1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_gpu_commands.h" 37 #include "gt/intel_ring.h" 38 #include "gt/intel_rps.h" 39 40 #include "i915_active.h" 41 #include "i915_drv.h" 42 #include "i915_globals.h" 43 #include "i915_trace.h" 44 #include "intel_pm.h" 45 46 struct execute_cb { 47 struct irq_work work; 48 struct i915_sw_fence *fence; 49 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 50 struct i915_request *signal; 51 }; 52 53 static struct i915_global_request { 54 struct i915_global base; 55 struct kmem_cache *slab_requests; 56 struct kmem_cache *slab_execute_cbs; 57 } global; 58 59 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 60 { 61 return dev_name(to_request(fence)->engine->i915->drm.dev); 62 } 63 64 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 65 { 66 const struct i915_gem_context *ctx; 67 68 /* 69 * The timeline struct (as part of the ppgtt underneath a context) 70 * may be freed when the request is no longer in use by the GPU. 71 * We could extend the life of a context to beyond that of all 72 * fences, possibly keeping the hw resource around indefinitely, 73 * or we just give them a false name. Since 74 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 75 * lie seems justifiable. 76 */ 77 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 78 return "signaled"; 79 80 ctx = i915_request_gem_context(to_request(fence)); 81 if (!ctx) 82 return "[" DRIVER_NAME "]"; 83 84 return ctx->name; 85 } 86 87 static bool i915_fence_signaled(struct dma_fence *fence) 88 { 89 return i915_request_completed(to_request(fence)); 90 } 91 92 static bool i915_fence_enable_signaling(struct dma_fence *fence) 93 { 94 return i915_request_enable_breadcrumb(to_request(fence)); 95 } 96 97 static signed long i915_fence_wait(struct dma_fence *fence, 98 bool interruptible, 99 signed long timeout) 100 { 101 return i915_request_wait(to_request(fence), 102 interruptible | I915_WAIT_PRIORITY, 103 timeout); 104 } 105 106 struct kmem_cache *i915_request_slab_cache(void) 107 { 108 return global.slab_requests; 109 } 110 111 static void i915_fence_release(struct dma_fence *fence) 112 { 113 struct i915_request *rq = to_request(fence); 114 115 /* 116 * The request is put onto a RCU freelist (i.e. the address 117 * is immediately reused), mark the fences as being freed now. 118 * Otherwise the debugobjects for the fences are only marked as 119 * freed when the slab cache itself is freed, and so we would get 120 * caught trying to reuse dead objects. 121 */ 122 i915_sw_fence_fini(&rq->submit); 123 i915_sw_fence_fini(&rq->semaphore); 124 125 /* 126 * Keep one request on each engine for reserved use under mempressure 127 * 128 * We do not hold a reference to the engine here and so have to be 129 * very careful in what rq->engine we poke. The virtual engine is 130 * referenced via the rq->context and we released that ref during 131 * i915_request_retire(), ergo we must not dereference a virtual 132 * engine here. Not that we would want to, as the only consumer of 133 * the reserved engine->request_pool is the power management parking, 134 * which must-not-fail, and that is only run on the physical engines. 135 * 136 * Since the request must have been executed to be have completed, 137 * we know that it will have been processed by the HW and will 138 * not be unsubmitted again, so rq->engine and rq->execution_mask 139 * at this point is stable. rq->execution_mask will be a single 140 * bit if the last and _only_ engine it could execution on was a 141 * physical engine, if it's multiple bits then it started on and 142 * could still be on a virtual engine. Thus if the mask is not a 143 * power-of-two we assume that rq->engine may still be a virtual 144 * engine and so a dangling invalid pointer that we cannot dereference 145 * 146 * For example, consider the flow of a bonded request through a virtual 147 * engine. The request is created with a wide engine mask (all engines 148 * that we might execute on). On processing the bond, the request mask 149 * is reduced to one or more engines. If the request is subsequently 150 * bound to a single engine, it will then be constrained to only 151 * execute on that engine and never returned to the virtual engine 152 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 153 * know that if the rq->execution_mask is a single bit, rq->engine 154 * can be a physical engine with the exact corresponding mask. 155 */ 156 if (is_power_of_2(rq->execution_mask) && 157 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 158 return; 159 160 kmem_cache_free(global.slab_requests, rq); 161 } 162 163 const struct dma_fence_ops i915_fence_ops = { 164 .get_driver_name = i915_fence_get_driver_name, 165 .get_timeline_name = i915_fence_get_timeline_name, 166 .enable_signaling = i915_fence_enable_signaling, 167 .signaled = i915_fence_signaled, 168 .wait = i915_fence_wait, 169 .release = i915_fence_release, 170 }; 171 172 static void irq_execute_cb(struct irq_work *wrk) 173 { 174 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 175 176 i915_sw_fence_complete(cb->fence); 177 kmem_cache_free(global.slab_execute_cbs, cb); 178 } 179 180 static void irq_execute_cb_hook(struct irq_work *wrk) 181 { 182 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 183 184 cb->hook(container_of(cb->fence, struct i915_request, submit), 185 &cb->signal->fence); 186 i915_request_put(cb->signal); 187 188 irq_execute_cb(wrk); 189 } 190 191 static __always_inline void 192 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 193 { 194 struct execute_cb *cb, *cn; 195 196 if (llist_empty(&rq->execute_cb)) 197 return; 198 199 llist_for_each_entry_safe(cb, cn, 200 llist_del_all(&rq->execute_cb), 201 work.node.llist) 202 fn(&cb->work); 203 } 204 205 static void __notify_execute_cb_irq(struct i915_request *rq) 206 { 207 __notify_execute_cb(rq, irq_work_queue); 208 } 209 210 static bool irq_work_imm(struct irq_work *wrk) 211 { 212 wrk->func(wrk); 213 return false; 214 } 215 216 static void __notify_execute_cb_imm(struct i915_request *rq) 217 { 218 __notify_execute_cb(rq, irq_work_imm); 219 } 220 221 static void free_capture_list(struct i915_request *request) 222 { 223 struct i915_capture_list *capture; 224 225 capture = fetch_and_zero(&request->capture_list); 226 while (capture) { 227 struct i915_capture_list *next = capture->next; 228 229 kfree(capture); 230 capture = next; 231 } 232 } 233 234 static void __i915_request_fill(struct i915_request *rq, u8 val) 235 { 236 void *vaddr = rq->ring->vaddr; 237 u32 head; 238 239 head = rq->infix; 240 if (rq->postfix < head) { 241 memset(vaddr + head, val, rq->ring->size - head); 242 head = 0; 243 } 244 memset(vaddr + head, val, rq->postfix - head); 245 } 246 247 static void remove_from_engine(struct i915_request *rq) 248 { 249 struct intel_engine_cs *engine, *locked; 250 251 /* 252 * Virtual engines complicate acquiring the engine timeline lock, 253 * as their rq->engine pointer is not stable until under that 254 * engine lock. The simple ploy we use is to take the lock then 255 * check that the rq still belongs to the newly locked engine. 256 */ 257 locked = READ_ONCE(rq->engine); 258 spin_lock_irq(&locked->active.lock); 259 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 260 spin_unlock(&locked->active.lock); 261 spin_lock(&engine->active.lock); 262 locked = engine; 263 } 264 list_del_init(&rq->sched.link); 265 266 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 267 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 268 269 /* Prevent further __await_execution() registering a cb, then flush */ 270 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 271 272 spin_unlock_irq(&locked->active.lock); 273 274 __notify_execute_cb_imm(rq); 275 } 276 277 bool i915_request_retire(struct i915_request *rq) 278 { 279 if (!__i915_request_is_complete(rq)) 280 return false; 281 282 RQ_TRACE(rq, "\n"); 283 284 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 285 trace_i915_request_retire(rq); 286 i915_request_mark_complete(rq); 287 288 /* 289 * We know the GPU must have read the request to have 290 * sent us the seqno + interrupt, so use the position 291 * of tail of the request to update the last known position 292 * of the GPU head. 293 * 294 * Note this requires that we are always called in request 295 * completion order. 296 */ 297 GEM_BUG_ON(!list_is_first(&rq->link, 298 &i915_request_timeline(rq)->requests)); 299 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 300 /* Poison before we release our space in the ring */ 301 __i915_request_fill(rq, POISON_FREE); 302 rq->ring->head = rq->postfix; 303 304 if (!i915_request_signaled(rq)) { 305 spin_lock_irq(&rq->lock); 306 dma_fence_signal_locked(&rq->fence); 307 spin_unlock_irq(&rq->lock); 308 } 309 310 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 311 atomic_dec(&rq->engine->gt->rps.num_waiters); 312 313 /* 314 * We only loosely track inflight requests across preemption, 315 * and so we may find ourselves attempting to retire a _completed_ 316 * request that we have removed from the HW and put back on a run 317 * queue. 318 * 319 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 320 * after removing the breadcrumb and signaling it, so that we do not 321 * inadvertently attach the breadcrumb to a completed request. 322 */ 323 if (!list_empty(&rq->sched.link)) 324 remove_from_engine(rq); 325 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 326 327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 328 329 intel_context_exit(rq->context); 330 intel_context_unpin(rq->context); 331 332 free_capture_list(rq); 333 i915_sched_node_fini(&rq->sched); 334 i915_request_put(rq); 335 336 return true; 337 } 338 339 void i915_request_retire_upto(struct i915_request *rq) 340 { 341 struct intel_timeline * const tl = i915_request_timeline(rq); 342 struct i915_request *tmp; 343 344 RQ_TRACE(rq, "\n"); 345 GEM_BUG_ON(!__i915_request_is_complete(rq)); 346 347 do { 348 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 349 } while (i915_request_retire(tmp) && tmp != rq); 350 } 351 352 static struct i915_request * const * 353 __engine_active(struct intel_engine_cs *engine) 354 { 355 return READ_ONCE(engine->execlists.active); 356 } 357 358 static bool __request_in_flight(const struct i915_request *signal) 359 { 360 struct i915_request * const *port, *rq; 361 bool inflight = false; 362 363 if (!i915_request_is_ready(signal)) 364 return false; 365 366 /* 367 * Even if we have unwound the request, it may still be on 368 * the GPU (preempt-to-busy). If that request is inside an 369 * unpreemptible critical section, it will not be removed. Some 370 * GPU functions may even be stuck waiting for the paired request 371 * (__await_execution) to be submitted and cannot be preempted 372 * until the bond is executing. 373 * 374 * As we know that there are always preemption points between 375 * requests, we know that only the currently executing request 376 * may be still active even though we have cleared the flag. 377 * However, we can't rely on our tracking of ELSP[0] to know 378 * which request is currently active and so maybe stuck, as 379 * the tracking maybe an event behind. Instead assume that 380 * if the context is still inflight, then it is still active 381 * even if the active flag has been cleared. 382 * 383 * To further complicate matters, if there a pending promotion, the HW 384 * may either perform a context switch to the second inflight execlists, 385 * or it may switch to the pending set of execlists. In the case of the 386 * latter, it may send the ACK and we process the event copying the 387 * pending[] over top of inflight[], _overwriting_ our *active. Since 388 * this implies the HW is arbitrating and not struck in *active, we do 389 * not worry about complete accuracy, but we do require no read/write 390 * tearing of the pointer [the read of the pointer must be valid, even 391 * as the array is being overwritten, for which we require the writes 392 * to avoid tearing.] 393 * 394 * Note that the read of *execlists->active may race with the promotion 395 * of execlists->pending[] to execlists->inflight[], overwritting 396 * the value at *execlists->active. This is fine. The promotion implies 397 * that we received an ACK from the HW, and so the context is not 398 * stuck -- if we do not see ourselves in *active, the inflight status 399 * is valid. If instead we see ourselves being copied into *active, 400 * we are inflight and may signal the callback. 401 */ 402 if (!intel_context_inflight(signal->context)) 403 return false; 404 405 rcu_read_lock(); 406 for (port = __engine_active(signal->engine); 407 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 408 port++) { 409 if (rq->context == signal->context) { 410 inflight = i915_seqno_passed(rq->fence.seqno, 411 signal->fence.seqno); 412 break; 413 } 414 } 415 rcu_read_unlock(); 416 417 return inflight; 418 } 419 420 static int 421 __await_execution(struct i915_request *rq, 422 struct i915_request *signal, 423 void (*hook)(struct i915_request *rq, 424 struct dma_fence *signal), 425 gfp_t gfp) 426 { 427 struct execute_cb *cb; 428 429 if (i915_request_is_active(signal)) { 430 if (hook) 431 hook(rq, &signal->fence); 432 return 0; 433 } 434 435 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 436 if (!cb) 437 return -ENOMEM; 438 439 cb->fence = &rq->submit; 440 i915_sw_fence_await(cb->fence); 441 init_irq_work(&cb->work, irq_execute_cb); 442 443 if (hook) { 444 cb->hook = hook; 445 cb->signal = i915_request_get(signal); 446 cb->work.func = irq_execute_cb_hook; 447 } 448 449 /* 450 * Register the callback first, then see if the signaler is already 451 * active. This ensures that if we race with the 452 * __notify_execute_cb from i915_request_submit() and we are not 453 * included in that list, we get a second bite of the cherry and 454 * execute it ourselves. After this point, a future 455 * i915_request_submit() will notify us. 456 * 457 * In i915_request_retire() we set the ACTIVE bit on a completed 458 * request (then flush the execute_cb). So by registering the 459 * callback first, then checking the ACTIVE bit, we serialise with 460 * the completed/retired request. 461 */ 462 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 463 if (i915_request_is_active(signal) || 464 __request_in_flight(signal)) 465 __notify_execute_cb_imm(signal); 466 } 467 468 return 0; 469 } 470 471 static bool fatal_error(int error) 472 { 473 switch (error) { 474 case 0: /* not an error! */ 475 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 476 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 477 return false; 478 default: 479 return true; 480 } 481 } 482 483 void __i915_request_skip(struct i915_request *rq) 484 { 485 GEM_BUG_ON(!fatal_error(rq->fence.error)); 486 487 if (rq->infix == rq->postfix) 488 return; 489 490 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 491 492 /* 493 * As this request likely depends on state from the lost 494 * context, clear out all the user operations leaving the 495 * breadcrumb at the end (so we get the fence notifications). 496 */ 497 __i915_request_fill(rq, 0); 498 rq->infix = rq->postfix; 499 } 500 501 void i915_request_set_error_once(struct i915_request *rq, int error) 502 { 503 int old; 504 505 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 506 507 if (i915_request_signaled(rq)) 508 return; 509 510 old = READ_ONCE(rq->fence.error); 511 do { 512 if (fatal_error(old)) 513 return; 514 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 515 } 516 517 void i915_request_mark_eio(struct i915_request *rq) 518 { 519 if (__i915_request_is_complete(rq)) 520 return; 521 522 GEM_BUG_ON(i915_request_signaled(rq)); 523 524 i915_request_set_error_once(rq, -EIO); 525 i915_request_mark_complete(rq); 526 } 527 528 bool __i915_request_submit(struct i915_request *request) 529 { 530 struct intel_engine_cs *engine = request->engine; 531 bool result = false; 532 533 RQ_TRACE(request, "\n"); 534 535 GEM_BUG_ON(!irqs_disabled()); 536 lockdep_assert_held(&engine->active.lock); 537 538 /* 539 * With the advent of preempt-to-busy, we frequently encounter 540 * requests that we have unsubmitted from HW, but left running 541 * until the next ack and so have completed in the meantime. On 542 * resubmission of that completed request, we can skip 543 * updating the payload, and execlists can even skip submitting 544 * the request. 545 * 546 * We must remove the request from the caller's priority queue, 547 * and the caller must only call us when the request is in their 548 * priority queue, under the active.lock. This ensures that the 549 * request has *not* yet been retired and we can safely move 550 * the request into the engine->active.list where it will be 551 * dropped upon retiring. (Otherwise if resubmit a *retired* 552 * request, this would be a horrible use-after-free.) 553 */ 554 if (__i915_request_is_complete(request)) { 555 list_del_init(&request->sched.link); 556 goto active; 557 } 558 559 if (unlikely(intel_context_is_banned(request->context))) 560 i915_request_set_error_once(request, -EIO); 561 562 if (unlikely(fatal_error(request->fence.error))) 563 __i915_request_skip(request); 564 565 /* 566 * Are we using semaphores when the gpu is already saturated? 567 * 568 * Using semaphores incurs a cost in having the GPU poll a 569 * memory location, busywaiting for it to change. The continual 570 * memory reads can have a noticeable impact on the rest of the 571 * system with the extra bus traffic, stalling the cpu as it too 572 * tries to access memory across the bus (perf stat -e bus-cycles). 573 * 574 * If we installed a semaphore on this request and we only submit 575 * the request after the signaler completed, that indicates the 576 * system is overloaded and using semaphores at this time only 577 * increases the amount of work we are doing. If so, we disable 578 * further use of semaphores until we are idle again, whence we 579 * optimistically try again. 580 */ 581 if (request->sched.semaphores && 582 i915_sw_fence_signaled(&request->semaphore)) 583 engine->saturated |= request->sched.semaphores; 584 585 engine->emit_fini_breadcrumb(request, 586 request->ring->vaddr + request->postfix); 587 588 trace_i915_request_execute(request); 589 engine->serial++; 590 result = true; 591 592 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 593 list_move_tail(&request->sched.link, &engine->active.requests); 594 active: 595 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 596 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 597 598 /* 599 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 600 * 601 * In the future, perhaps when we have an active time-slicing scheduler, 602 * it will be interesting to unsubmit parallel execution and remove 603 * busywaits from the GPU until their master is restarted. This is 604 * quite hairy, we have to carefully rollback the fence and do a 605 * preempt-to-idle cycle on the target engine, all the while the 606 * master execute_cb may refire. 607 */ 608 __notify_execute_cb_irq(request); 609 610 /* We may be recursing from the signal callback of another i915 fence */ 611 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 612 i915_request_enable_breadcrumb(request); 613 614 return result; 615 } 616 617 void i915_request_submit(struct i915_request *request) 618 { 619 struct intel_engine_cs *engine = request->engine; 620 unsigned long flags; 621 622 /* Will be called from irq-context when using foreign fences. */ 623 spin_lock_irqsave(&engine->active.lock, flags); 624 625 __i915_request_submit(request); 626 627 spin_unlock_irqrestore(&engine->active.lock, flags); 628 } 629 630 void __i915_request_unsubmit(struct i915_request *request) 631 { 632 struct intel_engine_cs *engine = request->engine; 633 634 /* 635 * Only unwind in reverse order, required so that the per-context list 636 * is kept in seqno/ring order. 637 */ 638 RQ_TRACE(request, "\n"); 639 640 GEM_BUG_ON(!irqs_disabled()); 641 lockdep_assert_held(&engine->active.lock); 642 643 /* 644 * Before we remove this breadcrumb from the signal list, we have 645 * to ensure that a concurrent dma_fence_enable_signaling() does not 646 * attach itself. We first mark the request as no longer active and 647 * make sure that is visible to other cores, and then remove the 648 * breadcrumb if attached. 649 */ 650 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 651 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 652 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 653 i915_request_cancel_breadcrumb(request); 654 655 /* We've already spun, don't charge on resubmitting. */ 656 if (request->sched.semaphores && __i915_request_has_started(request)) 657 request->sched.semaphores = 0; 658 659 /* 660 * We don't need to wake_up any waiters on request->execute, they 661 * will get woken by any other event or us re-adding this request 662 * to the engine timeline (__i915_request_submit()). The waiters 663 * should be quite adapt at finding that the request now has a new 664 * global_seqno to the one they went to sleep on. 665 */ 666 } 667 668 void i915_request_unsubmit(struct i915_request *request) 669 { 670 struct intel_engine_cs *engine = request->engine; 671 unsigned long flags; 672 673 /* Will be called from irq-context when using foreign fences. */ 674 spin_lock_irqsave(&engine->active.lock, flags); 675 676 __i915_request_unsubmit(request); 677 678 spin_unlock_irqrestore(&engine->active.lock, flags); 679 } 680 681 static int __i915_sw_fence_call 682 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 683 { 684 struct i915_request *request = 685 container_of(fence, typeof(*request), submit); 686 687 switch (state) { 688 case FENCE_COMPLETE: 689 trace_i915_request_submit(request); 690 691 if (unlikely(fence->error)) 692 i915_request_set_error_once(request, fence->error); 693 694 /* 695 * We need to serialize use of the submit_request() callback 696 * with its hotplugging performed during an emergency 697 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 698 * critical section in order to force i915_gem_set_wedged() to 699 * wait until the submit_request() is completed before 700 * proceeding. 701 */ 702 rcu_read_lock(); 703 request->engine->submit_request(request); 704 rcu_read_unlock(); 705 break; 706 707 case FENCE_FREE: 708 i915_request_put(request); 709 break; 710 } 711 712 return NOTIFY_DONE; 713 } 714 715 static int __i915_sw_fence_call 716 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 717 { 718 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 719 720 switch (state) { 721 case FENCE_COMPLETE: 722 break; 723 724 case FENCE_FREE: 725 i915_request_put(rq); 726 break; 727 } 728 729 return NOTIFY_DONE; 730 } 731 732 static void retire_requests(struct intel_timeline *tl) 733 { 734 struct i915_request *rq, *rn; 735 736 list_for_each_entry_safe(rq, rn, &tl->requests, link) 737 if (!i915_request_retire(rq)) 738 break; 739 } 740 741 static noinline struct i915_request * 742 request_alloc_slow(struct intel_timeline *tl, 743 struct i915_request **rsvd, 744 gfp_t gfp) 745 { 746 struct i915_request *rq; 747 748 /* If we cannot wait, dip into our reserves */ 749 if (!gfpflags_allow_blocking(gfp)) { 750 rq = xchg(rsvd, NULL); 751 if (!rq) /* Use the normal failure path for one final WARN */ 752 goto out; 753 754 return rq; 755 } 756 757 if (list_empty(&tl->requests)) 758 goto out; 759 760 /* Move our oldest request to the slab-cache (if not in use!) */ 761 rq = list_first_entry(&tl->requests, typeof(*rq), link); 762 i915_request_retire(rq); 763 764 rq = kmem_cache_alloc(global.slab_requests, 765 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 766 if (rq) 767 return rq; 768 769 /* Ratelimit ourselves to prevent oom from malicious clients */ 770 rq = list_last_entry(&tl->requests, typeof(*rq), link); 771 cond_synchronize_rcu(rq->rcustate); 772 773 /* Retire our old requests in the hope that we free some */ 774 retire_requests(tl); 775 776 out: 777 return kmem_cache_alloc(global.slab_requests, gfp); 778 } 779 780 static void __i915_request_ctor(void *arg) 781 { 782 struct i915_request *rq = arg; 783 784 spin_lock_init(&rq->lock); 785 i915_sched_node_init(&rq->sched); 786 i915_sw_fence_init(&rq->submit, submit_notify); 787 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 788 789 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 790 791 rq->capture_list = NULL; 792 793 init_llist_head(&rq->execute_cb); 794 } 795 796 struct i915_request * 797 __i915_request_create(struct intel_context *ce, gfp_t gfp) 798 { 799 struct intel_timeline *tl = ce->timeline; 800 struct i915_request *rq; 801 u32 seqno; 802 int ret; 803 804 might_sleep_if(gfpflags_allow_blocking(gfp)); 805 806 /* Check that the caller provided an already pinned context */ 807 __intel_context_pin(ce); 808 809 /* 810 * Beware: Dragons be flying overhead. 811 * 812 * We use RCU to look up requests in flight. The lookups may 813 * race with the request being allocated from the slab freelist. 814 * That is the request we are writing to here, may be in the process 815 * of being read by __i915_active_request_get_rcu(). As such, 816 * we have to be very careful when overwriting the contents. During 817 * the RCU lookup, we change chase the request->engine pointer, 818 * read the request->global_seqno and increment the reference count. 819 * 820 * The reference count is incremented atomically. If it is zero, 821 * the lookup knows the request is unallocated and complete. Otherwise, 822 * it is either still in use, or has been reallocated and reset 823 * with dma_fence_init(). This increment is safe for release as we 824 * check that the request we have a reference to and matches the active 825 * request. 826 * 827 * Before we increment the refcount, we chase the request->engine 828 * pointer. We must not call kmem_cache_zalloc() or else we set 829 * that pointer to NULL and cause a crash during the lookup. If 830 * we see the request is completed (based on the value of the 831 * old engine and seqno), the lookup is complete and reports NULL. 832 * If we decide the request is not completed (new engine or seqno), 833 * then we grab a reference and double check that it is still the 834 * active request - which it won't be and restart the lookup. 835 * 836 * Do not use kmem_cache_zalloc() here! 837 */ 838 rq = kmem_cache_alloc(global.slab_requests, 839 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 840 if (unlikely(!rq)) { 841 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 842 if (!rq) { 843 ret = -ENOMEM; 844 goto err_unreserve; 845 } 846 } 847 848 rq->context = ce; 849 rq->engine = ce->engine; 850 rq->ring = ce->ring; 851 rq->execution_mask = ce->engine->mask; 852 853 kref_init(&rq->fence.refcount); 854 rq->fence.flags = 0; 855 rq->fence.error = 0; 856 INIT_LIST_HEAD(&rq->fence.cb_list); 857 858 ret = intel_timeline_get_seqno(tl, rq, &seqno); 859 if (ret) 860 goto err_free; 861 862 rq->fence.context = tl->fence_context; 863 rq->fence.seqno = seqno; 864 865 RCU_INIT_POINTER(rq->timeline, tl); 866 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 867 rq->hwsp_seqno = tl->hwsp_seqno; 868 GEM_BUG_ON(__i915_request_is_complete(rq)); 869 870 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 871 872 /* We bump the ref for the fence chain */ 873 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 874 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 875 876 i915_sched_node_reinit(&rq->sched); 877 878 /* No zalloc, everything must be cleared after use */ 879 rq->batch = NULL; 880 GEM_BUG_ON(rq->capture_list); 881 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 882 883 /* 884 * Reserve space in the ring buffer for all the commands required to 885 * eventually emit this request. This is to guarantee that the 886 * i915_request_add() call can't fail. Note that the reserve may need 887 * to be redone if the request is not actually submitted straight 888 * away, e.g. because a GPU scheduler has deferred it. 889 * 890 * Note that due to how we add reserved_space to intel_ring_begin() 891 * we need to double our request to ensure that if we need to wrap 892 * around inside i915_request_add() there is sufficient space at 893 * the beginning of the ring as well. 894 */ 895 rq->reserved_space = 896 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 897 898 /* 899 * Record the position of the start of the request so that 900 * should we detect the updated seqno part-way through the 901 * GPU processing the request, we never over-estimate the 902 * position of the head. 903 */ 904 rq->head = rq->ring->emit; 905 906 ret = rq->engine->request_alloc(rq); 907 if (ret) 908 goto err_unwind; 909 910 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 911 912 intel_context_mark_active(ce); 913 list_add_tail_rcu(&rq->link, &tl->requests); 914 915 return rq; 916 917 err_unwind: 918 ce->ring->emit = rq->head; 919 920 /* Make sure we didn't add ourselves to external state before freeing */ 921 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 922 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 923 924 err_free: 925 kmem_cache_free(global.slab_requests, rq); 926 err_unreserve: 927 intel_context_unpin(ce); 928 return ERR_PTR(ret); 929 } 930 931 struct i915_request * 932 i915_request_create(struct intel_context *ce) 933 { 934 struct i915_request *rq; 935 struct intel_timeline *tl; 936 937 tl = intel_context_timeline_lock(ce); 938 if (IS_ERR(tl)) 939 return ERR_CAST(tl); 940 941 /* Move our oldest request to the slab-cache (if not in use!) */ 942 rq = list_first_entry(&tl->requests, typeof(*rq), link); 943 if (!list_is_last(&rq->link, &tl->requests)) 944 i915_request_retire(rq); 945 946 intel_context_enter(ce); 947 rq = __i915_request_create(ce, GFP_KERNEL); 948 intel_context_exit(ce); /* active reference transferred to request */ 949 if (IS_ERR(rq)) 950 goto err_unlock; 951 952 /* Check that we do not interrupt ourselves with a new request */ 953 rq->cookie = lockdep_pin_lock(&tl->mutex); 954 955 return rq; 956 957 err_unlock: 958 intel_context_timeline_unlock(tl); 959 return rq; 960 } 961 962 static int 963 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 964 { 965 struct dma_fence *fence; 966 int err; 967 968 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 969 return 0; 970 971 if (i915_request_started(signal)) 972 return 0; 973 974 /* 975 * The caller holds a reference on @signal, but we do not serialise 976 * against it being retired and removed from the lists. 977 * 978 * We do not hold a reference to the request before @signal, and 979 * so must be very careful to ensure that it is not _recycled_ as 980 * we follow the link backwards. 981 */ 982 fence = NULL; 983 rcu_read_lock(); 984 do { 985 struct list_head *pos = READ_ONCE(signal->link.prev); 986 struct i915_request *prev; 987 988 /* Confirm signal has not been retired, the link is valid */ 989 if (unlikely(__i915_request_has_started(signal))) 990 break; 991 992 /* Is signal the earliest request on its timeline? */ 993 if (pos == &rcu_dereference(signal->timeline)->requests) 994 break; 995 996 /* 997 * Peek at the request before us in the timeline. That 998 * request will only be valid before it is retired, so 999 * after acquiring a reference to it, confirm that it is 1000 * still part of the signaler's timeline. 1001 */ 1002 prev = list_entry(pos, typeof(*prev), link); 1003 if (!i915_request_get_rcu(prev)) 1004 break; 1005 1006 /* After the strong barrier, confirm prev is still attached */ 1007 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1008 i915_request_put(prev); 1009 break; 1010 } 1011 1012 fence = &prev->fence; 1013 } while (0); 1014 rcu_read_unlock(); 1015 if (!fence) 1016 return 0; 1017 1018 err = 0; 1019 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1020 err = i915_sw_fence_await_dma_fence(&rq->submit, 1021 fence, 0, 1022 I915_FENCE_GFP); 1023 dma_fence_put(fence); 1024 1025 return err; 1026 } 1027 1028 static intel_engine_mask_t 1029 already_busywaiting(struct i915_request *rq) 1030 { 1031 /* 1032 * Polling a semaphore causes bus traffic, delaying other users of 1033 * both the GPU and CPU. We want to limit the impact on others, 1034 * while taking advantage of early submission to reduce GPU 1035 * latency. Therefore we restrict ourselves to not using more 1036 * than one semaphore from each source, and not using a semaphore 1037 * if we have detected the engine is saturated (i.e. would not be 1038 * submitted early and cause bus traffic reading an already passed 1039 * semaphore). 1040 * 1041 * See the are-we-too-late? check in __i915_request_submit(). 1042 */ 1043 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1044 } 1045 1046 static int 1047 __emit_semaphore_wait(struct i915_request *to, 1048 struct i915_request *from, 1049 u32 seqno) 1050 { 1051 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1052 u32 hwsp_offset; 1053 int len, err; 1054 u32 *cs; 1055 1056 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1057 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1058 1059 /* We need to pin the signaler's HWSP until we are finished reading. */ 1060 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1061 if (err) 1062 return err; 1063 1064 len = 4; 1065 if (has_token) 1066 len += 2; 1067 1068 cs = intel_ring_begin(to, len); 1069 if (IS_ERR(cs)) 1070 return PTR_ERR(cs); 1071 1072 /* 1073 * Using greater-than-or-equal here means we have to worry 1074 * about seqno wraparound. To side step that issue, we swap 1075 * the timeline HWSP upon wrapping, so that everyone listening 1076 * for the old (pre-wrap) values do not see the much smaller 1077 * (post-wrap) values than they were expecting (and so wait 1078 * forever). 1079 */ 1080 *cs++ = (MI_SEMAPHORE_WAIT | 1081 MI_SEMAPHORE_GLOBAL_GTT | 1082 MI_SEMAPHORE_POLL | 1083 MI_SEMAPHORE_SAD_GTE_SDD) + 1084 has_token; 1085 *cs++ = seqno; 1086 *cs++ = hwsp_offset; 1087 *cs++ = 0; 1088 if (has_token) { 1089 *cs++ = 0; 1090 *cs++ = MI_NOOP; 1091 } 1092 1093 intel_ring_advance(to, cs); 1094 return 0; 1095 } 1096 1097 static int 1098 emit_semaphore_wait(struct i915_request *to, 1099 struct i915_request *from, 1100 gfp_t gfp) 1101 { 1102 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1103 struct i915_sw_fence *wait = &to->submit; 1104 1105 if (!intel_context_use_semaphores(to->context)) 1106 goto await_fence; 1107 1108 if (i915_request_has_initial_breadcrumb(to)) 1109 goto await_fence; 1110 1111 if (!rcu_access_pointer(from->hwsp_cacheline)) 1112 goto await_fence; 1113 1114 /* 1115 * If this or its dependents are waiting on an external fence 1116 * that may fail catastrophically, then we want to avoid using 1117 * sempahores as they bypass the fence signaling metadata, and we 1118 * lose the fence->error propagation. 1119 */ 1120 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1121 goto await_fence; 1122 1123 /* Just emit the first semaphore we see as request space is limited. */ 1124 if (already_busywaiting(to) & mask) 1125 goto await_fence; 1126 1127 if (i915_request_await_start(to, from) < 0) 1128 goto await_fence; 1129 1130 /* Only submit our spinner after the signaler is running! */ 1131 if (__await_execution(to, from, NULL, gfp)) 1132 goto await_fence; 1133 1134 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1135 goto await_fence; 1136 1137 to->sched.semaphores |= mask; 1138 wait = &to->semaphore; 1139 1140 await_fence: 1141 return i915_sw_fence_await_dma_fence(wait, 1142 &from->fence, 0, 1143 I915_FENCE_GFP); 1144 } 1145 1146 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1147 struct dma_fence *fence) 1148 { 1149 return __intel_timeline_sync_is_later(tl, 1150 fence->context, 1151 fence->seqno - 1); 1152 } 1153 1154 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1155 const struct dma_fence *fence) 1156 { 1157 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1158 } 1159 1160 static int 1161 __i915_request_await_execution(struct i915_request *to, 1162 struct i915_request *from, 1163 void (*hook)(struct i915_request *rq, 1164 struct dma_fence *signal)) 1165 { 1166 int err; 1167 1168 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1169 1170 /* Submit both requests at the same time */ 1171 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1172 if (err) 1173 return err; 1174 1175 /* Squash repeated depenendices to the same timelines */ 1176 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1177 &from->fence)) 1178 return 0; 1179 1180 /* 1181 * Wait until the start of this request. 1182 * 1183 * The execution cb fires when we submit the request to HW. But in 1184 * many cases this may be long before the request itself is ready to 1185 * run (consider that we submit 2 requests for the same context, where 1186 * the request of interest is behind an indefinite spinner). So we hook 1187 * up to both to reduce our queues and keep the execution lag minimised 1188 * in the worst case, though we hope that the await_start is elided. 1189 */ 1190 err = i915_request_await_start(to, from); 1191 if (err < 0) 1192 return err; 1193 1194 /* 1195 * Ensure both start together [after all semaphores in signal] 1196 * 1197 * Now that we are queued to the HW at roughly the same time (thanks 1198 * to the execute cb) and are ready to run at roughly the same time 1199 * (thanks to the await start), our signaler may still be indefinitely 1200 * delayed by waiting on a semaphore from a remote engine. If our 1201 * signaler depends on a semaphore, so indirectly do we, and we do not 1202 * want to start our payload until our signaler also starts theirs. 1203 * So we wait. 1204 * 1205 * However, there is also a second condition for which we need to wait 1206 * for the precise start of the signaler. Consider that the signaler 1207 * was submitted in a chain of requests following another context 1208 * (with just an ordinary intra-engine fence dependency between the 1209 * two). In this case the signaler is queued to HW, but not for 1210 * immediate execution, and so we must wait until it reaches the 1211 * active slot. 1212 */ 1213 if (intel_engine_has_semaphores(to->engine) && 1214 !i915_request_has_initial_breadcrumb(to)) { 1215 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1216 if (err < 0) 1217 return err; 1218 } 1219 1220 /* Couple the dependency tree for PI on this exposed to->fence */ 1221 if (to->engine->schedule) { 1222 err = i915_sched_node_add_dependency(&to->sched, 1223 &from->sched, 1224 I915_DEPENDENCY_WEAK); 1225 if (err < 0) 1226 return err; 1227 } 1228 1229 return intel_timeline_sync_set_start(i915_request_timeline(to), 1230 &from->fence); 1231 } 1232 1233 static void mark_external(struct i915_request *rq) 1234 { 1235 /* 1236 * The downside of using semaphores is that we lose metadata passing 1237 * along the signaling chain. This is particularly nasty when we 1238 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1239 * fatal errors we want to scrub the request before it is executed, 1240 * which means that we cannot preload the request onto HW and have 1241 * it wait upon a semaphore. 1242 */ 1243 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1244 } 1245 1246 static int 1247 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1248 { 1249 mark_external(rq); 1250 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1251 i915_fence_context_timeout(rq->engine->i915, 1252 fence->context), 1253 I915_FENCE_GFP); 1254 } 1255 1256 static int 1257 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1258 { 1259 struct dma_fence *iter; 1260 int err = 0; 1261 1262 if (!to_dma_fence_chain(fence)) 1263 return __i915_request_await_external(rq, fence); 1264 1265 dma_fence_chain_for_each(iter, fence) { 1266 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1267 1268 if (!dma_fence_is_i915(chain->fence)) { 1269 err = __i915_request_await_external(rq, iter); 1270 break; 1271 } 1272 1273 err = i915_request_await_dma_fence(rq, chain->fence); 1274 if (err < 0) 1275 break; 1276 } 1277 1278 dma_fence_put(iter); 1279 return err; 1280 } 1281 1282 int 1283 i915_request_await_execution(struct i915_request *rq, 1284 struct dma_fence *fence, 1285 void (*hook)(struct i915_request *rq, 1286 struct dma_fence *signal)) 1287 { 1288 struct dma_fence **child = &fence; 1289 unsigned int nchild = 1; 1290 int ret; 1291 1292 if (dma_fence_is_array(fence)) { 1293 struct dma_fence_array *array = to_dma_fence_array(fence); 1294 1295 /* XXX Error for signal-on-any fence arrays */ 1296 1297 child = array->fences; 1298 nchild = array->num_fences; 1299 GEM_BUG_ON(!nchild); 1300 } 1301 1302 do { 1303 fence = *child++; 1304 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1305 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1306 continue; 1307 } 1308 1309 if (fence->context == rq->fence.context) 1310 continue; 1311 1312 /* 1313 * We don't squash repeated fence dependencies here as we 1314 * want to run our callback in all cases. 1315 */ 1316 1317 if (dma_fence_is_i915(fence)) 1318 ret = __i915_request_await_execution(rq, 1319 to_request(fence), 1320 hook); 1321 else 1322 ret = i915_request_await_external(rq, fence); 1323 if (ret < 0) 1324 return ret; 1325 } while (--nchild); 1326 1327 return 0; 1328 } 1329 1330 static int 1331 await_request_submit(struct i915_request *to, struct i915_request *from) 1332 { 1333 /* 1334 * If we are waiting on a virtual engine, then it may be 1335 * constrained to execute on a single engine *prior* to submission. 1336 * When it is submitted, it will be first submitted to the virtual 1337 * engine and then passed to the physical engine. We cannot allow 1338 * the waiter to be submitted immediately to the physical engine 1339 * as it may then bypass the virtual request. 1340 */ 1341 if (to->engine == READ_ONCE(from->engine)) 1342 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1343 &from->submit, 1344 I915_FENCE_GFP); 1345 else 1346 return __i915_request_await_execution(to, from, NULL); 1347 } 1348 1349 static int 1350 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1351 { 1352 int ret; 1353 1354 GEM_BUG_ON(to == from); 1355 GEM_BUG_ON(to->timeline == from->timeline); 1356 1357 if (i915_request_completed(from)) { 1358 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1359 return 0; 1360 } 1361 1362 if (to->engine->schedule) { 1363 ret = i915_sched_node_add_dependency(&to->sched, 1364 &from->sched, 1365 I915_DEPENDENCY_EXTERNAL); 1366 if (ret < 0) 1367 return ret; 1368 } 1369 1370 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1371 ret = await_request_submit(to, from); 1372 else 1373 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1374 if (ret < 0) 1375 return ret; 1376 1377 return 0; 1378 } 1379 1380 int 1381 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1382 { 1383 struct dma_fence **child = &fence; 1384 unsigned int nchild = 1; 1385 int ret; 1386 1387 /* 1388 * Note that if the fence-array was created in signal-on-any mode, 1389 * we should *not* decompose it into its individual fences. However, 1390 * we don't currently store which mode the fence-array is operating 1391 * in. Fortunately, the only user of signal-on-any is private to 1392 * amdgpu and we should not see any incoming fence-array from 1393 * sync-file being in signal-on-any mode. 1394 */ 1395 if (dma_fence_is_array(fence)) { 1396 struct dma_fence_array *array = to_dma_fence_array(fence); 1397 1398 child = array->fences; 1399 nchild = array->num_fences; 1400 GEM_BUG_ON(!nchild); 1401 } 1402 1403 do { 1404 fence = *child++; 1405 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1406 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1407 continue; 1408 } 1409 1410 /* 1411 * Requests on the same timeline are explicitly ordered, along 1412 * with their dependencies, by i915_request_add() which ensures 1413 * that requests are submitted in-order through each ring. 1414 */ 1415 if (fence->context == rq->fence.context) 1416 continue; 1417 1418 /* Squash repeated waits to the same timelines */ 1419 if (fence->context && 1420 intel_timeline_sync_is_later(i915_request_timeline(rq), 1421 fence)) 1422 continue; 1423 1424 if (dma_fence_is_i915(fence)) 1425 ret = i915_request_await_request(rq, to_request(fence)); 1426 else 1427 ret = i915_request_await_external(rq, fence); 1428 if (ret < 0) 1429 return ret; 1430 1431 /* Record the latest fence used against each timeline */ 1432 if (fence->context) 1433 intel_timeline_sync_set(i915_request_timeline(rq), 1434 fence); 1435 } while (--nchild); 1436 1437 return 0; 1438 } 1439 1440 /** 1441 * i915_request_await_object - set this request to (async) wait upon a bo 1442 * @to: request we are wishing to use 1443 * @obj: object which may be in use on another ring. 1444 * @write: whether the wait is on behalf of a writer 1445 * 1446 * This code is meant to abstract object synchronization with the GPU. 1447 * Conceptually we serialise writes between engines inside the GPU. 1448 * We only allow one engine to write into a buffer at any time, but 1449 * multiple readers. To ensure each has a coherent view of memory, we must: 1450 * 1451 * - If there is an outstanding write request to the object, the new 1452 * request must wait for it to complete (either CPU or in hw, requests 1453 * on the same ring will be naturally ordered). 1454 * 1455 * - If we are a write request (pending_write_domain is set), the new 1456 * request must wait for outstanding read requests to complete. 1457 * 1458 * Returns 0 if successful, else propagates up the lower layer error. 1459 */ 1460 int 1461 i915_request_await_object(struct i915_request *to, 1462 struct drm_i915_gem_object *obj, 1463 bool write) 1464 { 1465 struct dma_fence *excl; 1466 int ret = 0; 1467 1468 if (write) { 1469 struct dma_fence **shared; 1470 unsigned int count, i; 1471 1472 ret = dma_resv_get_fences_rcu(obj->base.resv, 1473 &excl, &count, &shared); 1474 if (ret) 1475 return ret; 1476 1477 for (i = 0; i < count; i++) { 1478 ret = i915_request_await_dma_fence(to, shared[i]); 1479 if (ret) 1480 break; 1481 1482 dma_fence_put(shared[i]); 1483 } 1484 1485 for (; i < count; i++) 1486 dma_fence_put(shared[i]); 1487 kfree(shared); 1488 } else { 1489 excl = dma_resv_get_excl_rcu(obj->base.resv); 1490 } 1491 1492 if (excl) { 1493 if (ret == 0) 1494 ret = i915_request_await_dma_fence(to, excl); 1495 1496 dma_fence_put(excl); 1497 } 1498 1499 return ret; 1500 } 1501 1502 static struct i915_request * 1503 __i915_request_add_to_timeline(struct i915_request *rq) 1504 { 1505 struct intel_timeline *timeline = i915_request_timeline(rq); 1506 struct i915_request *prev; 1507 1508 /* 1509 * Dependency tracking and request ordering along the timeline 1510 * is special cased so that we can eliminate redundant ordering 1511 * operations while building the request (we know that the timeline 1512 * itself is ordered, and here we guarantee it). 1513 * 1514 * As we know we will need to emit tracking along the timeline, 1515 * we embed the hooks into our request struct -- at the cost of 1516 * having to have specialised no-allocation interfaces (which will 1517 * be beneficial elsewhere). 1518 * 1519 * A second benefit to open-coding i915_request_await_request is 1520 * that we can apply a slight variant of the rules specialised 1521 * for timelines that jump between engines (such as virtual engines). 1522 * If we consider the case of virtual engine, we must emit a dma-fence 1523 * to prevent scheduling of the second request until the first is 1524 * complete (to maximise our greedy late load balancing) and this 1525 * precludes optimising to use semaphores serialisation of a single 1526 * timeline across engines. 1527 */ 1528 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1529 &rq->fence)); 1530 if (prev && !__i915_request_is_complete(prev)) { 1531 /* 1532 * The requests are supposed to be kept in order. However, 1533 * we need to be wary in case the timeline->last_request 1534 * is used as a barrier for external modification to this 1535 * context. 1536 */ 1537 GEM_BUG_ON(prev->context == rq->context && 1538 i915_seqno_passed(prev->fence.seqno, 1539 rq->fence.seqno)); 1540 1541 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1542 i915_sw_fence_await_sw_fence(&rq->submit, 1543 &prev->submit, 1544 &rq->submitq); 1545 else 1546 __i915_sw_fence_await_dma_fence(&rq->submit, 1547 &prev->fence, 1548 &rq->dmaq); 1549 if (rq->engine->schedule) 1550 __i915_sched_node_add_dependency(&rq->sched, 1551 &prev->sched, 1552 &rq->dep, 1553 0); 1554 } 1555 1556 /* 1557 * Make sure that no request gazumped us - if it was allocated after 1558 * our i915_request_alloc() and called __i915_request_add() before 1559 * us, the timeline will hold its seqno which is later than ours. 1560 */ 1561 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1562 1563 return prev; 1564 } 1565 1566 /* 1567 * NB: This function is not allowed to fail. Doing so would mean the the 1568 * request is not being tracked for completion but the work itself is 1569 * going to happen on the hardware. This would be a Bad Thing(tm). 1570 */ 1571 struct i915_request *__i915_request_commit(struct i915_request *rq) 1572 { 1573 struct intel_engine_cs *engine = rq->engine; 1574 struct intel_ring *ring = rq->ring; 1575 u32 *cs; 1576 1577 RQ_TRACE(rq, "\n"); 1578 1579 /* 1580 * To ensure that this call will not fail, space for its emissions 1581 * should already have been reserved in the ring buffer. Let the ring 1582 * know that it is time to use that space up. 1583 */ 1584 GEM_BUG_ON(rq->reserved_space > ring->space); 1585 rq->reserved_space = 0; 1586 rq->emitted_jiffies = jiffies; 1587 1588 /* 1589 * Record the position of the start of the breadcrumb so that 1590 * should we detect the updated seqno part-way through the 1591 * GPU processing the request, we never over-estimate the 1592 * position of the ring's HEAD. 1593 */ 1594 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1595 GEM_BUG_ON(IS_ERR(cs)); 1596 rq->postfix = intel_ring_offset(rq, cs); 1597 1598 return __i915_request_add_to_timeline(rq); 1599 } 1600 1601 void __i915_request_queue_bh(struct i915_request *rq) 1602 { 1603 i915_sw_fence_commit(&rq->semaphore); 1604 i915_sw_fence_commit(&rq->submit); 1605 } 1606 1607 void __i915_request_queue(struct i915_request *rq, 1608 const struct i915_sched_attr *attr) 1609 { 1610 /* 1611 * Let the backend know a new request has arrived that may need 1612 * to adjust the existing execution schedule due to a high priority 1613 * request - i.e. we may want to preempt the current request in order 1614 * to run a high priority dependency chain *before* we can execute this 1615 * request. 1616 * 1617 * This is called before the request is ready to run so that we can 1618 * decide whether to preempt the entire chain so that it is ready to 1619 * run at the earliest possible convenience. 1620 */ 1621 if (attr && rq->engine->schedule) 1622 rq->engine->schedule(rq, attr); 1623 1624 local_bh_disable(); 1625 __i915_request_queue_bh(rq); 1626 local_bh_enable(); /* kick tasklets */ 1627 } 1628 1629 void i915_request_add(struct i915_request *rq) 1630 { 1631 struct intel_timeline * const tl = i915_request_timeline(rq); 1632 struct i915_sched_attr attr = {}; 1633 struct i915_gem_context *ctx; 1634 1635 lockdep_assert_held(&tl->mutex); 1636 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1637 1638 trace_i915_request_add(rq); 1639 __i915_request_commit(rq); 1640 1641 /* XXX placeholder for selftests */ 1642 rcu_read_lock(); 1643 ctx = rcu_dereference(rq->context->gem_context); 1644 if (ctx) 1645 attr = ctx->sched; 1646 rcu_read_unlock(); 1647 1648 __i915_request_queue(rq, &attr); 1649 1650 mutex_unlock(&tl->mutex); 1651 } 1652 1653 static unsigned long local_clock_ns(unsigned int *cpu) 1654 { 1655 unsigned long t; 1656 1657 /* 1658 * Cheaply and approximately convert from nanoseconds to microseconds. 1659 * The result and subsequent calculations are also defined in the same 1660 * approximate microseconds units. The principal source of timing 1661 * error here is from the simple truncation. 1662 * 1663 * Note that local_clock() is only defined wrt to the current CPU; 1664 * the comparisons are no longer valid if we switch CPUs. Instead of 1665 * blocking preemption for the entire busywait, we can detect the CPU 1666 * switch and use that as indicator of system load and a reason to 1667 * stop busywaiting, see busywait_stop(). 1668 */ 1669 *cpu = get_cpu(); 1670 t = local_clock(); 1671 put_cpu(); 1672 1673 return t; 1674 } 1675 1676 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1677 { 1678 unsigned int this_cpu; 1679 1680 if (time_after(local_clock_ns(&this_cpu), timeout)) 1681 return true; 1682 1683 return this_cpu != cpu; 1684 } 1685 1686 static bool __i915_spin_request(struct i915_request * const rq, int state) 1687 { 1688 unsigned long timeout_ns; 1689 unsigned int cpu; 1690 1691 /* 1692 * Only wait for the request if we know it is likely to complete. 1693 * 1694 * We don't track the timestamps around requests, nor the average 1695 * request length, so we do not have a good indicator that this 1696 * request will complete within the timeout. What we do know is the 1697 * order in which requests are executed by the context and so we can 1698 * tell if the request has been started. If the request is not even 1699 * running yet, it is a fair assumption that it will not complete 1700 * within our relatively short timeout. 1701 */ 1702 if (!i915_request_is_running(rq)) 1703 return false; 1704 1705 /* 1706 * When waiting for high frequency requests, e.g. during synchronous 1707 * rendering split between the CPU and GPU, the finite amount of time 1708 * required to set up the irq and wait upon it limits the response 1709 * rate. By busywaiting on the request completion for a short while we 1710 * can service the high frequency waits as quick as possible. However, 1711 * if it is a slow request, we want to sleep as quickly as possible. 1712 * The tradeoff between waiting and sleeping is roughly the time it 1713 * takes to sleep on a request, on the order of a microsecond. 1714 */ 1715 1716 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1717 timeout_ns += local_clock_ns(&cpu); 1718 do { 1719 if (dma_fence_is_signaled(&rq->fence)) 1720 return true; 1721 1722 if (signal_pending_state(state, current)) 1723 break; 1724 1725 if (busywait_stop(timeout_ns, cpu)) 1726 break; 1727 1728 cpu_relax(); 1729 } while (!need_resched()); 1730 1731 return false; 1732 } 1733 1734 struct request_wait { 1735 struct dma_fence_cb cb; 1736 struct task_struct *tsk; 1737 }; 1738 1739 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1740 { 1741 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1742 1743 wake_up_process(fetch_and_zero(&wait->tsk)); 1744 } 1745 1746 /** 1747 * i915_request_wait - wait until execution of request has finished 1748 * @rq: the request to wait upon 1749 * @flags: how to wait 1750 * @timeout: how long to wait in jiffies 1751 * 1752 * i915_request_wait() waits for the request to be completed, for a 1753 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1754 * unbounded wait). 1755 * 1756 * Returns the remaining time (in jiffies) if the request completed, which may 1757 * be zero or -ETIME if the request is unfinished after the timeout expires. 1758 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1759 * pending before the request completes. 1760 */ 1761 long i915_request_wait(struct i915_request *rq, 1762 unsigned int flags, 1763 long timeout) 1764 { 1765 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1766 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1767 struct request_wait wait; 1768 1769 might_sleep(); 1770 GEM_BUG_ON(timeout < 0); 1771 1772 if (dma_fence_is_signaled(&rq->fence)) 1773 return timeout; 1774 1775 if (!timeout) 1776 return -ETIME; 1777 1778 trace_i915_request_wait_begin(rq, flags); 1779 1780 /* 1781 * We must never wait on the GPU while holding a lock as we 1782 * may need to perform a GPU reset. So while we don't need to 1783 * serialise wait/reset with an explicit lock, we do want 1784 * lockdep to detect potential dependency cycles. 1785 */ 1786 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1787 1788 /* 1789 * Optimistic spin before touching IRQs. 1790 * 1791 * We may use a rather large value here to offset the penalty of 1792 * switching away from the active task. Frequently, the client will 1793 * wait upon an old swapbuffer to throttle itself to remain within a 1794 * frame of the gpu. If the client is running in lockstep with the gpu, 1795 * then it should not be waiting long at all, and a sleep now will incur 1796 * extra scheduler latency in producing the next frame. To try to 1797 * avoid adding the cost of enabling/disabling the interrupt to the 1798 * short wait, we first spin to see if the request would have completed 1799 * in the time taken to setup the interrupt. 1800 * 1801 * We need upto 5us to enable the irq, and upto 20us to hide the 1802 * scheduler latency of a context switch, ignoring the secondary 1803 * impacts from a context switch such as cache eviction. 1804 * 1805 * The scheme used for low-latency IO is called "hybrid interrupt 1806 * polling". The suggestion there is to sleep until just before you 1807 * expect to be woken by the device interrupt and then poll for its 1808 * completion. That requires having a good predictor for the request 1809 * duration, which we currently lack. 1810 */ 1811 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1812 __i915_spin_request(rq, state)) 1813 goto out; 1814 1815 /* 1816 * This client is about to stall waiting for the GPU. In many cases 1817 * this is undesirable and limits the throughput of the system, as 1818 * many clients cannot continue processing user input/output whilst 1819 * blocked. RPS autotuning may take tens of milliseconds to respond 1820 * to the GPU load and thus incurs additional latency for the client. 1821 * We can circumvent that by promoting the GPU frequency to maximum 1822 * before we sleep. This makes the GPU throttle up much more quickly 1823 * (good for benchmarks and user experience, e.g. window animations), 1824 * but at a cost of spending more power processing the workload 1825 * (bad for battery). 1826 */ 1827 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1828 intel_rps_boost(rq); 1829 1830 wait.tsk = current; 1831 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1832 goto out; 1833 1834 /* 1835 * Flush the submission tasklet, but only if it may help this request. 1836 * 1837 * We sometimes experience some latency between the HW interrupts and 1838 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1839 * be due to lazy CS events), so lets run the tasklet manually if there 1840 * is a chance it may submit this request. If the request is not ready 1841 * to run, as it is waiting for other fences to be signaled, flushing 1842 * the tasklet is busy work without any advantage for this client. 1843 * 1844 * If the HW is being lazy, this is the last chance before we go to 1845 * sleep to catch any pending events. We will check periodically in 1846 * the heartbeat to flush the submission tasklets as a last resort 1847 * for unhappy HW. 1848 */ 1849 if (i915_request_is_ready(rq)) 1850 __intel_engine_flush_submission(rq->engine, false); 1851 1852 for (;;) { 1853 set_current_state(state); 1854 1855 if (dma_fence_is_signaled(&rq->fence)) 1856 break; 1857 1858 if (signal_pending_state(state, current)) { 1859 timeout = -ERESTARTSYS; 1860 break; 1861 } 1862 1863 if (!timeout) { 1864 timeout = -ETIME; 1865 break; 1866 } 1867 1868 timeout = io_schedule_timeout(timeout); 1869 } 1870 __set_current_state(TASK_RUNNING); 1871 1872 if (READ_ONCE(wait.tsk)) 1873 dma_fence_remove_callback(&rq->fence, &wait.cb); 1874 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1875 1876 out: 1877 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1878 trace_i915_request_wait_end(rq); 1879 return timeout; 1880 } 1881 1882 static int print_sched_attr(const struct i915_sched_attr *attr, 1883 char *buf, int x, int len) 1884 { 1885 if (attr->priority == I915_PRIORITY_INVALID) 1886 return x; 1887 1888 x += snprintf(buf + x, len - x, 1889 " prio=%d", attr->priority); 1890 1891 return x; 1892 } 1893 1894 static char queue_status(const struct i915_request *rq) 1895 { 1896 if (i915_request_is_active(rq)) 1897 return 'E'; 1898 1899 if (i915_request_is_ready(rq)) 1900 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 1901 1902 return 'U'; 1903 } 1904 1905 static const char *run_status(const struct i915_request *rq) 1906 { 1907 if (__i915_request_is_complete(rq)) 1908 return "!"; 1909 1910 if (__i915_request_has_started(rq)) 1911 return "*"; 1912 1913 if (!i915_sw_fence_signaled(&rq->semaphore)) 1914 return "&"; 1915 1916 return ""; 1917 } 1918 1919 static const char *fence_status(const struct i915_request *rq) 1920 { 1921 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 1922 return "+"; 1923 1924 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 1925 return "-"; 1926 1927 return ""; 1928 } 1929 1930 void i915_request_show(struct drm_printer *m, 1931 const struct i915_request *rq, 1932 const char *prefix, 1933 int indent) 1934 { 1935 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 1936 char buf[80] = ""; 1937 int x = 0; 1938 1939 /* 1940 * The prefix is used to show the queue status, for which we use 1941 * the following flags: 1942 * 1943 * U [Unready] 1944 * - initial status upon being submitted by the user 1945 * 1946 * - the request is not ready for execution as it is waiting 1947 * for external fences 1948 * 1949 * R [Ready] 1950 * - all fences the request was waiting on have been signaled, 1951 * and the request is now ready for execution and will be 1952 * in a backend queue 1953 * 1954 * - a ready request may still need to wait on semaphores 1955 * [internal fences] 1956 * 1957 * V [Ready/virtual] 1958 * - same as ready, but queued over multiple backends 1959 * 1960 * E [Executing] 1961 * - the request has been transferred from the backend queue and 1962 * submitted for execution on HW 1963 * 1964 * - a completed request may still be regarded as executing, its 1965 * status may not be updated until it is retired and removed 1966 * from the lists 1967 */ 1968 1969 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 1970 1971 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 1972 prefix, indent, " ", 1973 queue_status(rq), 1974 rq->fence.context, rq->fence.seqno, 1975 run_status(rq), 1976 fence_status(rq), 1977 buf, 1978 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 1979 name); 1980 } 1981 1982 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1983 #include "selftests/mock_request.c" 1984 #include "selftests/i915_request.c" 1985 #endif 1986 1987 static void i915_global_request_shrink(void) 1988 { 1989 kmem_cache_shrink(global.slab_execute_cbs); 1990 kmem_cache_shrink(global.slab_requests); 1991 } 1992 1993 static void i915_global_request_exit(void) 1994 { 1995 kmem_cache_destroy(global.slab_execute_cbs); 1996 kmem_cache_destroy(global.slab_requests); 1997 } 1998 1999 static struct i915_global_request global = { { 2000 .shrink = i915_global_request_shrink, 2001 .exit = i915_global_request_exit, 2002 } }; 2003 2004 int __init i915_global_request_init(void) 2005 { 2006 global.slab_requests = 2007 kmem_cache_create("i915_request", 2008 sizeof(struct i915_request), 2009 __alignof__(struct i915_request), 2010 SLAB_HWCACHE_ALIGN | 2011 SLAB_RECLAIM_ACCOUNT | 2012 SLAB_TYPESAFE_BY_RCU, 2013 __i915_request_ctor); 2014 if (!global.slab_requests) 2015 return -ENOMEM; 2016 2017 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 2018 SLAB_HWCACHE_ALIGN | 2019 SLAB_RECLAIM_ACCOUNT | 2020 SLAB_TYPESAFE_BY_RCU); 2021 if (!global.slab_execute_cbs) 2022 goto err_requests; 2023 2024 i915_global_register(&global.base); 2025 return 0; 2026 2027 err_requests: 2028 kmem_cache_destroy(global.slab_requests); 2029 return -ENOMEM; 2030 } 2031