1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 
35 #include "i915_active.h"
36 #include "i915_drv.h"
37 #include "i915_globals.h"
38 #include "i915_trace.h"
39 #include "intel_pm.h"
40 
41 struct execute_cb {
42 	struct list_head link;
43 	struct irq_work work;
44 	struct i915_sw_fence *fence;
45 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
46 	struct i915_request *signal;
47 };
48 
49 static struct i915_global_request {
50 	struct i915_global base;
51 	struct kmem_cache *slab_requests;
52 	struct kmem_cache *slab_dependencies;
53 	struct kmem_cache *slab_execute_cbs;
54 } global;
55 
56 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 {
58 	return "i915";
59 }
60 
61 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62 {
63 	/*
64 	 * The timeline struct (as part of the ppgtt underneath a context)
65 	 * may be freed when the request is no longer in use by the GPU.
66 	 * We could extend the life of a context to beyond that of all
67 	 * fences, possibly keeping the hw resource around indefinitely,
68 	 * or we just give them a false name. Since
69 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
70 	 * lie seems justifiable.
71 	 */
72 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
73 		return "signaled";
74 
75 	return to_request(fence)->gem_context->name ?: "[i915]";
76 }
77 
78 static bool i915_fence_signaled(struct dma_fence *fence)
79 {
80 	return i915_request_completed(to_request(fence));
81 }
82 
83 static bool i915_fence_enable_signaling(struct dma_fence *fence)
84 {
85 	return i915_request_enable_breadcrumb(to_request(fence));
86 }
87 
88 static signed long i915_fence_wait(struct dma_fence *fence,
89 				   bool interruptible,
90 				   signed long timeout)
91 {
92 	return i915_request_wait(to_request(fence),
93 				 interruptible | I915_WAIT_PRIORITY,
94 				 timeout);
95 }
96 
97 static void i915_fence_release(struct dma_fence *fence)
98 {
99 	struct i915_request *rq = to_request(fence);
100 
101 	/*
102 	 * The request is put onto a RCU freelist (i.e. the address
103 	 * is immediately reused), mark the fences as being freed now.
104 	 * Otherwise the debugobjects for the fences are only marked as
105 	 * freed when the slab cache itself is freed, and so we would get
106 	 * caught trying to reuse dead objects.
107 	 */
108 	i915_sw_fence_fini(&rq->submit);
109 	i915_sw_fence_fini(&rq->semaphore);
110 
111 	kmem_cache_free(global.slab_requests, rq);
112 }
113 
114 const struct dma_fence_ops i915_fence_ops = {
115 	.get_driver_name = i915_fence_get_driver_name,
116 	.get_timeline_name = i915_fence_get_timeline_name,
117 	.enable_signaling = i915_fence_enable_signaling,
118 	.signaled = i915_fence_signaled,
119 	.wait = i915_fence_wait,
120 	.release = i915_fence_release,
121 };
122 
123 static void irq_execute_cb(struct irq_work *wrk)
124 {
125 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
126 
127 	i915_sw_fence_complete(cb->fence);
128 	kmem_cache_free(global.slab_execute_cbs, cb);
129 }
130 
131 static void irq_execute_cb_hook(struct irq_work *wrk)
132 {
133 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134 
135 	cb->hook(container_of(cb->fence, struct i915_request, submit),
136 		 &cb->signal->fence);
137 	i915_request_put(cb->signal);
138 
139 	irq_execute_cb(wrk);
140 }
141 
142 static void __notify_execute_cb(struct i915_request *rq)
143 {
144 	struct execute_cb *cb;
145 
146 	lockdep_assert_held(&rq->lock);
147 
148 	if (list_empty(&rq->execute_cb))
149 		return;
150 
151 	list_for_each_entry(cb, &rq->execute_cb, link)
152 		irq_work_queue(&cb->work);
153 
154 	/*
155 	 * XXX Rollback on __i915_request_unsubmit()
156 	 *
157 	 * In the future, perhaps when we have an active time-slicing scheduler,
158 	 * it will be interesting to unsubmit parallel execution and remove
159 	 * busywaits from the GPU until their master is restarted. This is
160 	 * quite hairy, we have to carefully rollback the fence and do a
161 	 * preempt-to-idle cycle on the target engine, all the while the
162 	 * master execute_cb may refire.
163 	 */
164 	INIT_LIST_HEAD(&rq->execute_cb);
165 }
166 
167 static inline void
168 remove_from_client(struct i915_request *request)
169 {
170 	struct drm_i915_file_private *file_priv;
171 
172 	file_priv = READ_ONCE(request->file_priv);
173 	if (!file_priv)
174 		return;
175 
176 	spin_lock(&file_priv->mm.lock);
177 	if (request->file_priv) {
178 		list_del(&request->client_link);
179 		request->file_priv = NULL;
180 	}
181 	spin_unlock(&file_priv->mm.lock);
182 }
183 
184 static void free_capture_list(struct i915_request *request)
185 {
186 	struct i915_capture_list *capture;
187 
188 	capture = request->capture_list;
189 	while (capture) {
190 		struct i915_capture_list *next = capture->next;
191 
192 		kfree(capture);
193 		capture = next;
194 	}
195 }
196 
197 static void remove_from_engine(struct i915_request *rq)
198 {
199 	struct intel_engine_cs *engine, *locked;
200 
201 	/*
202 	 * Virtual engines complicate acquiring the engine timeline lock,
203 	 * as their rq->engine pointer is not stable until under that
204 	 * engine lock. The simple ploy we use is to take the lock then
205 	 * check that the rq still belongs to the newly locked engine.
206 	 */
207 	locked = READ_ONCE(rq->engine);
208 	spin_lock(&locked->active.lock);
209 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
210 		spin_unlock(&locked->active.lock);
211 		spin_lock(&engine->active.lock);
212 		locked = engine;
213 	}
214 	list_del(&rq->sched.link);
215 	spin_unlock(&locked->active.lock);
216 }
217 
218 static bool i915_request_retire(struct i915_request *rq)
219 {
220 	struct i915_active_request *active, *next;
221 
222 	lockdep_assert_held(&rq->timeline->mutex);
223 	if (!i915_request_completed(rq))
224 		return false;
225 
226 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
227 		  rq->engine->name,
228 		  rq->fence.context, rq->fence.seqno,
229 		  hwsp_seqno(rq));
230 
231 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232 	trace_i915_request_retire(rq);
233 
234 	/*
235 	 * We know the GPU must have read the request to have
236 	 * sent us the seqno + interrupt, so use the position
237 	 * of tail of the request to update the last known position
238 	 * of the GPU head.
239 	 *
240 	 * Note this requires that we are always called in request
241 	 * completion order.
242 	 */
243 	GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
244 	rq->ring->head = rq->postfix;
245 
246 	/*
247 	 * Walk through the active list, calling retire on each. This allows
248 	 * objects to track their GPU activity and mark themselves as idle
249 	 * when their *last* active request is completed (updating state
250 	 * tracking lists for eviction, active references for GEM, etc).
251 	 *
252 	 * As the ->retire() may free the node, we decouple it first and
253 	 * pass along the auxiliary information (to avoid dereferencing
254 	 * the node after the callback).
255 	 */
256 	list_for_each_entry_safe(active, next, &rq->active_list, link) {
257 		/*
258 		 * In microbenchmarks or focusing upon time inside the kernel,
259 		 * we may spend an inordinate amount of time simply handling
260 		 * the retirement of requests and processing their callbacks.
261 		 * Of which, this loop itself is particularly hot due to the
262 		 * cache misses when jumping around the list of
263 		 * i915_active_request.  So we try to keep this loop as
264 		 * streamlined as possible and also prefetch the next
265 		 * i915_active_request to try and hide the likely cache miss.
266 		 */
267 		prefetchw(next);
268 
269 		INIT_LIST_HEAD(&active->link);
270 		RCU_INIT_POINTER(active->request, NULL);
271 
272 		active->retire(active, rq);
273 	}
274 
275 	local_irq_disable();
276 
277 	/*
278 	 * We only loosely track inflight requests across preemption,
279 	 * and so we may find ourselves attempting to retire a _completed_
280 	 * request that we have removed from the HW and put back on a run
281 	 * queue.
282 	 */
283 	remove_from_engine(rq);
284 
285 	spin_lock(&rq->lock);
286 	i915_request_mark_complete(rq);
287 	if (!i915_request_signaled(rq))
288 		dma_fence_signal_locked(&rq->fence);
289 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
290 		i915_request_cancel_breadcrumb(rq);
291 	if (i915_request_has_waitboost(rq)) {
292 		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
293 		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
294 	}
295 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
296 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297 		__notify_execute_cb(rq);
298 	}
299 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
300 	spin_unlock(&rq->lock);
301 
302 	local_irq_enable();
303 
304 	remove_from_client(rq);
305 	list_del(&rq->link);
306 
307 	intel_context_exit(rq->hw_context);
308 	intel_context_unpin(rq->hw_context);
309 
310 	free_capture_list(rq);
311 	i915_sched_node_fini(&rq->sched);
312 	i915_request_put(rq);
313 
314 	return true;
315 }
316 
317 void i915_request_retire_upto(struct i915_request *rq)
318 {
319 	struct intel_timeline * const tl = rq->timeline;
320 	struct i915_request *tmp;
321 
322 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
323 		  rq->engine->name,
324 		  rq->fence.context, rq->fence.seqno,
325 		  hwsp_seqno(rq));
326 
327 	lockdep_assert_held(&tl->mutex);
328 	GEM_BUG_ON(!i915_request_completed(rq));
329 
330 	do {
331 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
332 	} while (i915_request_retire(tmp) && tmp != rq);
333 }
334 
335 static int
336 __i915_request_await_execution(struct i915_request *rq,
337 			       struct i915_request *signal,
338 			       void (*hook)(struct i915_request *rq,
339 					    struct dma_fence *signal),
340 			       gfp_t gfp)
341 {
342 	struct execute_cb *cb;
343 
344 	if (i915_request_is_active(signal)) {
345 		if (hook)
346 			hook(rq, &signal->fence);
347 		return 0;
348 	}
349 
350 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
351 	if (!cb)
352 		return -ENOMEM;
353 
354 	cb->fence = &rq->submit;
355 	i915_sw_fence_await(cb->fence);
356 	init_irq_work(&cb->work, irq_execute_cb);
357 
358 	if (hook) {
359 		cb->hook = hook;
360 		cb->signal = i915_request_get(signal);
361 		cb->work.func = irq_execute_cb_hook;
362 	}
363 
364 	spin_lock_irq(&signal->lock);
365 	if (i915_request_is_active(signal)) {
366 		if (hook) {
367 			hook(rq, &signal->fence);
368 			i915_request_put(signal);
369 		}
370 		i915_sw_fence_complete(cb->fence);
371 		kmem_cache_free(global.slab_execute_cbs, cb);
372 	} else {
373 		list_add_tail(&cb->link, &signal->execute_cb);
374 	}
375 	spin_unlock_irq(&signal->lock);
376 
377 	return 0;
378 }
379 
380 bool __i915_request_submit(struct i915_request *request)
381 {
382 	struct intel_engine_cs *engine = request->engine;
383 	bool result = false;
384 
385 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
386 		  engine->name,
387 		  request->fence.context, request->fence.seqno,
388 		  hwsp_seqno(request));
389 
390 	GEM_BUG_ON(!irqs_disabled());
391 	lockdep_assert_held(&engine->active.lock);
392 
393 	/*
394 	 * With the advent of preempt-to-busy, we frequently encounter
395 	 * requests that we have unsubmitted from HW, but left running
396 	 * until the next ack and so have completed in the meantime. On
397 	 * resubmission of that completed request, we can skip
398 	 * updating the payload, and execlists can even skip submitting
399 	 * the request.
400 	 *
401 	 * We must remove the request from the caller's priority queue,
402 	 * and the caller must only call us when the request is in their
403 	 * priority queue, under the active.lock. This ensures that the
404 	 * request has *not* yet been retired and we can safely move
405 	 * the request into the engine->active.list where it will be
406 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
407 	 * request, this would be a horrible use-after-free.)
408 	 */
409 	if (i915_request_completed(request))
410 		goto xfer;
411 
412 	if (i915_gem_context_is_banned(request->gem_context))
413 		i915_request_skip(request, -EIO);
414 
415 	/*
416 	 * Are we using semaphores when the gpu is already saturated?
417 	 *
418 	 * Using semaphores incurs a cost in having the GPU poll a
419 	 * memory location, busywaiting for it to change. The continual
420 	 * memory reads can have a noticeable impact on the rest of the
421 	 * system with the extra bus traffic, stalling the cpu as it too
422 	 * tries to access memory across the bus (perf stat -e bus-cycles).
423 	 *
424 	 * If we installed a semaphore on this request and we only submit
425 	 * the request after the signaler completed, that indicates the
426 	 * system is overloaded and using semaphores at this time only
427 	 * increases the amount of work we are doing. If so, we disable
428 	 * further use of semaphores until we are idle again, whence we
429 	 * optimistically try again.
430 	 */
431 	if (request->sched.semaphores &&
432 	    i915_sw_fence_signaled(&request->semaphore))
433 		engine->saturated |= request->sched.semaphores;
434 
435 	engine->emit_fini_breadcrumb(request,
436 				     request->ring->vaddr + request->postfix);
437 
438 	trace_i915_request_execute(request);
439 	engine->serial++;
440 	result = true;
441 
442 xfer:	/* We may be recursing from the signal callback of another i915 fence */
443 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
444 
445 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
446 		list_move_tail(&request->sched.link, &engine->active.requests);
447 
448 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
449 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
450 	    !i915_request_enable_breadcrumb(request))
451 		intel_engine_queue_breadcrumbs(engine);
452 
453 	__notify_execute_cb(request);
454 
455 	spin_unlock(&request->lock);
456 
457 	return result;
458 }
459 
460 void i915_request_submit(struct i915_request *request)
461 {
462 	struct intel_engine_cs *engine = request->engine;
463 	unsigned long flags;
464 
465 	/* Will be called from irq-context when using foreign fences. */
466 	spin_lock_irqsave(&engine->active.lock, flags);
467 
468 	__i915_request_submit(request);
469 
470 	spin_unlock_irqrestore(&engine->active.lock, flags);
471 }
472 
473 void __i915_request_unsubmit(struct i915_request *request)
474 {
475 	struct intel_engine_cs *engine = request->engine;
476 
477 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
478 		  engine->name,
479 		  request->fence.context, request->fence.seqno,
480 		  hwsp_seqno(request));
481 
482 	GEM_BUG_ON(!irqs_disabled());
483 	lockdep_assert_held(&engine->active.lock);
484 
485 	/*
486 	 * Only unwind in reverse order, required so that the per-context list
487 	 * is kept in seqno/ring order.
488 	 */
489 
490 	/* We may be recursing from the signal callback of another i915 fence */
491 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
492 
493 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
494 		i915_request_cancel_breadcrumb(request);
495 
496 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
497 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
498 
499 	spin_unlock(&request->lock);
500 
501 	/* We've already spun, don't charge on resubmitting. */
502 	if (request->sched.semaphores && i915_request_started(request)) {
503 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
504 		request->sched.semaphores = 0;
505 	}
506 
507 	/*
508 	 * We don't need to wake_up any waiters on request->execute, they
509 	 * will get woken by any other event or us re-adding this request
510 	 * to the engine timeline (__i915_request_submit()). The waiters
511 	 * should be quite adapt at finding that the request now has a new
512 	 * global_seqno to the one they went to sleep on.
513 	 */
514 }
515 
516 void i915_request_unsubmit(struct i915_request *request)
517 {
518 	struct intel_engine_cs *engine = request->engine;
519 	unsigned long flags;
520 
521 	/* Will be called from irq-context when using foreign fences. */
522 	spin_lock_irqsave(&engine->active.lock, flags);
523 
524 	__i915_request_unsubmit(request);
525 
526 	spin_unlock_irqrestore(&engine->active.lock, flags);
527 }
528 
529 static int __i915_sw_fence_call
530 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
531 {
532 	struct i915_request *request =
533 		container_of(fence, typeof(*request), submit);
534 
535 	switch (state) {
536 	case FENCE_COMPLETE:
537 		trace_i915_request_submit(request);
538 
539 		if (unlikely(fence->error))
540 			i915_request_skip(request, fence->error);
541 
542 		/*
543 		 * We need to serialize use of the submit_request() callback
544 		 * with its hotplugging performed during an emergency
545 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
546 		 * critical section in order to force i915_gem_set_wedged() to
547 		 * wait until the submit_request() is completed before
548 		 * proceeding.
549 		 */
550 		rcu_read_lock();
551 		request->engine->submit_request(request);
552 		rcu_read_unlock();
553 		break;
554 
555 	case FENCE_FREE:
556 		i915_request_put(request);
557 		break;
558 	}
559 
560 	return NOTIFY_DONE;
561 }
562 
563 static int __i915_sw_fence_call
564 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
565 {
566 	struct i915_request *request =
567 		container_of(fence, typeof(*request), semaphore);
568 
569 	switch (state) {
570 	case FENCE_COMPLETE:
571 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
572 		break;
573 
574 	case FENCE_FREE:
575 		i915_request_put(request);
576 		break;
577 	}
578 
579 	return NOTIFY_DONE;
580 }
581 
582 static void retire_requests(struct intel_timeline *tl)
583 {
584 	struct i915_request *rq, *rn;
585 
586 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
587 		if (!i915_request_retire(rq))
588 			break;
589 }
590 
591 static noinline struct i915_request *
592 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
593 {
594 	struct i915_request *rq;
595 
596 	if (list_empty(&tl->requests))
597 		goto out;
598 
599 	if (!gfpflags_allow_blocking(gfp))
600 		goto out;
601 
602 	/* Move our oldest request to the slab-cache (if not in use!) */
603 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
604 	i915_request_retire(rq);
605 
606 	rq = kmem_cache_alloc(global.slab_requests,
607 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
608 	if (rq)
609 		return rq;
610 
611 	/* Ratelimit ourselves to prevent oom from malicious clients */
612 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
613 	cond_synchronize_rcu(rq->rcustate);
614 
615 	/* Retire our old requests in the hope that we free some */
616 	retire_requests(tl);
617 
618 out:
619 	return kmem_cache_alloc(global.slab_requests, gfp);
620 }
621 
622 struct i915_request *
623 __i915_request_create(struct intel_context *ce, gfp_t gfp)
624 {
625 	struct intel_timeline *tl = ce->timeline;
626 	struct i915_request *rq;
627 	u32 seqno;
628 	int ret;
629 
630 	might_sleep_if(gfpflags_allow_blocking(gfp));
631 
632 	/* Check that the caller provided an already pinned context */
633 	__intel_context_pin(ce);
634 
635 	/*
636 	 * Beware: Dragons be flying overhead.
637 	 *
638 	 * We use RCU to look up requests in flight. The lookups may
639 	 * race with the request being allocated from the slab freelist.
640 	 * That is the request we are writing to here, may be in the process
641 	 * of being read by __i915_active_request_get_rcu(). As such,
642 	 * we have to be very careful when overwriting the contents. During
643 	 * the RCU lookup, we change chase the request->engine pointer,
644 	 * read the request->global_seqno and increment the reference count.
645 	 *
646 	 * The reference count is incremented atomically. If it is zero,
647 	 * the lookup knows the request is unallocated and complete. Otherwise,
648 	 * it is either still in use, or has been reallocated and reset
649 	 * with dma_fence_init(). This increment is safe for release as we
650 	 * check that the request we have a reference to and matches the active
651 	 * request.
652 	 *
653 	 * Before we increment the refcount, we chase the request->engine
654 	 * pointer. We must not call kmem_cache_zalloc() or else we set
655 	 * that pointer to NULL and cause a crash during the lookup. If
656 	 * we see the request is completed (based on the value of the
657 	 * old engine and seqno), the lookup is complete and reports NULL.
658 	 * If we decide the request is not completed (new engine or seqno),
659 	 * then we grab a reference and double check that it is still the
660 	 * active request - which it won't be and restart the lookup.
661 	 *
662 	 * Do not use kmem_cache_zalloc() here!
663 	 */
664 	rq = kmem_cache_alloc(global.slab_requests,
665 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
666 	if (unlikely(!rq)) {
667 		rq = request_alloc_slow(tl, gfp);
668 		if (!rq) {
669 			ret = -ENOMEM;
670 			goto err_unreserve;
671 		}
672 	}
673 
674 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
675 	if (ret)
676 		goto err_free;
677 
678 	rq->i915 = ce->engine->i915;
679 	rq->hw_context = ce;
680 	rq->gem_context = ce->gem_context;
681 	rq->engine = ce->engine;
682 	rq->ring = ce->ring;
683 	rq->timeline = tl;
684 	rq->hwsp_seqno = tl->hwsp_seqno;
685 	rq->hwsp_cacheline = tl->hwsp_cacheline;
686 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
687 
688 	spin_lock_init(&rq->lock);
689 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
690 		       tl->fence_context, seqno);
691 
692 	/* We bump the ref for the fence chain */
693 	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
694 	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
695 
696 	i915_sched_node_init(&rq->sched);
697 
698 	/* No zalloc, must clear what we need by hand */
699 	rq->file_priv = NULL;
700 	rq->batch = NULL;
701 	rq->capture_list = NULL;
702 	rq->flags = 0;
703 	rq->execution_mask = ALL_ENGINES;
704 
705 	INIT_LIST_HEAD(&rq->active_list);
706 	INIT_LIST_HEAD(&rq->execute_cb);
707 
708 	/*
709 	 * Reserve space in the ring buffer for all the commands required to
710 	 * eventually emit this request. This is to guarantee that the
711 	 * i915_request_add() call can't fail. Note that the reserve may need
712 	 * to be redone if the request is not actually submitted straight
713 	 * away, e.g. because a GPU scheduler has deferred it.
714 	 *
715 	 * Note that due to how we add reserved_space to intel_ring_begin()
716 	 * we need to double our request to ensure that if we need to wrap
717 	 * around inside i915_request_add() there is sufficient space at
718 	 * the beginning of the ring as well.
719 	 */
720 	rq->reserved_space =
721 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
722 
723 	/*
724 	 * Record the position of the start of the request so that
725 	 * should we detect the updated seqno part-way through the
726 	 * GPU processing the request, we never over-estimate the
727 	 * position of the head.
728 	 */
729 	rq->head = rq->ring->emit;
730 
731 	ret = rq->engine->request_alloc(rq);
732 	if (ret)
733 		goto err_unwind;
734 
735 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
736 
737 	intel_context_mark_active(ce);
738 	return rq;
739 
740 err_unwind:
741 	ce->ring->emit = rq->head;
742 
743 	/* Make sure we didn't add ourselves to external state before freeing */
744 	GEM_BUG_ON(!list_empty(&rq->active_list));
745 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
746 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
747 
748 err_free:
749 	kmem_cache_free(global.slab_requests, rq);
750 err_unreserve:
751 	intel_context_unpin(ce);
752 	return ERR_PTR(ret);
753 }
754 
755 struct i915_request *
756 i915_request_create(struct intel_context *ce)
757 {
758 	struct i915_request *rq;
759 	struct intel_timeline *tl;
760 
761 	tl = intel_context_timeline_lock(ce);
762 	if (IS_ERR(tl))
763 		return ERR_CAST(tl);
764 
765 	/* Move our oldest request to the slab-cache (if not in use!) */
766 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
767 	if (!list_is_last(&rq->link, &tl->requests))
768 		i915_request_retire(rq);
769 
770 	intel_context_enter(ce);
771 	rq = __i915_request_create(ce, GFP_KERNEL);
772 	intel_context_exit(ce); /* active reference transferred to request */
773 	if (IS_ERR(rq))
774 		goto err_unlock;
775 
776 	/* Check that we do not interrupt ourselves with a new request */
777 	rq->cookie = lockdep_pin_lock(&tl->mutex);
778 
779 	return rq;
780 
781 err_unlock:
782 	intel_context_timeline_unlock(tl);
783 	return rq;
784 }
785 
786 static int
787 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
788 {
789 	if (list_is_first(&signal->link, &signal->timeline->requests))
790 		return 0;
791 
792 	signal = list_prev_entry(signal, link);
793 	if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
794 		return 0;
795 
796 	return i915_sw_fence_await_dma_fence(&rq->submit,
797 					     &signal->fence, 0,
798 					     I915_FENCE_GFP);
799 }
800 
801 static intel_engine_mask_t
802 already_busywaiting(struct i915_request *rq)
803 {
804 	/*
805 	 * Polling a semaphore causes bus traffic, delaying other users of
806 	 * both the GPU and CPU. We want to limit the impact on others,
807 	 * while taking advantage of early submission to reduce GPU
808 	 * latency. Therefore we restrict ourselves to not using more
809 	 * than one semaphore from each source, and not using a semaphore
810 	 * if we have detected the engine is saturated (i.e. would not be
811 	 * submitted early and cause bus traffic reading an already passed
812 	 * semaphore).
813 	 *
814 	 * See the are-we-too-late? check in __i915_request_submit().
815 	 */
816 	return rq->sched.semaphores | rq->engine->saturated;
817 }
818 
819 static int
820 emit_semaphore_wait(struct i915_request *to,
821 		    struct i915_request *from,
822 		    gfp_t gfp)
823 {
824 	u32 hwsp_offset;
825 	u32 *cs;
826 	int err;
827 
828 	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
829 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
830 
831 	/* Just emit the first semaphore we see as request space is limited. */
832 	if (already_busywaiting(to) & from->engine->mask)
833 		return i915_sw_fence_await_dma_fence(&to->submit,
834 						     &from->fence, 0,
835 						     I915_FENCE_GFP);
836 
837 	err = i915_request_await_start(to, from);
838 	if (err < 0)
839 		return err;
840 
841 	/* Only submit our spinner after the signaler is running! */
842 	err = __i915_request_await_execution(to, from, NULL, gfp);
843 	if (err)
844 		return err;
845 
846 	/* We need to pin the signaler's HWSP until we are finished reading. */
847 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
848 	if (err)
849 		return err;
850 
851 	cs = intel_ring_begin(to, 4);
852 	if (IS_ERR(cs))
853 		return PTR_ERR(cs);
854 
855 	/*
856 	 * Using greater-than-or-equal here means we have to worry
857 	 * about seqno wraparound. To side step that issue, we swap
858 	 * the timeline HWSP upon wrapping, so that everyone listening
859 	 * for the old (pre-wrap) values do not see the much smaller
860 	 * (post-wrap) values than they were expecting (and so wait
861 	 * forever).
862 	 */
863 	*cs++ = MI_SEMAPHORE_WAIT |
864 		MI_SEMAPHORE_GLOBAL_GTT |
865 		MI_SEMAPHORE_POLL |
866 		MI_SEMAPHORE_SAD_GTE_SDD;
867 	*cs++ = from->fence.seqno;
868 	*cs++ = hwsp_offset;
869 	*cs++ = 0;
870 
871 	intel_ring_advance(to, cs);
872 	to->sched.semaphores |= from->engine->mask;
873 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
874 	return 0;
875 }
876 
877 static int
878 i915_request_await_request(struct i915_request *to, struct i915_request *from)
879 {
880 	int ret;
881 
882 	GEM_BUG_ON(to == from);
883 	GEM_BUG_ON(to->timeline == from->timeline);
884 
885 	if (i915_request_completed(from))
886 		return 0;
887 
888 	if (to->engine->schedule) {
889 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
890 		if (ret < 0)
891 			return ret;
892 	}
893 
894 	if (to->engine == from->engine) {
895 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
896 						       &from->submit,
897 						       I915_FENCE_GFP);
898 	} else if (intel_engine_has_semaphores(to->engine) &&
899 		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
900 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
901 	} else {
902 		ret = i915_sw_fence_await_dma_fence(&to->submit,
903 						    &from->fence, 0,
904 						    I915_FENCE_GFP);
905 	}
906 	if (ret < 0)
907 		return ret;
908 
909 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
910 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
911 						    &from->fence, 0,
912 						    I915_FENCE_GFP);
913 		if (ret < 0)
914 			return ret;
915 	}
916 
917 	return 0;
918 }
919 
920 int
921 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
922 {
923 	struct dma_fence **child = &fence;
924 	unsigned int nchild = 1;
925 	int ret;
926 
927 	/*
928 	 * Note that if the fence-array was created in signal-on-any mode,
929 	 * we should *not* decompose it into its individual fences. However,
930 	 * we don't currently store which mode the fence-array is operating
931 	 * in. Fortunately, the only user of signal-on-any is private to
932 	 * amdgpu and we should not see any incoming fence-array from
933 	 * sync-file being in signal-on-any mode.
934 	 */
935 	if (dma_fence_is_array(fence)) {
936 		struct dma_fence_array *array = to_dma_fence_array(fence);
937 
938 		child = array->fences;
939 		nchild = array->num_fences;
940 		GEM_BUG_ON(!nchild);
941 	}
942 
943 	do {
944 		fence = *child++;
945 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
946 			continue;
947 
948 		/*
949 		 * Requests on the same timeline are explicitly ordered, along
950 		 * with their dependencies, by i915_request_add() which ensures
951 		 * that requests are submitted in-order through each ring.
952 		 */
953 		if (fence->context == rq->fence.context)
954 			continue;
955 
956 		/* Squash repeated waits to the same timelines */
957 		if (fence->context &&
958 		    intel_timeline_sync_is_later(rq->timeline, fence))
959 			continue;
960 
961 		if (dma_fence_is_i915(fence))
962 			ret = i915_request_await_request(rq, to_request(fence));
963 		else
964 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
965 							    I915_FENCE_TIMEOUT,
966 							    I915_FENCE_GFP);
967 		if (ret < 0)
968 			return ret;
969 
970 		/* Record the latest fence used against each timeline */
971 		if (fence->context)
972 			intel_timeline_sync_set(rq->timeline, fence);
973 	} while (--nchild);
974 
975 	return 0;
976 }
977 
978 int
979 i915_request_await_execution(struct i915_request *rq,
980 			     struct dma_fence *fence,
981 			     void (*hook)(struct i915_request *rq,
982 					  struct dma_fence *signal))
983 {
984 	struct dma_fence **child = &fence;
985 	unsigned int nchild = 1;
986 	int ret;
987 
988 	if (dma_fence_is_array(fence)) {
989 		struct dma_fence_array *array = to_dma_fence_array(fence);
990 
991 		/* XXX Error for signal-on-any fence arrays */
992 
993 		child = array->fences;
994 		nchild = array->num_fences;
995 		GEM_BUG_ON(!nchild);
996 	}
997 
998 	do {
999 		fence = *child++;
1000 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1001 			continue;
1002 
1003 		/*
1004 		 * We don't squash repeated fence dependencies here as we
1005 		 * want to run our callback in all cases.
1006 		 */
1007 
1008 		if (dma_fence_is_i915(fence))
1009 			ret = __i915_request_await_execution(rq,
1010 							     to_request(fence),
1011 							     hook,
1012 							     I915_FENCE_GFP);
1013 		else
1014 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1015 							    I915_FENCE_TIMEOUT,
1016 							    GFP_KERNEL);
1017 		if (ret < 0)
1018 			return ret;
1019 	} while (--nchild);
1020 
1021 	return 0;
1022 }
1023 
1024 /**
1025  * i915_request_await_object - set this request to (async) wait upon a bo
1026  * @to: request we are wishing to use
1027  * @obj: object which may be in use on another ring.
1028  * @write: whether the wait is on behalf of a writer
1029  *
1030  * This code is meant to abstract object synchronization with the GPU.
1031  * Conceptually we serialise writes between engines inside the GPU.
1032  * We only allow one engine to write into a buffer at any time, but
1033  * multiple readers. To ensure each has a coherent view of memory, we must:
1034  *
1035  * - If there is an outstanding write request to the object, the new
1036  *   request must wait for it to complete (either CPU or in hw, requests
1037  *   on the same ring will be naturally ordered).
1038  *
1039  * - If we are a write request (pending_write_domain is set), the new
1040  *   request must wait for outstanding read requests to complete.
1041  *
1042  * Returns 0 if successful, else propagates up the lower layer error.
1043  */
1044 int
1045 i915_request_await_object(struct i915_request *to,
1046 			  struct drm_i915_gem_object *obj,
1047 			  bool write)
1048 {
1049 	struct dma_fence *excl;
1050 	int ret = 0;
1051 
1052 	if (write) {
1053 		struct dma_fence **shared;
1054 		unsigned int count, i;
1055 
1056 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1057 							&excl, &count, &shared);
1058 		if (ret)
1059 			return ret;
1060 
1061 		for (i = 0; i < count; i++) {
1062 			ret = i915_request_await_dma_fence(to, shared[i]);
1063 			if (ret)
1064 				break;
1065 
1066 			dma_fence_put(shared[i]);
1067 		}
1068 
1069 		for (; i < count; i++)
1070 			dma_fence_put(shared[i]);
1071 		kfree(shared);
1072 	} else {
1073 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1074 	}
1075 
1076 	if (excl) {
1077 		if (ret == 0)
1078 			ret = i915_request_await_dma_fence(to, excl);
1079 
1080 		dma_fence_put(excl);
1081 	}
1082 
1083 	return ret;
1084 }
1085 
1086 void i915_request_skip(struct i915_request *rq, int error)
1087 {
1088 	void *vaddr = rq->ring->vaddr;
1089 	u32 head;
1090 
1091 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1092 	dma_fence_set_error(&rq->fence, error);
1093 
1094 	if (rq->infix == rq->postfix)
1095 		return;
1096 
1097 	/*
1098 	 * As this request likely depends on state from the lost
1099 	 * context, clear out all the user operations leaving the
1100 	 * breadcrumb at the end (so we get the fence notifications).
1101 	 */
1102 	head = rq->infix;
1103 	if (rq->postfix < head) {
1104 		memset(vaddr + head, 0, rq->ring->size - head);
1105 		head = 0;
1106 	}
1107 	memset(vaddr + head, 0, rq->postfix - head);
1108 	rq->infix = rq->postfix;
1109 }
1110 
1111 static struct i915_request *
1112 __i915_request_add_to_timeline(struct i915_request *rq)
1113 {
1114 	struct intel_timeline *timeline = rq->timeline;
1115 	struct i915_request *prev;
1116 
1117 	/*
1118 	 * Dependency tracking and request ordering along the timeline
1119 	 * is special cased so that we can eliminate redundant ordering
1120 	 * operations while building the request (we know that the timeline
1121 	 * itself is ordered, and here we guarantee it).
1122 	 *
1123 	 * As we know we will need to emit tracking along the timeline,
1124 	 * we embed the hooks into our request struct -- at the cost of
1125 	 * having to have specialised no-allocation interfaces (which will
1126 	 * be beneficial elsewhere).
1127 	 *
1128 	 * A second benefit to open-coding i915_request_await_request is
1129 	 * that we can apply a slight variant of the rules specialised
1130 	 * for timelines that jump between engines (such as virtual engines).
1131 	 * If we consider the case of virtual engine, we must emit a dma-fence
1132 	 * to prevent scheduling of the second request until the first is
1133 	 * complete (to maximise our greedy late load balancing) and this
1134 	 * precludes optimising to use semaphores serialisation of a single
1135 	 * timeline across engines.
1136 	 */
1137 	prev = rcu_dereference_protected(timeline->last_request.request,
1138 					 lockdep_is_held(&timeline->mutex));
1139 	if (prev && !i915_request_completed(prev)) {
1140 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1141 			i915_sw_fence_await_sw_fence(&rq->submit,
1142 						     &prev->submit,
1143 						     &rq->submitq);
1144 		else
1145 			__i915_sw_fence_await_dma_fence(&rq->submit,
1146 							&prev->fence,
1147 							&rq->dmaq);
1148 		if (rq->engine->schedule)
1149 			__i915_sched_node_add_dependency(&rq->sched,
1150 							 &prev->sched,
1151 							 &rq->dep,
1152 							 0);
1153 	}
1154 
1155 	list_add_tail(&rq->link, &timeline->requests);
1156 
1157 	/*
1158 	 * Make sure that no request gazumped us - if it was allocated after
1159 	 * our i915_request_alloc() and called __i915_request_add() before
1160 	 * us, the timeline will hold its seqno which is later than ours.
1161 	 */
1162 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1163 	__i915_active_request_set(&timeline->last_request, rq);
1164 
1165 	return prev;
1166 }
1167 
1168 /*
1169  * NB: This function is not allowed to fail. Doing so would mean the the
1170  * request is not being tracked for completion but the work itself is
1171  * going to happen on the hardware. This would be a Bad Thing(tm).
1172  */
1173 struct i915_request *__i915_request_commit(struct i915_request *rq)
1174 {
1175 	struct intel_engine_cs *engine = rq->engine;
1176 	struct intel_ring *ring = rq->ring;
1177 	u32 *cs;
1178 
1179 	GEM_TRACE("%s fence %llx:%lld\n",
1180 		  engine->name, rq->fence.context, rq->fence.seqno);
1181 
1182 	/*
1183 	 * To ensure that this call will not fail, space for its emissions
1184 	 * should already have been reserved in the ring buffer. Let the ring
1185 	 * know that it is time to use that space up.
1186 	 */
1187 	GEM_BUG_ON(rq->reserved_space > ring->space);
1188 	rq->reserved_space = 0;
1189 	rq->emitted_jiffies = jiffies;
1190 
1191 	/*
1192 	 * Record the position of the start of the breadcrumb so that
1193 	 * should we detect the updated seqno part-way through the
1194 	 * GPU processing the request, we never over-estimate the
1195 	 * position of the ring's HEAD.
1196 	 */
1197 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1198 	GEM_BUG_ON(IS_ERR(cs));
1199 	rq->postfix = intel_ring_offset(rq, cs);
1200 
1201 	return __i915_request_add_to_timeline(rq);
1202 }
1203 
1204 void __i915_request_queue(struct i915_request *rq,
1205 			  const struct i915_sched_attr *attr)
1206 {
1207 	/*
1208 	 * Let the backend know a new request has arrived that may need
1209 	 * to adjust the existing execution schedule due to a high priority
1210 	 * request - i.e. we may want to preempt the current request in order
1211 	 * to run a high priority dependency chain *before* we can execute this
1212 	 * request.
1213 	 *
1214 	 * This is called before the request is ready to run so that we can
1215 	 * decide whether to preempt the entire chain so that it is ready to
1216 	 * run at the earliest possible convenience.
1217 	 */
1218 	i915_sw_fence_commit(&rq->semaphore);
1219 	if (attr && rq->engine->schedule)
1220 		rq->engine->schedule(rq, attr);
1221 	i915_sw_fence_commit(&rq->submit);
1222 }
1223 
1224 void i915_request_add(struct i915_request *rq)
1225 {
1226 	struct i915_sched_attr attr = rq->gem_context->sched;
1227 	struct intel_timeline * const tl = rq->timeline;
1228 	struct i915_request *prev;
1229 
1230 	lockdep_assert_held(&tl->mutex);
1231 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1232 
1233 	trace_i915_request_add(rq);
1234 
1235 	prev = __i915_request_commit(rq);
1236 
1237 	/*
1238 	 * Boost actual workloads past semaphores!
1239 	 *
1240 	 * With semaphores we spin on one engine waiting for another,
1241 	 * simply to reduce the latency of starting our work when
1242 	 * the signaler completes. However, if there is any other
1243 	 * work that we could be doing on this engine instead, that
1244 	 * is better utilisation and will reduce the overall duration
1245 	 * of the current work. To avoid PI boosting a semaphore
1246 	 * far in the distance past over useful work, we keep a history
1247 	 * of any semaphore use along our dependency chain.
1248 	 */
1249 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1250 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1251 
1252 	/*
1253 	 * Boost priorities to new clients (new request flows).
1254 	 *
1255 	 * Allow interactive/synchronous clients to jump ahead of
1256 	 * the bulk clients. (FQ_CODEL)
1257 	 */
1258 	if (list_empty(&rq->sched.signalers_list))
1259 		attr.priority |= I915_PRIORITY_WAIT;
1260 
1261 	local_bh_disable();
1262 	__i915_request_queue(rq, &attr);
1263 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1264 
1265 	/*
1266 	 * In typical scenarios, we do not expect the previous request on
1267 	 * the timeline to be still tracked by timeline->last_request if it
1268 	 * has been completed. If the completed request is still here, that
1269 	 * implies that request retirement is a long way behind submission,
1270 	 * suggesting that we haven't been retiring frequently enough from
1271 	 * the combination of retire-before-alloc, waiters and the background
1272 	 * retirement worker. So if the last request on this timeline was
1273 	 * already completed, do a catch up pass, flushing the retirement queue
1274 	 * up to this client. Since we have now moved the heaviest operations
1275 	 * during retirement onto secondary workers, such as freeing objects
1276 	 * or contexts, retiring a bunch of requests is mostly list management
1277 	 * (and cache misses), and so we should not be overly penalizing this
1278 	 * client by performing excess work, though we may still performing
1279 	 * work on behalf of others -- but instead we should benefit from
1280 	 * improved resource management. (Well, that's the theory at least.)
1281 	 */
1282 	if (prev && i915_request_completed(prev) && prev->timeline == tl)
1283 		i915_request_retire_upto(prev);
1284 
1285 	mutex_unlock(&tl->mutex);
1286 }
1287 
1288 static unsigned long local_clock_us(unsigned int *cpu)
1289 {
1290 	unsigned long t;
1291 
1292 	/*
1293 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1294 	 * The result and subsequent calculations are also defined in the same
1295 	 * approximate microseconds units. The principal source of timing
1296 	 * error here is from the simple truncation.
1297 	 *
1298 	 * Note that local_clock() is only defined wrt to the current CPU;
1299 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1300 	 * blocking preemption for the entire busywait, we can detect the CPU
1301 	 * switch and use that as indicator of system load and a reason to
1302 	 * stop busywaiting, see busywait_stop().
1303 	 */
1304 	*cpu = get_cpu();
1305 	t = local_clock() >> 10;
1306 	put_cpu();
1307 
1308 	return t;
1309 }
1310 
1311 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1312 {
1313 	unsigned int this_cpu;
1314 
1315 	if (time_after(local_clock_us(&this_cpu), timeout))
1316 		return true;
1317 
1318 	return this_cpu != cpu;
1319 }
1320 
1321 static bool __i915_spin_request(const struct i915_request * const rq,
1322 				int state, unsigned long timeout_us)
1323 {
1324 	unsigned int cpu;
1325 
1326 	/*
1327 	 * Only wait for the request if we know it is likely to complete.
1328 	 *
1329 	 * We don't track the timestamps around requests, nor the average
1330 	 * request length, so we do not have a good indicator that this
1331 	 * request will complete within the timeout. What we do know is the
1332 	 * order in which requests are executed by the context and so we can
1333 	 * tell if the request has been started. If the request is not even
1334 	 * running yet, it is a fair assumption that it will not complete
1335 	 * within our relatively short timeout.
1336 	 */
1337 	if (!i915_request_is_running(rq))
1338 		return false;
1339 
1340 	/*
1341 	 * When waiting for high frequency requests, e.g. during synchronous
1342 	 * rendering split between the CPU and GPU, the finite amount of time
1343 	 * required to set up the irq and wait upon it limits the response
1344 	 * rate. By busywaiting on the request completion for a short while we
1345 	 * can service the high frequency waits as quick as possible. However,
1346 	 * if it is a slow request, we want to sleep as quickly as possible.
1347 	 * The tradeoff between waiting and sleeping is roughly the time it
1348 	 * takes to sleep on a request, on the order of a microsecond.
1349 	 */
1350 
1351 	timeout_us += local_clock_us(&cpu);
1352 	do {
1353 		if (i915_request_completed(rq))
1354 			return true;
1355 
1356 		if (signal_pending_state(state, current))
1357 			break;
1358 
1359 		if (busywait_stop(timeout_us, cpu))
1360 			break;
1361 
1362 		cpu_relax();
1363 	} while (!need_resched());
1364 
1365 	return false;
1366 }
1367 
1368 struct request_wait {
1369 	struct dma_fence_cb cb;
1370 	struct task_struct *tsk;
1371 };
1372 
1373 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1374 {
1375 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1376 
1377 	wake_up_process(wait->tsk);
1378 }
1379 
1380 /**
1381  * i915_request_wait - wait until execution of request has finished
1382  * @rq: the request to wait upon
1383  * @flags: how to wait
1384  * @timeout: how long to wait in jiffies
1385  *
1386  * i915_request_wait() waits for the request to be completed, for a
1387  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1388  * unbounded wait).
1389  *
1390  * Returns the remaining time (in jiffies) if the request completed, which may
1391  * be zero or -ETIME if the request is unfinished after the timeout expires.
1392  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1393  * pending before the request completes.
1394  */
1395 long i915_request_wait(struct i915_request *rq,
1396 		       unsigned int flags,
1397 		       long timeout)
1398 {
1399 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1400 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1401 	struct request_wait wait;
1402 
1403 	might_sleep();
1404 	GEM_BUG_ON(timeout < 0);
1405 
1406 	if (dma_fence_is_signaled(&rq->fence))
1407 		return timeout;
1408 
1409 	if (!timeout)
1410 		return -ETIME;
1411 
1412 	trace_i915_request_wait_begin(rq, flags);
1413 
1414 	/*
1415 	 * We must never wait on the GPU while holding a lock as we
1416 	 * may need to perform a GPU reset. So while we don't need to
1417 	 * serialise wait/reset with an explicit lock, we do want
1418 	 * lockdep to detect potential dependency cycles.
1419 	 */
1420 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1421 
1422 	/*
1423 	 * Optimistic spin before touching IRQs.
1424 	 *
1425 	 * We may use a rather large value here to offset the penalty of
1426 	 * switching away from the active task. Frequently, the client will
1427 	 * wait upon an old swapbuffer to throttle itself to remain within a
1428 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1429 	 * then it should not be waiting long at all, and a sleep now will incur
1430 	 * extra scheduler latency in producing the next frame. To try to
1431 	 * avoid adding the cost of enabling/disabling the interrupt to the
1432 	 * short wait, we first spin to see if the request would have completed
1433 	 * in the time taken to setup the interrupt.
1434 	 *
1435 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1436 	 * scheduler latency of a context switch, ignoring the secondary
1437 	 * impacts from a context switch such as cache eviction.
1438 	 *
1439 	 * The scheme used for low-latency IO is called "hybrid interrupt
1440 	 * polling". The suggestion there is to sleep until just before you
1441 	 * expect to be woken by the device interrupt and then poll for its
1442 	 * completion. That requires having a good predictor for the request
1443 	 * duration, which we currently lack.
1444 	 */
1445 	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1446 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1447 		dma_fence_signal(&rq->fence);
1448 		goto out;
1449 	}
1450 
1451 	/*
1452 	 * This client is about to stall waiting for the GPU. In many cases
1453 	 * this is undesirable and limits the throughput of the system, as
1454 	 * many clients cannot continue processing user input/output whilst
1455 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1456 	 * to the GPU load and thus incurs additional latency for the client.
1457 	 * We can circumvent that by promoting the GPU frequency to maximum
1458 	 * before we sleep. This makes the GPU throttle up much more quickly
1459 	 * (good for benchmarks and user experience, e.g. window animations),
1460 	 * but at a cost of spending more power processing the workload
1461 	 * (bad for battery).
1462 	 */
1463 	if (flags & I915_WAIT_PRIORITY) {
1464 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1465 			gen6_rps_boost(rq);
1466 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1467 	}
1468 
1469 	wait.tsk = current;
1470 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1471 		goto out;
1472 
1473 	for (;;) {
1474 		set_current_state(state);
1475 
1476 		if (i915_request_completed(rq)) {
1477 			dma_fence_signal(&rq->fence);
1478 			break;
1479 		}
1480 
1481 		if (signal_pending_state(state, current)) {
1482 			timeout = -ERESTARTSYS;
1483 			break;
1484 		}
1485 
1486 		if (!timeout) {
1487 			timeout = -ETIME;
1488 			break;
1489 		}
1490 
1491 		timeout = io_schedule_timeout(timeout);
1492 	}
1493 	__set_current_state(TASK_RUNNING);
1494 
1495 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1496 
1497 out:
1498 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1499 	trace_i915_request_wait_end(rq);
1500 	return timeout;
1501 }
1502 
1503 bool i915_retire_requests(struct drm_i915_private *i915)
1504 {
1505 	struct intel_gt_timelines *timelines = &i915->gt.timelines;
1506 	struct intel_timeline *tl, *tn;
1507 	unsigned long flags;
1508 	LIST_HEAD(free);
1509 
1510 	spin_lock_irqsave(&timelines->lock, flags);
1511 	list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1512 		if (!mutex_trylock(&tl->mutex))
1513 			continue;
1514 
1515 		intel_timeline_get(tl);
1516 		GEM_BUG_ON(!tl->active_count);
1517 		tl->active_count++; /* pin the list element */
1518 		spin_unlock_irqrestore(&timelines->lock, flags);
1519 
1520 		retire_requests(tl);
1521 
1522 		spin_lock_irqsave(&timelines->lock, flags);
1523 
1524 		/* Resume iteration after dropping lock */
1525 		list_safe_reset_next(tl, tn, link);
1526 		if (!--tl->active_count)
1527 			list_del(&tl->link);
1528 
1529 		mutex_unlock(&tl->mutex);
1530 
1531 		/* Defer the final release to after the spinlock */
1532 		if (refcount_dec_and_test(&tl->kref.refcount)) {
1533 			GEM_BUG_ON(tl->active_count);
1534 			list_add(&tl->link, &free);
1535 		}
1536 	}
1537 	spin_unlock_irqrestore(&timelines->lock, flags);
1538 
1539 	list_for_each_entry_safe(tl, tn, &free, link)
1540 		__intel_timeline_free(&tl->kref);
1541 
1542 	return !list_empty(&timelines->active_list);
1543 }
1544 
1545 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1546 #include "selftests/mock_request.c"
1547 #include "selftests/i915_request.c"
1548 #endif
1549 
1550 static void i915_global_request_shrink(void)
1551 {
1552 	kmem_cache_shrink(global.slab_dependencies);
1553 	kmem_cache_shrink(global.slab_execute_cbs);
1554 	kmem_cache_shrink(global.slab_requests);
1555 }
1556 
1557 static void i915_global_request_exit(void)
1558 {
1559 	kmem_cache_destroy(global.slab_dependencies);
1560 	kmem_cache_destroy(global.slab_execute_cbs);
1561 	kmem_cache_destroy(global.slab_requests);
1562 }
1563 
1564 static struct i915_global_request global = { {
1565 	.shrink = i915_global_request_shrink,
1566 	.exit = i915_global_request_exit,
1567 } };
1568 
1569 int __init i915_global_request_init(void)
1570 {
1571 	global.slab_requests = KMEM_CACHE(i915_request,
1572 					  SLAB_HWCACHE_ALIGN |
1573 					  SLAB_RECLAIM_ACCOUNT |
1574 					  SLAB_TYPESAFE_BY_RCU);
1575 	if (!global.slab_requests)
1576 		return -ENOMEM;
1577 
1578 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1579 					     SLAB_HWCACHE_ALIGN |
1580 					     SLAB_RECLAIM_ACCOUNT |
1581 					     SLAB_TYPESAFE_BY_RCU);
1582 	if (!global.slab_execute_cbs)
1583 		goto err_requests;
1584 
1585 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1586 					      SLAB_HWCACHE_ALIGN |
1587 					      SLAB_RECLAIM_ACCOUNT);
1588 	if (!global.slab_dependencies)
1589 		goto err_execute_cbs;
1590 
1591 	i915_global_register(&global.base);
1592 	return 0;
1593 
1594 err_execute_cbs:
1595 	kmem_cache_destroy(global.slab_execute_cbs);
1596 err_requests:
1597 	kmem_cache_destroy(global.slab_requests);
1598 	return -ENOMEM;
1599 }
1600