
896 int
897 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
898 {
899 	struct dma_fence **child = &fence;
900 	unsigned int nchild = 1;
901 	int ret;
902 
903 	/*
904 	 * Note that if the fence-array was created in signal-on-any mode,
905 	 * we should *not* decompose it into its individual fences. However,
906 	 * we don't currently store which mode the fence-array is operating
907 	 * in. Fortunately, the only user of signal-on-any is private to
908 	 * amdgpu and we should not see any incoming fence-array from
909 	 * sync-file being in signal-on-any mode.
910 	 */
911 	if (dma_fence_is_array(fence)) {
912 		struct dma_fence_array *array = to_dma_fence_array(fence);
913 
914 		child = array->fences;
915 		nchild = array->num_fences;
916 		GEM_BUG_ON(!nchild);
917 	}
918 
919 	do {
920 		fence = *child++;
921 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
922 			continue;
923 
924 		/*
925 		 * Requests on the same timeline are explicitly ordered, along
926 		 * with their dependencies, by i915_request_add() which ensures
927 		 * that requests are submitted in-order through each ring.
928 		 */
929 		if (fence->context == rq->fence.context)
930 			continue;
931 
932 		/* Squash repeated waits to the same timelines */
933 		if (fence->context != rq->i915->mm.unordered_timeline &&
934 		    i915_timeline_sync_is_later(rq->timeline, fence))
935 			continue;
936 
937 		if (dma_fence_is_i915(fence))
938 			ret = i915_request_await_request(rq, to_request(fence));
939 		else
940 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
941 							    I915_FENCE_TIMEOUT,
942 							    I915_FENCE_GFP);
943 		if (ret < 0)
944 			return ret;
945 
946 		/* Record the latest fence used against each timeline */
947 		if (fence->context != rq->i915->mm.unordered_timeline)
948 			i915_timeline_sync_set(rq->timeline, fence);
949 	} while (--nchild);
950 
951 	return 0;
952 }
953 
954 /**
955  * i915_request_await_object - set this request to (async) wait upon a bo
956  * @to: request we are wishing to use
957  * @obj: object which may be in use on another ring.
958  * @write: whether the wait is on behalf of a writer
959  *
960  * This code is meant to abstract object synchronization with the GPU.
961  * Conceptually we serialise writes between engines inside the GPU.
962  * We only allow one engine to write into a buffer at any time, but
963  * multiple readers. To ensure each has a coherent view of memory, we must:
964  *
965  * - If there is an outstanding write request to the object, the new
966  *   request must wait for it to complete (either CPU or in hw, requests
967  *   on the same ring will be naturally ordered).
968  *
969  * - If we are a write request (pending_write_domain is set), the new
970  *   request must wait for outstanding read requests to complete.
971  *
972  * Returns 0 if successful, else propagates up the lower layer error.
973  */
974 int
975 i915_request_await_object(struct i915_request *to,
976 			  struct drm_i915_gem_object *obj,
977 			  bool write)
978 {
979 	struct dma_fence *excl;
980 	int ret = 0;
981 
982 	if (write) {
983 		struct dma_fence **shared;
984 		unsigned int count, i;
985 
986 		ret = reservation_object_get_fences_rcu(obj->resv,
987 							&excl, &count, &shared);
988 		if (ret)
989 			return ret;
990 
991 		for (i = 0; i < count; i++) {
992 			ret = i915_request_await_dma_fence(to, shared[i]);
993 			if (ret)
994 				break;
995 
996 			dma_fence_put(shared[i]);
997 		}
998 
999 		for (; i < count; i++)
1000 			dma_fence_put(shared[i]);
1001 		kfree(shared);
1002 	} else {
1003 		excl = reservation_object_get_excl_rcu(obj->resv);
1004 	}
1005 
1006 	if (excl) {
1007 		if (ret == 0)
1008 			ret = i915_request_await_dma_fence(to, excl);
1009 
1010 		dma_fence_put(excl);
1011 	}
1012 
1013 	return ret;
1014 }
1015 
1016 /*
1017  * NB: This function is not allowed to fail. Doing so would mean the the
1018  * request is not being tracked for completion but the work itself is
1019  * going to happen on the hardware. This would be a Bad Thing(tm).
1020  */
1021 void i915_request_add(struct i915_request *request)
1022 {
1023 	struct intel_engine_cs *engine = request->engine;
1024 	struct i915_timeline *timeline = request->timeline;
1025 	struct intel_ring *ring = request->ring;
1026 	struct i915_request *prev;
1027 	u32 *cs;
1028 
1029 	GEM_TRACE("%s fence %llx:%d\n",
1030 		  engine->name, request->fence.context, request->fence.seqno);
1031 
1032 	lockdep_assert_held(&request->i915->drm.struct_mutex);
1033 	trace_i915_request_add(request);
1034 
1035 	/*
1036 	 * Make sure that no request gazumped us - if it was allocated after
1037 	 * our i915_request_alloc() and called __i915_request_add() before
1038 	 * us, the timeline will hold its seqno which is later than ours.
1039 	 */
1040 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1041 
1042 	/*
1043 	 * To ensure that this call will not fail, space for its emissions
1044 	 * should already have been reserved in the ring buffer. Let the ring
1045 	 * know that it is time to use that space up.
1046 	 */
1047 	request->reserved_space = 0;
1048 	engine->emit_flush(request, EMIT_FLUSH);
1049 
1050 	/*
1051 	 * Record the position of the start of the breadcrumb so that
1052 	 * should we detect the updated seqno part-way through the
1053 	 * GPU processing the request, we never over-estimate the
1054 	 * position of the ring's HEAD.
1055 	 */
1056 	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1057 	GEM_BUG_ON(IS_ERR(cs));
1058 	request->postfix = intel_ring_offset(request, cs);
1059 
1060 	/*
1061 	 * Seal the request and mark it as pending execution. Note that
1062 	 * we may inspect this state, without holding any locks, during
1063 	 * hangcheck. Hence we apply the barrier to ensure that we do not
1064 	 * see a more recent value in the hws than we are tracking.
1065 	 */
1066 
1067 	prev = i915_gem_active_raw(&timeline->last_request,
1068 				   &request->i915->drm.struct_mutex);
1069 	if (prev && !i915_request_completed(prev)) {
1070 		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1071 					     &request->submitq);
1072 		if (engine->schedule)
1073 			__i915_sched_node_add_dependency(&request->sched,
1074 							 &prev->sched,
1075 							 &request->dep,
1076 							 0);
1077 	}
1078 
1079 	spin_lock_irq(&timeline->lock);
1080 	list_add_tail(&request->link, &timeline->requests);
1081 	spin_unlock_irq(&timeline->lock);
1082 
1083 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1084 	i915_gem_active_set(&timeline->last_request, request);
1085 
1086 	list_add_tail(&request->ring_link, &ring->request_list);
1087 	if (list_is_first(&request->ring_link, &ring->request_list)) {
1088 		GEM_TRACE("marking %s as active\n", ring->timeline->name);
1089 		list_add(&ring->active_link, &request->i915->gt.active_rings);
1090 	}
1091 	request->emitted_jiffies = jiffies;
1092 
1093 	/*
1094 	 * Let the backend know a new request has arrived that may need
1095 	 * to adjust the existing execution schedule due to a high priority
1096 	 * request - i.e. we may want to preempt the current request in order
1097 	 * to run a high priority dependency chain *before* we can execute this
1098 	 * request.
1099 	 *
1100 	 * This is called before the request is ready to run so that we can
1101 	 * decide whether to preempt the entire chain so that it is ready to
1102 	 * run at the earliest possible convenience.
1103 	 */
1104 	local_bh_disable();
1105 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1106 	if (engine->schedule)
1107 		engine->schedule(request, &request->gem_context->sched);
1108 	rcu_read_unlock();
1109 	i915_sw_fence_commit(&request->submit);
1110 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1111 
1112 	/*
1113 	 * In typical scenarios, we do not expect the previous request on
1114 	 * the timeline to be still tracked by timeline->last_request if it
1115 	 * has been completed. If the completed request is still here, that
1116 	 * implies that request retirement is a long way behind submission,
1117 	 * suggesting that we haven't been retiring frequently enough from
1118 	 * the combination of retire-before-alloc, waiters and the background
1119 	 * retirement worker. So if the last request on this timeline was
1120 	 * already completed, do a catch up pass, flushing the retirement queue
1121 	 * up to this client. Since we have now moved the heaviest operations
1122 	 * during retirement onto secondary workers, such as freeing objects
1123 	 * or contexts, retiring a bunch of requests is mostly list management
1124 	 * (and cache misses), and so we should not be overly penalizing this
1125 	 * client by performing excess work, though we may still performing
1126 	 * work on behalf of others -- but instead we should benefit from
1127 	 * improved resource management. (Well, that's the theory at least.)
1128 	 */
1129 	if (prev && i915_request_completed(prev))
1130 		i915_request_retire_upto(prev);
1131 }
1132 
1133 static unsigned long local_clock_us(unsigned int *cpu)
1134 {
1135 	unsigned long t;
1136 
1137 	/*
1138 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1139 	 * The result and subsequent calculations are also defined in the same
1140 	 * approximate microseconds units. The principal source of timing
1141 	 * error here is from the simple truncation.
1142 	 *
1143 	 * Note that local_clock() is only defined wrt to the current CPU;
1144 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1145 	 * blocking preemption for the entire busywait, we can detect the CPU
1146 	 * switch and use that as indicator of system load and a reason to
1147 	 * stop busywaiting, see busywait_stop().
1148 	 */
1149 	*cpu = get_cpu();
1150 	t = local_clock() >> 10;
1151 	put_cpu();
1152 
1153 	return t;
1154 }
1155 
1156 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1157 {
1158 	unsigned int this_cpu;
1159 
1160 	if (time_after(local_clock_us(&this_cpu), timeout))
1161 		return true;
1162 
1163 	return this_cpu != cpu;
1164 }
1165 
1166 static bool __i915_spin_request(const struct i915_request *rq,
1167 				u32 seqno, int state, unsigned long timeout_us)
1168 {
1169 	struct intel_engine_cs *engine = rq->engine;
1170 	unsigned int irq, cpu;
1171 
1172 	GEM_BUG_ON(!seqno);
1173 
1174 	/*
1175 	 * Only wait for the request if we know it is likely to complete.
1176 	 *
1177 	 * We don't track the timestamps around requests, nor the average
1178 	 * request length, so we do not have a good indicator that this
1179 	 * request will complete within the timeout. What we do know is the
1180 	 * order in which requests are executed by the engine and so we can
1181 	 * tell if the request has started. If the request hasn't started yet,
1182 	 * it is a fair assumption that it will not complete within our
1183 	 * relatively short timeout.
1184 	 */
1185 	if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1186 		return false;
1187 
1188 	/*
1189 	 * When waiting for high frequency requests, e.g. during synchronous
1190 	 * rendering split between the CPU and GPU, the finite amount of time
1191 	 * required to set up the irq and wait upon it limits the response
1192 	 * rate. By busywaiting on the request completion for a short while we
1193 	 * can service the high frequency waits as quick as possible. However,
1194 	 * if it is a slow request, we want to sleep as quickly as possible.
1195 	 * The tradeoff between waiting and sleeping is roughly the time it
1196 	 * takes to sleep on a request, on the order of a microsecond.
1197 	 */
1198 
1199 	irq = atomic_read(&engine->irq_count);
1200 	timeout_us += local_clock_us(&cpu);
1201 	do {
1202 		if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1203 			return seqno == i915_request_global_seqno(rq);
1204 
1205 		/*
1206 		 * Seqno are meant to be ordered *before* the interrupt. If
1207 		 * we see an interrupt without a corresponding seqno advance,
1208 		 * assume we won't see one in the near future but require
1209 		 * the engine->seqno_barrier() to fixup coherency.
1210 		 */
1211 		if (atomic_read(&engine->irq_count) != irq)
1212 			break;
1213 
1214 		if (signal_pending_state(state, current))
1215 			break;
1216 
1217 		if (busywait_stop(timeout_us, cpu))
1218 			break;
1219 
1220 		cpu_relax();
1221 	} while (!need_resched());
1222 
1223 	return false;
1224 }
1225 
1226 static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1227 {
1228 	struct i915_gpu_error *error = &request->i915->gpu_error;
1229 
1230 	if (likely(!i915_reset_handoff(error)))
1231 		return false;
1232 
1233 	__set_current_state(TASK_RUNNING);
1234 	i915_reset(request->i915, error->stalled_mask, error->reason);
1235 	return true;
1236 }
1237 
1238 /**
1239  * i915_request_wait - wait until execution of request has finished
1240  * @rq: the request to wait upon
1241  * @flags: how to wait
1242  * @timeout: how long to wait in jiffies
1243  *
1244  * i915_request_wait() waits for the request to be completed, for a
1245  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1246  * unbounded wait).
1247  *
1248  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1249  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1250  * must not specify that the wait is locked.
1251  *
1252  * Returns the remaining time (in jiffies) if the request completed, which may
1253  * be zero or -ETIME if the request is unfinished after the timeout expires.
1254  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1255  * pending before the request completes.
1256  */
1257 long i915_request_wait(struct i915_request *rq,
1258 		       unsigned int flags,
1259 		       long timeout)
1260 {
1261 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1262 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1263 	wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1264 	DEFINE_WAIT_FUNC(reset, default_wake_function);
1265 	DEFINE_WAIT_FUNC(exec, default_wake_function);
1266 	struct intel_wait wait;
1267 
1268 	might_sleep();
1269 #if IS_ENABLED(CONFIG_LOCKDEP)
1270 	GEM_BUG_ON(debug_locks &&
1271 		   !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1272 		   !!(flags & I915_WAIT_LOCKED));
1273 #endif
1274 	GEM_BUG_ON(timeout < 0);
1275 
1276 	if (i915_request_completed(rq))
1277 		return timeout;
1278 
1279 	if (!timeout)
1280 		return -ETIME;
1281 
1282 	trace_i915_request_wait_begin(rq, flags);
1283 
1284 	add_wait_queue(&rq->execute, &exec);
1285 	if (flags & I915_WAIT_LOCKED)
1286 		add_wait_queue(errq, &reset);
1287 
1288 	intel_wait_init(&wait, rq);
1289 
1290 restart:
1291 	do {
1292 		set_current_state(state);
1293 		if (intel_wait_update_request(&wait, rq))
1294 			break;
1295 
1296 		if (flags & I915_WAIT_LOCKED &&
1297 		    __i915_wait_request_check_and_reset(rq))
1298 			continue;
1299 
1300 		if (signal_pending_state(state, current)) {
1301 			timeout = -ERESTARTSYS;
1302 			goto complete;
1303 		}
1304 
1305 		if (!timeout) {
1306 			timeout = -ETIME;
1307 			goto complete;
1308 		}
1309 
1310 		timeout = io_schedule_timeout(timeout);
1311 	} while (1);
1312 
1313 	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1314 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1315 
1316 	/* Optimistic short spin before touching IRQs */
1317 	if (__i915_spin_request(rq, wait.seqno, state, 5))
1318 		goto complete;
1319 
1320 	set_current_state(state);
1321 	if (intel_engine_add_wait(rq->engine, &wait))
1322 		/*
1323 		 * In order to check that we haven't missed the interrupt
1324 		 * as we enabled it, we need to kick ourselves to do a
1325 		 * coherent check on the seqno before we sleep.
1326 		 */
1327 		goto wakeup;
1328 
1329 	if (flags & I915_WAIT_LOCKED)
1330 		__i915_wait_request_check_and_reset(rq);
1331 
1332 	for (;;) {
1333 		if (signal_pending_state(state, current)) {
1334 			timeout = -ERESTARTSYS;
1335 			break;
1336 		}
1337 
1338 		if (!timeout) {
1339 			timeout = -ETIME;
1340 			break;
1341 		}
1342 
1343 		timeout = io_schedule_timeout(timeout);
1344 
1345 		if (intel_wait_complete(&wait) &&
1346 		    intel_wait_check_request(&wait, rq))
1347 			break;
1348 
1349 		set_current_state(state);
1350 
1351 wakeup:
1352 		/*
1353 		 * Carefully check if the request is complete, giving time
1354 		 * for the seqno to be visible following the interrupt.
1355 		 * We also have to check in case we are kicked by the GPU
1356 		 * reset in order to drop the struct_mutex.
1357 		 */
1358 		if (__i915_request_irq_complete(rq))
1359 			break;
1360 
1361 		/*
1362 		 * If the GPU is hung, and we hold the lock, reset the GPU
1363 		 * and then check for completion. On a full reset, the engine's
1364 		 * HW seqno will be advanced passed us and we are complete.
1365 		 * If we do a partial reset, we have to wait for the GPU to
1366 		 * resume and update the breadcrumb.
1367 		 *
1368 		 * If we don't hold the mutex, we can just wait for the worker
1369 		 * to come along and update the breadcrumb (either directly
1370 		 * itself, or indirectly by recovering the GPU).
1371 		 */
1372 		if (flags & I915_WAIT_LOCKED &&
1373 		    __i915_wait_request_check_and_reset(rq))
1374 			continue;
1375 
1376 		/* Only spin if we know the GPU is processing this request */
1377 		if (__i915_spin_request(rq, wait.seqno, state, 2))
1378 			break;
1379 
1380 		if (!intel_wait_check_request(&wait, rq)) {
1381 			intel_engine_remove_wait(rq->engine, &wait);
1382 			goto restart;
1383 		}
1384 	}
1385 
1386 	intel_engine_remove_wait(rq->engine, &wait);
1387 complete:
1388 	__set_current_state(TASK_RUNNING);
1389 	if (flags & I915_WAIT_LOCKED)
1390 		remove_wait_queue(errq, &reset);
1391 	remove_wait_queue(&rq->execute, &exec);
1392 	trace_i915_request_wait_end(rq);
1393 
1394 	return timeout;
1395 }
1396 
1397 static void ring_retire_requests(struct intel_ring *ring)
1398 {
1399 	struct i915_request *request, *next;
1400 
1401 	list_for_each_entry_safe(request, next,
1402 				 &ring->request_list, ring_link) {
1403 		if (!i915_request_completed(request))
1404 			break;
1405 
1406 		i915_request_retire(request);
1407 	}
1408 }
1409 
1410 void i915_retire_requests(struct drm_i915_private *i915)
1411 {
1412 	struct intel_ring *ring, *tmp;
1413 
1414 	lockdep_assert_held(&i915->drm.struct_mutex);
1415 
1416 	if (!i915->gt.active_requests)
1417 		return;
1418 
1419 	list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
1420 		ring_retire_requests(ring);
1421 }
1422 
1423 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1424 #include "selftests/mock_request.c"
1425 #include "selftests/i915_request.c"
1426 #endif
1427