1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 
35 #include "i915_active.h"
36 #include "i915_drv.h"
37 #include "i915_globals.h"
38 #include "i915_trace.h"
39 #include "intel_pm.h"
40 
41 struct execute_cb {
42 	struct list_head link;
43 	struct irq_work work;
44 	struct i915_sw_fence *fence;
45 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
46 	struct i915_request *signal;
47 };
48 
49 static struct i915_global_request {
50 	struct i915_global base;
51 	struct kmem_cache *slab_requests;
52 	struct kmem_cache *slab_dependencies;
53 	struct kmem_cache *slab_execute_cbs;
54 } global;
55 
56 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 {
58 	return "i915";
59 }
60 
61 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62 {
63 	/*
64 	 * The timeline struct (as part of the ppgtt underneath a context)
65 	 * may be freed when the request is no longer in use by the GPU.
66 	 * We could extend the life of a context to beyond that of all
67 	 * fences, possibly keeping the hw resource around indefinitely,
68 	 * or we just give them a false name. Since
69 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
70 	 * lie seems justifiable.
71 	 */
72 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
73 		return "signaled";
74 
75 	return to_request(fence)->gem_context->name ?: "[i915]";
76 }
77 
78 static bool i915_fence_signaled(struct dma_fence *fence)
79 {
80 	return i915_request_completed(to_request(fence));
81 }
82 
83 static bool i915_fence_enable_signaling(struct dma_fence *fence)
84 {
85 	return i915_request_enable_breadcrumb(to_request(fence));
86 }
87 
88 static signed long i915_fence_wait(struct dma_fence *fence,
89 				   bool interruptible,
90 				   signed long timeout)
91 {
92 	return i915_request_wait(to_request(fence),
93 				 interruptible | I915_WAIT_PRIORITY,
94 				 timeout);
95 }
96 
97 static void i915_fence_release(struct dma_fence *fence)
98 {
99 	struct i915_request *rq = to_request(fence);
100 
101 	/*
102 	 * The request is put onto a RCU freelist (i.e. the address
103 	 * is immediately reused), mark the fences as being freed now.
104 	 * Otherwise the debugobjects for the fences are only marked as
105 	 * freed when the slab cache itself is freed, and so we would get
106 	 * caught trying to reuse dead objects.
107 	 */
108 	i915_sw_fence_fini(&rq->submit);
109 	i915_sw_fence_fini(&rq->semaphore);
110 
111 	kmem_cache_free(global.slab_requests, rq);
112 }
113 
114 const struct dma_fence_ops i915_fence_ops = {
115 	.get_driver_name = i915_fence_get_driver_name,
116 	.get_timeline_name = i915_fence_get_timeline_name,
117 	.enable_signaling = i915_fence_enable_signaling,
118 	.signaled = i915_fence_signaled,
119 	.wait = i915_fence_wait,
120 	.release = i915_fence_release,
121 };
122 
123 static void irq_execute_cb(struct irq_work *wrk)
124 {
125 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
126 
127 	i915_sw_fence_complete(cb->fence);
128 	kmem_cache_free(global.slab_execute_cbs, cb);
129 }
130 
131 static void irq_execute_cb_hook(struct irq_work *wrk)
132 {
133 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134 
135 	cb->hook(container_of(cb->fence, struct i915_request, submit),
136 		 &cb->signal->fence);
137 	i915_request_put(cb->signal);
138 
139 	irq_execute_cb(wrk);
140 }
141 
142 static void __notify_execute_cb(struct i915_request *rq)
143 {
144 	struct execute_cb *cb;
145 
146 	lockdep_assert_held(&rq->lock);
147 
148 	if (list_empty(&rq->execute_cb))
149 		return;
150 
151 	list_for_each_entry(cb, &rq->execute_cb, link)
152 		irq_work_queue(&cb->work);
153 
154 	/*
155 	 * XXX Rollback on __i915_request_unsubmit()
156 	 *
157 	 * In the future, perhaps when we have an active time-slicing scheduler,
158 	 * it will be interesting to unsubmit parallel execution and remove
159 	 * busywaits from the GPU until their master is restarted. This is
160 	 * quite hairy, we have to carefully rollback the fence and do a
161 	 * preempt-to-idle cycle on the target engine, all the while the
162 	 * master execute_cb may refire.
163 	 */
164 	INIT_LIST_HEAD(&rq->execute_cb);
165 }
166 
167 static inline void
168 remove_from_client(struct i915_request *request)
169 {
170 	struct drm_i915_file_private *file_priv;
171 
172 	file_priv = READ_ONCE(request->file_priv);
173 	if (!file_priv)
174 		return;
175 
176 	spin_lock(&file_priv->mm.lock);
177 	if (request->file_priv) {
178 		list_del(&request->client_link);
179 		request->file_priv = NULL;
180 	}
181 	spin_unlock(&file_priv->mm.lock);
182 }
183 
184 static void free_capture_list(struct i915_request *request)
185 {
186 	struct i915_capture_list *capture;
187 
188 	capture = request->capture_list;
189 	while (capture) {
190 		struct i915_capture_list *next = capture->next;
191 
192 		kfree(capture);
193 		capture = next;
194 	}
195 }
196 
197 static bool i915_request_retire(struct i915_request *rq)
198 {
199 	struct i915_active_request *active, *next;
200 
201 	lockdep_assert_held(&rq->timeline->mutex);
202 	if (!i915_request_completed(rq))
203 		return false;
204 
205 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
206 		  rq->engine->name,
207 		  rq->fence.context, rq->fence.seqno,
208 		  hwsp_seqno(rq));
209 
210 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
211 	trace_i915_request_retire(rq);
212 
213 	/*
214 	 * We know the GPU must have read the request to have
215 	 * sent us the seqno + interrupt, so use the position
216 	 * of tail of the request to update the last known position
217 	 * of the GPU head.
218 	 *
219 	 * Note this requires that we are always called in request
220 	 * completion order.
221 	 */
222 	GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
223 	rq->ring->head = rq->postfix;
224 
225 	/*
226 	 * Walk through the active list, calling retire on each. This allows
227 	 * objects to track their GPU activity and mark themselves as idle
228 	 * when their *last* active request is completed (updating state
229 	 * tracking lists for eviction, active references for GEM, etc).
230 	 *
231 	 * As the ->retire() may free the node, we decouple it first and
232 	 * pass along the auxiliary information (to avoid dereferencing
233 	 * the node after the callback).
234 	 */
235 	list_for_each_entry_safe(active, next, &rq->active_list, link) {
236 		/*
237 		 * In microbenchmarks or focusing upon time inside the kernel,
238 		 * we may spend an inordinate amount of time simply handling
239 		 * the retirement of requests and processing their callbacks.
240 		 * Of which, this loop itself is particularly hot due to the
241 		 * cache misses when jumping around the list of
242 		 * i915_active_request.  So we try to keep this loop as
243 		 * streamlined as possible and also prefetch the next
244 		 * i915_active_request to try and hide the likely cache miss.
245 		 */
246 		prefetchw(next);
247 
248 		INIT_LIST_HEAD(&active->link);
249 		RCU_INIT_POINTER(active->request, NULL);
250 
251 		active->retire(active, rq);
252 	}
253 
254 	local_irq_disable();
255 
256 	/*
257 	 * We only loosely track inflight requests across preemption,
258 	 * and so we may find ourselves attempting to retire a _completed_
259 	 * request that we have removed from the HW and put back on a run
260 	 * queue.
261 	 */
262 	spin_lock(&rq->engine->active.lock);
263 	list_del(&rq->sched.link);
264 	spin_unlock(&rq->engine->active.lock);
265 
266 	spin_lock(&rq->lock);
267 	i915_request_mark_complete(rq);
268 	if (!i915_request_signaled(rq))
269 		dma_fence_signal_locked(&rq->fence);
270 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
271 		i915_request_cancel_breadcrumb(rq);
272 	if (i915_request_has_waitboost(rq)) {
273 		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
274 		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
275 	}
276 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
277 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
278 		__notify_execute_cb(rq);
279 	}
280 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
281 	spin_unlock(&rq->lock);
282 
283 	local_irq_enable();
284 
285 	remove_from_client(rq);
286 	list_del(&rq->link);
287 
288 	intel_context_exit(rq->hw_context);
289 	intel_context_unpin(rq->hw_context);
290 
291 	free_capture_list(rq);
292 	i915_sched_node_fini(&rq->sched);
293 	i915_request_put(rq);
294 
295 	return true;
296 }
297 
298 void i915_request_retire_upto(struct i915_request *rq)
299 {
300 	struct intel_timeline * const tl = rq->timeline;
301 	struct i915_request *tmp;
302 
303 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
304 		  rq->engine->name,
305 		  rq->fence.context, rq->fence.seqno,
306 		  hwsp_seqno(rq));
307 
308 	lockdep_assert_held(&tl->mutex);
309 	GEM_BUG_ON(!i915_request_completed(rq));
310 
311 	do {
312 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
313 	} while (i915_request_retire(tmp) && tmp != rq);
314 }
315 
316 static int
317 __i915_request_await_execution(struct i915_request *rq,
318 			       struct i915_request *signal,
319 			       void (*hook)(struct i915_request *rq,
320 					    struct dma_fence *signal),
321 			       gfp_t gfp)
322 {
323 	struct execute_cb *cb;
324 
325 	if (i915_request_is_active(signal)) {
326 		if (hook)
327 			hook(rq, &signal->fence);
328 		return 0;
329 	}
330 
331 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
332 	if (!cb)
333 		return -ENOMEM;
334 
335 	cb->fence = &rq->submit;
336 	i915_sw_fence_await(cb->fence);
337 	init_irq_work(&cb->work, irq_execute_cb);
338 
339 	if (hook) {
340 		cb->hook = hook;
341 		cb->signal = i915_request_get(signal);
342 		cb->work.func = irq_execute_cb_hook;
343 	}
344 
345 	spin_lock_irq(&signal->lock);
346 	if (i915_request_is_active(signal)) {
347 		if (hook) {
348 			hook(rq, &signal->fence);
349 			i915_request_put(signal);
350 		}
351 		i915_sw_fence_complete(cb->fence);
352 		kmem_cache_free(global.slab_execute_cbs, cb);
353 	} else {
354 		list_add_tail(&cb->link, &signal->execute_cb);
355 	}
356 	spin_unlock_irq(&signal->lock);
357 
358 	return 0;
359 }
360 
361 void __i915_request_submit(struct i915_request *request)
362 {
363 	struct intel_engine_cs *engine = request->engine;
364 
365 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
366 		  engine->name,
367 		  request->fence.context, request->fence.seqno,
368 		  hwsp_seqno(request));
369 
370 	GEM_BUG_ON(!irqs_disabled());
371 	lockdep_assert_held(&engine->active.lock);
372 
373 	if (i915_gem_context_is_banned(request->gem_context))
374 		i915_request_skip(request, -EIO);
375 
376 	/*
377 	 * Are we using semaphores when the gpu is already saturated?
378 	 *
379 	 * Using semaphores incurs a cost in having the GPU poll a
380 	 * memory location, busywaiting for it to change. The continual
381 	 * memory reads can have a noticeable impact on the rest of the
382 	 * system with the extra bus traffic, stalling the cpu as it too
383 	 * tries to access memory across the bus (perf stat -e bus-cycles).
384 	 *
385 	 * If we installed a semaphore on this request and we only submit
386 	 * the request after the signaler completed, that indicates the
387 	 * system is overloaded and using semaphores at this time only
388 	 * increases the amount of work we are doing. If so, we disable
389 	 * further use of semaphores until we are idle again, whence we
390 	 * optimistically try again.
391 	 */
392 	if (request->sched.semaphores &&
393 	    i915_sw_fence_signaled(&request->semaphore))
394 		engine->saturated |= request->sched.semaphores;
395 
396 	/* We may be recursing from the signal callback of another i915 fence */
397 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
398 
399 	list_move_tail(&request->sched.link, &engine->active.requests);
400 
401 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
402 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
403 
404 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
405 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
406 	    !i915_request_enable_breadcrumb(request))
407 		intel_engine_queue_breadcrumbs(engine);
408 
409 	__notify_execute_cb(request);
410 
411 	spin_unlock(&request->lock);
412 
413 	engine->emit_fini_breadcrumb(request,
414 				     request->ring->vaddr + request->postfix);
415 
416 	engine->serial++;
417 
418 	trace_i915_request_execute(request);
419 }
420 
421 void i915_request_submit(struct i915_request *request)
422 {
423 	struct intel_engine_cs *engine = request->engine;
424 	unsigned long flags;
425 
426 	/* Will be called from irq-context when using foreign fences. */
427 	spin_lock_irqsave(&engine->active.lock, flags);
428 
429 	__i915_request_submit(request);
430 
431 	spin_unlock_irqrestore(&engine->active.lock, flags);
432 }
433 
434 void __i915_request_unsubmit(struct i915_request *request)
435 {
436 	struct intel_engine_cs *engine = request->engine;
437 
438 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
439 		  engine->name,
440 		  request->fence.context, request->fence.seqno,
441 		  hwsp_seqno(request));
442 
443 	GEM_BUG_ON(!irqs_disabled());
444 	lockdep_assert_held(&engine->active.lock);
445 
446 	/*
447 	 * Only unwind in reverse order, required so that the per-context list
448 	 * is kept in seqno/ring order.
449 	 */
450 
451 	/* We may be recursing from the signal callback of another i915 fence */
452 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
453 
454 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
455 		i915_request_cancel_breadcrumb(request);
456 
457 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
458 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
459 
460 	spin_unlock(&request->lock);
461 
462 	/* We've already spun, don't charge on resubmitting. */
463 	if (request->sched.semaphores && i915_request_started(request)) {
464 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
465 		request->sched.semaphores = 0;
466 	}
467 
468 	/*
469 	 * We don't need to wake_up any waiters on request->execute, they
470 	 * will get woken by any other event or us re-adding this request
471 	 * to the engine timeline (__i915_request_submit()). The waiters
472 	 * should be quite adapt at finding that the request now has a new
473 	 * global_seqno to the one they went to sleep on.
474 	 */
475 }
476 
477 void i915_request_unsubmit(struct i915_request *request)
478 {
479 	struct intel_engine_cs *engine = request->engine;
480 	unsigned long flags;
481 
482 	/* Will be called from irq-context when using foreign fences. */
483 	spin_lock_irqsave(&engine->active.lock, flags);
484 
485 	__i915_request_unsubmit(request);
486 
487 	spin_unlock_irqrestore(&engine->active.lock, flags);
488 }
489 
490 static int __i915_sw_fence_call
491 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
492 {
493 	struct i915_request *request =
494 		container_of(fence, typeof(*request), submit);
495 
496 	switch (state) {
497 	case FENCE_COMPLETE:
498 		trace_i915_request_submit(request);
499 
500 		if (unlikely(fence->error))
501 			i915_request_skip(request, fence->error);
502 
503 		/*
504 		 * We need to serialize use of the submit_request() callback
505 		 * with its hotplugging performed during an emergency
506 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
507 		 * critical section in order to force i915_gem_set_wedged() to
508 		 * wait until the submit_request() is completed before
509 		 * proceeding.
510 		 */
511 		rcu_read_lock();
512 		request->engine->submit_request(request);
513 		rcu_read_unlock();
514 		break;
515 
516 	case FENCE_FREE:
517 		i915_request_put(request);
518 		break;
519 	}
520 
521 	return NOTIFY_DONE;
522 }
523 
524 static int __i915_sw_fence_call
525 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
526 {
527 	struct i915_request *request =
528 		container_of(fence, typeof(*request), semaphore);
529 
530 	switch (state) {
531 	case FENCE_COMPLETE:
532 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
533 		break;
534 
535 	case FENCE_FREE:
536 		i915_request_put(request);
537 		break;
538 	}
539 
540 	return NOTIFY_DONE;
541 }
542 
543 static void retire_requests(struct intel_timeline *tl)
544 {
545 	struct i915_request *rq, *rn;
546 
547 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
548 		if (!i915_request_retire(rq))
549 			break;
550 }
551 
552 static noinline struct i915_request *
553 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
554 {
555 	struct i915_request *rq;
556 
557 	if (list_empty(&tl->requests))
558 		goto out;
559 
560 	if (!gfpflags_allow_blocking(gfp))
561 		goto out;
562 
563 	/* Move our oldest request to the slab-cache (if not in use!) */
564 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
565 	i915_request_retire(rq);
566 
567 	rq = kmem_cache_alloc(global.slab_requests,
568 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
569 	if (rq)
570 		return rq;
571 
572 	/* Ratelimit ourselves to prevent oom from malicious clients */
573 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
574 	cond_synchronize_rcu(rq->rcustate);
575 
576 	/* Retire our old requests in the hope that we free some */
577 	retire_requests(tl);
578 
579 out:
580 	return kmem_cache_alloc(global.slab_requests, gfp);
581 }
582 
583 struct i915_request *
584 __i915_request_create(struct intel_context *ce, gfp_t gfp)
585 {
586 	struct intel_timeline *tl = ce->timeline;
587 	struct i915_request *rq;
588 	u32 seqno;
589 	int ret;
590 
591 	might_sleep_if(gfpflags_allow_blocking(gfp));
592 
593 	/* Check that the caller provided an already pinned context */
594 	__intel_context_pin(ce);
595 
596 	/*
597 	 * Beware: Dragons be flying overhead.
598 	 *
599 	 * We use RCU to look up requests in flight. The lookups may
600 	 * race with the request being allocated from the slab freelist.
601 	 * That is the request we are writing to here, may be in the process
602 	 * of being read by __i915_active_request_get_rcu(). As such,
603 	 * we have to be very careful when overwriting the contents. During
604 	 * the RCU lookup, we change chase the request->engine pointer,
605 	 * read the request->global_seqno and increment the reference count.
606 	 *
607 	 * The reference count is incremented atomically. If it is zero,
608 	 * the lookup knows the request is unallocated and complete. Otherwise,
609 	 * it is either still in use, or has been reallocated and reset
610 	 * with dma_fence_init(). This increment is safe for release as we
611 	 * check that the request we have a reference to and matches the active
612 	 * request.
613 	 *
614 	 * Before we increment the refcount, we chase the request->engine
615 	 * pointer. We must not call kmem_cache_zalloc() or else we set
616 	 * that pointer to NULL and cause a crash during the lookup. If
617 	 * we see the request is completed (based on the value of the
618 	 * old engine and seqno), the lookup is complete and reports NULL.
619 	 * If we decide the request is not completed (new engine or seqno),
620 	 * then we grab a reference and double check that it is still the
621 	 * active request - which it won't be and restart the lookup.
622 	 *
623 	 * Do not use kmem_cache_zalloc() here!
624 	 */
625 	rq = kmem_cache_alloc(global.slab_requests,
626 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
627 	if (unlikely(!rq)) {
628 		rq = request_alloc_slow(tl, gfp);
629 		if (!rq) {
630 			ret = -ENOMEM;
631 			goto err_unreserve;
632 		}
633 	}
634 
635 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
636 	if (ret)
637 		goto err_free;
638 
639 	rq->i915 = ce->engine->i915;
640 	rq->hw_context = ce;
641 	rq->gem_context = ce->gem_context;
642 	rq->engine = ce->engine;
643 	rq->ring = ce->ring;
644 	rq->timeline = tl;
645 	rq->hwsp_seqno = tl->hwsp_seqno;
646 	rq->hwsp_cacheline = tl->hwsp_cacheline;
647 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
648 
649 	spin_lock_init(&rq->lock);
650 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
651 		       tl->fence_context, seqno);
652 
653 	/* We bump the ref for the fence chain */
654 	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
655 	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
656 
657 	i915_sched_node_init(&rq->sched);
658 
659 	/* No zalloc, must clear what we need by hand */
660 	rq->file_priv = NULL;
661 	rq->batch = NULL;
662 	rq->capture_list = NULL;
663 	rq->flags = 0;
664 	rq->execution_mask = ALL_ENGINES;
665 
666 	INIT_LIST_HEAD(&rq->active_list);
667 	INIT_LIST_HEAD(&rq->execute_cb);
668 
669 	/*
670 	 * Reserve space in the ring buffer for all the commands required to
671 	 * eventually emit this request. This is to guarantee that the
672 	 * i915_request_add() call can't fail. Note that the reserve may need
673 	 * to be redone if the request is not actually submitted straight
674 	 * away, e.g. because a GPU scheduler has deferred it.
675 	 *
676 	 * Note that due to how we add reserved_space to intel_ring_begin()
677 	 * we need to double our request to ensure that if we need to wrap
678 	 * around inside i915_request_add() there is sufficient space at
679 	 * the beginning of the ring as well.
680 	 */
681 	rq->reserved_space =
682 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
683 
684 	/*
685 	 * Record the position of the start of the request so that
686 	 * should we detect the updated seqno part-way through the
687 	 * GPU processing the request, we never over-estimate the
688 	 * position of the head.
689 	 */
690 	rq->head = rq->ring->emit;
691 
692 	ret = rq->engine->request_alloc(rq);
693 	if (ret)
694 		goto err_unwind;
695 
696 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
697 
698 	intel_context_mark_active(ce);
699 	return rq;
700 
701 err_unwind:
702 	ce->ring->emit = rq->head;
703 
704 	/* Make sure we didn't add ourselves to external state before freeing */
705 	GEM_BUG_ON(!list_empty(&rq->active_list));
706 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
707 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
708 
709 err_free:
710 	kmem_cache_free(global.slab_requests, rq);
711 err_unreserve:
712 	intel_context_unpin(ce);
713 	return ERR_PTR(ret);
714 }
715 
716 struct i915_request *
717 i915_request_create(struct intel_context *ce)
718 {
719 	struct i915_request *rq;
720 	struct intel_timeline *tl;
721 
722 	tl = intel_context_timeline_lock(ce);
723 	if (IS_ERR(tl))
724 		return ERR_CAST(tl);
725 
726 	/* Move our oldest request to the slab-cache (if not in use!) */
727 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
728 	if (!list_is_last(&rq->link, &tl->requests))
729 		i915_request_retire(rq);
730 
731 	intel_context_enter(ce);
732 	rq = __i915_request_create(ce, GFP_KERNEL);
733 	intel_context_exit(ce); /* active reference transferred to request */
734 	if (IS_ERR(rq))
735 		goto err_unlock;
736 
737 	/* Check that we do not interrupt ourselves with a new request */
738 	rq->cookie = lockdep_pin_lock(&tl->mutex);
739 
740 	return rq;
741 
742 err_unlock:
743 	intel_context_timeline_unlock(tl);
744 	return rq;
745 }
746 
747 static int
748 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
749 {
750 	if (list_is_first(&signal->link, &signal->timeline->requests))
751 		return 0;
752 
753 	signal = list_prev_entry(signal, link);
754 	if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
755 		return 0;
756 
757 	return i915_sw_fence_await_dma_fence(&rq->submit,
758 					     &signal->fence, 0,
759 					     I915_FENCE_GFP);
760 }
761 
762 static intel_engine_mask_t
763 already_busywaiting(struct i915_request *rq)
764 {
765 	/*
766 	 * Polling a semaphore causes bus traffic, delaying other users of
767 	 * both the GPU and CPU. We want to limit the impact on others,
768 	 * while taking advantage of early submission to reduce GPU
769 	 * latency. Therefore we restrict ourselves to not using more
770 	 * than one semaphore from each source, and not using a semaphore
771 	 * if we have detected the engine is saturated (i.e. would not be
772 	 * submitted early and cause bus traffic reading an already passed
773 	 * semaphore).
774 	 *
775 	 * See the are-we-too-late? check in __i915_request_submit().
776 	 */
777 	return rq->sched.semaphores | rq->engine->saturated;
778 }
779 
780 static int
781 emit_semaphore_wait(struct i915_request *to,
782 		    struct i915_request *from,
783 		    gfp_t gfp)
784 {
785 	u32 hwsp_offset;
786 	u32 *cs;
787 	int err;
788 
789 	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
790 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
791 
792 	/* Just emit the first semaphore we see as request space is limited. */
793 	if (already_busywaiting(to) & from->engine->mask)
794 		return i915_sw_fence_await_dma_fence(&to->submit,
795 						     &from->fence, 0,
796 						     I915_FENCE_GFP);
797 
798 	err = i915_request_await_start(to, from);
799 	if (err < 0)
800 		return err;
801 
802 	/* Only submit our spinner after the signaler is running! */
803 	err = __i915_request_await_execution(to, from, NULL, gfp);
804 	if (err)
805 		return err;
806 
807 	/* We need to pin the signaler's HWSP until we are finished reading. */
808 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
809 	if (err)
810 		return err;
811 
812 	cs = intel_ring_begin(to, 4);
813 	if (IS_ERR(cs))
814 		return PTR_ERR(cs);
815 
816 	/*
817 	 * Using greater-than-or-equal here means we have to worry
818 	 * about seqno wraparound. To side step that issue, we swap
819 	 * the timeline HWSP upon wrapping, so that everyone listening
820 	 * for the old (pre-wrap) values do not see the much smaller
821 	 * (post-wrap) values than they were expecting (and so wait
822 	 * forever).
823 	 */
824 	*cs++ = MI_SEMAPHORE_WAIT |
825 		MI_SEMAPHORE_GLOBAL_GTT |
826 		MI_SEMAPHORE_POLL |
827 		MI_SEMAPHORE_SAD_GTE_SDD;
828 	*cs++ = from->fence.seqno;
829 	*cs++ = hwsp_offset;
830 	*cs++ = 0;
831 
832 	intel_ring_advance(to, cs);
833 	to->sched.semaphores |= from->engine->mask;
834 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
835 	return 0;
836 }
837 
838 static int
839 i915_request_await_request(struct i915_request *to, struct i915_request *from)
840 {
841 	int ret;
842 
843 	GEM_BUG_ON(to == from);
844 	GEM_BUG_ON(to->timeline == from->timeline);
845 
846 	if (i915_request_completed(from))
847 		return 0;
848 
849 	if (to->engine->schedule) {
850 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
851 		if (ret < 0)
852 			return ret;
853 	}
854 
855 	if (to->engine == from->engine) {
856 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
857 						       &from->submit,
858 						       I915_FENCE_GFP);
859 	} else if (intel_engine_has_semaphores(to->engine) &&
860 		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
861 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
862 	} else {
863 		ret = i915_sw_fence_await_dma_fence(&to->submit,
864 						    &from->fence, 0,
865 						    I915_FENCE_GFP);
866 	}
867 	if (ret < 0)
868 		return ret;
869 
870 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
871 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
872 						    &from->fence, 0,
873 						    I915_FENCE_GFP);
874 		if (ret < 0)
875 			return ret;
876 	}
877 
878 	return 0;
879 }
880 
881 int
882 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
883 {
884 	struct dma_fence **child = &fence;
885 	unsigned int nchild = 1;
886 	int ret;
887 
888 	/*
889 	 * Note that if the fence-array was created in signal-on-any mode,
890 	 * we should *not* decompose it into its individual fences. However,
891 	 * we don't currently store which mode the fence-array is operating
892 	 * in. Fortunately, the only user of signal-on-any is private to
893 	 * amdgpu and we should not see any incoming fence-array from
894 	 * sync-file being in signal-on-any mode.
895 	 */
896 	if (dma_fence_is_array(fence)) {
897 		struct dma_fence_array *array = to_dma_fence_array(fence);
898 
899 		child = array->fences;
900 		nchild = array->num_fences;
901 		GEM_BUG_ON(!nchild);
902 	}
903 
904 	do {
905 		fence = *child++;
906 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
907 			continue;
908 
909 		/*
910 		 * Requests on the same timeline are explicitly ordered, along
911 		 * with their dependencies, by i915_request_add() which ensures
912 		 * that requests are submitted in-order through each ring.
913 		 */
914 		if (fence->context == rq->fence.context)
915 			continue;
916 
917 		/* Squash repeated waits to the same timelines */
918 		if (fence->context &&
919 		    intel_timeline_sync_is_later(rq->timeline, fence))
920 			continue;
921 
922 		if (dma_fence_is_i915(fence))
923 			ret = i915_request_await_request(rq, to_request(fence));
924 		else
925 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
926 							    I915_FENCE_TIMEOUT,
927 							    I915_FENCE_GFP);
928 		if (ret < 0)
929 			return ret;
930 
931 		/* Record the latest fence used against each timeline */
932 		if (fence->context)
933 			intel_timeline_sync_set(rq->timeline, fence);
934 	} while (--nchild);
935 
936 	return 0;
937 }
938 
939 int
940 i915_request_await_execution(struct i915_request *rq,
941 			     struct dma_fence *fence,
942 			     void (*hook)(struct i915_request *rq,
943 					  struct dma_fence *signal))
944 {
945 	struct dma_fence **child = &fence;
946 	unsigned int nchild = 1;
947 	int ret;
948 
949 	if (dma_fence_is_array(fence)) {
950 		struct dma_fence_array *array = to_dma_fence_array(fence);
951 
952 		/* XXX Error for signal-on-any fence arrays */
953 
954 		child = array->fences;
955 		nchild = array->num_fences;
956 		GEM_BUG_ON(!nchild);
957 	}
958 
959 	do {
960 		fence = *child++;
961 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
962 			continue;
963 
964 		/*
965 		 * We don't squash repeated fence dependencies here as we
966 		 * want to run our callback in all cases.
967 		 */
968 
969 		if (dma_fence_is_i915(fence))
970 			ret = __i915_request_await_execution(rq,
971 							     to_request(fence),
972 							     hook,
973 							     I915_FENCE_GFP);
974 		else
975 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
976 							    I915_FENCE_TIMEOUT,
977 							    GFP_KERNEL);
978 		if (ret < 0)
979 			return ret;
980 	} while (--nchild);
981 
982 	return 0;
983 }
984 
985 /**
986  * i915_request_await_object - set this request to (async) wait upon a bo
987  * @to: request we are wishing to use
988  * @obj: object which may be in use on another ring.
989  * @write: whether the wait is on behalf of a writer
990  *
991  * This code is meant to abstract object synchronization with the GPU.
992  * Conceptually we serialise writes between engines inside the GPU.
993  * We only allow one engine to write into a buffer at any time, but
994  * multiple readers. To ensure each has a coherent view of memory, we must:
995  *
996  * - If there is an outstanding write request to the object, the new
997  *   request must wait for it to complete (either CPU or in hw, requests
998  *   on the same ring will be naturally ordered).
999  *
1000  * - If we are a write request (pending_write_domain is set), the new
1001  *   request must wait for outstanding read requests to complete.
1002  *
1003  * Returns 0 if successful, else propagates up the lower layer error.
1004  */
1005 int
1006 i915_request_await_object(struct i915_request *to,
1007 			  struct drm_i915_gem_object *obj,
1008 			  bool write)
1009 {
1010 	struct dma_fence *excl;
1011 	int ret = 0;
1012 
1013 	if (write) {
1014 		struct dma_fence **shared;
1015 		unsigned int count, i;
1016 
1017 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1018 							&excl, &count, &shared);
1019 		if (ret)
1020 			return ret;
1021 
1022 		for (i = 0; i < count; i++) {
1023 			ret = i915_request_await_dma_fence(to, shared[i]);
1024 			if (ret)
1025 				break;
1026 
1027 			dma_fence_put(shared[i]);
1028 		}
1029 
1030 		for (; i < count; i++)
1031 			dma_fence_put(shared[i]);
1032 		kfree(shared);
1033 	} else {
1034 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1035 	}
1036 
1037 	if (excl) {
1038 		if (ret == 0)
1039 			ret = i915_request_await_dma_fence(to, excl);
1040 
1041 		dma_fence_put(excl);
1042 	}
1043 
1044 	return ret;
1045 }
1046 
1047 void i915_request_skip(struct i915_request *rq, int error)
1048 {
1049 	void *vaddr = rq->ring->vaddr;
1050 	u32 head;
1051 
1052 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1053 	dma_fence_set_error(&rq->fence, error);
1054 
1055 	if (rq->infix == rq->postfix)
1056 		return;
1057 
1058 	/*
1059 	 * As this request likely depends on state from the lost
1060 	 * context, clear out all the user operations leaving the
1061 	 * breadcrumb at the end (so we get the fence notifications).
1062 	 */
1063 	head = rq->infix;
1064 	if (rq->postfix < head) {
1065 		memset(vaddr + head, 0, rq->ring->size - head);
1066 		head = 0;
1067 	}
1068 	memset(vaddr + head, 0, rq->postfix - head);
1069 	rq->infix = rq->postfix;
1070 }
1071 
1072 static struct i915_request *
1073 __i915_request_add_to_timeline(struct i915_request *rq)
1074 {
1075 	struct intel_timeline *timeline = rq->timeline;
1076 	struct i915_request *prev;
1077 
1078 	/*
1079 	 * Dependency tracking and request ordering along the timeline
1080 	 * is special cased so that we can eliminate redundant ordering
1081 	 * operations while building the request (we know that the timeline
1082 	 * itself is ordered, and here we guarantee it).
1083 	 *
1084 	 * As we know we will need to emit tracking along the timeline,
1085 	 * we embed the hooks into our request struct -- at the cost of
1086 	 * having to have specialised no-allocation interfaces (which will
1087 	 * be beneficial elsewhere).
1088 	 *
1089 	 * A second benefit to open-coding i915_request_await_request is
1090 	 * that we can apply a slight variant of the rules specialised
1091 	 * for timelines that jump between engines (such as virtual engines).
1092 	 * If we consider the case of virtual engine, we must emit a dma-fence
1093 	 * to prevent scheduling of the second request until the first is
1094 	 * complete (to maximise our greedy late load balancing) and this
1095 	 * precludes optimising to use semaphores serialisation of a single
1096 	 * timeline across engines.
1097 	 */
1098 	prev = rcu_dereference_protected(timeline->last_request.request,
1099 					 lockdep_is_held(&timeline->mutex));
1100 	if (prev && !i915_request_completed(prev)) {
1101 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1102 			i915_sw_fence_await_sw_fence(&rq->submit,
1103 						     &prev->submit,
1104 						     &rq->submitq);
1105 		else
1106 			__i915_sw_fence_await_dma_fence(&rq->submit,
1107 							&prev->fence,
1108 							&rq->dmaq);
1109 		if (rq->engine->schedule)
1110 			__i915_sched_node_add_dependency(&rq->sched,
1111 							 &prev->sched,
1112 							 &rq->dep,
1113 							 0);
1114 	}
1115 
1116 	list_add_tail(&rq->link, &timeline->requests);
1117 
1118 	/*
1119 	 * Make sure that no request gazumped us - if it was allocated after
1120 	 * our i915_request_alloc() and called __i915_request_add() before
1121 	 * us, the timeline will hold its seqno which is later than ours.
1122 	 */
1123 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1124 	__i915_active_request_set(&timeline->last_request, rq);
1125 
1126 	return prev;
1127 }
1128 
1129 /*
1130  * NB: This function is not allowed to fail. Doing so would mean the the
1131  * request is not being tracked for completion but the work itself is
1132  * going to happen on the hardware. This would be a Bad Thing(tm).
1133  */
1134 struct i915_request *__i915_request_commit(struct i915_request *rq)
1135 {
1136 	struct intel_engine_cs *engine = rq->engine;
1137 	struct intel_ring *ring = rq->ring;
1138 	u32 *cs;
1139 
1140 	GEM_TRACE("%s fence %llx:%lld\n",
1141 		  engine->name, rq->fence.context, rq->fence.seqno);
1142 
1143 	/*
1144 	 * To ensure that this call will not fail, space for its emissions
1145 	 * should already have been reserved in the ring buffer. Let the ring
1146 	 * know that it is time to use that space up.
1147 	 */
1148 	GEM_BUG_ON(rq->reserved_space > ring->space);
1149 	rq->reserved_space = 0;
1150 	rq->emitted_jiffies = jiffies;
1151 
1152 	/*
1153 	 * Record the position of the start of the breadcrumb so that
1154 	 * should we detect the updated seqno part-way through the
1155 	 * GPU processing the request, we never over-estimate the
1156 	 * position of the ring's HEAD.
1157 	 */
1158 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1159 	GEM_BUG_ON(IS_ERR(cs));
1160 	rq->postfix = intel_ring_offset(rq, cs);
1161 
1162 	return __i915_request_add_to_timeline(rq);
1163 }
1164 
1165 void __i915_request_queue(struct i915_request *rq,
1166 			  const struct i915_sched_attr *attr)
1167 {
1168 	/*
1169 	 * Let the backend know a new request has arrived that may need
1170 	 * to adjust the existing execution schedule due to a high priority
1171 	 * request - i.e. we may want to preempt the current request in order
1172 	 * to run a high priority dependency chain *before* we can execute this
1173 	 * request.
1174 	 *
1175 	 * This is called before the request is ready to run so that we can
1176 	 * decide whether to preempt the entire chain so that it is ready to
1177 	 * run at the earliest possible convenience.
1178 	 */
1179 	i915_sw_fence_commit(&rq->semaphore);
1180 	if (attr && rq->engine->schedule)
1181 		rq->engine->schedule(rq, attr);
1182 	i915_sw_fence_commit(&rq->submit);
1183 }
1184 
1185 void i915_request_add(struct i915_request *rq)
1186 {
1187 	struct i915_sched_attr attr = rq->gem_context->sched;
1188 	struct intel_timeline * const tl = rq->timeline;
1189 	struct i915_request *prev;
1190 
1191 	lockdep_assert_held(&tl->mutex);
1192 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1193 
1194 	trace_i915_request_add(rq);
1195 
1196 	prev = __i915_request_commit(rq);
1197 
1198 	/*
1199 	 * Boost actual workloads past semaphores!
1200 	 *
1201 	 * With semaphores we spin on one engine waiting for another,
1202 	 * simply to reduce the latency of starting our work when
1203 	 * the signaler completes. However, if there is any other
1204 	 * work that we could be doing on this engine instead, that
1205 	 * is better utilisation and will reduce the overall duration
1206 	 * of the current work. To avoid PI boosting a semaphore
1207 	 * far in the distance past over useful work, we keep a history
1208 	 * of any semaphore use along our dependency chain.
1209 	 */
1210 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1211 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1212 
1213 	/*
1214 	 * Boost priorities to new clients (new request flows).
1215 	 *
1216 	 * Allow interactive/synchronous clients to jump ahead of
1217 	 * the bulk clients. (FQ_CODEL)
1218 	 */
1219 	if (list_empty(&rq->sched.signalers_list))
1220 		attr.priority |= I915_PRIORITY_WAIT;
1221 
1222 	local_bh_disable();
1223 	__i915_request_queue(rq, &attr);
1224 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1225 
1226 	/*
1227 	 * In typical scenarios, we do not expect the previous request on
1228 	 * the timeline to be still tracked by timeline->last_request if it
1229 	 * has been completed. If the completed request is still here, that
1230 	 * implies that request retirement is a long way behind submission,
1231 	 * suggesting that we haven't been retiring frequently enough from
1232 	 * the combination of retire-before-alloc, waiters and the background
1233 	 * retirement worker. So if the last request on this timeline was
1234 	 * already completed, do a catch up pass, flushing the retirement queue
1235 	 * up to this client. Since we have now moved the heaviest operations
1236 	 * during retirement onto secondary workers, such as freeing objects
1237 	 * or contexts, retiring a bunch of requests is mostly list management
1238 	 * (and cache misses), and so we should not be overly penalizing this
1239 	 * client by performing excess work, though we may still performing
1240 	 * work on behalf of others -- but instead we should benefit from
1241 	 * improved resource management. (Well, that's the theory at least.)
1242 	 */
1243 	if (prev && i915_request_completed(prev) && prev->timeline == tl)
1244 		i915_request_retire_upto(prev);
1245 
1246 	mutex_unlock(&tl->mutex);
1247 }
1248 
1249 static unsigned long local_clock_us(unsigned int *cpu)
1250 {
1251 	unsigned long t;
1252 
1253 	/*
1254 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1255 	 * The result and subsequent calculations are also defined in the same
1256 	 * approximate microseconds units. The principal source of timing
1257 	 * error here is from the simple truncation.
1258 	 *
1259 	 * Note that local_clock() is only defined wrt to the current CPU;
1260 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1261 	 * blocking preemption for the entire busywait, we can detect the CPU
1262 	 * switch and use that as indicator of system load and a reason to
1263 	 * stop busywaiting, see busywait_stop().
1264 	 */
1265 	*cpu = get_cpu();
1266 	t = local_clock() >> 10;
1267 	put_cpu();
1268 
1269 	return t;
1270 }
1271 
1272 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1273 {
1274 	unsigned int this_cpu;
1275 
1276 	if (time_after(local_clock_us(&this_cpu), timeout))
1277 		return true;
1278 
1279 	return this_cpu != cpu;
1280 }
1281 
1282 static bool __i915_spin_request(const struct i915_request * const rq,
1283 				int state, unsigned long timeout_us)
1284 {
1285 	unsigned int cpu;
1286 
1287 	/*
1288 	 * Only wait for the request if we know it is likely to complete.
1289 	 *
1290 	 * We don't track the timestamps around requests, nor the average
1291 	 * request length, so we do not have a good indicator that this
1292 	 * request will complete within the timeout. What we do know is the
1293 	 * order in which requests are executed by the context and so we can
1294 	 * tell if the request has been started. If the request is not even
1295 	 * running yet, it is a fair assumption that it will not complete
1296 	 * within our relatively short timeout.
1297 	 */
1298 	if (!i915_request_is_running(rq))
1299 		return false;
1300 
1301 	/*
1302 	 * When waiting for high frequency requests, e.g. during synchronous
1303 	 * rendering split between the CPU and GPU, the finite amount of time
1304 	 * required to set up the irq and wait upon it limits the response
1305 	 * rate. By busywaiting on the request completion for a short while we
1306 	 * can service the high frequency waits as quick as possible. However,
1307 	 * if it is a slow request, we want to sleep as quickly as possible.
1308 	 * The tradeoff between waiting and sleeping is roughly the time it
1309 	 * takes to sleep on a request, on the order of a microsecond.
1310 	 */
1311 
1312 	timeout_us += local_clock_us(&cpu);
1313 	do {
1314 		if (i915_request_completed(rq))
1315 			return true;
1316 
1317 		if (signal_pending_state(state, current))
1318 			break;
1319 
1320 		if (busywait_stop(timeout_us, cpu))
1321 			break;
1322 
1323 		cpu_relax();
1324 	} while (!need_resched());
1325 
1326 	return false;
1327 }
1328 
1329 struct request_wait {
1330 	struct dma_fence_cb cb;
1331 	struct task_struct *tsk;
1332 };
1333 
1334 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1335 {
1336 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1337 
1338 	wake_up_process(wait->tsk);
1339 }
1340 
1341 /**
1342  * i915_request_wait - wait until execution of request has finished
1343  * @rq: the request to wait upon
1344  * @flags: how to wait
1345  * @timeout: how long to wait in jiffies
1346  *
1347  * i915_request_wait() waits for the request to be completed, for a
1348  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1349  * unbounded wait).
1350  *
1351  * Returns the remaining time (in jiffies) if the request completed, which may
1352  * be zero or -ETIME if the request is unfinished after the timeout expires.
1353  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1354  * pending before the request completes.
1355  */
1356 long i915_request_wait(struct i915_request *rq,
1357 		       unsigned int flags,
1358 		       long timeout)
1359 {
1360 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1361 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1362 	struct request_wait wait;
1363 
1364 	might_sleep();
1365 	GEM_BUG_ON(timeout < 0);
1366 
1367 	if (dma_fence_is_signaled(&rq->fence))
1368 		return timeout;
1369 
1370 	if (!timeout)
1371 		return -ETIME;
1372 
1373 	trace_i915_request_wait_begin(rq, flags);
1374 
1375 	/*
1376 	 * We must never wait on the GPU while holding a lock as we
1377 	 * may need to perform a GPU reset. So while we don't need to
1378 	 * serialise wait/reset with an explicit lock, we do want
1379 	 * lockdep to detect potential dependency cycles.
1380 	 */
1381 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1382 
1383 	/*
1384 	 * Optimistic spin before touching IRQs.
1385 	 *
1386 	 * We may use a rather large value here to offset the penalty of
1387 	 * switching away from the active task. Frequently, the client will
1388 	 * wait upon an old swapbuffer to throttle itself to remain within a
1389 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1390 	 * then it should not be waiting long at all, and a sleep now will incur
1391 	 * extra scheduler latency in producing the next frame. To try to
1392 	 * avoid adding the cost of enabling/disabling the interrupt to the
1393 	 * short wait, we first spin to see if the request would have completed
1394 	 * in the time taken to setup the interrupt.
1395 	 *
1396 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1397 	 * scheduler latency of a context switch, ignoring the secondary
1398 	 * impacts from a context switch such as cache eviction.
1399 	 *
1400 	 * The scheme used for low-latency IO is called "hybrid interrupt
1401 	 * polling". The suggestion there is to sleep until just before you
1402 	 * expect to be woken by the device interrupt and then poll for its
1403 	 * completion. That requires having a good predictor for the request
1404 	 * duration, which we currently lack.
1405 	 */
1406 	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1407 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1408 		dma_fence_signal(&rq->fence);
1409 		goto out;
1410 	}
1411 
1412 	/*
1413 	 * This client is about to stall waiting for the GPU. In many cases
1414 	 * this is undesirable and limits the throughput of the system, as
1415 	 * many clients cannot continue processing user input/output whilst
1416 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1417 	 * to the GPU load and thus incurs additional latency for the client.
1418 	 * We can circumvent that by promoting the GPU frequency to maximum
1419 	 * before we sleep. This makes the GPU throttle up much more quickly
1420 	 * (good for benchmarks and user experience, e.g. window animations),
1421 	 * but at a cost of spending more power processing the workload
1422 	 * (bad for battery).
1423 	 */
1424 	if (flags & I915_WAIT_PRIORITY) {
1425 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1426 			gen6_rps_boost(rq);
1427 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1428 	}
1429 
1430 	wait.tsk = current;
1431 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1432 		goto out;
1433 
1434 	for (;;) {
1435 		set_current_state(state);
1436 
1437 		if (i915_request_completed(rq)) {
1438 			dma_fence_signal(&rq->fence);
1439 			break;
1440 		}
1441 
1442 		if (signal_pending_state(state, current)) {
1443 			timeout = -ERESTARTSYS;
1444 			break;
1445 		}
1446 
1447 		if (!timeout) {
1448 			timeout = -ETIME;
1449 			break;
1450 		}
1451 
1452 		timeout = io_schedule_timeout(timeout);
1453 	}
1454 	__set_current_state(TASK_RUNNING);
1455 
1456 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1457 
1458 out:
1459 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1460 	trace_i915_request_wait_end(rq);
1461 	return timeout;
1462 }
1463 
1464 bool i915_retire_requests(struct drm_i915_private *i915)
1465 {
1466 	struct intel_gt_timelines *timelines = &i915->gt.timelines;
1467 	struct intel_timeline *tl, *tn;
1468 	LIST_HEAD(free);
1469 
1470 	spin_lock(&timelines->lock);
1471 	list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1472 		if (!mutex_trylock(&tl->mutex))
1473 			continue;
1474 
1475 		intel_timeline_get(tl);
1476 		GEM_BUG_ON(!tl->active_count);
1477 		tl->active_count++; /* pin the list element */
1478 		spin_unlock(&timelines->lock);
1479 
1480 		retire_requests(tl);
1481 
1482 		spin_lock(&timelines->lock);
1483 
1484 		/* Resume iteration after dropping lock */
1485 		list_safe_reset_next(tl, tn, link);
1486 		if (!--tl->active_count)
1487 			list_del(&tl->link);
1488 
1489 		mutex_unlock(&tl->mutex);
1490 
1491 		/* Defer the final release to after the spinlock */
1492 		if (refcount_dec_and_test(&tl->kref.refcount)) {
1493 			GEM_BUG_ON(tl->active_count);
1494 			list_add(&tl->link, &free);
1495 		}
1496 	}
1497 	spin_unlock(&timelines->lock);
1498 
1499 	list_for_each_entry_safe(tl, tn, &free, link)
1500 		__intel_timeline_free(&tl->kref);
1501 
1502 	return !list_empty(&timelines->active_list);
1503 }
1504 
1505 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1506 #include "selftests/mock_request.c"
1507 #include "selftests/i915_request.c"
1508 #endif
1509 
1510 static void i915_global_request_shrink(void)
1511 {
1512 	kmem_cache_shrink(global.slab_dependencies);
1513 	kmem_cache_shrink(global.slab_execute_cbs);
1514 	kmem_cache_shrink(global.slab_requests);
1515 }
1516 
1517 static void i915_global_request_exit(void)
1518 {
1519 	kmem_cache_destroy(global.slab_dependencies);
1520 	kmem_cache_destroy(global.slab_execute_cbs);
1521 	kmem_cache_destroy(global.slab_requests);
1522 }
1523 
1524 static struct i915_global_request global = { {
1525 	.shrink = i915_global_request_shrink,
1526 	.exit = i915_global_request_exit,
1527 } };
1528 
1529 int __init i915_global_request_init(void)
1530 {
1531 	global.slab_requests = KMEM_CACHE(i915_request,
1532 					  SLAB_HWCACHE_ALIGN |
1533 					  SLAB_RECLAIM_ACCOUNT |
1534 					  SLAB_TYPESAFE_BY_RCU);
1535 	if (!global.slab_requests)
1536 		return -ENOMEM;
1537 
1538 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1539 					     SLAB_HWCACHE_ALIGN |
1540 					     SLAB_RECLAIM_ACCOUNT |
1541 					     SLAB_TYPESAFE_BY_RCU);
1542 	if (!global.slab_execute_cbs)
1543 		goto err_requests;
1544 
1545 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1546 					      SLAB_HWCACHE_ALIGN |
1547 					      SLAB_RECLAIM_ACCOUNT);
1548 	if (!global.slab_dependencies)
1549 		goto err_execute_cbs;
1550 
1551 	i915_global_register(&global.base);
1552 	return 0;
1553 
1554 err_execute_cbs:
1555 	kmem_cache_destroy(global.slab_execute_cbs);
1556 err_requests:
1557 	kmem_cache_destroy(global.slab_requests);
1558 	return -ENOMEM;
1559 }
1560