1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 35 #include "i915_active.h" 36 #include "i915_drv.h" 37 #include "i915_globals.h" 38 #include "intel_pm.h" 39 40 struct execute_cb { 41 struct list_head link; 42 struct irq_work work; 43 struct i915_sw_fence *fence; 44 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 45 struct i915_request *signal; 46 }; 47 48 static struct i915_global_request { 49 struct i915_global base; 50 struct kmem_cache *slab_requests; 51 struct kmem_cache *slab_dependencies; 52 struct kmem_cache *slab_execute_cbs; 53 } global; 54 55 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 56 { 57 return "i915"; 58 } 59 60 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 61 { 62 /* 63 * The timeline struct (as part of the ppgtt underneath a context) 64 * may be freed when the request is no longer in use by the GPU. 65 * We could extend the life of a context to beyond that of all 66 * fences, possibly keeping the hw resource around indefinitely, 67 * or we just give them a false name. Since 68 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 69 * lie seems justifiable. 70 */ 71 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 72 return "signaled"; 73 74 return to_request(fence)->gem_context->name ?: "[i915]"; 75 } 76 77 static bool i915_fence_signaled(struct dma_fence *fence) 78 { 79 return i915_request_completed(to_request(fence)); 80 } 81 82 static bool i915_fence_enable_signaling(struct dma_fence *fence) 83 { 84 return i915_request_enable_breadcrumb(to_request(fence)); 85 } 86 87 static signed long i915_fence_wait(struct dma_fence *fence, 88 bool interruptible, 89 signed long timeout) 90 { 91 return i915_request_wait(to_request(fence), 92 interruptible | I915_WAIT_PRIORITY, 93 timeout); 94 } 95 96 static void i915_fence_release(struct dma_fence *fence) 97 { 98 struct i915_request *rq = to_request(fence); 99 100 /* 101 * The request is put onto a RCU freelist (i.e. the address 102 * is immediately reused), mark the fences as being freed now. 103 * Otherwise the debugobjects for the fences are only marked as 104 * freed when the slab cache itself is freed, and so we would get 105 * caught trying to reuse dead objects. 106 */ 107 i915_sw_fence_fini(&rq->submit); 108 i915_sw_fence_fini(&rq->semaphore); 109 110 kmem_cache_free(global.slab_requests, rq); 111 } 112 113 const struct dma_fence_ops i915_fence_ops = { 114 .get_driver_name = i915_fence_get_driver_name, 115 .get_timeline_name = i915_fence_get_timeline_name, 116 .enable_signaling = i915_fence_enable_signaling, 117 .signaled = i915_fence_signaled, 118 .wait = i915_fence_wait, 119 .release = i915_fence_release, 120 }; 121 122 static void irq_execute_cb(struct irq_work *wrk) 123 { 124 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 125 126 i915_sw_fence_complete(cb->fence); 127 kmem_cache_free(global.slab_execute_cbs, cb); 128 } 129 130 static void irq_execute_cb_hook(struct irq_work *wrk) 131 { 132 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 133 134 cb->hook(container_of(cb->fence, struct i915_request, submit), 135 &cb->signal->fence); 136 i915_request_put(cb->signal); 137 138 irq_execute_cb(wrk); 139 } 140 141 static void __notify_execute_cb(struct i915_request *rq) 142 { 143 struct execute_cb *cb; 144 145 lockdep_assert_held(&rq->lock); 146 147 if (list_empty(&rq->execute_cb)) 148 return; 149 150 list_for_each_entry(cb, &rq->execute_cb, link) 151 irq_work_queue(&cb->work); 152 153 /* 154 * XXX Rollback on __i915_request_unsubmit() 155 * 156 * In the future, perhaps when we have an active time-slicing scheduler, 157 * it will be interesting to unsubmit parallel execution and remove 158 * busywaits from the GPU until their master is restarted. This is 159 * quite hairy, we have to carefully rollback the fence and do a 160 * preempt-to-idle cycle on the target engine, all the while the 161 * master execute_cb may refire. 162 */ 163 INIT_LIST_HEAD(&rq->execute_cb); 164 } 165 166 static inline void 167 i915_request_remove_from_client(struct i915_request *request) 168 { 169 struct drm_i915_file_private *file_priv; 170 171 file_priv = request->file_priv; 172 if (!file_priv) 173 return; 174 175 spin_lock(&file_priv->mm.lock); 176 if (request->file_priv) { 177 list_del(&request->client_link); 178 request->file_priv = NULL; 179 } 180 spin_unlock(&file_priv->mm.lock); 181 } 182 183 static void advance_ring(struct i915_request *request) 184 { 185 struct intel_ring *ring = request->ring; 186 unsigned int tail; 187 188 /* 189 * We know the GPU must have read the request to have 190 * sent us the seqno + interrupt, so use the position 191 * of tail of the request to update the last known position 192 * of the GPU head. 193 * 194 * Note this requires that we are always called in request 195 * completion order. 196 */ 197 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list)); 198 if (list_is_last(&request->ring_link, &ring->request_list)) { 199 /* 200 * We may race here with execlists resubmitting this request 201 * as we retire it. The resubmission will move the ring->tail 202 * forwards (to request->wa_tail). We either read the 203 * current value that was written to hw, or the value that 204 * is just about to be. Either works, if we miss the last two 205 * noops - they are safe to be replayed on a reset. 206 */ 207 tail = READ_ONCE(request->tail); 208 list_del(&ring->active_link); 209 } else { 210 tail = request->postfix; 211 } 212 list_del_init(&request->ring_link); 213 214 ring->head = tail; 215 } 216 217 static void free_capture_list(struct i915_request *request) 218 { 219 struct i915_capture_list *capture; 220 221 capture = request->capture_list; 222 while (capture) { 223 struct i915_capture_list *next = capture->next; 224 225 kfree(capture); 226 capture = next; 227 } 228 } 229 230 static bool i915_request_retire(struct i915_request *rq) 231 { 232 struct i915_active_request *active, *next; 233 234 lockdep_assert_held(&rq->i915->drm.struct_mutex); 235 if (!i915_request_completed(rq)) 236 return false; 237 238 GEM_TRACE("%s fence %llx:%lld, current %d\n", 239 rq->engine->name, 240 rq->fence.context, rq->fence.seqno, 241 hwsp_seqno(rq)); 242 243 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 244 trace_i915_request_retire(rq); 245 246 advance_ring(rq); 247 248 /* 249 * Walk through the active list, calling retire on each. This allows 250 * objects to track their GPU activity and mark themselves as idle 251 * when their *last* active request is completed (updating state 252 * tracking lists for eviction, active references for GEM, etc). 253 * 254 * As the ->retire() may free the node, we decouple it first and 255 * pass along the auxiliary information (to avoid dereferencing 256 * the node after the callback). 257 */ 258 list_for_each_entry_safe(active, next, &rq->active_list, link) { 259 /* 260 * In microbenchmarks or focusing upon time inside the kernel, 261 * we may spend an inordinate amount of time simply handling 262 * the retirement of requests and processing their callbacks. 263 * Of which, this loop itself is particularly hot due to the 264 * cache misses when jumping around the list of 265 * i915_active_request. So we try to keep this loop as 266 * streamlined as possible and also prefetch the next 267 * i915_active_request to try and hide the likely cache miss. 268 */ 269 prefetchw(next); 270 271 INIT_LIST_HEAD(&active->link); 272 RCU_INIT_POINTER(active->request, NULL); 273 274 active->retire(active, rq); 275 } 276 277 local_irq_disable(); 278 279 /* 280 * We only loosely track inflight requests across preemption, 281 * and so we may find ourselves attempting to retire a _completed_ 282 * request that we have removed from the HW and put back on a run 283 * queue. 284 */ 285 spin_lock(&rq->engine->active.lock); 286 list_del(&rq->sched.link); 287 spin_unlock(&rq->engine->active.lock); 288 289 spin_lock(&rq->lock); 290 i915_request_mark_complete(rq); 291 if (!i915_request_signaled(rq)) 292 dma_fence_signal_locked(&rq->fence); 293 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 294 i915_request_cancel_breadcrumb(rq); 295 if (i915_request_has_waitboost(rq)) { 296 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 297 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 298 } 299 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 300 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 301 __notify_execute_cb(rq); 302 } 303 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 304 spin_unlock(&rq->lock); 305 306 local_irq_enable(); 307 308 intel_context_exit(rq->hw_context); 309 intel_context_unpin(rq->hw_context); 310 311 i915_request_remove_from_client(rq); 312 list_del(&rq->link); 313 314 free_capture_list(rq); 315 i915_sched_node_fini(&rq->sched); 316 i915_request_put(rq); 317 318 return true; 319 } 320 321 void i915_request_retire_upto(struct i915_request *rq) 322 { 323 struct intel_ring *ring = rq->ring; 324 struct i915_request *tmp; 325 326 GEM_TRACE("%s fence %llx:%lld, current %d\n", 327 rq->engine->name, 328 rq->fence.context, rq->fence.seqno, 329 hwsp_seqno(rq)); 330 331 lockdep_assert_held(&rq->i915->drm.struct_mutex); 332 GEM_BUG_ON(!i915_request_completed(rq)); 333 334 if (list_empty(&rq->ring_link)) 335 return; 336 337 do { 338 tmp = list_first_entry(&ring->request_list, 339 typeof(*tmp), ring_link); 340 } while (i915_request_retire(tmp) && tmp != rq); 341 } 342 343 static int 344 __i915_request_await_execution(struct i915_request *rq, 345 struct i915_request *signal, 346 void (*hook)(struct i915_request *rq, 347 struct dma_fence *signal), 348 gfp_t gfp) 349 { 350 struct execute_cb *cb; 351 352 if (i915_request_is_active(signal)) { 353 if (hook) 354 hook(rq, &signal->fence); 355 return 0; 356 } 357 358 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 359 if (!cb) 360 return -ENOMEM; 361 362 cb->fence = &rq->submit; 363 i915_sw_fence_await(cb->fence); 364 init_irq_work(&cb->work, irq_execute_cb); 365 366 if (hook) { 367 cb->hook = hook; 368 cb->signal = i915_request_get(signal); 369 cb->work.func = irq_execute_cb_hook; 370 } 371 372 spin_lock_irq(&signal->lock); 373 if (i915_request_is_active(signal)) { 374 if (hook) { 375 hook(rq, &signal->fence); 376 i915_request_put(signal); 377 } 378 i915_sw_fence_complete(cb->fence); 379 kmem_cache_free(global.slab_execute_cbs, cb); 380 } else { 381 list_add_tail(&cb->link, &signal->execute_cb); 382 } 383 spin_unlock_irq(&signal->lock); 384 385 return 0; 386 } 387 388 void __i915_request_submit(struct i915_request *request) 389 { 390 struct intel_engine_cs *engine = request->engine; 391 392 GEM_TRACE("%s fence %llx:%lld, current %d\n", 393 engine->name, 394 request->fence.context, request->fence.seqno, 395 hwsp_seqno(request)); 396 397 GEM_BUG_ON(!irqs_disabled()); 398 lockdep_assert_held(&engine->active.lock); 399 400 if (i915_gem_context_is_banned(request->gem_context)) 401 i915_request_skip(request, -EIO); 402 403 /* 404 * Are we using semaphores when the gpu is already saturated? 405 * 406 * Using semaphores incurs a cost in having the GPU poll a 407 * memory location, busywaiting for it to change. The continual 408 * memory reads can have a noticeable impact on the rest of the 409 * system with the extra bus traffic, stalling the cpu as it too 410 * tries to access memory across the bus (perf stat -e bus-cycles). 411 * 412 * If we installed a semaphore on this request and we only submit 413 * the request after the signaler completed, that indicates the 414 * system is overloaded and using semaphores at this time only 415 * increases the amount of work we are doing. If so, we disable 416 * further use of semaphores until we are idle again, whence we 417 * optimistically try again. 418 */ 419 if (request->sched.semaphores && 420 i915_sw_fence_signaled(&request->semaphore)) 421 engine->saturated |= request->sched.semaphores; 422 423 /* We may be recursing from the signal callback of another i915 fence */ 424 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 425 426 list_move_tail(&request->sched.link, &engine->active.requests); 427 428 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 429 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 430 431 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 432 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 433 !i915_request_enable_breadcrumb(request)) 434 intel_engine_queue_breadcrumbs(engine); 435 436 __notify_execute_cb(request); 437 438 spin_unlock(&request->lock); 439 440 engine->emit_fini_breadcrumb(request, 441 request->ring->vaddr + request->postfix); 442 443 engine->serial++; 444 445 trace_i915_request_execute(request); 446 } 447 448 void i915_request_submit(struct i915_request *request) 449 { 450 struct intel_engine_cs *engine = request->engine; 451 unsigned long flags; 452 453 /* Will be called from irq-context when using foreign fences. */ 454 spin_lock_irqsave(&engine->active.lock, flags); 455 456 __i915_request_submit(request); 457 458 spin_unlock_irqrestore(&engine->active.lock, flags); 459 } 460 461 void __i915_request_unsubmit(struct i915_request *request) 462 { 463 struct intel_engine_cs *engine = request->engine; 464 465 GEM_TRACE("%s fence %llx:%lld, current %d\n", 466 engine->name, 467 request->fence.context, request->fence.seqno, 468 hwsp_seqno(request)); 469 470 GEM_BUG_ON(!irqs_disabled()); 471 lockdep_assert_held(&engine->active.lock); 472 473 /* 474 * Only unwind in reverse order, required so that the per-context list 475 * is kept in seqno/ring order. 476 */ 477 478 /* We may be recursing from the signal callback of another i915 fence */ 479 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 480 481 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 482 i915_request_cancel_breadcrumb(request); 483 484 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 485 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 486 487 spin_unlock(&request->lock); 488 489 /* We've already spun, don't charge on resubmitting. */ 490 if (request->sched.semaphores && i915_request_started(request)) { 491 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 492 request->sched.semaphores = 0; 493 } 494 495 /* 496 * We don't need to wake_up any waiters on request->execute, they 497 * will get woken by any other event or us re-adding this request 498 * to the engine timeline (__i915_request_submit()). The waiters 499 * should be quite adapt at finding that the request now has a new 500 * global_seqno to the one they went to sleep on. 501 */ 502 } 503 504 void i915_request_unsubmit(struct i915_request *request) 505 { 506 struct intel_engine_cs *engine = request->engine; 507 unsigned long flags; 508 509 /* Will be called from irq-context when using foreign fences. */ 510 spin_lock_irqsave(&engine->active.lock, flags); 511 512 __i915_request_unsubmit(request); 513 514 spin_unlock_irqrestore(&engine->active.lock, flags); 515 } 516 517 static int __i915_sw_fence_call 518 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 519 { 520 struct i915_request *request = 521 container_of(fence, typeof(*request), submit); 522 523 switch (state) { 524 case FENCE_COMPLETE: 525 trace_i915_request_submit(request); 526 /* 527 * We need to serialize use of the submit_request() callback 528 * with its hotplugging performed during an emergency 529 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 530 * critical section in order to force i915_gem_set_wedged() to 531 * wait until the submit_request() is completed before 532 * proceeding. 533 */ 534 rcu_read_lock(); 535 request->engine->submit_request(request); 536 rcu_read_unlock(); 537 break; 538 539 case FENCE_FREE: 540 i915_request_put(request); 541 break; 542 } 543 544 return NOTIFY_DONE; 545 } 546 547 static int __i915_sw_fence_call 548 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 549 { 550 struct i915_request *request = 551 container_of(fence, typeof(*request), semaphore); 552 553 switch (state) { 554 case FENCE_COMPLETE: 555 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 556 break; 557 558 case FENCE_FREE: 559 i915_request_put(request); 560 break; 561 } 562 563 return NOTIFY_DONE; 564 } 565 566 static void ring_retire_requests(struct intel_ring *ring) 567 { 568 struct i915_request *rq, *rn; 569 570 list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) 571 if (!i915_request_retire(rq)) 572 break; 573 } 574 575 static noinline struct i915_request * 576 request_alloc_slow(struct intel_context *ce, gfp_t gfp) 577 { 578 struct intel_ring *ring = ce->ring; 579 struct i915_request *rq; 580 581 if (list_empty(&ring->request_list)) 582 goto out; 583 584 if (!gfpflags_allow_blocking(gfp)) 585 goto out; 586 587 /* Move our oldest request to the slab-cache (if not in use!) */ 588 rq = list_first_entry(&ring->request_list, typeof(*rq), ring_link); 589 i915_request_retire(rq); 590 591 rq = kmem_cache_alloc(global.slab_requests, 592 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 593 if (rq) 594 return rq; 595 596 /* Ratelimit ourselves to prevent oom from malicious clients */ 597 rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link); 598 cond_synchronize_rcu(rq->rcustate); 599 600 /* Retire our old requests in the hope that we free some */ 601 ring_retire_requests(ring); 602 603 out: 604 return kmem_cache_alloc(global.slab_requests, gfp); 605 } 606 607 struct i915_request * 608 __i915_request_create(struct intel_context *ce, gfp_t gfp) 609 { 610 struct intel_timeline *tl = ce->ring->timeline; 611 struct i915_request *rq; 612 u32 seqno; 613 int ret; 614 615 might_sleep_if(gfpflags_allow_blocking(gfp)); 616 617 /* Check that the caller provided an already pinned context */ 618 __intel_context_pin(ce); 619 620 /* 621 * Beware: Dragons be flying overhead. 622 * 623 * We use RCU to look up requests in flight. The lookups may 624 * race with the request being allocated from the slab freelist. 625 * That is the request we are writing to here, may be in the process 626 * of being read by __i915_active_request_get_rcu(). As such, 627 * we have to be very careful when overwriting the contents. During 628 * the RCU lookup, we change chase the request->engine pointer, 629 * read the request->global_seqno and increment the reference count. 630 * 631 * The reference count is incremented atomically. If it is zero, 632 * the lookup knows the request is unallocated and complete. Otherwise, 633 * it is either still in use, or has been reallocated and reset 634 * with dma_fence_init(). This increment is safe for release as we 635 * check that the request we have a reference to and matches the active 636 * request. 637 * 638 * Before we increment the refcount, we chase the request->engine 639 * pointer. We must not call kmem_cache_zalloc() or else we set 640 * that pointer to NULL and cause a crash during the lookup. If 641 * we see the request is completed (based on the value of the 642 * old engine and seqno), the lookup is complete and reports NULL. 643 * If we decide the request is not completed (new engine or seqno), 644 * then we grab a reference and double check that it is still the 645 * active request - which it won't be and restart the lookup. 646 * 647 * Do not use kmem_cache_zalloc() here! 648 */ 649 rq = kmem_cache_alloc(global.slab_requests, 650 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 651 if (unlikely(!rq)) { 652 rq = request_alloc_slow(ce, gfp); 653 if (!rq) { 654 ret = -ENOMEM; 655 goto err_unreserve; 656 } 657 } 658 659 ret = intel_timeline_get_seqno(tl, rq, &seqno); 660 if (ret) 661 goto err_free; 662 663 rq->i915 = ce->engine->i915; 664 rq->hw_context = ce; 665 rq->gem_context = ce->gem_context; 666 rq->engine = ce->engine; 667 rq->ring = ce->ring; 668 rq->timeline = tl; 669 rq->hwsp_seqno = tl->hwsp_seqno; 670 rq->hwsp_cacheline = tl->hwsp_cacheline; 671 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 672 673 spin_lock_init(&rq->lock); 674 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 675 tl->fence_context, seqno); 676 677 /* We bump the ref for the fence chain */ 678 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 679 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify); 680 681 i915_sched_node_init(&rq->sched); 682 683 /* No zalloc, must clear what we need by hand */ 684 rq->file_priv = NULL; 685 rq->batch = NULL; 686 rq->capture_list = NULL; 687 rq->flags = 0; 688 rq->execution_mask = ALL_ENGINES; 689 690 INIT_LIST_HEAD(&rq->active_list); 691 INIT_LIST_HEAD(&rq->execute_cb); 692 693 /* 694 * Reserve space in the ring buffer for all the commands required to 695 * eventually emit this request. This is to guarantee that the 696 * i915_request_add() call can't fail. Note that the reserve may need 697 * to be redone if the request is not actually submitted straight 698 * away, e.g. because a GPU scheduler has deferred it. 699 * 700 * Note that due to how we add reserved_space to intel_ring_begin() 701 * we need to double our request to ensure that if we need to wrap 702 * around inside i915_request_add() there is sufficient space at 703 * the beginning of the ring as well. 704 */ 705 rq->reserved_space = 706 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 707 708 /* 709 * Record the position of the start of the request so that 710 * should we detect the updated seqno part-way through the 711 * GPU processing the request, we never over-estimate the 712 * position of the head. 713 */ 714 rq->head = rq->ring->emit; 715 716 ret = rq->engine->request_alloc(rq); 717 if (ret) 718 goto err_unwind; 719 720 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 721 722 intel_context_mark_active(ce); 723 return rq; 724 725 err_unwind: 726 ce->ring->emit = rq->head; 727 728 /* Make sure we didn't add ourselves to external state before freeing */ 729 GEM_BUG_ON(!list_empty(&rq->active_list)); 730 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 731 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 732 733 err_free: 734 kmem_cache_free(global.slab_requests, rq); 735 err_unreserve: 736 intel_context_unpin(ce); 737 return ERR_PTR(ret); 738 } 739 740 struct i915_request * 741 i915_request_create(struct intel_context *ce) 742 { 743 struct i915_request *rq; 744 int err; 745 746 err = intel_context_timeline_lock(ce); 747 if (err) 748 return ERR_PTR(err); 749 750 /* Move our oldest request to the slab-cache (if not in use!) */ 751 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link); 752 if (!list_is_last(&rq->ring_link, &ce->ring->request_list)) 753 i915_request_retire(rq); 754 755 intel_context_enter(ce); 756 rq = __i915_request_create(ce, GFP_KERNEL); 757 intel_context_exit(ce); /* active reference transferred to request */ 758 if (IS_ERR(rq)) 759 goto err_unlock; 760 761 /* Check that we do not interrupt ourselves with a new request */ 762 rq->cookie = lockdep_pin_lock(&ce->ring->timeline->mutex); 763 764 return rq; 765 766 err_unlock: 767 intel_context_timeline_unlock(ce); 768 return rq; 769 } 770 771 static int 772 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 773 { 774 if (list_is_first(&signal->ring_link, &signal->ring->request_list)) 775 return 0; 776 777 signal = list_prev_entry(signal, ring_link); 778 if (intel_timeline_sync_is_later(rq->timeline, &signal->fence)) 779 return 0; 780 781 return i915_sw_fence_await_dma_fence(&rq->submit, 782 &signal->fence, 0, 783 I915_FENCE_GFP); 784 } 785 786 static intel_engine_mask_t 787 already_busywaiting(struct i915_request *rq) 788 { 789 /* 790 * Polling a semaphore causes bus traffic, delaying other users of 791 * both the GPU and CPU. We want to limit the impact on others, 792 * while taking advantage of early submission to reduce GPU 793 * latency. Therefore we restrict ourselves to not using more 794 * than one semaphore from each source, and not using a semaphore 795 * if we have detected the engine is saturated (i.e. would not be 796 * submitted early and cause bus traffic reading an already passed 797 * semaphore). 798 * 799 * See the are-we-too-late? check in __i915_request_submit(). 800 */ 801 return rq->sched.semaphores | rq->engine->saturated; 802 } 803 804 static int 805 emit_semaphore_wait(struct i915_request *to, 806 struct i915_request *from, 807 gfp_t gfp) 808 { 809 u32 hwsp_offset; 810 u32 *cs; 811 int err; 812 813 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb); 814 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 815 816 /* Just emit the first semaphore we see as request space is limited. */ 817 if (already_busywaiting(to) & from->engine->mask) 818 return i915_sw_fence_await_dma_fence(&to->submit, 819 &from->fence, 0, 820 I915_FENCE_GFP); 821 822 err = i915_request_await_start(to, from); 823 if (err < 0) 824 return err; 825 826 /* Only submit our spinner after the signaler is running! */ 827 err = __i915_request_await_execution(to, from, NULL, gfp); 828 if (err) 829 return err; 830 831 /* We need to pin the signaler's HWSP until we are finished reading. */ 832 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 833 if (err) 834 return err; 835 836 cs = intel_ring_begin(to, 4); 837 if (IS_ERR(cs)) 838 return PTR_ERR(cs); 839 840 /* 841 * Using greater-than-or-equal here means we have to worry 842 * about seqno wraparound. To side step that issue, we swap 843 * the timeline HWSP upon wrapping, so that everyone listening 844 * for the old (pre-wrap) values do not see the much smaller 845 * (post-wrap) values than they were expecting (and so wait 846 * forever). 847 */ 848 *cs++ = MI_SEMAPHORE_WAIT | 849 MI_SEMAPHORE_GLOBAL_GTT | 850 MI_SEMAPHORE_POLL | 851 MI_SEMAPHORE_SAD_GTE_SDD; 852 *cs++ = from->fence.seqno; 853 *cs++ = hwsp_offset; 854 *cs++ = 0; 855 856 intel_ring_advance(to, cs); 857 to->sched.semaphores |= from->engine->mask; 858 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 859 return 0; 860 } 861 862 static int 863 i915_request_await_request(struct i915_request *to, struct i915_request *from) 864 { 865 int ret; 866 867 GEM_BUG_ON(to == from); 868 GEM_BUG_ON(to->timeline == from->timeline); 869 870 if (i915_request_completed(from)) 871 return 0; 872 873 if (to->engine->schedule) { 874 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 875 if (ret < 0) 876 return ret; 877 } 878 879 if (to->engine == from->engine) { 880 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 881 &from->submit, 882 I915_FENCE_GFP); 883 } else if (intel_engine_has_semaphores(to->engine) && 884 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) { 885 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 886 } else { 887 ret = i915_sw_fence_await_dma_fence(&to->submit, 888 &from->fence, 0, 889 I915_FENCE_GFP); 890 } 891 if (ret < 0) 892 return ret; 893 894 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 895 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 896 &from->fence, 0, 897 I915_FENCE_GFP); 898 if (ret < 0) 899 return ret; 900 } 901 902 return 0; 903 } 904 905 int 906 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 907 { 908 struct dma_fence **child = &fence; 909 unsigned int nchild = 1; 910 int ret; 911 912 /* 913 * Note that if the fence-array was created in signal-on-any mode, 914 * we should *not* decompose it into its individual fences. However, 915 * we don't currently store which mode the fence-array is operating 916 * in. Fortunately, the only user of signal-on-any is private to 917 * amdgpu and we should not see any incoming fence-array from 918 * sync-file being in signal-on-any mode. 919 */ 920 if (dma_fence_is_array(fence)) { 921 struct dma_fence_array *array = to_dma_fence_array(fence); 922 923 child = array->fences; 924 nchild = array->num_fences; 925 GEM_BUG_ON(!nchild); 926 } 927 928 do { 929 fence = *child++; 930 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 931 continue; 932 933 /* 934 * Requests on the same timeline are explicitly ordered, along 935 * with their dependencies, by i915_request_add() which ensures 936 * that requests are submitted in-order through each ring. 937 */ 938 if (fence->context == rq->fence.context) 939 continue; 940 941 /* Squash repeated waits to the same timelines */ 942 if (fence->context != rq->i915->mm.unordered_timeline && 943 intel_timeline_sync_is_later(rq->timeline, fence)) 944 continue; 945 946 if (dma_fence_is_i915(fence)) 947 ret = i915_request_await_request(rq, to_request(fence)); 948 else 949 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 950 I915_FENCE_TIMEOUT, 951 I915_FENCE_GFP); 952 if (ret < 0) 953 return ret; 954 955 /* Record the latest fence used against each timeline */ 956 if (fence->context != rq->i915->mm.unordered_timeline) 957 intel_timeline_sync_set(rq->timeline, fence); 958 } while (--nchild); 959 960 return 0; 961 } 962 963 int 964 i915_request_await_execution(struct i915_request *rq, 965 struct dma_fence *fence, 966 void (*hook)(struct i915_request *rq, 967 struct dma_fence *signal)) 968 { 969 struct dma_fence **child = &fence; 970 unsigned int nchild = 1; 971 int ret; 972 973 if (dma_fence_is_array(fence)) { 974 struct dma_fence_array *array = to_dma_fence_array(fence); 975 976 /* XXX Error for signal-on-any fence arrays */ 977 978 child = array->fences; 979 nchild = array->num_fences; 980 GEM_BUG_ON(!nchild); 981 } 982 983 do { 984 fence = *child++; 985 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 986 continue; 987 988 /* 989 * We don't squash repeated fence dependencies here as we 990 * want to run our callback in all cases. 991 */ 992 993 if (dma_fence_is_i915(fence)) 994 ret = __i915_request_await_execution(rq, 995 to_request(fence), 996 hook, 997 I915_FENCE_GFP); 998 else 999 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1000 I915_FENCE_TIMEOUT, 1001 GFP_KERNEL); 1002 if (ret < 0) 1003 return ret; 1004 } while (--nchild); 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * i915_request_await_object - set this request to (async) wait upon a bo 1011 * @to: request we are wishing to use 1012 * @obj: object which may be in use on another ring. 1013 * @write: whether the wait is on behalf of a writer 1014 * 1015 * This code is meant to abstract object synchronization with the GPU. 1016 * Conceptually we serialise writes between engines inside the GPU. 1017 * We only allow one engine to write into a buffer at any time, but 1018 * multiple readers. To ensure each has a coherent view of memory, we must: 1019 * 1020 * - If there is an outstanding write request to the object, the new 1021 * request must wait for it to complete (either CPU or in hw, requests 1022 * on the same ring will be naturally ordered). 1023 * 1024 * - If we are a write request (pending_write_domain is set), the new 1025 * request must wait for outstanding read requests to complete. 1026 * 1027 * Returns 0 if successful, else propagates up the lower layer error. 1028 */ 1029 int 1030 i915_request_await_object(struct i915_request *to, 1031 struct drm_i915_gem_object *obj, 1032 bool write) 1033 { 1034 struct dma_fence *excl; 1035 int ret = 0; 1036 1037 if (write) { 1038 struct dma_fence **shared; 1039 unsigned int count, i; 1040 1041 ret = reservation_object_get_fences_rcu(obj->base.resv, 1042 &excl, &count, &shared); 1043 if (ret) 1044 return ret; 1045 1046 for (i = 0; i < count; i++) { 1047 ret = i915_request_await_dma_fence(to, shared[i]); 1048 if (ret) 1049 break; 1050 1051 dma_fence_put(shared[i]); 1052 } 1053 1054 for (; i < count; i++) 1055 dma_fence_put(shared[i]); 1056 kfree(shared); 1057 } else { 1058 excl = reservation_object_get_excl_rcu(obj->base.resv); 1059 } 1060 1061 if (excl) { 1062 if (ret == 0) 1063 ret = i915_request_await_dma_fence(to, excl); 1064 1065 dma_fence_put(excl); 1066 } 1067 1068 return ret; 1069 } 1070 1071 void i915_request_skip(struct i915_request *rq, int error) 1072 { 1073 void *vaddr = rq->ring->vaddr; 1074 u32 head; 1075 1076 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1077 dma_fence_set_error(&rq->fence, error); 1078 1079 /* 1080 * As this request likely depends on state from the lost 1081 * context, clear out all the user operations leaving the 1082 * breadcrumb at the end (so we get the fence notifications). 1083 */ 1084 head = rq->infix; 1085 if (rq->postfix < head) { 1086 memset(vaddr + head, 0, rq->ring->size - head); 1087 head = 0; 1088 } 1089 memset(vaddr + head, 0, rq->postfix - head); 1090 } 1091 1092 static struct i915_request * 1093 __i915_request_add_to_timeline(struct i915_request *rq) 1094 { 1095 struct intel_timeline *timeline = rq->timeline; 1096 struct i915_request *prev; 1097 1098 /* 1099 * Dependency tracking and request ordering along the timeline 1100 * is special cased so that we can eliminate redundant ordering 1101 * operations while building the request (we know that the timeline 1102 * itself is ordered, and here we guarantee it). 1103 * 1104 * As we know we will need to emit tracking along the timeline, 1105 * we embed the hooks into our request struct -- at the cost of 1106 * having to have specialised no-allocation interfaces (which will 1107 * be beneficial elsewhere). 1108 * 1109 * A second benefit to open-coding i915_request_await_request is 1110 * that we can apply a slight variant of the rules specialised 1111 * for timelines that jump between engines (such as virtual engines). 1112 * If we consider the case of virtual engine, we must emit a dma-fence 1113 * to prevent scheduling of the second request until the first is 1114 * complete (to maximise our greedy late load balancing) and this 1115 * precludes optimising to use semaphores serialisation of a single 1116 * timeline across engines. 1117 */ 1118 prev = rcu_dereference_protected(timeline->last_request.request, 1); 1119 if (prev && !i915_request_completed(prev)) { 1120 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1121 i915_sw_fence_await_sw_fence(&rq->submit, 1122 &prev->submit, 1123 &rq->submitq); 1124 else 1125 __i915_sw_fence_await_dma_fence(&rq->submit, 1126 &prev->fence, 1127 &rq->dmaq); 1128 if (rq->engine->schedule) 1129 __i915_sched_node_add_dependency(&rq->sched, 1130 &prev->sched, 1131 &rq->dep, 1132 0); 1133 } 1134 1135 list_add_tail(&rq->link, &timeline->requests); 1136 1137 /* 1138 * Make sure that no request gazumped us - if it was allocated after 1139 * our i915_request_alloc() and called __i915_request_add() before 1140 * us, the timeline will hold its seqno which is later than ours. 1141 */ 1142 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1143 __i915_active_request_set(&timeline->last_request, rq); 1144 1145 return prev; 1146 } 1147 1148 /* 1149 * NB: This function is not allowed to fail. Doing so would mean the the 1150 * request is not being tracked for completion but the work itself is 1151 * going to happen on the hardware. This would be a Bad Thing(tm). 1152 */ 1153 struct i915_request *__i915_request_commit(struct i915_request *rq) 1154 { 1155 struct intel_engine_cs *engine = rq->engine; 1156 struct intel_ring *ring = rq->ring; 1157 struct i915_request *prev; 1158 u32 *cs; 1159 1160 GEM_TRACE("%s fence %llx:%lld\n", 1161 engine->name, rq->fence.context, rq->fence.seqno); 1162 1163 /* 1164 * To ensure that this call will not fail, space for its emissions 1165 * should already have been reserved in the ring buffer. Let the ring 1166 * know that it is time to use that space up. 1167 */ 1168 GEM_BUG_ON(rq->reserved_space > ring->space); 1169 rq->reserved_space = 0; 1170 1171 /* 1172 * Record the position of the start of the breadcrumb so that 1173 * should we detect the updated seqno part-way through the 1174 * GPU processing the request, we never over-estimate the 1175 * position of the ring's HEAD. 1176 */ 1177 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1178 GEM_BUG_ON(IS_ERR(cs)); 1179 rq->postfix = intel_ring_offset(rq, cs); 1180 1181 prev = __i915_request_add_to_timeline(rq); 1182 1183 list_add_tail(&rq->ring_link, &ring->request_list); 1184 if (list_is_first(&rq->ring_link, &ring->request_list)) 1185 list_add(&ring->active_link, &rq->i915->gt.active_rings); 1186 rq->emitted_jiffies = jiffies; 1187 1188 /* 1189 * Let the backend know a new request has arrived that may need 1190 * to adjust the existing execution schedule due to a high priority 1191 * request - i.e. we may want to preempt the current request in order 1192 * to run a high priority dependency chain *before* we can execute this 1193 * request. 1194 * 1195 * This is called before the request is ready to run so that we can 1196 * decide whether to preempt the entire chain so that it is ready to 1197 * run at the earliest possible convenience. 1198 */ 1199 local_bh_disable(); 1200 i915_sw_fence_commit(&rq->semaphore); 1201 rcu_read_lock(); /* RCU serialisation for set-wedged protection */ 1202 if (engine->schedule) { 1203 struct i915_sched_attr attr = rq->gem_context->sched; 1204 1205 /* 1206 * Boost actual workloads past semaphores! 1207 * 1208 * With semaphores we spin on one engine waiting for another, 1209 * simply to reduce the latency of starting our work when 1210 * the signaler completes. However, if there is any other 1211 * work that we could be doing on this engine instead, that 1212 * is better utilisation and will reduce the overall duration 1213 * of the current work. To avoid PI boosting a semaphore 1214 * far in the distance past over useful work, we keep a history 1215 * of any semaphore use along our dependency chain. 1216 */ 1217 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1218 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1219 1220 /* 1221 * Boost priorities to new clients (new request flows). 1222 * 1223 * Allow interactive/synchronous clients to jump ahead of 1224 * the bulk clients. (FQ_CODEL) 1225 */ 1226 if (list_empty(&rq->sched.signalers_list)) 1227 attr.priority |= I915_PRIORITY_WAIT; 1228 1229 engine->schedule(rq, &attr); 1230 } 1231 rcu_read_unlock(); 1232 i915_sw_fence_commit(&rq->submit); 1233 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1234 1235 return prev; 1236 } 1237 1238 void i915_request_add(struct i915_request *rq) 1239 { 1240 struct i915_request *prev; 1241 1242 lockdep_assert_held(&rq->timeline->mutex); 1243 lockdep_unpin_lock(&rq->timeline->mutex, rq->cookie); 1244 1245 trace_i915_request_add(rq); 1246 1247 prev = __i915_request_commit(rq); 1248 1249 /* 1250 * In typical scenarios, we do not expect the previous request on 1251 * the timeline to be still tracked by timeline->last_request if it 1252 * has been completed. If the completed request is still here, that 1253 * implies that request retirement is a long way behind submission, 1254 * suggesting that we haven't been retiring frequently enough from 1255 * the combination of retire-before-alloc, waiters and the background 1256 * retirement worker. So if the last request on this timeline was 1257 * already completed, do a catch up pass, flushing the retirement queue 1258 * up to this client. Since we have now moved the heaviest operations 1259 * during retirement onto secondary workers, such as freeing objects 1260 * or contexts, retiring a bunch of requests is mostly list management 1261 * (and cache misses), and so we should not be overly penalizing this 1262 * client by performing excess work, though we may still performing 1263 * work on behalf of others -- but instead we should benefit from 1264 * improved resource management. (Well, that's the theory at least.) 1265 */ 1266 if (prev && i915_request_completed(prev)) 1267 i915_request_retire_upto(prev); 1268 1269 mutex_unlock(&rq->timeline->mutex); 1270 } 1271 1272 static unsigned long local_clock_us(unsigned int *cpu) 1273 { 1274 unsigned long t; 1275 1276 /* 1277 * Cheaply and approximately convert from nanoseconds to microseconds. 1278 * The result and subsequent calculations are also defined in the same 1279 * approximate microseconds units. The principal source of timing 1280 * error here is from the simple truncation. 1281 * 1282 * Note that local_clock() is only defined wrt to the current CPU; 1283 * the comparisons are no longer valid if we switch CPUs. Instead of 1284 * blocking preemption for the entire busywait, we can detect the CPU 1285 * switch and use that as indicator of system load and a reason to 1286 * stop busywaiting, see busywait_stop(). 1287 */ 1288 *cpu = get_cpu(); 1289 t = local_clock() >> 10; 1290 put_cpu(); 1291 1292 return t; 1293 } 1294 1295 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1296 { 1297 unsigned int this_cpu; 1298 1299 if (time_after(local_clock_us(&this_cpu), timeout)) 1300 return true; 1301 1302 return this_cpu != cpu; 1303 } 1304 1305 static bool __i915_spin_request(const struct i915_request * const rq, 1306 int state, unsigned long timeout_us) 1307 { 1308 unsigned int cpu; 1309 1310 /* 1311 * Only wait for the request if we know it is likely to complete. 1312 * 1313 * We don't track the timestamps around requests, nor the average 1314 * request length, so we do not have a good indicator that this 1315 * request will complete within the timeout. What we do know is the 1316 * order in which requests are executed by the context and so we can 1317 * tell if the request has been started. If the request is not even 1318 * running yet, it is a fair assumption that it will not complete 1319 * within our relatively short timeout. 1320 */ 1321 if (!i915_request_is_running(rq)) 1322 return false; 1323 1324 /* 1325 * When waiting for high frequency requests, e.g. during synchronous 1326 * rendering split between the CPU and GPU, the finite amount of time 1327 * required to set up the irq and wait upon it limits the response 1328 * rate. By busywaiting on the request completion for a short while we 1329 * can service the high frequency waits as quick as possible. However, 1330 * if it is a slow request, we want to sleep as quickly as possible. 1331 * The tradeoff between waiting and sleeping is roughly the time it 1332 * takes to sleep on a request, on the order of a microsecond. 1333 */ 1334 1335 timeout_us += local_clock_us(&cpu); 1336 do { 1337 if (i915_request_completed(rq)) 1338 return true; 1339 1340 if (signal_pending_state(state, current)) 1341 break; 1342 1343 if (busywait_stop(timeout_us, cpu)) 1344 break; 1345 1346 cpu_relax(); 1347 } while (!need_resched()); 1348 1349 return false; 1350 } 1351 1352 struct request_wait { 1353 struct dma_fence_cb cb; 1354 struct task_struct *tsk; 1355 }; 1356 1357 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1358 { 1359 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1360 1361 wake_up_process(wait->tsk); 1362 } 1363 1364 /** 1365 * i915_request_wait - wait until execution of request has finished 1366 * @rq: the request to wait upon 1367 * @flags: how to wait 1368 * @timeout: how long to wait in jiffies 1369 * 1370 * i915_request_wait() waits for the request to be completed, for a 1371 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1372 * unbounded wait). 1373 * 1374 * Returns the remaining time (in jiffies) if the request completed, which may 1375 * be zero or -ETIME if the request is unfinished after the timeout expires. 1376 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1377 * pending before the request completes. 1378 */ 1379 long i915_request_wait(struct i915_request *rq, 1380 unsigned int flags, 1381 long timeout) 1382 { 1383 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1384 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1385 struct request_wait wait; 1386 1387 might_sleep(); 1388 GEM_BUG_ON(timeout < 0); 1389 1390 if (dma_fence_is_signaled(&rq->fence)) 1391 return timeout; 1392 1393 if (!timeout) 1394 return -ETIME; 1395 1396 trace_i915_request_wait_begin(rq, flags); 1397 1398 /* 1399 * We must never wait on the GPU while holding a lock as we 1400 * may need to perform a GPU reset. So while we don't need to 1401 * serialise wait/reset with an explicit lock, we do want 1402 * lockdep to detect potential dependency cycles. 1403 */ 1404 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1405 1406 /* 1407 * Optimistic spin before touching IRQs. 1408 * 1409 * We may use a rather large value here to offset the penalty of 1410 * switching away from the active task. Frequently, the client will 1411 * wait upon an old swapbuffer to throttle itself to remain within a 1412 * frame of the gpu. If the client is running in lockstep with the gpu, 1413 * then it should not be waiting long at all, and a sleep now will incur 1414 * extra scheduler latency in producing the next frame. To try to 1415 * avoid adding the cost of enabling/disabling the interrupt to the 1416 * short wait, we first spin to see if the request would have completed 1417 * in the time taken to setup the interrupt. 1418 * 1419 * We need upto 5us to enable the irq, and upto 20us to hide the 1420 * scheduler latency of a context switch, ignoring the secondary 1421 * impacts from a context switch such as cache eviction. 1422 * 1423 * The scheme used for low-latency IO is called "hybrid interrupt 1424 * polling". The suggestion there is to sleep until just before you 1425 * expect to be woken by the device interrupt and then poll for its 1426 * completion. That requires having a good predictor for the request 1427 * duration, which we currently lack. 1428 */ 1429 if (CONFIG_DRM_I915_SPIN_REQUEST && 1430 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1431 dma_fence_signal(&rq->fence); 1432 goto out; 1433 } 1434 1435 /* 1436 * This client is about to stall waiting for the GPU. In many cases 1437 * this is undesirable and limits the throughput of the system, as 1438 * many clients cannot continue processing user input/output whilst 1439 * blocked. RPS autotuning may take tens of milliseconds to respond 1440 * to the GPU load and thus incurs additional latency for the client. 1441 * We can circumvent that by promoting the GPU frequency to maximum 1442 * before we sleep. This makes the GPU throttle up much more quickly 1443 * (good for benchmarks and user experience, e.g. window animations), 1444 * but at a cost of spending more power processing the workload 1445 * (bad for battery). 1446 */ 1447 if (flags & I915_WAIT_PRIORITY) { 1448 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1449 gen6_rps_boost(rq); 1450 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1451 } 1452 1453 wait.tsk = current; 1454 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1455 goto out; 1456 1457 for (;;) { 1458 set_current_state(state); 1459 1460 if (i915_request_completed(rq)) { 1461 dma_fence_signal(&rq->fence); 1462 break; 1463 } 1464 1465 if (signal_pending_state(state, current)) { 1466 timeout = -ERESTARTSYS; 1467 break; 1468 } 1469 1470 if (!timeout) { 1471 timeout = -ETIME; 1472 break; 1473 } 1474 1475 timeout = io_schedule_timeout(timeout); 1476 } 1477 __set_current_state(TASK_RUNNING); 1478 1479 dma_fence_remove_callback(&rq->fence, &wait.cb); 1480 1481 out: 1482 mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_); 1483 trace_i915_request_wait_end(rq); 1484 return timeout; 1485 } 1486 1487 bool i915_retire_requests(struct drm_i915_private *i915) 1488 { 1489 struct intel_ring *ring, *tmp; 1490 1491 lockdep_assert_held(&i915->drm.struct_mutex); 1492 1493 list_for_each_entry_safe(ring, tmp, 1494 &i915->gt.active_rings, active_link) { 1495 intel_ring_get(ring); /* last rq holds reference! */ 1496 ring_retire_requests(ring); 1497 intel_ring_put(ring); 1498 } 1499 1500 return !list_empty(&i915->gt.active_rings); 1501 } 1502 1503 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1504 #include "selftests/mock_request.c" 1505 #include "selftests/i915_request.c" 1506 #endif 1507 1508 static void i915_global_request_shrink(void) 1509 { 1510 kmem_cache_shrink(global.slab_dependencies); 1511 kmem_cache_shrink(global.slab_execute_cbs); 1512 kmem_cache_shrink(global.slab_requests); 1513 } 1514 1515 static void i915_global_request_exit(void) 1516 { 1517 kmem_cache_destroy(global.slab_dependencies); 1518 kmem_cache_destroy(global.slab_execute_cbs); 1519 kmem_cache_destroy(global.slab_requests); 1520 } 1521 1522 static struct i915_global_request global = { { 1523 .shrink = i915_global_request_shrink, 1524 .exit = i915_global_request_exit, 1525 } }; 1526 1527 int __init i915_global_request_init(void) 1528 { 1529 global.slab_requests = KMEM_CACHE(i915_request, 1530 SLAB_HWCACHE_ALIGN | 1531 SLAB_RECLAIM_ACCOUNT | 1532 SLAB_TYPESAFE_BY_RCU); 1533 if (!global.slab_requests) 1534 return -ENOMEM; 1535 1536 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1537 SLAB_HWCACHE_ALIGN | 1538 SLAB_RECLAIM_ACCOUNT | 1539 SLAB_TYPESAFE_BY_RCU); 1540 if (!global.slab_execute_cbs) 1541 goto err_requests; 1542 1543 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1544 SLAB_HWCACHE_ALIGN | 1545 SLAB_RECLAIM_ACCOUNT); 1546 if (!global.slab_dependencies) 1547 goto err_execute_cbs; 1548 1549 i915_global_register(&global.base); 1550 return 0; 1551 1552 err_execute_cbs: 1553 kmem_cache_destroy(global.slab_execute_cbs); 1554 err_requests: 1555 kmem_cache_destroy(global.slab_requests); 1556 return -ENOMEM; 1557 } 1558