1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_gpu_commands.h"
37 #include "gt/intel_ring.h"
38 #include "gt/intel_rps.h"
39 
40 #include "i915_active.h"
41 #include "i915_drv.h"
42 #include "i915_globals.h"
43 #include "i915_trace.h"
44 #include "intel_pm.h"
45 
46 struct execute_cb {
47 	struct irq_work work;
48 	struct i915_sw_fence *fence;
49 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
50 	struct i915_request *signal;
51 };
52 
53 static struct i915_global_request {
54 	struct i915_global base;
55 	struct kmem_cache *slab_requests;
56 	struct kmem_cache *slab_execute_cbs;
57 } global;
58 
59 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
60 {
61 	return dev_name(to_request(fence)->engine->i915->drm.dev);
62 }
63 
64 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
65 {
66 	const struct i915_gem_context *ctx;
67 
68 	/*
69 	 * The timeline struct (as part of the ppgtt underneath a context)
70 	 * may be freed when the request is no longer in use by the GPU.
71 	 * We could extend the life of a context to beyond that of all
72 	 * fences, possibly keeping the hw resource around indefinitely,
73 	 * or we just give them a false name. Since
74 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
75 	 * lie seems justifiable.
76 	 */
77 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
78 		return "signaled";
79 
80 	ctx = i915_request_gem_context(to_request(fence));
81 	if (!ctx)
82 		return "[" DRIVER_NAME "]";
83 
84 	return ctx->name;
85 }
86 
87 static bool i915_fence_signaled(struct dma_fence *fence)
88 {
89 	return i915_request_completed(to_request(fence));
90 }
91 
92 static bool i915_fence_enable_signaling(struct dma_fence *fence)
93 {
94 	return i915_request_enable_breadcrumb(to_request(fence));
95 }
96 
97 static signed long i915_fence_wait(struct dma_fence *fence,
98 				   bool interruptible,
99 				   signed long timeout)
100 {
101 	return i915_request_wait(to_request(fence),
102 				 interruptible | I915_WAIT_PRIORITY,
103 				 timeout);
104 }
105 
106 struct kmem_cache *i915_request_slab_cache(void)
107 {
108 	return global.slab_requests;
109 }
110 
111 static void i915_fence_release(struct dma_fence *fence)
112 {
113 	struct i915_request *rq = to_request(fence);
114 
115 	/*
116 	 * The request is put onto a RCU freelist (i.e. the address
117 	 * is immediately reused), mark the fences as being freed now.
118 	 * Otherwise the debugobjects for the fences are only marked as
119 	 * freed when the slab cache itself is freed, and so we would get
120 	 * caught trying to reuse dead objects.
121 	 */
122 	i915_sw_fence_fini(&rq->submit);
123 	i915_sw_fence_fini(&rq->semaphore);
124 
125 	/*
126 	 * Keep one request on each engine for reserved use under mempressure
127 	 *
128 	 * We do not hold a reference to the engine here and so have to be
129 	 * very careful in what rq->engine we poke. The virtual engine is
130 	 * referenced via the rq->context and we released that ref during
131 	 * i915_request_retire(), ergo we must not dereference a virtual
132 	 * engine here. Not that we would want to, as the only consumer of
133 	 * the reserved engine->request_pool is the power management parking,
134 	 * which must-not-fail, and that is only run on the physical engines.
135 	 *
136 	 * Since the request must have been executed to be have completed,
137 	 * we know that it will have been processed by the HW and will
138 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
139 	 * at this point is stable. rq->execution_mask will be a single
140 	 * bit if the last and _only_ engine it could execution on was a
141 	 * physical engine, if it's multiple bits then it started on and
142 	 * could still be on a virtual engine. Thus if the mask is not a
143 	 * power-of-two we assume that rq->engine may still be a virtual
144 	 * engine and so a dangling invalid pointer that we cannot dereference
145 	 *
146 	 * For example, consider the flow of a bonded request through a virtual
147 	 * engine. The request is created with a wide engine mask (all engines
148 	 * that we might execute on). On processing the bond, the request mask
149 	 * is reduced to one or more engines. If the request is subsequently
150 	 * bound to a single engine, it will then be constrained to only
151 	 * execute on that engine and never returned to the virtual engine
152 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
153 	 * know that if the rq->execution_mask is a single bit, rq->engine
154 	 * can be a physical engine with the exact corresponding mask.
155 	 */
156 	if (is_power_of_2(rq->execution_mask) &&
157 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
158 		return;
159 
160 	kmem_cache_free(global.slab_requests, rq);
161 }
162 
163 const struct dma_fence_ops i915_fence_ops = {
164 	.get_driver_name = i915_fence_get_driver_name,
165 	.get_timeline_name = i915_fence_get_timeline_name,
166 	.enable_signaling = i915_fence_enable_signaling,
167 	.signaled = i915_fence_signaled,
168 	.wait = i915_fence_wait,
169 	.release = i915_fence_release,
170 };
171 
172 static void irq_execute_cb(struct irq_work *wrk)
173 {
174 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
175 
176 	i915_sw_fence_complete(cb->fence);
177 	kmem_cache_free(global.slab_execute_cbs, cb);
178 }
179 
180 static void irq_execute_cb_hook(struct irq_work *wrk)
181 {
182 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
183 
184 	cb->hook(container_of(cb->fence, struct i915_request, submit),
185 		 &cb->signal->fence);
186 	i915_request_put(cb->signal);
187 
188 	irq_execute_cb(wrk);
189 }
190 
191 static __always_inline void
192 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
193 {
194 	struct execute_cb *cb, *cn;
195 
196 	if (llist_empty(&rq->execute_cb))
197 		return;
198 
199 	llist_for_each_entry_safe(cb, cn,
200 				  llist_del_all(&rq->execute_cb),
201 				  work.node.llist)
202 		fn(&cb->work);
203 }
204 
205 static void __notify_execute_cb_irq(struct i915_request *rq)
206 {
207 	__notify_execute_cb(rq, irq_work_queue);
208 }
209 
210 static bool irq_work_imm(struct irq_work *wrk)
211 {
212 	wrk->func(wrk);
213 	return false;
214 }
215 
216 static void __notify_execute_cb_imm(struct i915_request *rq)
217 {
218 	__notify_execute_cb(rq, irq_work_imm);
219 }
220 
221 static void free_capture_list(struct i915_request *request)
222 {
223 	struct i915_capture_list *capture;
224 
225 	capture = fetch_and_zero(&request->capture_list);
226 	while (capture) {
227 		struct i915_capture_list *next = capture->next;
228 
229 		kfree(capture);
230 		capture = next;
231 	}
232 }
233 
234 static void __i915_request_fill(struct i915_request *rq, u8 val)
235 {
236 	void *vaddr = rq->ring->vaddr;
237 	u32 head;
238 
239 	head = rq->infix;
240 	if (rq->postfix < head) {
241 		memset(vaddr + head, val, rq->ring->size - head);
242 		head = 0;
243 	}
244 	memset(vaddr + head, val, rq->postfix - head);
245 }
246 
247 static void remove_from_engine(struct i915_request *rq)
248 {
249 	struct intel_engine_cs *engine, *locked;
250 
251 	/*
252 	 * Virtual engines complicate acquiring the engine timeline lock,
253 	 * as their rq->engine pointer is not stable until under that
254 	 * engine lock. The simple ploy we use is to take the lock then
255 	 * check that the rq still belongs to the newly locked engine.
256 	 */
257 	locked = READ_ONCE(rq->engine);
258 	spin_lock_irq(&locked->active.lock);
259 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
260 		spin_unlock(&locked->active.lock);
261 		spin_lock(&engine->active.lock);
262 		locked = engine;
263 	}
264 	list_del_init(&rq->sched.link);
265 
266 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
267 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
268 
269 	/* Prevent further __await_execution() registering a cb, then flush */
270 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
271 
272 	spin_unlock_irq(&locked->active.lock);
273 
274 	__notify_execute_cb_imm(rq);
275 }
276 
277 bool i915_request_retire(struct i915_request *rq)
278 {
279 	if (!__i915_request_is_complete(rq))
280 		return false;
281 
282 	RQ_TRACE(rq, "\n");
283 
284 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
285 	trace_i915_request_retire(rq);
286 	i915_request_mark_complete(rq);
287 
288 	/*
289 	 * We know the GPU must have read the request to have
290 	 * sent us the seqno + interrupt, so use the position
291 	 * of tail of the request to update the last known position
292 	 * of the GPU head.
293 	 *
294 	 * Note this requires that we are always called in request
295 	 * completion order.
296 	 */
297 	GEM_BUG_ON(!list_is_first(&rq->link,
298 				  &i915_request_timeline(rq)->requests));
299 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
300 		/* Poison before we release our space in the ring */
301 		__i915_request_fill(rq, POISON_FREE);
302 	rq->ring->head = rq->postfix;
303 
304 	if (!i915_request_signaled(rq)) {
305 		spin_lock_irq(&rq->lock);
306 		dma_fence_signal_locked(&rq->fence);
307 		spin_unlock_irq(&rq->lock);
308 	}
309 
310 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
311 		atomic_dec(&rq->engine->gt->rps.num_waiters);
312 
313 	/*
314 	 * We only loosely track inflight requests across preemption,
315 	 * and so we may find ourselves attempting to retire a _completed_
316 	 * request that we have removed from the HW and put back on a run
317 	 * queue.
318 	 *
319 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
320 	 * after removing the breadcrumb and signaling it, so that we do not
321 	 * inadvertently attach the breadcrumb to a completed request.
322 	 */
323 	if (!list_empty(&rq->sched.link))
324 		remove_from_engine(rq);
325 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326 
327 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328 
329 	intel_context_exit(rq->context);
330 	intel_context_unpin(rq->context);
331 
332 	free_capture_list(rq);
333 	i915_sched_node_fini(&rq->sched);
334 	i915_request_put(rq);
335 
336 	return true;
337 }
338 
339 void i915_request_retire_upto(struct i915_request *rq)
340 {
341 	struct intel_timeline * const tl = i915_request_timeline(rq);
342 	struct i915_request *tmp;
343 
344 	RQ_TRACE(rq, "\n");
345 	GEM_BUG_ON(!__i915_request_is_complete(rq));
346 
347 	do {
348 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
349 	} while (i915_request_retire(tmp) && tmp != rq);
350 }
351 
352 static struct i915_request * const *
353 __engine_active(struct intel_engine_cs *engine)
354 {
355 	return READ_ONCE(engine->execlists.active);
356 }
357 
358 static bool __request_in_flight(const struct i915_request *signal)
359 {
360 	struct i915_request * const *port, *rq;
361 	bool inflight = false;
362 
363 	if (!i915_request_is_ready(signal))
364 		return false;
365 
366 	/*
367 	 * Even if we have unwound the request, it may still be on
368 	 * the GPU (preempt-to-busy). If that request is inside an
369 	 * unpreemptible critical section, it will not be removed. Some
370 	 * GPU functions may even be stuck waiting for the paired request
371 	 * (__await_execution) to be submitted and cannot be preempted
372 	 * until the bond is executing.
373 	 *
374 	 * As we know that there are always preemption points between
375 	 * requests, we know that only the currently executing request
376 	 * may be still active even though we have cleared the flag.
377 	 * However, we can't rely on our tracking of ELSP[0] to know
378 	 * which request is currently active and so maybe stuck, as
379 	 * the tracking maybe an event behind. Instead assume that
380 	 * if the context is still inflight, then it is still active
381 	 * even if the active flag has been cleared.
382 	 *
383 	 * To further complicate matters, if there a pending promotion, the HW
384 	 * may either perform a context switch to the second inflight execlists,
385 	 * or it may switch to the pending set of execlists. In the case of the
386 	 * latter, it may send the ACK and we process the event copying the
387 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
388 	 * this implies the HW is arbitrating and not struck in *active, we do
389 	 * not worry about complete accuracy, but we do require no read/write
390 	 * tearing of the pointer [the read of the pointer must be valid, even
391 	 * as the array is being overwritten, for which we require the writes
392 	 * to avoid tearing.]
393 	 *
394 	 * Note that the read of *execlists->active may race with the promotion
395 	 * of execlists->pending[] to execlists->inflight[], overwritting
396 	 * the value at *execlists->active. This is fine. The promotion implies
397 	 * that we received an ACK from the HW, and so the context is not
398 	 * stuck -- if we do not see ourselves in *active, the inflight status
399 	 * is valid. If instead we see ourselves being copied into *active,
400 	 * we are inflight and may signal the callback.
401 	 */
402 	if (!intel_context_inflight(signal->context))
403 		return false;
404 
405 	rcu_read_lock();
406 	for (port = __engine_active(signal->engine);
407 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
408 	     port++) {
409 		if (rq->context == signal->context) {
410 			inflight = i915_seqno_passed(rq->fence.seqno,
411 						     signal->fence.seqno);
412 			break;
413 		}
414 	}
415 	rcu_read_unlock();
416 
417 	return inflight;
418 }
419 
420 static int
421 __await_execution(struct i915_request *rq,
422 		  struct i915_request *signal,
423 		  void (*hook)(struct i915_request *rq,
424 			       struct dma_fence *signal),
425 		  gfp_t gfp)
426 {
427 	struct execute_cb *cb;
428 
429 	if (i915_request_is_active(signal)) {
430 		if (hook)
431 			hook(rq, &signal->fence);
432 		return 0;
433 	}
434 
435 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
436 	if (!cb)
437 		return -ENOMEM;
438 
439 	cb->fence = &rq->submit;
440 	i915_sw_fence_await(cb->fence);
441 	init_irq_work(&cb->work, irq_execute_cb);
442 
443 	if (hook) {
444 		cb->hook = hook;
445 		cb->signal = i915_request_get(signal);
446 		cb->work.func = irq_execute_cb_hook;
447 	}
448 
449 	/*
450 	 * Register the callback first, then see if the signaler is already
451 	 * active. This ensures that if we race with the
452 	 * __notify_execute_cb from i915_request_submit() and we are not
453 	 * included in that list, we get a second bite of the cherry and
454 	 * execute it ourselves. After this point, a future
455 	 * i915_request_submit() will notify us.
456 	 *
457 	 * In i915_request_retire() we set the ACTIVE bit on a completed
458 	 * request (then flush the execute_cb). So by registering the
459 	 * callback first, then checking the ACTIVE bit, we serialise with
460 	 * the completed/retired request.
461 	 */
462 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
463 		if (i915_request_is_active(signal) ||
464 		    __request_in_flight(signal))
465 			__notify_execute_cb_imm(signal);
466 	}
467 
468 	return 0;
469 }
470 
471 static bool fatal_error(int error)
472 {
473 	switch (error) {
474 	case 0: /* not an error! */
475 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
476 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
477 		return false;
478 	default:
479 		return true;
480 	}
481 }
482 
483 void __i915_request_skip(struct i915_request *rq)
484 {
485 	GEM_BUG_ON(!fatal_error(rq->fence.error));
486 
487 	if (rq->infix == rq->postfix)
488 		return;
489 
490 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
491 
492 	/*
493 	 * As this request likely depends on state from the lost
494 	 * context, clear out all the user operations leaving the
495 	 * breadcrumb at the end (so we get the fence notifications).
496 	 */
497 	__i915_request_fill(rq, 0);
498 	rq->infix = rq->postfix;
499 }
500 
501 void i915_request_set_error_once(struct i915_request *rq, int error)
502 {
503 	int old;
504 
505 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
506 
507 	if (i915_request_signaled(rq))
508 		return;
509 
510 	old = READ_ONCE(rq->fence.error);
511 	do {
512 		if (fatal_error(old))
513 			return;
514 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
515 }
516 
517 void i915_request_mark_eio(struct i915_request *rq)
518 {
519 	if (__i915_request_is_complete(rq))
520 		return;
521 
522 	GEM_BUG_ON(i915_request_signaled(rq));
523 
524 	i915_request_set_error_once(rq, -EIO);
525 	i915_request_mark_complete(rq);
526 }
527 
528 bool __i915_request_submit(struct i915_request *request)
529 {
530 	struct intel_engine_cs *engine = request->engine;
531 	bool result = false;
532 
533 	RQ_TRACE(request, "\n");
534 
535 	GEM_BUG_ON(!irqs_disabled());
536 	lockdep_assert_held(&engine->active.lock);
537 
538 	/*
539 	 * With the advent of preempt-to-busy, we frequently encounter
540 	 * requests that we have unsubmitted from HW, but left running
541 	 * until the next ack and so have completed in the meantime. On
542 	 * resubmission of that completed request, we can skip
543 	 * updating the payload, and execlists can even skip submitting
544 	 * the request.
545 	 *
546 	 * We must remove the request from the caller's priority queue,
547 	 * and the caller must only call us when the request is in their
548 	 * priority queue, under the active.lock. This ensures that the
549 	 * request has *not* yet been retired and we can safely move
550 	 * the request into the engine->active.list where it will be
551 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
552 	 * request, this would be a horrible use-after-free.)
553 	 */
554 	if (__i915_request_is_complete(request)) {
555 		list_del_init(&request->sched.link);
556 		goto active;
557 	}
558 
559 	if (unlikely(intel_context_is_banned(request->context)))
560 		i915_request_set_error_once(request, -EIO);
561 
562 	if (unlikely(fatal_error(request->fence.error)))
563 		__i915_request_skip(request);
564 
565 	/*
566 	 * Are we using semaphores when the gpu is already saturated?
567 	 *
568 	 * Using semaphores incurs a cost in having the GPU poll a
569 	 * memory location, busywaiting for it to change. The continual
570 	 * memory reads can have a noticeable impact on the rest of the
571 	 * system with the extra bus traffic, stalling the cpu as it too
572 	 * tries to access memory across the bus (perf stat -e bus-cycles).
573 	 *
574 	 * If we installed a semaphore on this request and we only submit
575 	 * the request after the signaler completed, that indicates the
576 	 * system is overloaded and using semaphores at this time only
577 	 * increases the amount of work we are doing. If so, we disable
578 	 * further use of semaphores until we are idle again, whence we
579 	 * optimistically try again.
580 	 */
581 	if (request->sched.semaphores &&
582 	    i915_sw_fence_signaled(&request->semaphore))
583 		engine->saturated |= request->sched.semaphores;
584 
585 	engine->emit_fini_breadcrumb(request,
586 				     request->ring->vaddr + request->postfix);
587 
588 	trace_i915_request_execute(request);
589 	engine->serial++;
590 	result = true;
591 
592 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
593 	list_move_tail(&request->sched.link, &engine->active.requests);
594 active:
595 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
596 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
597 
598 	/*
599 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
600 	 *
601 	 * In the future, perhaps when we have an active time-slicing scheduler,
602 	 * it will be interesting to unsubmit parallel execution and remove
603 	 * busywaits from the GPU until their master is restarted. This is
604 	 * quite hairy, we have to carefully rollback the fence and do a
605 	 * preempt-to-idle cycle on the target engine, all the while the
606 	 * master execute_cb may refire.
607 	 */
608 	__notify_execute_cb_irq(request);
609 
610 	/* We may be recursing from the signal callback of another i915 fence */
611 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
612 		i915_request_enable_breadcrumb(request);
613 
614 	return result;
615 }
616 
617 void i915_request_submit(struct i915_request *request)
618 {
619 	struct intel_engine_cs *engine = request->engine;
620 	unsigned long flags;
621 
622 	/* Will be called from irq-context when using foreign fences. */
623 	spin_lock_irqsave(&engine->active.lock, flags);
624 
625 	__i915_request_submit(request);
626 
627 	spin_unlock_irqrestore(&engine->active.lock, flags);
628 }
629 
630 void __i915_request_unsubmit(struct i915_request *request)
631 {
632 	struct intel_engine_cs *engine = request->engine;
633 
634 	/*
635 	 * Only unwind in reverse order, required so that the per-context list
636 	 * is kept in seqno/ring order.
637 	 */
638 	RQ_TRACE(request, "\n");
639 
640 	GEM_BUG_ON(!irqs_disabled());
641 	lockdep_assert_held(&engine->active.lock);
642 
643 	/*
644 	 * Before we remove this breadcrumb from the signal list, we have
645 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
646 	 * attach itself. We first mark the request as no longer active and
647 	 * make sure that is visible to other cores, and then remove the
648 	 * breadcrumb if attached.
649 	 */
650 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
651 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
652 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
653 		i915_request_cancel_breadcrumb(request);
654 
655 	/* We've already spun, don't charge on resubmitting. */
656 	if (request->sched.semaphores && __i915_request_has_started(request))
657 		request->sched.semaphores = 0;
658 
659 	/*
660 	 * We don't need to wake_up any waiters on request->execute, they
661 	 * will get woken by any other event or us re-adding this request
662 	 * to the engine timeline (__i915_request_submit()). The waiters
663 	 * should be quite adapt at finding that the request now has a new
664 	 * global_seqno to the one they went to sleep on.
665 	 */
666 }
667 
668 void i915_request_unsubmit(struct i915_request *request)
669 {
670 	struct intel_engine_cs *engine = request->engine;
671 	unsigned long flags;
672 
673 	/* Will be called from irq-context when using foreign fences. */
674 	spin_lock_irqsave(&engine->active.lock, flags);
675 
676 	__i915_request_unsubmit(request);
677 
678 	spin_unlock_irqrestore(&engine->active.lock, flags);
679 }
680 
681 static int __i915_sw_fence_call
682 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
683 {
684 	struct i915_request *request =
685 		container_of(fence, typeof(*request), submit);
686 
687 	switch (state) {
688 	case FENCE_COMPLETE:
689 		trace_i915_request_submit(request);
690 
691 		if (unlikely(fence->error))
692 			i915_request_set_error_once(request, fence->error);
693 
694 		/*
695 		 * We need to serialize use of the submit_request() callback
696 		 * with its hotplugging performed during an emergency
697 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
698 		 * critical section in order to force i915_gem_set_wedged() to
699 		 * wait until the submit_request() is completed before
700 		 * proceeding.
701 		 */
702 		rcu_read_lock();
703 		request->engine->submit_request(request);
704 		rcu_read_unlock();
705 		break;
706 
707 	case FENCE_FREE:
708 		i915_request_put(request);
709 		break;
710 	}
711 
712 	return NOTIFY_DONE;
713 }
714 
715 static int __i915_sw_fence_call
716 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
717 {
718 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
719 
720 	switch (state) {
721 	case FENCE_COMPLETE:
722 		break;
723 
724 	case FENCE_FREE:
725 		i915_request_put(rq);
726 		break;
727 	}
728 
729 	return NOTIFY_DONE;
730 }
731 
732 static void retire_requests(struct intel_timeline *tl)
733 {
734 	struct i915_request *rq, *rn;
735 
736 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
737 		if (!i915_request_retire(rq))
738 			break;
739 }
740 
741 static noinline struct i915_request *
742 request_alloc_slow(struct intel_timeline *tl,
743 		   struct i915_request **rsvd,
744 		   gfp_t gfp)
745 {
746 	struct i915_request *rq;
747 
748 	/* If we cannot wait, dip into our reserves */
749 	if (!gfpflags_allow_blocking(gfp)) {
750 		rq = xchg(rsvd, NULL);
751 		if (!rq) /* Use the normal failure path for one final WARN */
752 			goto out;
753 
754 		return rq;
755 	}
756 
757 	if (list_empty(&tl->requests))
758 		goto out;
759 
760 	/* Move our oldest request to the slab-cache (if not in use!) */
761 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
762 	i915_request_retire(rq);
763 
764 	rq = kmem_cache_alloc(global.slab_requests,
765 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
766 	if (rq)
767 		return rq;
768 
769 	/* Ratelimit ourselves to prevent oom from malicious clients */
770 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
771 	cond_synchronize_rcu(rq->rcustate);
772 
773 	/* Retire our old requests in the hope that we free some */
774 	retire_requests(tl);
775 
776 out:
777 	return kmem_cache_alloc(global.slab_requests, gfp);
778 }
779 
780 static void __i915_request_ctor(void *arg)
781 {
782 	struct i915_request *rq = arg;
783 
784 	spin_lock_init(&rq->lock);
785 	i915_sched_node_init(&rq->sched);
786 	i915_sw_fence_init(&rq->submit, submit_notify);
787 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
788 
789 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
790 
791 	rq->capture_list = NULL;
792 
793 	init_llist_head(&rq->execute_cb);
794 }
795 
796 struct i915_request *
797 __i915_request_create(struct intel_context *ce, gfp_t gfp)
798 {
799 	struct intel_timeline *tl = ce->timeline;
800 	struct i915_request *rq;
801 	u32 seqno;
802 	int ret;
803 
804 	might_sleep_if(gfpflags_allow_blocking(gfp));
805 
806 	/* Check that the caller provided an already pinned context */
807 	__intel_context_pin(ce);
808 
809 	/*
810 	 * Beware: Dragons be flying overhead.
811 	 *
812 	 * We use RCU to look up requests in flight. The lookups may
813 	 * race with the request being allocated from the slab freelist.
814 	 * That is the request we are writing to here, may be in the process
815 	 * of being read by __i915_active_request_get_rcu(). As such,
816 	 * we have to be very careful when overwriting the contents. During
817 	 * the RCU lookup, we change chase the request->engine pointer,
818 	 * read the request->global_seqno and increment the reference count.
819 	 *
820 	 * The reference count is incremented atomically. If it is zero,
821 	 * the lookup knows the request is unallocated and complete. Otherwise,
822 	 * it is either still in use, or has been reallocated and reset
823 	 * with dma_fence_init(). This increment is safe for release as we
824 	 * check that the request we have a reference to and matches the active
825 	 * request.
826 	 *
827 	 * Before we increment the refcount, we chase the request->engine
828 	 * pointer. We must not call kmem_cache_zalloc() or else we set
829 	 * that pointer to NULL and cause a crash during the lookup. If
830 	 * we see the request is completed (based on the value of the
831 	 * old engine and seqno), the lookup is complete and reports NULL.
832 	 * If we decide the request is not completed (new engine or seqno),
833 	 * then we grab a reference and double check that it is still the
834 	 * active request - which it won't be and restart the lookup.
835 	 *
836 	 * Do not use kmem_cache_zalloc() here!
837 	 */
838 	rq = kmem_cache_alloc(global.slab_requests,
839 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
840 	if (unlikely(!rq)) {
841 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
842 		if (!rq) {
843 			ret = -ENOMEM;
844 			goto err_unreserve;
845 		}
846 	}
847 
848 	rq->context = ce;
849 	rq->engine = ce->engine;
850 	rq->ring = ce->ring;
851 	rq->execution_mask = ce->engine->mask;
852 
853 	kref_init(&rq->fence.refcount);
854 	rq->fence.flags = 0;
855 	rq->fence.error = 0;
856 	INIT_LIST_HEAD(&rq->fence.cb_list);
857 
858 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
859 	if (ret)
860 		goto err_free;
861 
862 	rq->fence.context = tl->fence_context;
863 	rq->fence.seqno = seqno;
864 
865 	RCU_INIT_POINTER(rq->timeline, tl);
866 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
867 	rq->hwsp_seqno = tl->hwsp_seqno;
868 	GEM_BUG_ON(__i915_request_is_complete(rq));
869 
870 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
871 
872 	/* We bump the ref for the fence chain */
873 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
874 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
875 
876 	i915_sched_node_reinit(&rq->sched);
877 
878 	/* No zalloc, everything must be cleared after use */
879 	rq->batch = NULL;
880 	GEM_BUG_ON(rq->capture_list);
881 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
882 
883 	/*
884 	 * Reserve space in the ring buffer for all the commands required to
885 	 * eventually emit this request. This is to guarantee that the
886 	 * i915_request_add() call can't fail. Note that the reserve may need
887 	 * to be redone if the request is not actually submitted straight
888 	 * away, e.g. because a GPU scheduler has deferred it.
889 	 *
890 	 * Note that due to how we add reserved_space to intel_ring_begin()
891 	 * we need to double our request to ensure that if we need to wrap
892 	 * around inside i915_request_add() there is sufficient space at
893 	 * the beginning of the ring as well.
894 	 */
895 	rq->reserved_space =
896 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
897 
898 	/*
899 	 * Record the position of the start of the request so that
900 	 * should we detect the updated seqno part-way through the
901 	 * GPU processing the request, we never over-estimate the
902 	 * position of the head.
903 	 */
904 	rq->head = rq->ring->emit;
905 
906 	ret = rq->engine->request_alloc(rq);
907 	if (ret)
908 		goto err_unwind;
909 
910 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
911 
912 	intel_context_mark_active(ce);
913 	list_add_tail_rcu(&rq->link, &tl->requests);
914 
915 	return rq;
916 
917 err_unwind:
918 	ce->ring->emit = rq->head;
919 
920 	/* Make sure we didn't add ourselves to external state before freeing */
921 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
922 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
923 
924 err_free:
925 	kmem_cache_free(global.slab_requests, rq);
926 err_unreserve:
927 	intel_context_unpin(ce);
928 	return ERR_PTR(ret);
929 }
930 
931 struct i915_request *
932 i915_request_create(struct intel_context *ce)
933 {
934 	struct i915_request *rq;
935 	struct intel_timeline *tl;
936 
937 	tl = intel_context_timeline_lock(ce);
938 	if (IS_ERR(tl))
939 		return ERR_CAST(tl);
940 
941 	/* Move our oldest request to the slab-cache (if not in use!) */
942 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
943 	if (!list_is_last(&rq->link, &tl->requests))
944 		i915_request_retire(rq);
945 
946 	intel_context_enter(ce);
947 	rq = __i915_request_create(ce, GFP_KERNEL);
948 	intel_context_exit(ce); /* active reference transferred to request */
949 	if (IS_ERR(rq))
950 		goto err_unlock;
951 
952 	/* Check that we do not interrupt ourselves with a new request */
953 	rq->cookie = lockdep_pin_lock(&tl->mutex);
954 
955 	return rq;
956 
957 err_unlock:
958 	intel_context_timeline_unlock(tl);
959 	return rq;
960 }
961 
962 static int
963 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
964 {
965 	struct dma_fence *fence;
966 	int err;
967 
968 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
969 		return 0;
970 
971 	if (i915_request_started(signal))
972 		return 0;
973 
974 	/*
975 	 * The caller holds a reference on @signal, but we do not serialise
976 	 * against it being retired and removed from the lists.
977 	 *
978 	 * We do not hold a reference to the request before @signal, and
979 	 * so must be very careful to ensure that it is not _recycled_ as
980 	 * we follow the link backwards.
981 	 */
982 	fence = NULL;
983 	rcu_read_lock();
984 	do {
985 		struct list_head *pos = READ_ONCE(signal->link.prev);
986 		struct i915_request *prev;
987 
988 		/* Confirm signal has not been retired, the link is valid */
989 		if (unlikely(__i915_request_has_started(signal)))
990 			break;
991 
992 		/* Is signal the earliest request on its timeline? */
993 		if (pos == &rcu_dereference(signal->timeline)->requests)
994 			break;
995 
996 		/*
997 		 * Peek at the request before us in the timeline. That
998 		 * request will only be valid before it is retired, so
999 		 * after acquiring a reference to it, confirm that it is
1000 		 * still part of the signaler's timeline.
1001 		 */
1002 		prev = list_entry(pos, typeof(*prev), link);
1003 		if (!i915_request_get_rcu(prev))
1004 			break;
1005 
1006 		/* After the strong barrier, confirm prev is still attached */
1007 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1008 			i915_request_put(prev);
1009 			break;
1010 		}
1011 
1012 		fence = &prev->fence;
1013 	} while (0);
1014 	rcu_read_unlock();
1015 	if (!fence)
1016 		return 0;
1017 
1018 	err = 0;
1019 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1020 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1021 						    fence, 0,
1022 						    I915_FENCE_GFP);
1023 	dma_fence_put(fence);
1024 
1025 	return err;
1026 }
1027 
1028 static intel_engine_mask_t
1029 already_busywaiting(struct i915_request *rq)
1030 {
1031 	/*
1032 	 * Polling a semaphore causes bus traffic, delaying other users of
1033 	 * both the GPU and CPU. We want to limit the impact on others,
1034 	 * while taking advantage of early submission to reduce GPU
1035 	 * latency. Therefore we restrict ourselves to not using more
1036 	 * than one semaphore from each source, and not using a semaphore
1037 	 * if we have detected the engine is saturated (i.e. would not be
1038 	 * submitted early and cause bus traffic reading an already passed
1039 	 * semaphore).
1040 	 *
1041 	 * See the are-we-too-late? check in __i915_request_submit().
1042 	 */
1043 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1044 }
1045 
1046 static int
1047 __emit_semaphore_wait(struct i915_request *to,
1048 		      struct i915_request *from,
1049 		      u32 seqno)
1050 {
1051 	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1052 	u32 hwsp_offset;
1053 	int len, err;
1054 	u32 *cs;
1055 
1056 	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1057 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1058 
1059 	/* We need to pin the signaler's HWSP until we are finished reading. */
1060 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1061 	if (err)
1062 		return err;
1063 
1064 	len = 4;
1065 	if (has_token)
1066 		len += 2;
1067 
1068 	cs = intel_ring_begin(to, len);
1069 	if (IS_ERR(cs))
1070 		return PTR_ERR(cs);
1071 
1072 	/*
1073 	 * Using greater-than-or-equal here means we have to worry
1074 	 * about seqno wraparound. To side step that issue, we swap
1075 	 * the timeline HWSP upon wrapping, so that everyone listening
1076 	 * for the old (pre-wrap) values do not see the much smaller
1077 	 * (post-wrap) values than they were expecting (and so wait
1078 	 * forever).
1079 	 */
1080 	*cs++ = (MI_SEMAPHORE_WAIT |
1081 		 MI_SEMAPHORE_GLOBAL_GTT |
1082 		 MI_SEMAPHORE_POLL |
1083 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1084 		has_token;
1085 	*cs++ = seqno;
1086 	*cs++ = hwsp_offset;
1087 	*cs++ = 0;
1088 	if (has_token) {
1089 		*cs++ = 0;
1090 		*cs++ = MI_NOOP;
1091 	}
1092 
1093 	intel_ring_advance(to, cs);
1094 	return 0;
1095 }
1096 
1097 static int
1098 emit_semaphore_wait(struct i915_request *to,
1099 		    struct i915_request *from,
1100 		    gfp_t gfp)
1101 {
1102 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1103 	struct i915_sw_fence *wait = &to->submit;
1104 
1105 	if (!intel_context_use_semaphores(to->context))
1106 		goto await_fence;
1107 
1108 	if (i915_request_has_initial_breadcrumb(to))
1109 		goto await_fence;
1110 
1111 	if (!rcu_access_pointer(from->hwsp_cacheline))
1112 		goto await_fence;
1113 
1114 	/*
1115 	 * If this or its dependents are waiting on an external fence
1116 	 * that may fail catastrophically, then we want to avoid using
1117 	 * sempahores as they bypass the fence signaling metadata, and we
1118 	 * lose the fence->error propagation.
1119 	 */
1120 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1121 		goto await_fence;
1122 
1123 	/* Just emit the first semaphore we see as request space is limited. */
1124 	if (already_busywaiting(to) & mask)
1125 		goto await_fence;
1126 
1127 	if (i915_request_await_start(to, from) < 0)
1128 		goto await_fence;
1129 
1130 	/* Only submit our spinner after the signaler is running! */
1131 	if (__await_execution(to, from, NULL, gfp))
1132 		goto await_fence;
1133 
1134 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1135 		goto await_fence;
1136 
1137 	to->sched.semaphores |= mask;
1138 	wait = &to->semaphore;
1139 
1140 await_fence:
1141 	return i915_sw_fence_await_dma_fence(wait,
1142 					     &from->fence, 0,
1143 					     I915_FENCE_GFP);
1144 }
1145 
1146 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1147 					  struct dma_fence *fence)
1148 {
1149 	return __intel_timeline_sync_is_later(tl,
1150 					      fence->context,
1151 					      fence->seqno - 1);
1152 }
1153 
1154 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1155 					 const struct dma_fence *fence)
1156 {
1157 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1158 }
1159 
1160 static int
1161 __i915_request_await_execution(struct i915_request *to,
1162 			       struct i915_request *from,
1163 			       void (*hook)(struct i915_request *rq,
1164 					    struct dma_fence *signal))
1165 {
1166 	int err;
1167 
1168 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1169 
1170 	/* Submit both requests at the same time */
1171 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1172 	if (err)
1173 		return err;
1174 
1175 	/* Squash repeated depenendices to the same timelines */
1176 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1177 					  &from->fence))
1178 		return 0;
1179 
1180 	/*
1181 	 * Wait until the start of this request.
1182 	 *
1183 	 * The execution cb fires when we submit the request to HW. But in
1184 	 * many cases this may be long before the request itself is ready to
1185 	 * run (consider that we submit 2 requests for the same context, where
1186 	 * the request of interest is behind an indefinite spinner). So we hook
1187 	 * up to both to reduce our queues and keep the execution lag minimised
1188 	 * in the worst case, though we hope that the await_start is elided.
1189 	 */
1190 	err = i915_request_await_start(to, from);
1191 	if (err < 0)
1192 		return err;
1193 
1194 	/*
1195 	 * Ensure both start together [after all semaphores in signal]
1196 	 *
1197 	 * Now that we are queued to the HW at roughly the same time (thanks
1198 	 * to the execute cb) and are ready to run at roughly the same time
1199 	 * (thanks to the await start), our signaler may still be indefinitely
1200 	 * delayed by waiting on a semaphore from a remote engine. If our
1201 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1202 	 * want to start our payload until our signaler also starts theirs.
1203 	 * So we wait.
1204 	 *
1205 	 * However, there is also a second condition for which we need to wait
1206 	 * for the precise start of the signaler. Consider that the signaler
1207 	 * was submitted in a chain of requests following another context
1208 	 * (with just an ordinary intra-engine fence dependency between the
1209 	 * two). In this case the signaler is queued to HW, but not for
1210 	 * immediate execution, and so we must wait until it reaches the
1211 	 * active slot.
1212 	 */
1213 	if (intel_engine_has_semaphores(to->engine) &&
1214 	    !i915_request_has_initial_breadcrumb(to)) {
1215 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1216 		if (err < 0)
1217 			return err;
1218 	}
1219 
1220 	/* Couple the dependency tree for PI on this exposed to->fence */
1221 	if (to->engine->schedule) {
1222 		err = i915_sched_node_add_dependency(&to->sched,
1223 						     &from->sched,
1224 						     I915_DEPENDENCY_WEAK);
1225 		if (err < 0)
1226 			return err;
1227 	}
1228 
1229 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1230 					     &from->fence);
1231 }
1232 
1233 static void mark_external(struct i915_request *rq)
1234 {
1235 	/*
1236 	 * The downside of using semaphores is that we lose metadata passing
1237 	 * along the signaling chain. This is particularly nasty when we
1238 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1239 	 * fatal errors we want to scrub the request before it is executed,
1240 	 * which means that we cannot preload the request onto HW and have
1241 	 * it wait upon a semaphore.
1242 	 */
1243 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1244 }
1245 
1246 static int
1247 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1248 {
1249 	mark_external(rq);
1250 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1251 					     i915_fence_context_timeout(rq->engine->i915,
1252 									fence->context),
1253 					     I915_FENCE_GFP);
1254 }
1255 
1256 static int
1257 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1258 {
1259 	struct dma_fence *iter;
1260 	int err = 0;
1261 
1262 	if (!to_dma_fence_chain(fence))
1263 		return __i915_request_await_external(rq, fence);
1264 
1265 	dma_fence_chain_for_each(iter, fence) {
1266 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1267 
1268 		if (!dma_fence_is_i915(chain->fence)) {
1269 			err = __i915_request_await_external(rq, iter);
1270 			break;
1271 		}
1272 
1273 		err = i915_request_await_dma_fence(rq, chain->fence);
1274 		if (err < 0)
1275 			break;
1276 	}
1277 
1278 	dma_fence_put(iter);
1279 	return err;
1280 }
1281 
1282 int
1283 i915_request_await_execution(struct i915_request *rq,
1284 			     struct dma_fence *fence,
1285 			     void (*hook)(struct i915_request *rq,
1286 					  struct dma_fence *signal))
1287 {
1288 	struct dma_fence **child = &fence;
1289 	unsigned int nchild = 1;
1290 	int ret;
1291 
1292 	if (dma_fence_is_array(fence)) {
1293 		struct dma_fence_array *array = to_dma_fence_array(fence);
1294 
1295 		/* XXX Error for signal-on-any fence arrays */
1296 
1297 		child = array->fences;
1298 		nchild = array->num_fences;
1299 		GEM_BUG_ON(!nchild);
1300 	}
1301 
1302 	do {
1303 		fence = *child++;
1304 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1305 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1306 			continue;
1307 		}
1308 
1309 		if (fence->context == rq->fence.context)
1310 			continue;
1311 
1312 		/*
1313 		 * We don't squash repeated fence dependencies here as we
1314 		 * want to run our callback in all cases.
1315 		 */
1316 
1317 		if (dma_fence_is_i915(fence))
1318 			ret = __i915_request_await_execution(rq,
1319 							     to_request(fence),
1320 							     hook);
1321 		else
1322 			ret = i915_request_await_external(rq, fence);
1323 		if (ret < 0)
1324 			return ret;
1325 	} while (--nchild);
1326 
1327 	return 0;
1328 }
1329 
1330 static int
1331 await_request_submit(struct i915_request *to, struct i915_request *from)
1332 {
1333 	/*
1334 	 * If we are waiting on a virtual engine, then it may be
1335 	 * constrained to execute on a single engine *prior* to submission.
1336 	 * When it is submitted, it will be first submitted to the virtual
1337 	 * engine and then passed to the physical engine. We cannot allow
1338 	 * the waiter to be submitted immediately to the physical engine
1339 	 * as it may then bypass the virtual request.
1340 	 */
1341 	if (to->engine == READ_ONCE(from->engine))
1342 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1343 							&from->submit,
1344 							I915_FENCE_GFP);
1345 	else
1346 		return __i915_request_await_execution(to, from, NULL);
1347 }
1348 
1349 static int
1350 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1351 {
1352 	int ret;
1353 
1354 	GEM_BUG_ON(to == from);
1355 	GEM_BUG_ON(to->timeline == from->timeline);
1356 
1357 	if (i915_request_completed(from)) {
1358 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1359 		return 0;
1360 	}
1361 
1362 	if (to->engine->schedule) {
1363 		ret = i915_sched_node_add_dependency(&to->sched,
1364 						     &from->sched,
1365 						     I915_DEPENDENCY_EXTERNAL);
1366 		if (ret < 0)
1367 			return ret;
1368 	}
1369 
1370 	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1371 		ret = await_request_submit(to, from);
1372 	else
1373 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1374 	if (ret < 0)
1375 		return ret;
1376 
1377 	return 0;
1378 }
1379 
1380 int
1381 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1382 {
1383 	struct dma_fence **child = &fence;
1384 	unsigned int nchild = 1;
1385 	int ret;
1386 
1387 	/*
1388 	 * Note that if the fence-array was created in signal-on-any mode,
1389 	 * we should *not* decompose it into its individual fences. However,
1390 	 * we don't currently store which mode the fence-array is operating
1391 	 * in. Fortunately, the only user of signal-on-any is private to
1392 	 * amdgpu and we should not see any incoming fence-array from
1393 	 * sync-file being in signal-on-any mode.
1394 	 */
1395 	if (dma_fence_is_array(fence)) {
1396 		struct dma_fence_array *array = to_dma_fence_array(fence);
1397 
1398 		child = array->fences;
1399 		nchild = array->num_fences;
1400 		GEM_BUG_ON(!nchild);
1401 	}
1402 
1403 	do {
1404 		fence = *child++;
1405 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1406 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1407 			continue;
1408 		}
1409 
1410 		/*
1411 		 * Requests on the same timeline are explicitly ordered, along
1412 		 * with their dependencies, by i915_request_add() which ensures
1413 		 * that requests are submitted in-order through each ring.
1414 		 */
1415 		if (fence->context == rq->fence.context)
1416 			continue;
1417 
1418 		/* Squash repeated waits to the same timelines */
1419 		if (fence->context &&
1420 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1421 						 fence))
1422 			continue;
1423 
1424 		if (dma_fence_is_i915(fence))
1425 			ret = i915_request_await_request(rq, to_request(fence));
1426 		else
1427 			ret = i915_request_await_external(rq, fence);
1428 		if (ret < 0)
1429 			return ret;
1430 
1431 		/* Record the latest fence used against each timeline */
1432 		if (fence->context)
1433 			intel_timeline_sync_set(i915_request_timeline(rq),
1434 						fence);
1435 	} while (--nchild);
1436 
1437 	return 0;
1438 }
1439 
1440 /**
1441  * i915_request_await_object - set this request to (async) wait upon a bo
1442  * @to: request we are wishing to use
1443  * @obj: object which may be in use on another ring.
1444  * @write: whether the wait is on behalf of a writer
1445  *
1446  * This code is meant to abstract object synchronization with the GPU.
1447  * Conceptually we serialise writes between engines inside the GPU.
1448  * We only allow one engine to write into a buffer at any time, but
1449  * multiple readers. To ensure each has a coherent view of memory, we must:
1450  *
1451  * - If there is an outstanding write request to the object, the new
1452  *   request must wait for it to complete (either CPU or in hw, requests
1453  *   on the same ring will be naturally ordered).
1454  *
1455  * - If we are a write request (pending_write_domain is set), the new
1456  *   request must wait for outstanding read requests to complete.
1457  *
1458  * Returns 0 if successful, else propagates up the lower layer error.
1459  */
1460 int
1461 i915_request_await_object(struct i915_request *to,
1462 			  struct drm_i915_gem_object *obj,
1463 			  bool write)
1464 {
1465 	struct dma_fence *excl;
1466 	int ret = 0;
1467 
1468 	if (write) {
1469 		struct dma_fence **shared;
1470 		unsigned int count, i;
1471 
1472 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1473 							&excl, &count, &shared);
1474 		if (ret)
1475 			return ret;
1476 
1477 		for (i = 0; i < count; i++) {
1478 			ret = i915_request_await_dma_fence(to, shared[i]);
1479 			if (ret)
1480 				break;
1481 
1482 			dma_fence_put(shared[i]);
1483 		}
1484 
1485 		for (; i < count; i++)
1486 			dma_fence_put(shared[i]);
1487 		kfree(shared);
1488 	} else {
1489 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1490 	}
1491 
1492 	if (excl) {
1493 		if (ret == 0)
1494 			ret = i915_request_await_dma_fence(to, excl);
1495 
1496 		dma_fence_put(excl);
1497 	}
1498 
1499 	return ret;
1500 }
1501 
1502 static struct i915_request *
1503 __i915_request_add_to_timeline(struct i915_request *rq)
1504 {
1505 	struct intel_timeline *timeline = i915_request_timeline(rq);
1506 	struct i915_request *prev;
1507 
1508 	/*
1509 	 * Dependency tracking and request ordering along the timeline
1510 	 * is special cased so that we can eliminate redundant ordering
1511 	 * operations while building the request (we know that the timeline
1512 	 * itself is ordered, and here we guarantee it).
1513 	 *
1514 	 * As we know we will need to emit tracking along the timeline,
1515 	 * we embed the hooks into our request struct -- at the cost of
1516 	 * having to have specialised no-allocation interfaces (which will
1517 	 * be beneficial elsewhere).
1518 	 *
1519 	 * A second benefit to open-coding i915_request_await_request is
1520 	 * that we can apply a slight variant of the rules specialised
1521 	 * for timelines that jump between engines (such as virtual engines).
1522 	 * If we consider the case of virtual engine, we must emit a dma-fence
1523 	 * to prevent scheduling of the second request until the first is
1524 	 * complete (to maximise our greedy late load balancing) and this
1525 	 * precludes optimising to use semaphores serialisation of a single
1526 	 * timeline across engines.
1527 	 */
1528 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1529 						  &rq->fence));
1530 	if (prev && !__i915_request_is_complete(prev)) {
1531 		/*
1532 		 * The requests are supposed to be kept in order. However,
1533 		 * we need to be wary in case the timeline->last_request
1534 		 * is used as a barrier for external modification to this
1535 		 * context.
1536 		 */
1537 		GEM_BUG_ON(prev->context == rq->context &&
1538 			   i915_seqno_passed(prev->fence.seqno,
1539 					     rq->fence.seqno));
1540 
1541 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1542 			i915_sw_fence_await_sw_fence(&rq->submit,
1543 						     &prev->submit,
1544 						     &rq->submitq);
1545 		else
1546 			__i915_sw_fence_await_dma_fence(&rq->submit,
1547 							&prev->fence,
1548 							&rq->dmaq);
1549 		if (rq->engine->schedule)
1550 			__i915_sched_node_add_dependency(&rq->sched,
1551 							 &prev->sched,
1552 							 &rq->dep,
1553 							 0);
1554 	}
1555 
1556 	/*
1557 	 * Make sure that no request gazumped us - if it was allocated after
1558 	 * our i915_request_alloc() and called __i915_request_add() before
1559 	 * us, the timeline will hold its seqno which is later than ours.
1560 	 */
1561 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1562 
1563 	return prev;
1564 }
1565 
1566 /*
1567  * NB: This function is not allowed to fail. Doing so would mean the the
1568  * request is not being tracked for completion but the work itself is
1569  * going to happen on the hardware. This would be a Bad Thing(tm).
1570  */
1571 struct i915_request *__i915_request_commit(struct i915_request *rq)
1572 {
1573 	struct intel_engine_cs *engine = rq->engine;
1574 	struct intel_ring *ring = rq->ring;
1575 	u32 *cs;
1576 
1577 	RQ_TRACE(rq, "\n");
1578 
1579 	/*
1580 	 * To ensure that this call will not fail, space for its emissions
1581 	 * should already have been reserved in the ring buffer. Let the ring
1582 	 * know that it is time to use that space up.
1583 	 */
1584 	GEM_BUG_ON(rq->reserved_space > ring->space);
1585 	rq->reserved_space = 0;
1586 	rq->emitted_jiffies = jiffies;
1587 
1588 	/*
1589 	 * Record the position of the start of the breadcrumb so that
1590 	 * should we detect the updated seqno part-way through the
1591 	 * GPU processing the request, we never over-estimate the
1592 	 * position of the ring's HEAD.
1593 	 */
1594 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1595 	GEM_BUG_ON(IS_ERR(cs));
1596 	rq->postfix = intel_ring_offset(rq, cs);
1597 
1598 	return __i915_request_add_to_timeline(rq);
1599 }
1600 
1601 void __i915_request_queue_bh(struct i915_request *rq)
1602 {
1603 	i915_sw_fence_commit(&rq->semaphore);
1604 	i915_sw_fence_commit(&rq->submit);
1605 }
1606 
1607 void __i915_request_queue(struct i915_request *rq,
1608 			  const struct i915_sched_attr *attr)
1609 {
1610 	/*
1611 	 * Let the backend know a new request has arrived that may need
1612 	 * to adjust the existing execution schedule due to a high priority
1613 	 * request - i.e. we may want to preempt the current request in order
1614 	 * to run a high priority dependency chain *before* we can execute this
1615 	 * request.
1616 	 *
1617 	 * This is called before the request is ready to run so that we can
1618 	 * decide whether to preempt the entire chain so that it is ready to
1619 	 * run at the earliest possible convenience.
1620 	 */
1621 	if (attr && rq->engine->schedule)
1622 		rq->engine->schedule(rq, attr);
1623 
1624 	local_bh_disable();
1625 	__i915_request_queue_bh(rq);
1626 	local_bh_enable(); /* kick tasklets */
1627 }
1628 
1629 void i915_request_add(struct i915_request *rq)
1630 {
1631 	struct intel_timeline * const tl = i915_request_timeline(rq);
1632 	struct i915_sched_attr attr = {};
1633 	struct i915_gem_context *ctx;
1634 
1635 	lockdep_assert_held(&tl->mutex);
1636 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1637 
1638 	trace_i915_request_add(rq);
1639 	__i915_request_commit(rq);
1640 
1641 	/* XXX placeholder for selftests */
1642 	rcu_read_lock();
1643 	ctx = rcu_dereference(rq->context->gem_context);
1644 	if (ctx)
1645 		attr = ctx->sched;
1646 	rcu_read_unlock();
1647 
1648 	__i915_request_queue(rq, &attr);
1649 
1650 	mutex_unlock(&tl->mutex);
1651 }
1652 
1653 static unsigned long local_clock_ns(unsigned int *cpu)
1654 {
1655 	unsigned long t;
1656 
1657 	/*
1658 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1659 	 * The result and subsequent calculations are also defined in the same
1660 	 * approximate microseconds units. The principal source of timing
1661 	 * error here is from the simple truncation.
1662 	 *
1663 	 * Note that local_clock() is only defined wrt to the current CPU;
1664 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1665 	 * blocking preemption for the entire busywait, we can detect the CPU
1666 	 * switch and use that as indicator of system load and a reason to
1667 	 * stop busywaiting, see busywait_stop().
1668 	 */
1669 	*cpu = get_cpu();
1670 	t = local_clock();
1671 	put_cpu();
1672 
1673 	return t;
1674 }
1675 
1676 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1677 {
1678 	unsigned int this_cpu;
1679 
1680 	if (time_after(local_clock_ns(&this_cpu), timeout))
1681 		return true;
1682 
1683 	return this_cpu != cpu;
1684 }
1685 
1686 static bool __i915_spin_request(struct i915_request * const rq, int state)
1687 {
1688 	unsigned long timeout_ns;
1689 	unsigned int cpu;
1690 
1691 	/*
1692 	 * Only wait for the request if we know it is likely to complete.
1693 	 *
1694 	 * We don't track the timestamps around requests, nor the average
1695 	 * request length, so we do not have a good indicator that this
1696 	 * request will complete within the timeout. What we do know is the
1697 	 * order in which requests are executed by the context and so we can
1698 	 * tell if the request has been started. If the request is not even
1699 	 * running yet, it is a fair assumption that it will not complete
1700 	 * within our relatively short timeout.
1701 	 */
1702 	if (!i915_request_is_running(rq))
1703 		return false;
1704 
1705 	/*
1706 	 * When waiting for high frequency requests, e.g. during synchronous
1707 	 * rendering split between the CPU and GPU, the finite amount of time
1708 	 * required to set up the irq and wait upon it limits the response
1709 	 * rate. By busywaiting on the request completion for a short while we
1710 	 * can service the high frequency waits as quick as possible. However,
1711 	 * if it is a slow request, we want to sleep as quickly as possible.
1712 	 * The tradeoff between waiting and sleeping is roughly the time it
1713 	 * takes to sleep on a request, on the order of a microsecond.
1714 	 */
1715 
1716 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1717 	timeout_ns += local_clock_ns(&cpu);
1718 	do {
1719 		if (dma_fence_is_signaled(&rq->fence))
1720 			return true;
1721 
1722 		if (signal_pending_state(state, current))
1723 			break;
1724 
1725 		if (busywait_stop(timeout_ns, cpu))
1726 			break;
1727 
1728 		cpu_relax();
1729 	} while (!need_resched());
1730 
1731 	return false;
1732 }
1733 
1734 struct request_wait {
1735 	struct dma_fence_cb cb;
1736 	struct task_struct *tsk;
1737 };
1738 
1739 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1740 {
1741 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1742 
1743 	wake_up_process(fetch_and_zero(&wait->tsk));
1744 }
1745 
1746 /**
1747  * i915_request_wait - wait until execution of request has finished
1748  * @rq: the request to wait upon
1749  * @flags: how to wait
1750  * @timeout: how long to wait in jiffies
1751  *
1752  * i915_request_wait() waits for the request to be completed, for a
1753  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1754  * unbounded wait).
1755  *
1756  * Returns the remaining time (in jiffies) if the request completed, which may
1757  * be zero or -ETIME if the request is unfinished after the timeout expires.
1758  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1759  * pending before the request completes.
1760  */
1761 long i915_request_wait(struct i915_request *rq,
1762 		       unsigned int flags,
1763 		       long timeout)
1764 {
1765 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1766 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1767 	struct request_wait wait;
1768 
1769 	might_sleep();
1770 	GEM_BUG_ON(timeout < 0);
1771 
1772 	if (dma_fence_is_signaled(&rq->fence))
1773 		return timeout;
1774 
1775 	if (!timeout)
1776 		return -ETIME;
1777 
1778 	trace_i915_request_wait_begin(rq, flags);
1779 
1780 	/*
1781 	 * We must never wait on the GPU while holding a lock as we
1782 	 * may need to perform a GPU reset. So while we don't need to
1783 	 * serialise wait/reset with an explicit lock, we do want
1784 	 * lockdep to detect potential dependency cycles.
1785 	 */
1786 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1787 
1788 	/*
1789 	 * Optimistic spin before touching IRQs.
1790 	 *
1791 	 * We may use a rather large value here to offset the penalty of
1792 	 * switching away from the active task. Frequently, the client will
1793 	 * wait upon an old swapbuffer to throttle itself to remain within a
1794 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1795 	 * then it should not be waiting long at all, and a sleep now will incur
1796 	 * extra scheduler latency in producing the next frame. To try to
1797 	 * avoid adding the cost of enabling/disabling the interrupt to the
1798 	 * short wait, we first spin to see if the request would have completed
1799 	 * in the time taken to setup the interrupt.
1800 	 *
1801 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1802 	 * scheduler latency of a context switch, ignoring the secondary
1803 	 * impacts from a context switch such as cache eviction.
1804 	 *
1805 	 * The scheme used for low-latency IO is called "hybrid interrupt
1806 	 * polling". The suggestion there is to sleep until just before you
1807 	 * expect to be woken by the device interrupt and then poll for its
1808 	 * completion. That requires having a good predictor for the request
1809 	 * duration, which we currently lack.
1810 	 */
1811 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1812 	    __i915_spin_request(rq, state))
1813 		goto out;
1814 
1815 	/*
1816 	 * This client is about to stall waiting for the GPU. In many cases
1817 	 * this is undesirable and limits the throughput of the system, as
1818 	 * many clients cannot continue processing user input/output whilst
1819 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1820 	 * to the GPU load and thus incurs additional latency for the client.
1821 	 * We can circumvent that by promoting the GPU frequency to maximum
1822 	 * before we sleep. This makes the GPU throttle up much more quickly
1823 	 * (good for benchmarks and user experience, e.g. window animations),
1824 	 * but at a cost of spending more power processing the workload
1825 	 * (bad for battery).
1826 	 */
1827 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1828 		intel_rps_boost(rq);
1829 
1830 	wait.tsk = current;
1831 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1832 		goto out;
1833 
1834 	/*
1835 	 * Flush the submission tasklet, but only if it may help this request.
1836 	 *
1837 	 * We sometimes experience some latency between the HW interrupts and
1838 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1839 	 * be due to lazy CS events), so lets run the tasklet manually if there
1840 	 * is a chance it may submit this request. If the request is not ready
1841 	 * to run, as it is waiting for other fences to be signaled, flushing
1842 	 * the tasklet is busy work without any advantage for this client.
1843 	 *
1844 	 * If the HW is being lazy, this is the last chance before we go to
1845 	 * sleep to catch any pending events. We will check periodically in
1846 	 * the heartbeat to flush the submission tasklets as a last resort
1847 	 * for unhappy HW.
1848 	 */
1849 	if (i915_request_is_ready(rq))
1850 		__intel_engine_flush_submission(rq->engine, false);
1851 
1852 	for (;;) {
1853 		set_current_state(state);
1854 
1855 		if (dma_fence_is_signaled(&rq->fence))
1856 			break;
1857 
1858 		if (signal_pending_state(state, current)) {
1859 			timeout = -ERESTARTSYS;
1860 			break;
1861 		}
1862 
1863 		if (!timeout) {
1864 			timeout = -ETIME;
1865 			break;
1866 		}
1867 
1868 		timeout = io_schedule_timeout(timeout);
1869 	}
1870 	__set_current_state(TASK_RUNNING);
1871 
1872 	if (READ_ONCE(wait.tsk))
1873 		dma_fence_remove_callback(&rq->fence, &wait.cb);
1874 	GEM_BUG_ON(!list_empty(&wait.cb.node));
1875 
1876 out:
1877 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1878 	trace_i915_request_wait_end(rq);
1879 	return timeout;
1880 }
1881 
1882 static int print_sched_attr(const struct i915_sched_attr *attr,
1883 			    char *buf, int x, int len)
1884 {
1885 	if (attr->priority == I915_PRIORITY_INVALID)
1886 		return x;
1887 
1888 	x += snprintf(buf + x, len - x,
1889 		      " prio=%d", attr->priority);
1890 
1891 	return x;
1892 }
1893 
1894 static char queue_status(const struct i915_request *rq)
1895 {
1896 	if (i915_request_is_active(rq))
1897 		return 'E';
1898 
1899 	if (i915_request_is_ready(rq))
1900 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
1901 
1902 	return 'U';
1903 }
1904 
1905 static const char *run_status(const struct i915_request *rq)
1906 {
1907 	if (__i915_request_is_complete(rq))
1908 		return "!";
1909 
1910 	if (__i915_request_has_started(rq))
1911 		return "*";
1912 
1913 	if (!i915_sw_fence_signaled(&rq->semaphore))
1914 		return "&";
1915 
1916 	return "";
1917 }
1918 
1919 static const char *fence_status(const struct i915_request *rq)
1920 {
1921 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
1922 		return "+";
1923 
1924 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
1925 		return "-";
1926 
1927 	return "";
1928 }
1929 
1930 void i915_request_show(struct drm_printer *m,
1931 		       const struct i915_request *rq,
1932 		       const char *prefix,
1933 		       int indent)
1934 {
1935 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
1936 	char buf[80] = "";
1937 	int x = 0;
1938 
1939 	/*
1940 	 * The prefix is used to show the queue status, for which we use
1941 	 * the following flags:
1942 	 *
1943 	 *  U [Unready]
1944 	 *    - initial status upon being submitted by the user
1945 	 *
1946 	 *    - the request is not ready for execution as it is waiting
1947 	 *      for external fences
1948 	 *
1949 	 *  R [Ready]
1950 	 *    - all fences the request was waiting on have been signaled,
1951 	 *      and the request is now ready for execution and will be
1952 	 *      in a backend queue
1953 	 *
1954 	 *    - a ready request may still need to wait on semaphores
1955 	 *      [internal fences]
1956 	 *
1957 	 *  V [Ready/virtual]
1958 	 *    - same as ready, but queued over multiple backends
1959 	 *
1960 	 *  E [Executing]
1961 	 *    - the request has been transferred from the backend queue and
1962 	 *      submitted for execution on HW
1963 	 *
1964 	 *    - a completed request may still be regarded as executing, its
1965 	 *      status may not be updated until it is retired and removed
1966 	 *      from the lists
1967 	 */
1968 
1969 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1970 
1971 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
1972 		   prefix, indent, "                ",
1973 		   queue_status(rq),
1974 		   rq->fence.context, rq->fence.seqno,
1975 		   run_status(rq),
1976 		   fence_status(rq),
1977 		   buf,
1978 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1979 		   name);
1980 }
1981 
1982 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1983 #include "selftests/mock_request.c"
1984 #include "selftests/i915_request.c"
1985 #endif
1986 
1987 static void i915_global_request_shrink(void)
1988 {
1989 	kmem_cache_shrink(global.slab_execute_cbs);
1990 	kmem_cache_shrink(global.slab_requests);
1991 }
1992 
1993 static void i915_global_request_exit(void)
1994 {
1995 	kmem_cache_destroy(global.slab_execute_cbs);
1996 	kmem_cache_destroy(global.slab_requests);
1997 }
1998 
1999 static struct i915_global_request global = { {
2000 	.shrink = i915_global_request_shrink,
2001 	.exit = i915_global_request_exit,
2002 } };
2003 
2004 int __init i915_global_request_init(void)
2005 {
2006 	global.slab_requests =
2007 		kmem_cache_create("i915_request",
2008 				  sizeof(struct i915_request),
2009 				  __alignof__(struct i915_request),
2010 				  SLAB_HWCACHE_ALIGN |
2011 				  SLAB_RECLAIM_ACCOUNT |
2012 				  SLAB_TYPESAFE_BY_RCU,
2013 				  __i915_request_ctor);
2014 	if (!global.slab_requests)
2015 		return -ENOMEM;
2016 
2017 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
2018 					     SLAB_HWCACHE_ALIGN |
2019 					     SLAB_RECLAIM_ACCOUNT |
2020 					     SLAB_TYPESAFE_BY_RCU);
2021 	if (!global.slab_execute_cbs)
2022 		goto err_requests;
2023 
2024 	i915_global_register(&global.base);
2025 	return 0;
2026 
2027 err_requests:
2028 	kmem_cache_destroy(global.slab_requests);
2029 	return -ENOMEM;
2030 }
2031