1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 35 #include "i915_active.h" 36 #include "i915_drv.h" 37 #include "i915_globals.h" 38 #include "i915_trace.h" 39 #include "intel_pm.h" 40 41 struct execute_cb { 42 struct list_head link; 43 struct irq_work work; 44 struct i915_sw_fence *fence; 45 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 46 struct i915_request *signal; 47 }; 48 49 static struct i915_global_request { 50 struct i915_global base; 51 struct kmem_cache *slab_requests; 52 struct kmem_cache *slab_dependencies; 53 struct kmem_cache *slab_execute_cbs; 54 } global; 55 56 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 57 { 58 return "i915"; 59 } 60 61 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 62 { 63 /* 64 * The timeline struct (as part of the ppgtt underneath a context) 65 * may be freed when the request is no longer in use by the GPU. 66 * We could extend the life of a context to beyond that of all 67 * fences, possibly keeping the hw resource around indefinitely, 68 * or we just give them a false name. Since 69 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 70 * lie seems justifiable. 71 */ 72 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 73 return "signaled"; 74 75 return to_request(fence)->gem_context->name ?: "[i915]"; 76 } 77 78 static bool i915_fence_signaled(struct dma_fence *fence) 79 { 80 return i915_request_completed(to_request(fence)); 81 } 82 83 static bool i915_fence_enable_signaling(struct dma_fence *fence) 84 { 85 return i915_request_enable_breadcrumb(to_request(fence)); 86 } 87 88 static signed long i915_fence_wait(struct dma_fence *fence, 89 bool interruptible, 90 signed long timeout) 91 { 92 return i915_request_wait(to_request(fence), 93 interruptible | I915_WAIT_PRIORITY, 94 timeout); 95 } 96 97 static void i915_fence_release(struct dma_fence *fence) 98 { 99 struct i915_request *rq = to_request(fence); 100 101 /* 102 * The request is put onto a RCU freelist (i.e. the address 103 * is immediately reused), mark the fences as being freed now. 104 * Otherwise the debugobjects for the fences are only marked as 105 * freed when the slab cache itself is freed, and so we would get 106 * caught trying to reuse dead objects. 107 */ 108 i915_sw_fence_fini(&rq->submit); 109 i915_sw_fence_fini(&rq->semaphore); 110 111 kmem_cache_free(global.slab_requests, rq); 112 } 113 114 const struct dma_fence_ops i915_fence_ops = { 115 .get_driver_name = i915_fence_get_driver_name, 116 .get_timeline_name = i915_fence_get_timeline_name, 117 .enable_signaling = i915_fence_enable_signaling, 118 .signaled = i915_fence_signaled, 119 .wait = i915_fence_wait, 120 .release = i915_fence_release, 121 }; 122 123 static void irq_execute_cb(struct irq_work *wrk) 124 { 125 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 126 127 i915_sw_fence_complete(cb->fence); 128 kmem_cache_free(global.slab_execute_cbs, cb); 129 } 130 131 static void irq_execute_cb_hook(struct irq_work *wrk) 132 { 133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 134 135 cb->hook(container_of(cb->fence, struct i915_request, submit), 136 &cb->signal->fence); 137 i915_request_put(cb->signal); 138 139 irq_execute_cb(wrk); 140 } 141 142 static void __notify_execute_cb(struct i915_request *rq) 143 { 144 struct execute_cb *cb; 145 146 lockdep_assert_held(&rq->lock); 147 148 if (list_empty(&rq->execute_cb)) 149 return; 150 151 list_for_each_entry(cb, &rq->execute_cb, link) 152 irq_work_queue(&cb->work); 153 154 /* 155 * XXX Rollback on __i915_request_unsubmit() 156 * 157 * In the future, perhaps when we have an active time-slicing scheduler, 158 * it will be interesting to unsubmit parallel execution and remove 159 * busywaits from the GPU until their master is restarted. This is 160 * quite hairy, we have to carefully rollback the fence and do a 161 * preempt-to-idle cycle on the target engine, all the while the 162 * master execute_cb may refire. 163 */ 164 INIT_LIST_HEAD(&rq->execute_cb); 165 } 166 167 static inline void 168 remove_from_client(struct i915_request *request) 169 { 170 struct drm_i915_file_private *file_priv; 171 172 file_priv = READ_ONCE(request->file_priv); 173 if (!file_priv) 174 return; 175 176 spin_lock(&file_priv->mm.lock); 177 if (request->file_priv) { 178 list_del(&request->client_link); 179 request->file_priv = NULL; 180 } 181 spin_unlock(&file_priv->mm.lock); 182 } 183 184 static void free_capture_list(struct i915_request *request) 185 { 186 struct i915_capture_list *capture; 187 188 capture = request->capture_list; 189 while (capture) { 190 struct i915_capture_list *next = capture->next; 191 192 kfree(capture); 193 capture = next; 194 } 195 } 196 197 static bool i915_request_retire(struct i915_request *rq) 198 { 199 struct i915_active_request *active, *next; 200 201 lockdep_assert_held(&rq->timeline->mutex); 202 if (!i915_request_completed(rq)) 203 return false; 204 205 GEM_TRACE("%s fence %llx:%lld, current %d\n", 206 rq->engine->name, 207 rq->fence.context, rq->fence.seqno, 208 hwsp_seqno(rq)); 209 210 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 211 trace_i915_request_retire(rq); 212 213 /* 214 * We know the GPU must have read the request to have 215 * sent us the seqno + interrupt, so use the position 216 * of tail of the request to update the last known position 217 * of the GPU head. 218 * 219 * Note this requires that we are always called in request 220 * completion order. 221 */ 222 GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests)); 223 rq->ring->head = rq->postfix; 224 225 /* 226 * Walk through the active list, calling retire on each. This allows 227 * objects to track their GPU activity and mark themselves as idle 228 * when their *last* active request is completed (updating state 229 * tracking lists for eviction, active references for GEM, etc). 230 * 231 * As the ->retire() may free the node, we decouple it first and 232 * pass along the auxiliary information (to avoid dereferencing 233 * the node after the callback). 234 */ 235 list_for_each_entry_safe(active, next, &rq->active_list, link) { 236 /* 237 * In microbenchmarks or focusing upon time inside the kernel, 238 * we may spend an inordinate amount of time simply handling 239 * the retirement of requests and processing their callbacks. 240 * Of which, this loop itself is particularly hot due to the 241 * cache misses when jumping around the list of 242 * i915_active_request. So we try to keep this loop as 243 * streamlined as possible and also prefetch the next 244 * i915_active_request to try and hide the likely cache miss. 245 */ 246 prefetchw(next); 247 248 INIT_LIST_HEAD(&active->link); 249 RCU_INIT_POINTER(active->request, NULL); 250 251 active->retire(active, rq); 252 } 253 254 local_irq_disable(); 255 256 /* 257 * We only loosely track inflight requests across preemption, 258 * and so we may find ourselves attempting to retire a _completed_ 259 * request that we have removed from the HW and put back on a run 260 * queue. 261 */ 262 spin_lock(&rq->engine->active.lock); 263 list_del(&rq->sched.link); 264 spin_unlock(&rq->engine->active.lock); 265 266 spin_lock(&rq->lock); 267 i915_request_mark_complete(rq); 268 if (!i915_request_signaled(rq)) 269 dma_fence_signal_locked(&rq->fence); 270 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 271 i915_request_cancel_breadcrumb(rq); 272 if (i915_request_has_waitboost(rq)) { 273 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 274 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 275 } 276 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 277 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 278 __notify_execute_cb(rq); 279 } 280 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 281 spin_unlock(&rq->lock); 282 283 local_irq_enable(); 284 285 remove_from_client(rq); 286 list_del(&rq->link); 287 288 intel_context_exit(rq->hw_context); 289 intel_context_unpin(rq->hw_context); 290 291 free_capture_list(rq); 292 i915_sched_node_fini(&rq->sched); 293 i915_request_put(rq); 294 295 return true; 296 } 297 298 void i915_request_retire_upto(struct i915_request *rq) 299 { 300 struct intel_timeline * const tl = rq->timeline; 301 struct i915_request *tmp; 302 303 GEM_TRACE("%s fence %llx:%lld, current %d\n", 304 rq->engine->name, 305 rq->fence.context, rq->fence.seqno, 306 hwsp_seqno(rq)); 307 308 lockdep_assert_held(&tl->mutex); 309 GEM_BUG_ON(!i915_request_completed(rq)); 310 311 do { 312 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 313 } while (i915_request_retire(tmp) && tmp != rq); 314 } 315 316 static int 317 __i915_request_await_execution(struct i915_request *rq, 318 struct i915_request *signal, 319 void (*hook)(struct i915_request *rq, 320 struct dma_fence *signal), 321 gfp_t gfp) 322 { 323 struct execute_cb *cb; 324 325 if (i915_request_is_active(signal)) { 326 if (hook) 327 hook(rq, &signal->fence); 328 return 0; 329 } 330 331 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 332 if (!cb) 333 return -ENOMEM; 334 335 cb->fence = &rq->submit; 336 i915_sw_fence_await(cb->fence); 337 init_irq_work(&cb->work, irq_execute_cb); 338 339 if (hook) { 340 cb->hook = hook; 341 cb->signal = i915_request_get(signal); 342 cb->work.func = irq_execute_cb_hook; 343 } 344 345 spin_lock_irq(&signal->lock); 346 if (i915_request_is_active(signal)) { 347 if (hook) { 348 hook(rq, &signal->fence); 349 i915_request_put(signal); 350 } 351 i915_sw_fence_complete(cb->fence); 352 kmem_cache_free(global.slab_execute_cbs, cb); 353 } else { 354 list_add_tail(&cb->link, &signal->execute_cb); 355 } 356 spin_unlock_irq(&signal->lock); 357 358 return 0; 359 } 360 361 void __i915_request_submit(struct i915_request *request) 362 { 363 struct intel_engine_cs *engine = request->engine; 364 365 GEM_TRACE("%s fence %llx:%lld, current %d\n", 366 engine->name, 367 request->fence.context, request->fence.seqno, 368 hwsp_seqno(request)); 369 370 GEM_BUG_ON(!irqs_disabled()); 371 lockdep_assert_held(&engine->active.lock); 372 373 if (i915_gem_context_is_banned(request->gem_context)) 374 i915_request_skip(request, -EIO); 375 376 /* 377 * Are we using semaphores when the gpu is already saturated? 378 * 379 * Using semaphores incurs a cost in having the GPU poll a 380 * memory location, busywaiting for it to change. The continual 381 * memory reads can have a noticeable impact on the rest of the 382 * system with the extra bus traffic, stalling the cpu as it too 383 * tries to access memory across the bus (perf stat -e bus-cycles). 384 * 385 * If we installed a semaphore on this request and we only submit 386 * the request after the signaler completed, that indicates the 387 * system is overloaded and using semaphores at this time only 388 * increases the amount of work we are doing. If so, we disable 389 * further use of semaphores until we are idle again, whence we 390 * optimistically try again. 391 */ 392 if (request->sched.semaphores && 393 i915_sw_fence_signaled(&request->semaphore)) 394 engine->saturated |= request->sched.semaphores; 395 396 /* We may be recursing from the signal callback of another i915 fence */ 397 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 398 399 list_move_tail(&request->sched.link, &engine->active.requests); 400 401 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 402 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 403 404 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 405 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 406 !i915_request_enable_breadcrumb(request)) 407 intel_engine_queue_breadcrumbs(engine); 408 409 __notify_execute_cb(request); 410 411 spin_unlock(&request->lock); 412 413 engine->emit_fini_breadcrumb(request, 414 request->ring->vaddr + request->postfix); 415 416 engine->serial++; 417 418 trace_i915_request_execute(request); 419 } 420 421 void i915_request_submit(struct i915_request *request) 422 { 423 struct intel_engine_cs *engine = request->engine; 424 unsigned long flags; 425 426 /* Will be called from irq-context when using foreign fences. */ 427 spin_lock_irqsave(&engine->active.lock, flags); 428 429 __i915_request_submit(request); 430 431 spin_unlock_irqrestore(&engine->active.lock, flags); 432 } 433 434 void __i915_request_unsubmit(struct i915_request *request) 435 { 436 struct intel_engine_cs *engine = request->engine; 437 438 GEM_TRACE("%s fence %llx:%lld, current %d\n", 439 engine->name, 440 request->fence.context, request->fence.seqno, 441 hwsp_seqno(request)); 442 443 GEM_BUG_ON(!irqs_disabled()); 444 lockdep_assert_held(&engine->active.lock); 445 446 /* 447 * Only unwind in reverse order, required so that the per-context list 448 * is kept in seqno/ring order. 449 */ 450 451 /* We may be recursing from the signal callback of another i915 fence */ 452 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 453 454 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 455 i915_request_cancel_breadcrumb(request); 456 457 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 458 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 459 460 spin_unlock(&request->lock); 461 462 /* We've already spun, don't charge on resubmitting. */ 463 if (request->sched.semaphores && i915_request_started(request)) { 464 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 465 request->sched.semaphores = 0; 466 } 467 468 /* 469 * We don't need to wake_up any waiters on request->execute, they 470 * will get woken by any other event or us re-adding this request 471 * to the engine timeline (__i915_request_submit()). The waiters 472 * should be quite adapt at finding that the request now has a new 473 * global_seqno to the one they went to sleep on. 474 */ 475 } 476 477 void i915_request_unsubmit(struct i915_request *request) 478 { 479 struct intel_engine_cs *engine = request->engine; 480 unsigned long flags; 481 482 /* Will be called from irq-context when using foreign fences. */ 483 spin_lock_irqsave(&engine->active.lock, flags); 484 485 __i915_request_unsubmit(request); 486 487 spin_unlock_irqrestore(&engine->active.lock, flags); 488 } 489 490 static int __i915_sw_fence_call 491 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 492 { 493 struct i915_request *request = 494 container_of(fence, typeof(*request), submit); 495 496 switch (state) { 497 case FENCE_COMPLETE: 498 trace_i915_request_submit(request); 499 500 if (unlikely(fence->error)) 501 i915_request_skip(request, fence->error); 502 503 /* 504 * We need to serialize use of the submit_request() callback 505 * with its hotplugging performed during an emergency 506 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 507 * critical section in order to force i915_gem_set_wedged() to 508 * wait until the submit_request() is completed before 509 * proceeding. 510 */ 511 rcu_read_lock(); 512 request->engine->submit_request(request); 513 rcu_read_unlock(); 514 break; 515 516 case FENCE_FREE: 517 i915_request_put(request); 518 break; 519 } 520 521 return NOTIFY_DONE; 522 } 523 524 static int __i915_sw_fence_call 525 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 526 { 527 struct i915_request *request = 528 container_of(fence, typeof(*request), semaphore); 529 530 switch (state) { 531 case FENCE_COMPLETE: 532 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 533 break; 534 535 case FENCE_FREE: 536 i915_request_put(request); 537 break; 538 } 539 540 return NOTIFY_DONE; 541 } 542 543 static void retire_requests(struct intel_timeline *tl) 544 { 545 struct i915_request *rq, *rn; 546 547 list_for_each_entry_safe(rq, rn, &tl->requests, link) 548 if (!i915_request_retire(rq)) 549 break; 550 } 551 552 static noinline struct i915_request * 553 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 554 { 555 struct i915_request *rq; 556 557 if (list_empty(&tl->requests)) 558 goto out; 559 560 if (!gfpflags_allow_blocking(gfp)) 561 goto out; 562 563 /* Move our oldest request to the slab-cache (if not in use!) */ 564 rq = list_first_entry(&tl->requests, typeof(*rq), link); 565 i915_request_retire(rq); 566 567 rq = kmem_cache_alloc(global.slab_requests, 568 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 569 if (rq) 570 return rq; 571 572 /* Ratelimit ourselves to prevent oom from malicious clients */ 573 rq = list_last_entry(&tl->requests, typeof(*rq), link); 574 cond_synchronize_rcu(rq->rcustate); 575 576 /* Retire our old requests in the hope that we free some */ 577 retire_requests(tl); 578 579 out: 580 return kmem_cache_alloc(global.slab_requests, gfp); 581 } 582 583 struct i915_request * 584 __i915_request_create(struct intel_context *ce, gfp_t gfp) 585 { 586 struct intel_timeline *tl = ce->timeline; 587 struct i915_request *rq; 588 u32 seqno; 589 int ret; 590 591 might_sleep_if(gfpflags_allow_blocking(gfp)); 592 593 /* Check that the caller provided an already pinned context */ 594 __intel_context_pin(ce); 595 596 /* 597 * Beware: Dragons be flying overhead. 598 * 599 * We use RCU to look up requests in flight. The lookups may 600 * race with the request being allocated from the slab freelist. 601 * That is the request we are writing to here, may be in the process 602 * of being read by __i915_active_request_get_rcu(). As such, 603 * we have to be very careful when overwriting the contents. During 604 * the RCU lookup, we change chase the request->engine pointer, 605 * read the request->global_seqno and increment the reference count. 606 * 607 * The reference count is incremented atomically. If it is zero, 608 * the lookup knows the request is unallocated and complete. Otherwise, 609 * it is either still in use, or has been reallocated and reset 610 * with dma_fence_init(). This increment is safe for release as we 611 * check that the request we have a reference to and matches the active 612 * request. 613 * 614 * Before we increment the refcount, we chase the request->engine 615 * pointer. We must not call kmem_cache_zalloc() or else we set 616 * that pointer to NULL and cause a crash during the lookup. If 617 * we see the request is completed (based on the value of the 618 * old engine and seqno), the lookup is complete and reports NULL. 619 * If we decide the request is not completed (new engine or seqno), 620 * then we grab a reference and double check that it is still the 621 * active request - which it won't be and restart the lookup. 622 * 623 * Do not use kmem_cache_zalloc() here! 624 */ 625 rq = kmem_cache_alloc(global.slab_requests, 626 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 627 if (unlikely(!rq)) { 628 rq = request_alloc_slow(tl, gfp); 629 if (!rq) { 630 ret = -ENOMEM; 631 goto err_unreserve; 632 } 633 } 634 635 ret = intel_timeline_get_seqno(tl, rq, &seqno); 636 if (ret) 637 goto err_free; 638 639 rq->i915 = ce->engine->i915; 640 rq->hw_context = ce; 641 rq->gem_context = ce->gem_context; 642 rq->engine = ce->engine; 643 rq->ring = ce->ring; 644 rq->timeline = tl; 645 rq->hwsp_seqno = tl->hwsp_seqno; 646 rq->hwsp_cacheline = tl->hwsp_cacheline; 647 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 648 649 spin_lock_init(&rq->lock); 650 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 651 tl->fence_context, seqno); 652 653 /* We bump the ref for the fence chain */ 654 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 655 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify); 656 657 i915_sched_node_init(&rq->sched); 658 659 /* No zalloc, must clear what we need by hand */ 660 rq->file_priv = NULL; 661 rq->batch = NULL; 662 rq->capture_list = NULL; 663 rq->flags = 0; 664 rq->execution_mask = ALL_ENGINES; 665 666 INIT_LIST_HEAD(&rq->active_list); 667 INIT_LIST_HEAD(&rq->execute_cb); 668 669 /* 670 * Reserve space in the ring buffer for all the commands required to 671 * eventually emit this request. This is to guarantee that the 672 * i915_request_add() call can't fail. Note that the reserve may need 673 * to be redone if the request is not actually submitted straight 674 * away, e.g. because a GPU scheduler has deferred it. 675 * 676 * Note that due to how we add reserved_space to intel_ring_begin() 677 * we need to double our request to ensure that if we need to wrap 678 * around inside i915_request_add() there is sufficient space at 679 * the beginning of the ring as well. 680 */ 681 rq->reserved_space = 682 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 683 684 /* 685 * Record the position of the start of the request so that 686 * should we detect the updated seqno part-way through the 687 * GPU processing the request, we never over-estimate the 688 * position of the head. 689 */ 690 rq->head = rq->ring->emit; 691 692 ret = rq->engine->request_alloc(rq); 693 if (ret) 694 goto err_unwind; 695 696 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 697 698 intel_context_mark_active(ce); 699 return rq; 700 701 err_unwind: 702 ce->ring->emit = rq->head; 703 704 /* Make sure we didn't add ourselves to external state before freeing */ 705 GEM_BUG_ON(!list_empty(&rq->active_list)); 706 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 707 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 708 709 err_free: 710 kmem_cache_free(global.slab_requests, rq); 711 err_unreserve: 712 intel_context_unpin(ce); 713 return ERR_PTR(ret); 714 } 715 716 struct i915_request * 717 i915_request_create(struct intel_context *ce) 718 { 719 struct i915_request *rq; 720 struct intel_timeline *tl; 721 722 tl = intel_context_timeline_lock(ce); 723 if (IS_ERR(tl)) 724 return ERR_CAST(tl); 725 726 /* Move our oldest request to the slab-cache (if not in use!) */ 727 rq = list_first_entry(&tl->requests, typeof(*rq), link); 728 if (!list_is_last(&rq->link, &tl->requests)) 729 i915_request_retire(rq); 730 731 intel_context_enter(ce); 732 rq = __i915_request_create(ce, GFP_KERNEL); 733 intel_context_exit(ce); /* active reference transferred to request */ 734 if (IS_ERR(rq)) 735 goto err_unlock; 736 737 /* Check that we do not interrupt ourselves with a new request */ 738 rq->cookie = lockdep_pin_lock(&tl->mutex); 739 740 return rq; 741 742 err_unlock: 743 intel_context_timeline_unlock(tl); 744 return rq; 745 } 746 747 static int 748 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 749 { 750 if (list_is_first(&signal->link, &signal->timeline->requests)) 751 return 0; 752 753 signal = list_prev_entry(signal, link); 754 if (intel_timeline_sync_is_later(rq->timeline, &signal->fence)) 755 return 0; 756 757 return i915_sw_fence_await_dma_fence(&rq->submit, 758 &signal->fence, 0, 759 I915_FENCE_GFP); 760 } 761 762 static intel_engine_mask_t 763 already_busywaiting(struct i915_request *rq) 764 { 765 /* 766 * Polling a semaphore causes bus traffic, delaying other users of 767 * both the GPU and CPU. We want to limit the impact on others, 768 * while taking advantage of early submission to reduce GPU 769 * latency. Therefore we restrict ourselves to not using more 770 * than one semaphore from each source, and not using a semaphore 771 * if we have detected the engine is saturated (i.e. would not be 772 * submitted early and cause bus traffic reading an already passed 773 * semaphore). 774 * 775 * See the are-we-too-late? check in __i915_request_submit(). 776 */ 777 return rq->sched.semaphores | rq->engine->saturated; 778 } 779 780 static int 781 emit_semaphore_wait(struct i915_request *to, 782 struct i915_request *from, 783 gfp_t gfp) 784 { 785 u32 hwsp_offset; 786 u32 *cs; 787 int err; 788 789 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb); 790 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 791 792 /* Just emit the first semaphore we see as request space is limited. */ 793 if (already_busywaiting(to) & from->engine->mask) 794 return i915_sw_fence_await_dma_fence(&to->submit, 795 &from->fence, 0, 796 I915_FENCE_GFP); 797 798 err = i915_request_await_start(to, from); 799 if (err < 0) 800 return err; 801 802 /* Only submit our spinner after the signaler is running! */ 803 err = __i915_request_await_execution(to, from, NULL, gfp); 804 if (err) 805 return err; 806 807 /* We need to pin the signaler's HWSP until we are finished reading. */ 808 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 809 if (err) 810 return err; 811 812 cs = intel_ring_begin(to, 4); 813 if (IS_ERR(cs)) 814 return PTR_ERR(cs); 815 816 /* 817 * Using greater-than-or-equal here means we have to worry 818 * about seqno wraparound. To side step that issue, we swap 819 * the timeline HWSP upon wrapping, so that everyone listening 820 * for the old (pre-wrap) values do not see the much smaller 821 * (post-wrap) values than they were expecting (and so wait 822 * forever). 823 */ 824 *cs++ = MI_SEMAPHORE_WAIT | 825 MI_SEMAPHORE_GLOBAL_GTT | 826 MI_SEMAPHORE_POLL | 827 MI_SEMAPHORE_SAD_GTE_SDD; 828 *cs++ = from->fence.seqno; 829 *cs++ = hwsp_offset; 830 *cs++ = 0; 831 832 intel_ring_advance(to, cs); 833 to->sched.semaphores |= from->engine->mask; 834 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 835 return 0; 836 } 837 838 static int 839 i915_request_await_request(struct i915_request *to, struct i915_request *from) 840 { 841 int ret; 842 843 GEM_BUG_ON(to == from); 844 GEM_BUG_ON(to->timeline == from->timeline); 845 846 if (i915_request_completed(from)) 847 return 0; 848 849 if (to->engine->schedule) { 850 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 851 if (ret < 0) 852 return ret; 853 } 854 855 if (to->engine == from->engine) { 856 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 857 &from->submit, 858 I915_FENCE_GFP); 859 } else if (intel_engine_has_semaphores(to->engine) && 860 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) { 861 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 862 } else { 863 ret = i915_sw_fence_await_dma_fence(&to->submit, 864 &from->fence, 0, 865 I915_FENCE_GFP); 866 } 867 if (ret < 0) 868 return ret; 869 870 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 871 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 872 &from->fence, 0, 873 I915_FENCE_GFP); 874 if (ret < 0) 875 return ret; 876 } 877 878 return 0; 879 } 880 881 int 882 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 883 { 884 struct dma_fence **child = &fence; 885 unsigned int nchild = 1; 886 int ret; 887 888 /* 889 * Note that if the fence-array was created in signal-on-any mode, 890 * we should *not* decompose it into its individual fences. However, 891 * we don't currently store which mode the fence-array is operating 892 * in. Fortunately, the only user of signal-on-any is private to 893 * amdgpu and we should not see any incoming fence-array from 894 * sync-file being in signal-on-any mode. 895 */ 896 if (dma_fence_is_array(fence)) { 897 struct dma_fence_array *array = to_dma_fence_array(fence); 898 899 child = array->fences; 900 nchild = array->num_fences; 901 GEM_BUG_ON(!nchild); 902 } 903 904 do { 905 fence = *child++; 906 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 907 continue; 908 909 /* 910 * Requests on the same timeline are explicitly ordered, along 911 * with their dependencies, by i915_request_add() which ensures 912 * that requests are submitted in-order through each ring. 913 */ 914 if (fence->context == rq->fence.context) 915 continue; 916 917 /* Squash repeated waits to the same timelines */ 918 if (fence->context && 919 intel_timeline_sync_is_later(rq->timeline, fence)) 920 continue; 921 922 if (dma_fence_is_i915(fence)) 923 ret = i915_request_await_request(rq, to_request(fence)); 924 else 925 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 926 I915_FENCE_TIMEOUT, 927 I915_FENCE_GFP); 928 if (ret < 0) 929 return ret; 930 931 /* Record the latest fence used against each timeline */ 932 if (fence->context) 933 intel_timeline_sync_set(rq->timeline, fence); 934 } while (--nchild); 935 936 return 0; 937 } 938 939 int 940 i915_request_await_execution(struct i915_request *rq, 941 struct dma_fence *fence, 942 void (*hook)(struct i915_request *rq, 943 struct dma_fence *signal)) 944 { 945 struct dma_fence **child = &fence; 946 unsigned int nchild = 1; 947 int ret; 948 949 if (dma_fence_is_array(fence)) { 950 struct dma_fence_array *array = to_dma_fence_array(fence); 951 952 /* XXX Error for signal-on-any fence arrays */ 953 954 child = array->fences; 955 nchild = array->num_fences; 956 GEM_BUG_ON(!nchild); 957 } 958 959 do { 960 fence = *child++; 961 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 962 continue; 963 964 /* 965 * We don't squash repeated fence dependencies here as we 966 * want to run our callback in all cases. 967 */ 968 969 if (dma_fence_is_i915(fence)) 970 ret = __i915_request_await_execution(rq, 971 to_request(fence), 972 hook, 973 I915_FENCE_GFP); 974 else 975 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 976 I915_FENCE_TIMEOUT, 977 GFP_KERNEL); 978 if (ret < 0) 979 return ret; 980 } while (--nchild); 981 982 return 0; 983 } 984 985 /** 986 * i915_request_await_object - set this request to (async) wait upon a bo 987 * @to: request we are wishing to use 988 * @obj: object which may be in use on another ring. 989 * @write: whether the wait is on behalf of a writer 990 * 991 * This code is meant to abstract object synchronization with the GPU. 992 * Conceptually we serialise writes between engines inside the GPU. 993 * We only allow one engine to write into a buffer at any time, but 994 * multiple readers. To ensure each has a coherent view of memory, we must: 995 * 996 * - If there is an outstanding write request to the object, the new 997 * request must wait for it to complete (either CPU or in hw, requests 998 * on the same ring will be naturally ordered). 999 * 1000 * - If we are a write request (pending_write_domain is set), the new 1001 * request must wait for outstanding read requests to complete. 1002 * 1003 * Returns 0 if successful, else propagates up the lower layer error. 1004 */ 1005 int 1006 i915_request_await_object(struct i915_request *to, 1007 struct drm_i915_gem_object *obj, 1008 bool write) 1009 { 1010 struct dma_fence *excl; 1011 int ret = 0; 1012 1013 if (write) { 1014 struct dma_fence **shared; 1015 unsigned int count, i; 1016 1017 ret = dma_resv_get_fences_rcu(obj->base.resv, 1018 &excl, &count, &shared); 1019 if (ret) 1020 return ret; 1021 1022 for (i = 0; i < count; i++) { 1023 ret = i915_request_await_dma_fence(to, shared[i]); 1024 if (ret) 1025 break; 1026 1027 dma_fence_put(shared[i]); 1028 } 1029 1030 for (; i < count; i++) 1031 dma_fence_put(shared[i]); 1032 kfree(shared); 1033 } else { 1034 excl = dma_resv_get_excl_rcu(obj->base.resv); 1035 } 1036 1037 if (excl) { 1038 if (ret == 0) 1039 ret = i915_request_await_dma_fence(to, excl); 1040 1041 dma_fence_put(excl); 1042 } 1043 1044 return ret; 1045 } 1046 1047 void i915_request_skip(struct i915_request *rq, int error) 1048 { 1049 void *vaddr = rq->ring->vaddr; 1050 u32 head; 1051 1052 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1053 dma_fence_set_error(&rq->fence, error); 1054 1055 if (rq->infix == rq->postfix) 1056 return; 1057 1058 /* 1059 * As this request likely depends on state from the lost 1060 * context, clear out all the user operations leaving the 1061 * breadcrumb at the end (so we get the fence notifications). 1062 */ 1063 head = rq->infix; 1064 if (rq->postfix < head) { 1065 memset(vaddr + head, 0, rq->ring->size - head); 1066 head = 0; 1067 } 1068 memset(vaddr + head, 0, rq->postfix - head); 1069 rq->infix = rq->postfix; 1070 } 1071 1072 static struct i915_request * 1073 __i915_request_add_to_timeline(struct i915_request *rq) 1074 { 1075 struct intel_timeline *timeline = rq->timeline; 1076 struct i915_request *prev; 1077 1078 /* 1079 * Dependency tracking and request ordering along the timeline 1080 * is special cased so that we can eliminate redundant ordering 1081 * operations while building the request (we know that the timeline 1082 * itself is ordered, and here we guarantee it). 1083 * 1084 * As we know we will need to emit tracking along the timeline, 1085 * we embed the hooks into our request struct -- at the cost of 1086 * having to have specialised no-allocation interfaces (which will 1087 * be beneficial elsewhere). 1088 * 1089 * A second benefit to open-coding i915_request_await_request is 1090 * that we can apply a slight variant of the rules specialised 1091 * for timelines that jump between engines (such as virtual engines). 1092 * If we consider the case of virtual engine, we must emit a dma-fence 1093 * to prevent scheduling of the second request until the first is 1094 * complete (to maximise our greedy late load balancing) and this 1095 * precludes optimising to use semaphores serialisation of a single 1096 * timeline across engines. 1097 */ 1098 prev = rcu_dereference_protected(timeline->last_request.request, 1099 lockdep_is_held(&timeline->mutex)); 1100 if (prev && !i915_request_completed(prev)) { 1101 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1102 i915_sw_fence_await_sw_fence(&rq->submit, 1103 &prev->submit, 1104 &rq->submitq); 1105 else 1106 __i915_sw_fence_await_dma_fence(&rq->submit, 1107 &prev->fence, 1108 &rq->dmaq); 1109 if (rq->engine->schedule) 1110 __i915_sched_node_add_dependency(&rq->sched, 1111 &prev->sched, 1112 &rq->dep, 1113 0); 1114 } 1115 1116 list_add_tail(&rq->link, &timeline->requests); 1117 1118 /* 1119 * Make sure that no request gazumped us - if it was allocated after 1120 * our i915_request_alloc() and called __i915_request_add() before 1121 * us, the timeline will hold its seqno which is later than ours. 1122 */ 1123 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1124 __i915_active_request_set(&timeline->last_request, rq); 1125 1126 return prev; 1127 } 1128 1129 /* 1130 * NB: This function is not allowed to fail. Doing so would mean the the 1131 * request is not being tracked for completion but the work itself is 1132 * going to happen on the hardware. This would be a Bad Thing(tm). 1133 */ 1134 struct i915_request *__i915_request_commit(struct i915_request *rq) 1135 { 1136 struct intel_engine_cs *engine = rq->engine; 1137 struct intel_ring *ring = rq->ring; 1138 u32 *cs; 1139 1140 GEM_TRACE("%s fence %llx:%lld\n", 1141 engine->name, rq->fence.context, rq->fence.seqno); 1142 1143 /* 1144 * To ensure that this call will not fail, space for its emissions 1145 * should already have been reserved in the ring buffer. Let the ring 1146 * know that it is time to use that space up. 1147 */ 1148 GEM_BUG_ON(rq->reserved_space > ring->space); 1149 rq->reserved_space = 0; 1150 rq->emitted_jiffies = jiffies; 1151 1152 /* 1153 * Record the position of the start of the breadcrumb so that 1154 * should we detect the updated seqno part-way through the 1155 * GPU processing the request, we never over-estimate the 1156 * position of the ring's HEAD. 1157 */ 1158 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1159 GEM_BUG_ON(IS_ERR(cs)); 1160 rq->postfix = intel_ring_offset(rq, cs); 1161 1162 return __i915_request_add_to_timeline(rq); 1163 } 1164 1165 void __i915_request_queue(struct i915_request *rq, 1166 const struct i915_sched_attr *attr) 1167 { 1168 /* 1169 * Let the backend know a new request has arrived that may need 1170 * to adjust the existing execution schedule due to a high priority 1171 * request - i.e. we may want to preempt the current request in order 1172 * to run a high priority dependency chain *before* we can execute this 1173 * request. 1174 * 1175 * This is called before the request is ready to run so that we can 1176 * decide whether to preempt the entire chain so that it is ready to 1177 * run at the earliest possible convenience. 1178 */ 1179 i915_sw_fence_commit(&rq->semaphore); 1180 if (attr && rq->engine->schedule) 1181 rq->engine->schedule(rq, attr); 1182 i915_sw_fence_commit(&rq->submit); 1183 } 1184 1185 void i915_request_add(struct i915_request *rq) 1186 { 1187 struct i915_sched_attr attr = rq->gem_context->sched; 1188 struct intel_timeline * const tl = rq->timeline; 1189 struct i915_request *prev; 1190 1191 lockdep_assert_held(&tl->mutex); 1192 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1193 1194 trace_i915_request_add(rq); 1195 1196 prev = __i915_request_commit(rq); 1197 1198 /* 1199 * Boost actual workloads past semaphores! 1200 * 1201 * With semaphores we spin on one engine waiting for another, 1202 * simply to reduce the latency of starting our work when 1203 * the signaler completes. However, if there is any other 1204 * work that we could be doing on this engine instead, that 1205 * is better utilisation and will reduce the overall duration 1206 * of the current work. To avoid PI boosting a semaphore 1207 * far in the distance past over useful work, we keep a history 1208 * of any semaphore use along our dependency chain. 1209 */ 1210 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1211 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1212 1213 /* 1214 * Boost priorities to new clients (new request flows). 1215 * 1216 * Allow interactive/synchronous clients to jump ahead of 1217 * the bulk clients. (FQ_CODEL) 1218 */ 1219 if (list_empty(&rq->sched.signalers_list)) 1220 attr.priority |= I915_PRIORITY_WAIT; 1221 1222 local_bh_disable(); 1223 __i915_request_queue(rq, &attr); 1224 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1225 1226 /* 1227 * In typical scenarios, we do not expect the previous request on 1228 * the timeline to be still tracked by timeline->last_request if it 1229 * has been completed. If the completed request is still here, that 1230 * implies that request retirement is a long way behind submission, 1231 * suggesting that we haven't been retiring frequently enough from 1232 * the combination of retire-before-alloc, waiters and the background 1233 * retirement worker. So if the last request on this timeline was 1234 * already completed, do a catch up pass, flushing the retirement queue 1235 * up to this client. Since we have now moved the heaviest operations 1236 * during retirement onto secondary workers, such as freeing objects 1237 * or contexts, retiring a bunch of requests is mostly list management 1238 * (and cache misses), and so we should not be overly penalizing this 1239 * client by performing excess work, though we may still performing 1240 * work on behalf of others -- but instead we should benefit from 1241 * improved resource management. (Well, that's the theory at least.) 1242 */ 1243 if (prev && i915_request_completed(prev) && prev->timeline == tl) 1244 i915_request_retire_upto(prev); 1245 1246 mutex_unlock(&tl->mutex); 1247 } 1248 1249 static unsigned long local_clock_us(unsigned int *cpu) 1250 { 1251 unsigned long t; 1252 1253 /* 1254 * Cheaply and approximately convert from nanoseconds to microseconds. 1255 * The result and subsequent calculations are also defined in the same 1256 * approximate microseconds units. The principal source of timing 1257 * error here is from the simple truncation. 1258 * 1259 * Note that local_clock() is only defined wrt to the current CPU; 1260 * the comparisons are no longer valid if we switch CPUs. Instead of 1261 * blocking preemption for the entire busywait, we can detect the CPU 1262 * switch and use that as indicator of system load and a reason to 1263 * stop busywaiting, see busywait_stop(). 1264 */ 1265 *cpu = get_cpu(); 1266 t = local_clock() >> 10; 1267 put_cpu(); 1268 1269 return t; 1270 } 1271 1272 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1273 { 1274 unsigned int this_cpu; 1275 1276 if (time_after(local_clock_us(&this_cpu), timeout)) 1277 return true; 1278 1279 return this_cpu != cpu; 1280 } 1281 1282 static bool __i915_spin_request(const struct i915_request * const rq, 1283 int state, unsigned long timeout_us) 1284 { 1285 unsigned int cpu; 1286 1287 /* 1288 * Only wait for the request if we know it is likely to complete. 1289 * 1290 * We don't track the timestamps around requests, nor the average 1291 * request length, so we do not have a good indicator that this 1292 * request will complete within the timeout. What we do know is the 1293 * order in which requests are executed by the context and so we can 1294 * tell if the request has been started. If the request is not even 1295 * running yet, it is a fair assumption that it will not complete 1296 * within our relatively short timeout. 1297 */ 1298 if (!i915_request_is_running(rq)) 1299 return false; 1300 1301 /* 1302 * When waiting for high frequency requests, e.g. during synchronous 1303 * rendering split between the CPU and GPU, the finite amount of time 1304 * required to set up the irq and wait upon it limits the response 1305 * rate. By busywaiting on the request completion for a short while we 1306 * can service the high frequency waits as quick as possible. However, 1307 * if it is a slow request, we want to sleep as quickly as possible. 1308 * The tradeoff between waiting and sleeping is roughly the time it 1309 * takes to sleep on a request, on the order of a microsecond. 1310 */ 1311 1312 timeout_us += local_clock_us(&cpu); 1313 do { 1314 if (i915_request_completed(rq)) 1315 return true; 1316 1317 if (signal_pending_state(state, current)) 1318 break; 1319 1320 if (busywait_stop(timeout_us, cpu)) 1321 break; 1322 1323 cpu_relax(); 1324 } while (!need_resched()); 1325 1326 return false; 1327 } 1328 1329 struct request_wait { 1330 struct dma_fence_cb cb; 1331 struct task_struct *tsk; 1332 }; 1333 1334 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1335 { 1336 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1337 1338 wake_up_process(wait->tsk); 1339 } 1340 1341 /** 1342 * i915_request_wait - wait until execution of request has finished 1343 * @rq: the request to wait upon 1344 * @flags: how to wait 1345 * @timeout: how long to wait in jiffies 1346 * 1347 * i915_request_wait() waits for the request to be completed, for a 1348 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1349 * unbounded wait). 1350 * 1351 * Returns the remaining time (in jiffies) if the request completed, which may 1352 * be zero or -ETIME if the request is unfinished after the timeout expires. 1353 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1354 * pending before the request completes. 1355 */ 1356 long i915_request_wait(struct i915_request *rq, 1357 unsigned int flags, 1358 long timeout) 1359 { 1360 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1361 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1362 struct request_wait wait; 1363 1364 might_sleep(); 1365 GEM_BUG_ON(timeout < 0); 1366 1367 if (dma_fence_is_signaled(&rq->fence)) 1368 return timeout; 1369 1370 if (!timeout) 1371 return -ETIME; 1372 1373 trace_i915_request_wait_begin(rq, flags); 1374 1375 /* 1376 * We must never wait on the GPU while holding a lock as we 1377 * may need to perform a GPU reset. So while we don't need to 1378 * serialise wait/reset with an explicit lock, we do want 1379 * lockdep to detect potential dependency cycles. 1380 */ 1381 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1382 1383 /* 1384 * Optimistic spin before touching IRQs. 1385 * 1386 * We may use a rather large value here to offset the penalty of 1387 * switching away from the active task. Frequently, the client will 1388 * wait upon an old swapbuffer to throttle itself to remain within a 1389 * frame of the gpu. If the client is running in lockstep with the gpu, 1390 * then it should not be waiting long at all, and a sleep now will incur 1391 * extra scheduler latency in producing the next frame. To try to 1392 * avoid adding the cost of enabling/disabling the interrupt to the 1393 * short wait, we first spin to see if the request would have completed 1394 * in the time taken to setup the interrupt. 1395 * 1396 * We need upto 5us to enable the irq, and upto 20us to hide the 1397 * scheduler latency of a context switch, ignoring the secondary 1398 * impacts from a context switch such as cache eviction. 1399 * 1400 * The scheme used for low-latency IO is called "hybrid interrupt 1401 * polling". The suggestion there is to sleep until just before you 1402 * expect to be woken by the device interrupt and then poll for its 1403 * completion. That requires having a good predictor for the request 1404 * duration, which we currently lack. 1405 */ 1406 if (CONFIG_DRM_I915_SPIN_REQUEST && 1407 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1408 dma_fence_signal(&rq->fence); 1409 goto out; 1410 } 1411 1412 /* 1413 * This client is about to stall waiting for the GPU. In many cases 1414 * this is undesirable and limits the throughput of the system, as 1415 * many clients cannot continue processing user input/output whilst 1416 * blocked. RPS autotuning may take tens of milliseconds to respond 1417 * to the GPU load and thus incurs additional latency for the client. 1418 * We can circumvent that by promoting the GPU frequency to maximum 1419 * before we sleep. This makes the GPU throttle up much more quickly 1420 * (good for benchmarks and user experience, e.g. window animations), 1421 * but at a cost of spending more power processing the workload 1422 * (bad for battery). 1423 */ 1424 if (flags & I915_WAIT_PRIORITY) { 1425 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1426 gen6_rps_boost(rq); 1427 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1428 } 1429 1430 wait.tsk = current; 1431 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1432 goto out; 1433 1434 for (;;) { 1435 set_current_state(state); 1436 1437 if (i915_request_completed(rq)) { 1438 dma_fence_signal(&rq->fence); 1439 break; 1440 } 1441 1442 if (signal_pending_state(state, current)) { 1443 timeout = -ERESTARTSYS; 1444 break; 1445 } 1446 1447 if (!timeout) { 1448 timeout = -ETIME; 1449 break; 1450 } 1451 1452 timeout = io_schedule_timeout(timeout); 1453 } 1454 __set_current_state(TASK_RUNNING); 1455 1456 dma_fence_remove_callback(&rq->fence, &wait.cb); 1457 1458 out: 1459 mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_); 1460 trace_i915_request_wait_end(rq); 1461 return timeout; 1462 } 1463 1464 bool i915_retire_requests(struct drm_i915_private *i915) 1465 { 1466 struct intel_gt_timelines *timelines = &i915->gt.timelines; 1467 struct intel_timeline *tl, *tn; 1468 LIST_HEAD(free); 1469 1470 spin_lock(&timelines->lock); 1471 list_for_each_entry_safe(tl, tn, &timelines->active_list, link) { 1472 if (!mutex_trylock(&tl->mutex)) 1473 continue; 1474 1475 intel_timeline_get(tl); 1476 GEM_BUG_ON(!tl->active_count); 1477 tl->active_count++; /* pin the list element */ 1478 spin_unlock(&timelines->lock); 1479 1480 retire_requests(tl); 1481 1482 spin_lock(&timelines->lock); 1483 1484 /* Resume iteration after dropping lock */ 1485 list_safe_reset_next(tl, tn, link); 1486 if (!--tl->active_count) 1487 list_del(&tl->link); 1488 1489 mutex_unlock(&tl->mutex); 1490 1491 /* Defer the final release to after the spinlock */ 1492 if (refcount_dec_and_test(&tl->kref.refcount)) { 1493 GEM_BUG_ON(tl->active_count); 1494 list_add(&tl->link, &free); 1495 } 1496 } 1497 spin_unlock(&timelines->lock); 1498 1499 list_for_each_entry_safe(tl, tn, &free, link) 1500 __intel_timeline_free(&tl->kref); 1501 1502 return !list_empty(&timelines->active_list); 1503 } 1504 1505 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1506 #include "selftests/mock_request.c" 1507 #include "selftests/i915_request.c" 1508 #endif 1509 1510 static void i915_global_request_shrink(void) 1511 { 1512 kmem_cache_shrink(global.slab_dependencies); 1513 kmem_cache_shrink(global.slab_execute_cbs); 1514 kmem_cache_shrink(global.slab_requests); 1515 } 1516 1517 static void i915_global_request_exit(void) 1518 { 1519 kmem_cache_destroy(global.slab_dependencies); 1520 kmem_cache_destroy(global.slab_execute_cbs); 1521 kmem_cache_destroy(global.slab_requests); 1522 } 1523 1524 static struct i915_global_request global = { { 1525 .shrink = i915_global_request_shrink, 1526 .exit = i915_global_request_exit, 1527 } }; 1528 1529 int __init i915_global_request_init(void) 1530 { 1531 global.slab_requests = KMEM_CACHE(i915_request, 1532 SLAB_HWCACHE_ALIGN | 1533 SLAB_RECLAIM_ACCOUNT | 1534 SLAB_TYPESAFE_BY_RCU); 1535 if (!global.slab_requests) 1536 return -ENOMEM; 1537 1538 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1539 SLAB_HWCACHE_ALIGN | 1540 SLAB_RECLAIM_ACCOUNT | 1541 SLAB_TYPESAFE_BY_RCU); 1542 if (!global.slab_execute_cbs) 1543 goto err_requests; 1544 1545 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1546 SLAB_HWCACHE_ALIGN | 1547 SLAB_RECLAIM_ACCOUNT); 1548 if (!global.slab_dependencies) 1549 goto err_execute_cbs; 1550 1551 i915_global_register(&global.base); 1552 return 0; 1553 1554 err_execute_cbs: 1555 kmem_cache_destroy(global.slab_execute_cbs); 1556 err_requests: 1557 kmem_cache_destroy(global.slab_requests); 1558 return -ENOMEM; 1559 } 1560