1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 35 #include "i915_active.h" 36 #include "i915_drv.h" 37 #include "i915_globals.h" 38 #include "i915_trace.h" 39 #include "intel_pm.h" 40 41 struct execute_cb { 42 struct list_head link; 43 struct irq_work work; 44 struct i915_sw_fence *fence; 45 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 46 struct i915_request *signal; 47 }; 48 49 static struct i915_global_request { 50 struct i915_global base; 51 struct kmem_cache *slab_requests; 52 struct kmem_cache *slab_dependencies; 53 struct kmem_cache *slab_execute_cbs; 54 } global; 55 56 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 57 { 58 return "i915"; 59 } 60 61 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 62 { 63 /* 64 * The timeline struct (as part of the ppgtt underneath a context) 65 * may be freed when the request is no longer in use by the GPU. 66 * We could extend the life of a context to beyond that of all 67 * fences, possibly keeping the hw resource around indefinitely, 68 * or we just give them a false name. Since 69 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 70 * lie seems justifiable. 71 */ 72 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 73 return "signaled"; 74 75 return to_request(fence)->gem_context->name ?: "[i915]"; 76 } 77 78 static bool i915_fence_signaled(struct dma_fence *fence) 79 { 80 return i915_request_completed(to_request(fence)); 81 } 82 83 static bool i915_fence_enable_signaling(struct dma_fence *fence) 84 { 85 return i915_request_enable_breadcrumb(to_request(fence)); 86 } 87 88 static signed long i915_fence_wait(struct dma_fence *fence, 89 bool interruptible, 90 signed long timeout) 91 { 92 return i915_request_wait(to_request(fence), 93 interruptible | I915_WAIT_PRIORITY, 94 timeout); 95 } 96 97 static void i915_fence_release(struct dma_fence *fence) 98 { 99 struct i915_request *rq = to_request(fence); 100 101 /* 102 * The request is put onto a RCU freelist (i.e. the address 103 * is immediately reused), mark the fences as being freed now. 104 * Otherwise the debugobjects for the fences are only marked as 105 * freed when the slab cache itself is freed, and so we would get 106 * caught trying to reuse dead objects. 107 */ 108 i915_sw_fence_fini(&rq->submit); 109 i915_sw_fence_fini(&rq->semaphore); 110 111 kmem_cache_free(global.slab_requests, rq); 112 } 113 114 const struct dma_fence_ops i915_fence_ops = { 115 .get_driver_name = i915_fence_get_driver_name, 116 .get_timeline_name = i915_fence_get_timeline_name, 117 .enable_signaling = i915_fence_enable_signaling, 118 .signaled = i915_fence_signaled, 119 .wait = i915_fence_wait, 120 .release = i915_fence_release, 121 }; 122 123 static void irq_execute_cb(struct irq_work *wrk) 124 { 125 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 126 127 i915_sw_fence_complete(cb->fence); 128 kmem_cache_free(global.slab_execute_cbs, cb); 129 } 130 131 static void irq_execute_cb_hook(struct irq_work *wrk) 132 { 133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 134 135 cb->hook(container_of(cb->fence, struct i915_request, submit), 136 &cb->signal->fence); 137 i915_request_put(cb->signal); 138 139 irq_execute_cb(wrk); 140 } 141 142 static void __notify_execute_cb(struct i915_request *rq) 143 { 144 struct execute_cb *cb; 145 146 lockdep_assert_held(&rq->lock); 147 148 if (list_empty(&rq->execute_cb)) 149 return; 150 151 list_for_each_entry(cb, &rq->execute_cb, link) 152 irq_work_queue(&cb->work); 153 154 /* 155 * XXX Rollback on __i915_request_unsubmit() 156 * 157 * In the future, perhaps when we have an active time-slicing scheduler, 158 * it will be interesting to unsubmit parallel execution and remove 159 * busywaits from the GPU until their master is restarted. This is 160 * quite hairy, we have to carefully rollback the fence and do a 161 * preempt-to-idle cycle on the target engine, all the while the 162 * master execute_cb may refire. 163 */ 164 INIT_LIST_HEAD(&rq->execute_cb); 165 } 166 167 static inline void 168 remove_from_client(struct i915_request *request) 169 { 170 struct drm_i915_file_private *file_priv; 171 172 file_priv = READ_ONCE(request->file_priv); 173 if (!file_priv) 174 return; 175 176 spin_lock(&file_priv->mm.lock); 177 if (request->file_priv) { 178 list_del(&request->client_link); 179 request->file_priv = NULL; 180 } 181 spin_unlock(&file_priv->mm.lock); 182 } 183 184 static void free_capture_list(struct i915_request *request) 185 { 186 struct i915_capture_list *capture; 187 188 capture = request->capture_list; 189 while (capture) { 190 struct i915_capture_list *next = capture->next; 191 192 kfree(capture); 193 capture = next; 194 } 195 } 196 197 static void remove_from_engine(struct i915_request *rq) 198 { 199 struct intel_engine_cs *engine, *locked; 200 201 /* 202 * Virtual engines complicate acquiring the engine timeline lock, 203 * as their rq->engine pointer is not stable until under that 204 * engine lock. The simple ploy we use is to take the lock then 205 * check that the rq still belongs to the newly locked engine. 206 */ 207 locked = READ_ONCE(rq->engine); 208 spin_lock(&locked->active.lock); 209 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 210 spin_unlock(&locked->active.lock); 211 spin_lock(&engine->active.lock); 212 locked = engine; 213 } 214 list_del(&rq->sched.link); 215 spin_unlock(&locked->active.lock); 216 } 217 218 static bool i915_request_retire(struct i915_request *rq) 219 { 220 struct i915_active_request *active, *next; 221 222 lockdep_assert_held(&rq->timeline->mutex); 223 if (!i915_request_completed(rq)) 224 return false; 225 226 GEM_TRACE("%s fence %llx:%lld, current %d\n", 227 rq->engine->name, 228 rq->fence.context, rq->fence.seqno, 229 hwsp_seqno(rq)); 230 231 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 232 trace_i915_request_retire(rq); 233 234 /* 235 * We know the GPU must have read the request to have 236 * sent us the seqno + interrupt, so use the position 237 * of tail of the request to update the last known position 238 * of the GPU head. 239 * 240 * Note this requires that we are always called in request 241 * completion order. 242 */ 243 GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests)); 244 rq->ring->head = rq->postfix; 245 246 /* 247 * Walk through the active list, calling retire on each. This allows 248 * objects to track their GPU activity and mark themselves as idle 249 * when their *last* active request is completed (updating state 250 * tracking lists for eviction, active references for GEM, etc). 251 * 252 * As the ->retire() may free the node, we decouple it first and 253 * pass along the auxiliary information (to avoid dereferencing 254 * the node after the callback). 255 */ 256 list_for_each_entry_safe(active, next, &rq->active_list, link) { 257 /* 258 * In microbenchmarks or focusing upon time inside the kernel, 259 * we may spend an inordinate amount of time simply handling 260 * the retirement of requests and processing their callbacks. 261 * Of which, this loop itself is particularly hot due to the 262 * cache misses when jumping around the list of 263 * i915_active_request. So we try to keep this loop as 264 * streamlined as possible and also prefetch the next 265 * i915_active_request to try and hide the likely cache miss. 266 */ 267 prefetchw(next); 268 269 INIT_LIST_HEAD(&active->link); 270 RCU_INIT_POINTER(active->request, NULL); 271 272 active->retire(active, rq); 273 } 274 275 local_irq_disable(); 276 277 /* 278 * We only loosely track inflight requests across preemption, 279 * and so we may find ourselves attempting to retire a _completed_ 280 * request that we have removed from the HW and put back on a run 281 * queue. 282 */ 283 remove_from_engine(rq); 284 285 spin_lock(&rq->lock); 286 i915_request_mark_complete(rq); 287 if (!i915_request_signaled(rq)) 288 dma_fence_signal_locked(&rq->fence); 289 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 290 i915_request_cancel_breadcrumb(rq); 291 if (i915_request_has_waitboost(rq)) { 292 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 293 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 294 } 295 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 296 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 297 __notify_execute_cb(rq); 298 } 299 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 300 spin_unlock(&rq->lock); 301 302 local_irq_enable(); 303 304 remove_from_client(rq); 305 list_del(&rq->link); 306 307 intel_context_exit(rq->hw_context); 308 intel_context_unpin(rq->hw_context); 309 310 free_capture_list(rq); 311 i915_sched_node_fini(&rq->sched); 312 i915_request_put(rq); 313 314 return true; 315 } 316 317 void i915_request_retire_upto(struct i915_request *rq) 318 { 319 struct intel_timeline * const tl = rq->timeline; 320 struct i915_request *tmp; 321 322 GEM_TRACE("%s fence %llx:%lld, current %d\n", 323 rq->engine->name, 324 rq->fence.context, rq->fence.seqno, 325 hwsp_seqno(rq)); 326 327 lockdep_assert_held(&tl->mutex); 328 GEM_BUG_ON(!i915_request_completed(rq)); 329 330 do { 331 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 332 } while (i915_request_retire(tmp) && tmp != rq); 333 } 334 335 static int 336 __i915_request_await_execution(struct i915_request *rq, 337 struct i915_request *signal, 338 void (*hook)(struct i915_request *rq, 339 struct dma_fence *signal), 340 gfp_t gfp) 341 { 342 struct execute_cb *cb; 343 344 if (i915_request_is_active(signal)) { 345 if (hook) 346 hook(rq, &signal->fence); 347 return 0; 348 } 349 350 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 351 if (!cb) 352 return -ENOMEM; 353 354 cb->fence = &rq->submit; 355 i915_sw_fence_await(cb->fence); 356 init_irq_work(&cb->work, irq_execute_cb); 357 358 if (hook) { 359 cb->hook = hook; 360 cb->signal = i915_request_get(signal); 361 cb->work.func = irq_execute_cb_hook; 362 } 363 364 spin_lock_irq(&signal->lock); 365 if (i915_request_is_active(signal)) { 366 if (hook) { 367 hook(rq, &signal->fence); 368 i915_request_put(signal); 369 } 370 i915_sw_fence_complete(cb->fence); 371 kmem_cache_free(global.slab_execute_cbs, cb); 372 } else { 373 list_add_tail(&cb->link, &signal->execute_cb); 374 } 375 spin_unlock_irq(&signal->lock); 376 377 return 0; 378 } 379 380 bool __i915_request_submit(struct i915_request *request) 381 { 382 struct intel_engine_cs *engine = request->engine; 383 bool result = false; 384 385 GEM_TRACE("%s fence %llx:%lld, current %d\n", 386 engine->name, 387 request->fence.context, request->fence.seqno, 388 hwsp_seqno(request)); 389 390 GEM_BUG_ON(!irqs_disabled()); 391 lockdep_assert_held(&engine->active.lock); 392 393 /* 394 * With the advent of preempt-to-busy, we frequently encounter 395 * requests that we have unsubmitted from HW, but left running 396 * until the next ack and so have completed in the meantime. On 397 * resubmission of that completed request, we can skip 398 * updating the payload, and execlists can even skip submitting 399 * the request. 400 * 401 * We must remove the request from the caller's priority queue, 402 * and the caller must only call us when the request is in their 403 * priority queue, under the active.lock. This ensures that the 404 * request has *not* yet been retired and we can safely move 405 * the request into the engine->active.list where it will be 406 * dropped upon retiring. (Otherwise if resubmit a *retired* 407 * request, this would be a horrible use-after-free.) 408 */ 409 if (i915_request_completed(request)) 410 goto xfer; 411 412 if (i915_gem_context_is_banned(request->gem_context)) 413 i915_request_skip(request, -EIO); 414 415 /* 416 * Are we using semaphores when the gpu is already saturated? 417 * 418 * Using semaphores incurs a cost in having the GPU poll a 419 * memory location, busywaiting for it to change. The continual 420 * memory reads can have a noticeable impact on the rest of the 421 * system with the extra bus traffic, stalling the cpu as it too 422 * tries to access memory across the bus (perf stat -e bus-cycles). 423 * 424 * If we installed a semaphore on this request and we only submit 425 * the request after the signaler completed, that indicates the 426 * system is overloaded and using semaphores at this time only 427 * increases the amount of work we are doing. If so, we disable 428 * further use of semaphores until we are idle again, whence we 429 * optimistically try again. 430 */ 431 if (request->sched.semaphores && 432 i915_sw_fence_signaled(&request->semaphore)) 433 engine->saturated |= request->sched.semaphores; 434 435 engine->emit_fini_breadcrumb(request, 436 request->ring->vaddr + request->postfix); 437 438 trace_i915_request_execute(request); 439 engine->serial++; 440 result = true; 441 442 xfer: /* We may be recursing from the signal callback of another i915 fence */ 443 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 444 445 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) 446 list_move_tail(&request->sched.link, &engine->active.requests); 447 448 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 449 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 450 !i915_request_enable_breadcrumb(request)) 451 intel_engine_queue_breadcrumbs(engine); 452 453 __notify_execute_cb(request); 454 455 spin_unlock(&request->lock); 456 457 return result; 458 } 459 460 void i915_request_submit(struct i915_request *request) 461 { 462 struct intel_engine_cs *engine = request->engine; 463 unsigned long flags; 464 465 /* Will be called from irq-context when using foreign fences. */ 466 spin_lock_irqsave(&engine->active.lock, flags); 467 468 __i915_request_submit(request); 469 470 spin_unlock_irqrestore(&engine->active.lock, flags); 471 } 472 473 void __i915_request_unsubmit(struct i915_request *request) 474 { 475 struct intel_engine_cs *engine = request->engine; 476 477 GEM_TRACE("%s fence %llx:%lld, current %d\n", 478 engine->name, 479 request->fence.context, request->fence.seqno, 480 hwsp_seqno(request)); 481 482 GEM_BUG_ON(!irqs_disabled()); 483 lockdep_assert_held(&engine->active.lock); 484 485 /* 486 * Only unwind in reverse order, required so that the per-context list 487 * is kept in seqno/ring order. 488 */ 489 490 /* We may be recursing from the signal callback of another i915 fence */ 491 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 492 493 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 494 i915_request_cancel_breadcrumb(request); 495 496 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 497 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 498 499 spin_unlock(&request->lock); 500 501 /* We've already spun, don't charge on resubmitting. */ 502 if (request->sched.semaphores && i915_request_started(request)) { 503 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 504 request->sched.semaphores = 0; 505 } 506 507 /* 508 * We don't need to wake_up any waiters on request->execute, they 509 * will get woken by any other event or us re-adding this request 510 * to the engine timeline (__i915_request_submit()). The waiters 511 * should be quite adapt at finding that the request now has a new 512 * global_seqno to the one they went to sleep on. 513 */ 514 } 515 516 void i915_request_unsubmit(struct i915_request *request) 517 { 518 struct intel_engine_cs *engine = request->engine; 519 unsigned long flags; 520 521 /* Will be called from irq-context when using foreign fences. */ 522 spin_lock_irqsave(&engine->active.lock, flags); 523 524 __i915_request_unsubmit(request); 525 526 spin_unlock_irqrestore(&engine->active.lock, flags); 527 } 528 529 static int __i915_sw_fence_call 530 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 531 { 532 struct i915_request *request = 533 container_of(fence, typeof(*request), submit); 534 535 switch (state) { 536 case FENCE_COMPLETE: 537 trace_i915_request_submit(request); 538 539 if (unlikely(fence->error)) 540 i915_request_skip(request, fence->error); 541 542 /* 543 * We need to serialize use of the submit_request() callback 544 * with its hotplugging performed during an emergency 545 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 546 * critical section in order to force i915_gem_set_wedged() to 547 * wait until the submit_request() is completed before 548 * proceeding. 549 */ 550 rcu_read_lock(); 551 request->engine->submit_request(request); 552 rcu_read_unlock(); 553 break; 554 555 case FENCE_FREE: 556 i915_request_put(request); 557 break; 558 } 559 560 return NOTIFY_DONE; 561 } 562 563 static int __i915_sw_fence_call 564 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 565 { 566 struct i915_request *request = 567 container_of(fence, typeof(*request), semaphore); 568 569 switch (state) { 570 case FENCE_COMPLETE: 571 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 572 break; 573 574 case FENCE_FREE: 575 i915_request_put(request); 576 break; 577 } 578 579 return NOTIFY_DONE; 580 } 581 582 static void retire_requests(struct intel_timeline *tl) 583 { 584 struct i915_request *rq, *rn; 585 586 list_for_each_entry_safe(rq, rn, &tl->requests, link) 587 if (!i915_request_retire(rq)) 588 break; 589 } 590 591 static noinline struct i915_request * 592 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 593 { 594 struct i915_request *rq; 595 596 if (list_empty(&tl->requests)) 597 goto out; 598 599 if (!gfpflags_allow_blocking(gfp)) 600 goto out; 601 602 /* Move our oldest request to the slab-cache (if not in use!) */ 603 rq = list_first_entry(&tl->requests, typeof(*rq), link); 604 i915_request_retire(rq); 605 606 rq = kmem_cache_alloc(global.slab_requests, 607 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 608 if (rq) 609 return rq; 610 611 /* Ratelimit ourselves to prevent oom from malicious clients */ 612 rq = list_last_entry(&tl->requests, typeof(*rq), link); 613 cond_synchronize_rcu(rq->rcustate); 614 615 /* Retire our old requests in the hope that we free some */ 616 retire_requests(tl); 617 618 out: 619 return kmem_cache_alloc(global.slab_requests, gfp); 620 } 621 622 struct i915_request * 623 __i915_request_create(struct intel_context *ce, gfp_t gfp) 624 { 625 struct intel_timeline *tl = ce->timeline; 626 struct i915_request *rq; 627 u32 seqno; 628 int ret; 629 630 might_sleep_if(gfpflags_allow_blocking(gfp)); 631 632 /* Check that the caller provided an already pinned context */ 633 __intel_context_pin(ce); 634 635 /* 636 * Beware: Dragons be flying overhead. 637 * 638 * We use RCU to look up requests in flight. The lookups may 639 * race with the request being allocated from the slab freelist. 640 * That is the request we are writing to here, may be in the process 641 * of being read by __i915_active_request_get_rcu(). As such, 642 * we have to be very careful when overwriting the contents. During 643 * the RCU lookup, we change chase the request->engine pointer, 644 * read the request->global_seqno and increment the reference count. 645 * 646 * The reference count is incremented atomically. If it is zero, 647 * the lookup knows the request is unallocated and complete. Otherwise, 648 * it is either still in use, or has been reallocated and reset 649 * with dma_fence_init(). This increment is safe for release as we 650 * check that the request we have a reference to and matches the active 651 * request. 652 * 653 * Before we increment the refcount, we chase the request->engine 654 * pointer. We must not call kmem_cache_zalloc() or else we set 655 * that pointer to NULL and cause a crash during the lookup. If 656 * we see the request is completed (based on the value of the 657 * old engine and seqno), the lookup is complete and reports NULL. 658 * If we decide the request is not completed (new engine or seqno), 659 * then we grab a reference and double check that it is still the 660 * active request - which it won't be and restart the lookup. 661 * 662 * Do not use kmem_cache_zalloc() here! 663 */ 664 rq = kmem_cache_alloc(global.slab_requests, 665 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 666 if (unlikely(!rq)) { 667 rq = request_alloc_slow(tl, gfp); 668 if (!rq) { 669 ret = -ENOMEM; 670 goto err_unreserve; 671 } 672 } 673 674 ret = intel_timeline_get_seqno(tl, rq, &seqno); 675 if (ret) 676 goto err_free; 677 678 rq->i915 = ce->engine->i915; 679 rq->hw_context = ce; 680 rq->gem_context = ce->gem_context; 681 rq->engine = ce->engine; 682 rq->ring = ce->ring; 683 rq->timeline = tl; 684 rq->hwsp_seqno = tl->hwsp_seqno; 685 rq->hwsp_cacheline = tl->hwsp_cacheline; 686 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 687 688 spin_lock_init(&rq->lock); 689 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 690 tl->fence_context, seqno); 691 692 /* We bump the ref for the fence chain */ 693 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 694 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify); 695 696 i915_sched_node_init(&rq->sched); 697 698 /* No zalloc, must clear what we need by hand */ 699 rq->file_priv = NULL; 700 rq->batch = NULL; 701 rq->capture_list = NULL; 702 rq->flags = 0; 703 rq->execution_mask = ALL_ENGINES; 704 705 INIT_LIST_HEAD(&rq->active_list); 706 INIT_LIST_HEAD(&rq->execute_cb); 707 708 /* 709 * Reserve space in the ring buffer for all the commands required to 710 * eventually emit this request. This is to guarantee that the 711 * i915_request_add() call can't fail. Note that the reserve may need 712 * to be redone if the request is not actually submitted straight 713 * away, e.g. because a GPU scheduler has deferred it. 714 * 715 * Note that due to how we add reserved_space to intel_ring_begin() 716 * we need to double our request to ensure that if we need to wrap 717 * around inside i915_request_add() there is sufficient space at 718 * the beginning of the ring as well. 719 */ 720 rq->reserved_space = 721 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 722 723 /* 724 * Record the position of the start of the request so that 725 * should we detect the updated seqno part-way through the 726 * GPU processing the request, we never over-estimate the 727 * position of the head. 728 */ 729 rq->head = rq->ring->emit; 730 731 ret = rq->engine->request_alloc(rq); 732 if (ret) 733 goto err_unwind; 734 735 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 736 737 intel_context_mark_active(ce); 738 return rq; 739 740 err_unwind: 741 ce->ring->emit = rq->head; 742 743 /* Make sure we didn't add ourselves to external state before freeing */ 744 GEM_BUG_ON(!list_empty(&rq->active_list)); 745 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 746 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 747 748 err_free: 749 kmem_cache_free(global.slab_requests, rq); 750 err_unreserve: 751 intel_context_unpin(ce); 752 return ERR_PTR(ret); 753 } 754 755 struct i915_request * 756 i915_request_create(struct intel_context *ce) 757 { 758 struct i915_request *rq; 759 struct intel_timeline *tl; 760 761 tl = intel_context_timeline_lock(ce); 762 if (IS_ERR(tl)) 763 return ERR_CAST(tl); 764 765 /* Move our oldest request to the slab-cache (if not in use!) */ 766 rq = list_first_entry(&tl->requests, typeof(*rq), link); 767 if (!list_is_last(&rq->link, &tl->requests)) 768 i915_request_retire(rq); 769 770 intel_context_enter(ce); 771 rq = __i915_request_create(ce, GFP_KERNEL); 772 intel_context_exit(ce); /* active reference transferred to request */ 773 if (IS_ERR(rq)) 774 goto err_unlock; 775 776 /* Check that we do not interrupt ourselves with a new request */ 777 rq->cookie = lockdep_pin_lock(&tl->mutex); 778 779 return rq; 780 781 err_unlock: 782 intel_context_timeline_unlock(tl); 783 return rq; 784 } 785 786 static int 787 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 788 { 789 if (list_is_first(&signal->link, &signal->timeline->requests)) 790 return 0; 791 792 signal = list_prev_entry(signal, link); 793 if (intel_timeline_sync_is_later(rq->timeline, &signal->fence)) 794 return 0; 795 796 return i915_sw_fence_await_dma_fence(&rq->submit, 797 &signal->fence, 0, 798 I915_FENCE_GFP); 799 } 800 801 static intel_engine_mask_t 802 already_busywaiting(struct i915_request *rq) 803 { 804 /* 805 * Polling a semaphore causes bus traffic, delaying other users of 806 * both the GPU and CPU. We want to limit the impact on others, 807 * while taking advantage of early submission to reduce GPU 808 * latency. Therefore we restrict ourselves to not using more 809 * than one semaphore from each source, and not using a semaphore 810 * if we have detected the engine is saturated (i.e. would not be 811 * submitted early and cause bus traffic reading an already passed 812 * semaphore). 813 * 814 * See the are-we-too-late? check in __i915_request_submit(). 815 */ 816 return rq->sched.semaphores | rq->engine->saturated; 817 } 818 819 static int 820 emit_semaphore_wait(struct i915_request *to, 821 struct i915_request *from, 822 gfp_t gfp) 823 { 824 u32 hwsp_offset; 825 u32 *cs; 826 int err; 827 828 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb); 829 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 830 831 /* Just emit the first semaphore we see as request space is limited. */ 832 if (already_busywaiting(to) & from->engine->mask) 833 return i915_sw_fence_await_dma_fence(&to->submit, 834 &from->fence, 0, 835 I915_FENCE_GFP); 836 837 err = i915_request_await_start(to, from); 838 if (err < 0) 839 return err; 840 841 /* Only submit our spinner after the signaler is running! */ 842 err = __i915_request_await_execution(to, from, NULL, gfp); 843 if (err) 844 return err; 845 846 /* We need to pin the signaler's HWSP until we are finished reading. */ 847 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 848 if (err) 849 return err; 850 851 cs = intel_ring_begin(to, 4); 852 if (IS_ERR(cs)) 853 return PTR_ERR(cs); 854 855 /* 856 * Using greater-than-or-equal here means we have to worry 857 * about seqno wraparound. To side step that issue, we swap 858 * the timeline HWSP upon wrapping, so that everyone listening 859 * for the old (pre-wrap) values do not see the much smaller 860 * (post-wrap) values than they were expecting (and so wait 861 * forever). 862 */ 863 *cs++ = MI_SEMAPHORE_WAIT | 864 MI_SEMAPHORE_GLOBAL_GTT | 865 MI_SEMAPHORE_POLL | 866 MI_SEMAPHORE_SAD_GTE_SDD; 867 *cs++ = from->fence.seqno; 868 *cs++ = hwsp_offset; 869 *cs++ = 0; 870 871 intel_ring_advance(to, cs); 872 to->sched.semaphores |= from->engine->mask; 873 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 874 return 0; 875 } 876 877 static int 878 i915_request_await_request(struct i915_request *to, struct i915_request *from) 879 { 880 int ret; 881 882 GEM_BUG_ON(to == from); 883 GEM_BUG_ON(to->timeline == from->timeline); 884 885 if (i915_request_completed(from)) 886 return 0; 887 888 if (to->engine->schedule) { 889 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 890 if (ret < 0) 891 return ret; 892 } 893 894 if (to->engine == from->engine) { 895 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 896 &from->submit, 897 I915_FENCE_GFP); 898 } else if (intel_engine_has_semaphores(to->engine) && 899 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) { 900 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 901 } else { 902 ret = i915_sw_fence_await_dma_fence(&to->submit, 903 &from->fence, 0, 904 I915_FENCE_GFP); 905 } 906 if (ret < 0) 907 return ret; 908 909 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 910 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 911 &from->fence, 0, 912 I915_FENCE_GFP); 913 if (ret < 0) 914 return ret; 915 } 916 917 return 0; 918 } 919 920 int 921 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 922 { 923 struct dma_fence **child = &fence; 924 unsigned int nchild = 1; 925 int ret; 926 927 /* 928 * Note that if the fence-array was created in signal-on-any mode, 929 * we should *not* decompose it into its individual fences. However, 930 * we don't currently store which mode the fence-array is operating 931 * in. Fortunately, the only user of signal-on-any is private to 932 * amdgpu and we should not see any incoming fence-array from 933 * sync-file being in signal-on-any mode. 934 */ 935 if (dma_fence_is_array(fence)) { 936 struct dma_fence_array *array = to_dma_fence_array(fence); 937 938 child = array->fences; 939 nchild = array->num_fences; 940 GEM_BUG_ON(!nchild); 941 } 942 943 do { 944 fence = *child++; 945 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 946 continue; 947 948 /* 949 * Requests on the same timeline are explicitly ordered, along 950 * with their dependencies, by i915_request_add() which ensures 951 * that requests are submitted in-order through each ring. 952 */ 953 if (fence->context == rq->fence.context) 954 continue; 955 956 /* Squash repeated waits to the same timelines */ 957 if (fence->context && 958 intel_timeline_sync_is_later(rq->timeline, fence)) 959 continue; 960 961 if (dma_fence_is_i915(fence)) 962 ret = i915_request_await_request(rq, to_request(fence)); 963 else 964 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 965 I915_FENCE_TIMEOUT, 966 I915_FENCE_GFP); 967 if (ret < 0) 968 return ret; 969 970 /* Record the latest fence used against each timeline */ 971 if (fence->context) 972 intel_timeline_sync_set(rq->timeline, fence); 973 } while (--nchild); 974 975 return 0; 976 } 977 978 int 979 i915_request_await_execution(struct i915_request *rq, 980 struct dma_fence *fence, 981 void (*hook)(struct i915_request *rq, 982 struct dma_fence *signal)) 983 { 984 struct dma_fence **child = &fence; 985 unsigned int nchild = 1; 986 int ret; 987 988 if (dma_fence_is_array(fence)) { 989 struct dma_fence_array *array = to_dma_fence_array(fence); 990 991 /* XXX Error for signal-on-any fence arrays */ 992 993 child = array->fences; 994 nchild = array->num_fences; 995 GEM_BUG_ON(!nchild); 996 } 997 998 do { 999 fence = *child++; 1000 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1001 continue; 1002 1003 /* 1004 * We don't squash repeated fence dependencies here as we 1005 * want to run our callback in all cases. 1006 */ 1007 1008 if (dma_fence_is_i915(fence)) 1009 ret = __i915_request_await_execution(rq, 1010 to_request(fence), 1011 hook, 1012 I915_FENCE_GFP); 1013 else 1014 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1015 I915_FENCE_TIMEOUT, 1016 GFP_KERNEL); 1017 if (ret < 0) 1018 return ret; 1019 } while (--nchild); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * i915_request_await_object - set this request to (async) wait upon a bo 1026 * @to: request we are wishing to use 1027 * @obj: object which may be in use on another ring. 1028 * @write: whether the wait is on behalf of a writer 1029 * 1030 * This code is meant to abstract object synchronization with the GPU. 1031 * Conceptually we serialise writes between engines inside the GPU. 1032 * We only allow one engine to write into a buffer at any time, but 1033 * multiple readers. To ensure each has a coherent view of memory, we must: 1034 * 1035 * - If there is an outstanding write request to the object, the new 1036 * request must wait for it to complete (either CPU or in hw, requests 1037 * on the same ring will be naturally ordered). 1038 * 1039 * - If we are a write request (pending_write_domain is set), the new 1040 * request must wait for outstanding read requests to complete. 1041 * 1042 * Returns 0 if successful, else propagates up the lower layer error. 1043 */ 1044 int 1045 i915_request_await_object(struct i915_request *to, 1046 struct drm_i915_gem_object *obj, 1047 bool write) 1048 { 1049 struct dma_fence *excl; 1050 int ret = 0; 1051 1052 if (write) { 1053 struct dma_fence **shared; 1054 unsigned int count, i; 1055 1056 ret = dma_resv_get_fences_rcu(obj->base.resv, 1057 &excl, &count, &shared); 1058 if (ret) 1059 return ret; 1060 1061 for (i = 0; i < count; i++) { 1062 ret = i915_request_await_dma_fence(to, shared[i]); 1063 if (ret) 1064 break; 1065 1066 dma_fence_put(shared[i]); 1067 } 1068 1069 for (; i < count; i++) 1070 dma_fence_put(shared[i]); 1071 kfree(shared); 1072 } else { 1073 excl = dma_resv_get_excl_rcu(obj->base.resv); 1074 } 1075 1076 if (excl) { 1077 if (ret == 0) 1078 ret = i915_request_await_dma_fence(to, excl); 1079 1080 dma_fence_put(excl); 1081 } 1082 1083 return ret; 1084 } 1085 1086 void i915_request_skip(struct i915_request *rq, int error) 1087 { 1088 void *vaddr = rq->ring->vaddr; 1089 u32 head; 1090 1091 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1092 dma_fence_set_error(&rq->fence, error); 1093 1094 if (rq->infix == rq->postfix) 1095 return; 1096 1097 /* 1098 * As this request likely depends on state from the lost 1099 * context, clear out all the user operations leaving the 1100 * breadcrumb at the end (so we get the fence notifications). 1101 */ 1102 head = rq->infix; 1103 if (rq->postfix < head) { 1104 memset(vaddr + head, 0, rq->ring->size - head); 1105 head = 0; 1106 } 1107 memset(vaddr + head, 0, rq->postfix - head); 1108 rq->infix = rq->postfix; 1109 } 1110 1111 static struct i915_request * 1112 __i915_request_add_to_timeline(struct i915_request *rq) 1113 { 1114 struct intel_timeline *timeline = rq->timeline; 1115 struct i915_request *prev; 1116 1117 /* 1118 * Dependency tracking and request ordering along the timeline 1119 * is special cased so that we can eliminate redundant ordering 1120 * operations while building the request (we know that the timeline 1121 * itself is ordered, and here we guarantee it). 1122 * 1123 * As we know we will need to emit tracking along the timeline, 1124 * we embed the hooks into our request struct -- at the cost of 1125 * having to have specialised no-allocation interfaces (which will 1126 * be beneficial elsewhere). 1127 * 1128 * A second benefit to open-coding i915_request_await_request is 1129 * that we can apply a slight variant of the rules specialised 1130 * for timelines that jump between engines (such as virtual engines). 1131 * If we consider the case of virtual engine, we must emit a dma-fence 1132 * to prevent scheduling of the second request until the first is 1133 * complete (to maximise our greedy late load balancing) and this 1134 * precludes optimising to use semaphores serialisation of a single 1135 * timeline across engines. 1136 */ 1137 prev = rcu_dereference_protected(timeline->last_request.request, 1138 lockdep_is_held(&timeline->mutex)); 1139 if (prev && !i915_request_completed(prev)) { 1140 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1141 i915_sw_fence_await_sw_fence(&rq->submit, 1142 &prev->submit, 1143 &rq->submitq); 1144 else 1145 __i915_sw_fence_await_dma_fence(&rq->submit, 1146 &prev->fence, 1147 &rq->dmaq); 1148 if (rq->engine->schedule) 1149 __i915_sched_node_add_dependency(&rq->sched, 1150 &prev->sched, 1151 &rq->dep, 1152 0); 1153 } 1154 1155 list_add_tail(&rq->link, &timeline->requests); 1156 1157 /* 1158 * Make sure that no request gazumped us - if it was allocated after 1159 * our i915_request_alloc() and called __i915_request_add() before 1160 * us, the timeline will hold its seqno which is later than ours. 1161 */ 1162 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1163 __i915_active_request_set(&timeline->last_request, rq); 1164 1165 return prev; 1166 } 1167 1168 /* 1169 * NB: This function is not allowed to fail. Doing so would mean the the 1170 * request is not being tracked for completion but the work itself is 1171 * going to happen on the hardware. This would be a Bad Thing(tm). 1172 */ 1173 struct i915_request *__i915_request_commit(struct i915_request *rq) 1174 { 1175 struct intel_engine_cs *engine = rq->engine; 1176 struct intel_ring *ring = rq->ring; 1177 u32 *cs; 1178 1179 GEM_TRACE("%s fence %llx:%lld\n", 1180 engine->name, rq->fence.context, rq->fence.seqno); 1181 1182 /* 1183 * To ensure that this call will not fail, space for its emissions 1184 * should already have been reserved in the ring buffer. Let the ring 1185 * know that it is time to use that space up. 1186 */ 1187 GEM_BUG_ON(rq->reserved_space > ring->space); 1188 rq->reserved_space = 0; 1189 rq->emitted_jiffies = jiffies; 1190 1191 /* 1192 * Record the position of the start of the breadcrumb so that 1193 * should we detect the updated seqno part-way through the 1194 * GPU processing the request, we never over-estimate the 1195 * position of the ring's HEAD. 1196 */ 1197 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1198 GEM_BUG_ON(IS_ERR(cs)); 1199 rq->postfix = intel_ring_offset(rq, cs); 1200 1201 return __i915_request_add_to_timeline(rq); 1202 } 1203 1204 void __i915_request_queue(struct i915_request *rq, 1205 const struct i915_sched_attr *attr) 1206 { 1207 /* 1208 * Let the backend know a new request has arrived that may need 1209 * to adjust the existing execution schedule due to a high priority 1210 * request - i.e. we may want to preempt the current request in order 1211 * to run a high priority dependency chain *before* we can execute this 1212 * request. 1213 * 1214 * This is called before the request is ready to run so that we can 1215 * decide whether to preempt the entire chain so that it is ready to 1216 * run at the earliest possible convenience. 1217 */ 1218 i915_sw_fence_commit(&rq->semaphore); 1219 if (attr && rq->engine->schedule) 1220 rq->engine->schedule(rq, attr); 1221 i915_sw_fence_commit(&rq->submit); 1222 } 1223 1224 void i915_request_add(struct i915_request *rq) 1225 { 1226 struct i915_sched_attr attr = rq->gem_context->sched; 1227 struct intel_timeline * const tl = rq->timeline; 1228 struct i915_request *prev; 1229 1230 lockdep_assert_held(&tl->mutex); 1231 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1232 1233 trace_i915_request_add(rq); 1234 1235 prev = __i915_request_commit(rq); 1236 1237 /* 1238 * Boost actual workloads past semaphores! 1239 * 1240 * With semaphores we spin on one engine waiting for another, 1241 * simply to reduce the latency of starting our work when 1242 * the signaler completes. However, if there is any other 1243 * work that we could be doing on this engine instead, that 1244 * is better utilisation and will reduce the overall duration 1245 * of the current work. To avoid PI boosting a semaphore 1246 * far in the distance past over useful work, we keep a history 1247 * of any semaphore use along our dependency chain. 1248 */ 1249 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1250 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1251 1252 /* 1253 * Boost priorities to new clients (new request flows). 1254 * 1255 * Allow interactive/synchronous clients to jump ahead of 1256 * the bulk clients. (FQ_CODEL) 1257 */ 1258 if (list_empty(&rq->sched.signalers_list)) 1259 attr.priority |= I915_PRIORITY_WAIT; 1260 1261 local_bh_disable(); 1262 __i915_request_queue(rq, &attr); 1263 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1264 1265 /* 1266 * In typical scenarios, we do not expect the previous request on 1267 * the timeline to be still tracked by timeline->last_request if it 1268 * has been completed. If the completed request is still here, that 1269 * implies that request retirement is a long way behind submission, 1270 * suggesting that we haven't been retiring frequently enough from 1271 * the combination of retire-before-alloc, waiters and the background 1272 * retirement worker. So if the last request on this timeline was 1273 * already completed, do a catch up pass, flushing the retirement queue 1274 * up to this client. Since we have now moved the heaviest operations 1275 * during retirement onto secondary workers, such as freeing objects 1276 * or contexts, retiring a bunch of requests is mostly list management 1277 * (and cache misses), and so we should not be overly penalizing this 1278 * client by performing excess work, though we may still performing 1279 * work on behalf of others -- but instead we should benefit from 1280 * improved resource management. (Well, that's the theory at least.) 1281 */ 1282 if (prev && i915_request_completed(prev) && prev->timeline == tl) 1283 i915_request_retire_upto(prev); 1284 1285 mutex_unlock(&tl->mutex); 1286 } 1287 1288 static unsigned long local_clock_us(unsigned int *cpu) 1289 { 1290 unsigned long t; 1291 1292 /* 1293 * Cheaply and approximately convert from nanoseconds to microseconds. 1294 * The result and subsequent calculations are also defined in the same 1295 * approximate microseconds units. The principal source of timing 1296 * error here is from the simple truncation. 1297 * 1298 * Note that local_clock() is only defined wrt to the current CPU; 1299 * the comparisons are no longer valid if we switch CPUs. Instead of 1300 * blocking preemption for the entire busywait, we can detect the CPU 1301 * switch and use that as indicator of system load and a reason to 1302 * stop busywaiting, see busywait_stop(). 1303 */ 1304 *cpu = get_cpu(); 1305 t = local_clock() >> 10; 1306 put_cpu(); 1307 1308 return t; 1309 } 1310 1311 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1312 { 1313 unsigned int this_cpu; 1314 1315 if (time_after(local_clock_us(&this_cpu), timeout)) 1316 return true; 1317 1318 return this_cpu != cpu; 1319 } 1320 1321 static bool __i915_spin_request(const struct i915_request * const rq, 1322 int state, unsigned long timeout_us) 1323 { 1324 unsigned int cpu; 1325 1326 /* 1327 * Only wait for the request if we know it is likely to complete. 1328 * 1329 * We don't track the timestamps around requests, nor the average 1330 * request length, so we do not have a good indicator that this 1331 * request will complete within the timeout. What we do know is the 1332 * order in which requests are executed by the context and so we can 1333 * tell if the request has been started. If the request is not even 1334 * running yet, it is a fair assumption that it will not complete 1335 * within our relatively short timeout. 1336 */ 1337 if (!i915_request_is_running(rq)) 1338 return false; 1339 1340 /* 1341 * When waiting for high frequency requests, e.g. during synchronous 1342 * rendering split between the CPU and GPU, the finite amount of time 1343 * required to set up the irq and wait upon it limits the response 1344 * rate. By busywaiting on the request completion for a short while we 1345 * can service the high frequency waits as quick as possible. However, 1346 * if it is a slow request, we want to sleep as quickly as possible. 1347 * The tradeoff between waiting and sleeping is roughly the time it 1348 * takes to sleep on a request, on the order of a microsecond. 1349 */ 1350 1351 timeout_us += local_clock_us(&cpu); 1352 do { 1353 if (i915_request_completed(rq)) 1354 return true; 1355 1356 if (signal_pending_state(state, current)) 1357 break; 1358 1359 if (busywait_stop(timeout_us, cpu)) 1360 break; 1361 1362 cpu_relax(); 1363 } while (!need_resched()); 1364 1365 return false; 1366 } 1367 1368 struct request_wait { 1369 struct dma_fence_cb cb; 1370 struct task_struct *tsk; 1371 }; 1372 1373 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1374 { 1375 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1376 1377 wake_up_process(wait->tsk); 1378 } 1379 1380 /** 1381 * i915_request_wait - wait until execution of request has finished 1382 * @rq: the request to wait upon 1383 * @flags: how to wait 1384 * @timeout: how long to wait in jiffies 1385 * 1386 * i915_request_wait() waits for the request to be completed, for a 1387 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1388 * unbounded wait). 1389 * 1390 * Returns the remaining time (in jiffies) if the request completed, which may 1391 * be zero or -ETIME if the request is unfinished after the timeout expires. 1392 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1393 * pending before the request completes. 1394 */ 1395 long i915_request_wait(struct i915_request *rq, 1396 unsigned int flags, 1397 long timeout) 1398 { 1399 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1400 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1401 struct request_wait wait; 1402 1403 might_sleep(); 1404 GEM_BUG_ON(timeout < 0); 1405 1406 if (dma_fence_is_signaled(&rq->fence)) 1407 return timeout; 1408 1409 if (!timeout) 1410 return -ETIME; 1411 1412 trace_i915_request_wait_begin(rq, flags); 1413 1414 /* 1415 * We must never wait on the GPU while holding a lock as we 1416 * may need to perform a GPU reset. So while we don't need to 1417 * serialise wait/reset with an explicit lock, we do want 1418 * lockdep to detect potential dependency cycles. 1419 */ 1420 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1421 1422 /* 1423 * Optimistic spin before touching IRQs. 1424 * 1425 * We may use a rather large value here to offset the penalty of 1426 * switching away from the active task. Frequently, the client will 1427 * wait upon an old swapbuffer to throttle itself to remain within a 1428 * frame of the gpu. If the client is running in lockstep with the gpu, 1429 * then it should not be waiting long at all, and a sleep now will incur 1430 * extra scheduler latency in producing the next frame. To try to 1431 * avoid adding the cost of enabling/disabling the interrupt to the 1432 * short wait, we first spin to see if the request would have completed 1433 * in the time taken to setup the interrupt. 1434 * 1435 * We need upto 5us to enable the irq, and upto 20us to hide the 1436 * scheduler latency of a context switch, ignoring the secondary 1437 * impacts from a context switch such as cache eviction. 1438 * 1439 * The scheme used for low-latency IO is called "hybrid interrupt 1440 * polling". The suggestion there is to sleep until just before you 1441 * expect to be woken by the device interrupt and then poll for its 1442 * completion. That requires having a good predictor for the request 1443 * duration, which we currently lack. 1444 */ 1445 if (CONFIG_DRM_I915_SPIN_REQUEST && 1446 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1447 dma_fence_signal(&rq->fence); 1448 goto out; 1449 } 1450 1451 /* 1452 * This client is about to stall waiting for the GPU. In many cases 1453 * this is undesirable and limits the throughput of the system, as 1454 * many clients cannot continue processing user input/output whilst 1455 * blocked. RPS autotuning may take tens of milliseconds to respond 1456 * to the GPU load and thus incurs additional latency for the client. 1457 * We can circumvent that by promoting the GPU frequency to maximum 1458 * before we sleep. This makes the GPU throttle up much more quickly 1459 * (good for benchmarks and user experience, e.g. window animations), 1460 * but at a cost of spending more power processing the workload 1461 * (bad for battery). 1462 */ 1463 if (flags & I915_WAIT_PRIORITY) { 1464 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1465 gen6_rps_boost(rq); 1466 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1467 } 1468 1469 wait.tsk = current; 1470 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1471 goto out; 1472 1473 for (;;) { 1474 set_current_state(state); 1475 1476 if (i915_request_completed(rq)) { 1477 dma_fence_signal(&rq->fence); 1478 break; 1479 } 1480 1481 if (signal_pending_state(state, current)) { 1482 timeout = -ERESTARTSYS; 1483 break; 1484 } 1485 1486 if (!timeout) { 1487 timeout = -ETIME; 1488 break; 1489 } 1490 1491 timeout = io_schedule_timeout(timeout); 1492 } 1493 __set_current_state(TASK_RUNNING); 1494 1495 dma_fence_remove_callback(&rq->fence, &wait.cb); 1496 1497 out: 1498 mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_); 1499 trace_i915_request_wait_end(rq); 1500 return timeout; 1501 } 1502 1503 bool i915_retire_requests(struct drm_i915_private *i915) 1504 { 1505 struct intel_gt_timelines *timelines = &i915->gt.timelines; 1506 struct intel_timeline *tl, *tn; 1507 unsigned long flags; 1508 LIST_HEAD(free); 1509 1510 spin_lock_irqsave(&timelines->lock, flags); 1511 list_for_each_entry_safe(tl, tn, &timelines->active_list, link) { 1512 if (!mutex_trylock(&tl->mutex)) 1513 continue; 1514 1515 intel_timeline_get(tl); 1516 GEM_BUG_ON(!tl->active_count); 1517 tl->active_count++; /* pin the list element */ 1518 spin_unlock_irqrestore(&timelines->lock, flags); 1519 1520 retire_requests(tl); 1521 1522 spin_lock_irqsave(&timelines->lock, flags); 1523 1524 /* Resume iteration after dropping lock */ 1525 list_safe_reset_next(tl, tn, link); 1526 if (!--tl->active_count) 1527 list_del(&tl->link); 1528 1529 mutex_unlock(&tl->mutex); 1530 1531 /* Defer the final release to after the spinlock */ 1532 if (refcount_dec_and_test(&tl->kref.refcount)) { 1533 GEM_BUG_ON(tl->active_count); 1534 list_add(&tl->link, &free); 1535 } 1536 } 1537 spin_unlock_irqrestore(&timelines->lock, flags); 1538 1539 list_for_each_entry_safe(tl, tn, &free, link) 1540 __intel_timeline_free(&tl->kref); 1541 1542 return !list_empty(&timelines->active_list); 1543 } 1544 1545 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1546 #include "selftests/mock_request.c" 1547 #include "selftests/i915_request.c" 1548 #endif 1549 1550 static void i915_global_request_shrink(void) 1551 { 1552 kmem_cache_shrink(global.slab_dependencies); 1553 kmem_cache_shrink(global.slab_execute_cbs); 1554 kmem_cache_shrink(global.slab_requests); 1555 } 1556 1557 static void i915_global_request_exit(void) 1558 { 1559 kmem_cache_destroy(global.slab_dependencies); 1560 kmem_cache_destroy(global.slab_execute_cbs); 1561 kmem_cache_destroy(global.slab_requests); 1562 } 1563 1564 static struct i915_global_request global = { { 1565 .shrink = i915_global_request_shrink, 1566 .exit = i915_global_request_exit, 1567 } }; 1568 1569 int __init i915_global_request_init(void) 1570 { 1571 global.slab_requests = KMEM_CACHE(i915_request, 1572 SLAB_HWCACHE_ALIGN | 1573 SLAB_RECLAIM_ACCOUNT | 1574 SLAB_TYPESAFE_BY_RCU); 1575 if (!global.slab_requests) 1576 return -ENOMEM; 1577 1578 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1579 SLAB_HWCACHE_ALIGN | 1580 SLAB_RECLAIM_ACCOUNT | 1581 SLAB_TYPESAFE_BY_RCU); 1582 if (!global.slab_execute_cbs) 1583 goto err_requests; 1584 1585 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1586 SLAB_HWCACHE_ALIGN | 1587 SLAB_RECLAIM_ACCOUNT); 1588 if (!global.slab_dependencies) 1589 goto err_execute_cbs; 1590 1591 i915_global_register(&global.base); 1592 return 0; 1593 1594 err_execute_cbs: 1595 kmem_cache_destroy(global.slab_execute_cbs); 1596 err_requests: 1597 kmem_cache_destroy(global.slab_requests); 1598 return -ENOMEM; 1599 } 1600