1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_ring.h" 37 #include "gt/intel_rps.h" 38 39 #include "i915_active.h" 40 #include "i915_drv.h" 41 #include "i915_globals.h" 42 #include "i915_trace.h" 43 #include "intel_pm.h" 44 45 struct execute_cb { 46 struct irq_work work; 47 struct i915_sw_fence *fence; 48 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 49 struct i915_request *signal; 50 }; 51 52 static struct i915_global_request { 53 struct i915_global base; 54 struct kmem_cache *slab_requests; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->engine->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 struct kmem_cache *i915_request_slab_cache(void) 106 { 107 return global.slab_requests; 108 } 109 110 static void i915_fence_release(struct dma_fence *fence) 111 { 112 struct i915_request *rq = to_request(fence); 113 114 /* 115 * The request is put onto a RCU freelist (i.e. the address 116 * is immediately reused), mark the fences as being freed now. 117 * Otherwise the debugobjects for the fences are only marked as 118 * freed when the slab cache itself is freed, and so we would get 119 * caught trying to reuse dead objects. 120 */ 121 i915_sw_fence_fini(&rq->submit); 122 i915_sw_fence_fini(&rq->semaphore); 123 124 /* 125 * Keep one request on each engine for reserved use under mempressure 126 * 127 * We do not hold a reference to the engine here and so have to be 128 * very careful in what rq->engine we poke. The virtual engine is 129 * referenced via the rq->context and we released that ref during 130 * i915_request_retire(), ergo we must not dereference a virtual 131 * engine here. Not that we would want to, as the only consumer of 132 * the reserved engine->request_pool is the power management parking, 133 * which must-not-fail, and that is only run on the physical engines. 134 * 135 * Since the request must have been executed to be have completed, 136 * we know that it will have been processed by the HW and will 137 * not be unsubmitted again, so rq->engine and rq->execution_mask 138 * at this point is stable. rq->execution_mask will be a single 139 * bit if the last and _only_ engine it could execution on was a 140 * physical engine, if it's multiple bits then it started on and 141 * could still be on a virtual engine. Thus if the mask is not a 142 * power-of-two we assume that rq->engine may still be a virtual 143 * engine and so a dangling invalid pointer that we cannot dereference 144 * 145 * For example, consider the flow of a bonded request through a virtual 146 * engine. The request is created with a wide engine mask (all engines 147 * that we might execute on). On processing the bond, the request mask 148 * is reduced to one or more engines. If the request is subsequently 149 * bound to a single engine, it will then be constrained to only 150 * execute on that engine and never returned to the virtual engine 151 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 152 * know that if the rq->execution_mask is a single bit, rq->engine 153 * can be a physical engine with the exact corresponding mask. 154 */ 155 if (is_power_of_2(rq->execution_mask) && 156 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 157 return; 158 159 kmem_cache_free(global.slab_requests, rq); 160 } 161 162 const struct dma_fence_ops i915_fence_ops = { 163 .get_driver_name = i915_fence_get_driver_name, 164 .get_timeline_name = i915_fence_get_timeline_name, 165 .enable_signaling = i915_fence_enable_signaling, 166 .signaled = i915_fence_signaled, 167 .wait = i915_fence_wait, 168 .release = i915_fence_release, 169 }; 170 171 static void irq_execute_cb(struct irq_work *wrk) 172 { 173 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 174 175 i915_sw_fence_complete(cb->fence); 176 kmem_cache_free(global.slab_execute_cbs, cb); 177 } 178 179 static void irq_execute_cb_hook(struct irq_work *wrk) 180 { 181 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 182 183 cb->hook(container_of(cb->fence, struct i915_request, submit), 184 &cb->signal->fence); 185 i915_request_put(cb->signal); 186 187 irq_execute_cb(wrk); 188 } 189 190 static __always_inline void 191 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 192 { 193 struct execute_cb *cb, *cn; 194 195 if (llist_empty(&rq->execute_cb)) 196 return; 197 198 llist_for_each_entry_safe(cb, cn, 199 llist_del_all(&rq->execute_cb), 200 work.llnode) 201 fn(&cb->work); 202 } 203 204 static void __notify_execute_cb_irq(struct i915_request *rq) 205 { 206 __notify_execute_cb(rq, irq_work_queue); 207 } 208 209 static bool irq_work_imm(struct irq_work *wrk) 210 { 211 wrk->func(wrk); 212 return false; 213 } 214 215 static void __notify_execute_cb_imm(struct i915_request *rq) 216 { 217 __notify_execute_cb(rq, irq_work_imm); 218 } 219 220 static void free_capture_list(struct i915_request *request) 221 { 222 struct i915_capture_list *capture; 223 224 capture = fetch_and_zero(&request->capture_list); 225 while (capture) { 226 struct i915_capture_list *next = capture->next; 227 228 kfree(capture); 229 capture = next; 230 } 231 } 232 233 static void __i915_request_fill(struct i915_request *rq, u8 val) 234 { 235 void *vaddr = rq->ring->vaddr; 236 u32 head; 237 238 head = rq->infix; 239 if (rq->postfix < head) { 240 memset(vaddr + head, val, rq->ring->size - head); 241 head = 0; 242 } 243 memset(vaddr + head, val, rq->postfix - head); 244 } 245 246 static void remove_from_engine(struct i915_request *rq) 247 { 248 struct intel_engine_cs *engine, *locked; 249 250 /* 251 * Virtual engines complicate acquiring the engine timeline lock, 252 * as their rq->engine pointer is not stable until under that 253 * engine lock. The simple ploy we use is to take the lock then 254 * check that the rq still belongs to the newly locked engine. 255 */ 256 locked = READ_ONCE(rq->engine); 257 spin_lock_irq(&locked->active.lock); 258 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 259 spin_unlock(&locked->active.lock); 260 spin_lock(&engine->active.lock); 261 locked = engine; 262 } 263 list_del_init(&rq->sched.link); 264 265 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 266 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 267 268 /* Prevent further __await_execution() registering a cb, then flush */ 269 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 270 271 spin_unlock_irq(&locked->active.lock); 272 273 __notify_execute_cb_imm(rq); 274 } 275 276 bool i915_request_retire(struct i915_request *rq) 277 { 278 if (!i915_request_completed(rq)) 279 return false; 280 281 RQ_TRACE(rq, "\n"); 282 283 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 284 trace_i915_request_retire(rq); 285 i915_request_mark_complete(rq); 286 287 /* 288 * We know the GPU must have read the request to have 289 * sent us the seqno + interrupt, so use the position 290 * of tail of the request to update the last known position 291 * of the GPU head. 292 * 293 * Note this requires that we are always called in request 294 * completion order. 295 */ 296 GEM_BUG_ON(!list_is_first(&rq->link, 297 &i915_request_timeline(rq)->requests)); 298 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 299 /* Poison before we release our space in the ring */ 300 __i915_request_fill(rq, POISON_FREE); 301 rq->ring->head = rq->postfix; 302 303 if (!i915_request_signaled(rq)) { 304 spin_lock_irq(&rq->lock); 305 dma_fence_signal_locked(&rq->fence); 306 spin_unlock_irq(&rq->lock); 307 } 308 309 if (i915_request_has_waitboost(rq)) { 310 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 311 atomic_dec(&rq->engine->gt->rps.num_waiters); 312 } 313 314 /* 315 * We only loosely track inflight requests across preemption, 316 * and so we may find ourselves attempting to retire a _completed_ 317 * request that we have removed from the HW and put back on a run 318 * queue. 319 * 320 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 321 * after removing the breadcrumb and signaling it, so that we do not 322 * inadvertently attach the breadcrumb to a completed request. 323 */ 324 remove_from_engine(rq); 325 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 326 327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 328 329 intel_context_exit(rq->context); 330 intel_context_unpin(rq->context); 331 332 free_capture_list(rq); 333 i915_sched_node_fini(&rq->sched); 334 i915_request_put(rq); 335 336 return true; 337 } 338 339 void i915_request_retire_upto(struct i915_request *rq) 340 { 341 struct intel_timeline * const tl = i915_request_timeline(rq); 342 struct i915_request *tmp; 343 344 RQ_TRACE(rq, "\n"); 345 346 GEM_BUG_ON(!i915_request_completed(rq)); 347 348 do { 349 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 350 } while (i915_request_retire(tmp) && tmp != rq); 351 } 352 353 static struct i915_request * const * 354 __engine_active(struct intel_engine_cs *engine) 355 { 356 return READ_ONCE(engine->execlists.active); 357 } 358 359 static bool __request_in_flight(const struct i915_request *signal) 360 { 361 struct i915_request * const *port, *rq; 362 bool inflight = false; 363 364 if (!i915_request_is_ready(signal)) 365 return false; 366 367 /* 368 * Even if we have unwound the request, it may still be on 369 * the GPU (preempt-to-busy). If that request is inside an 370 * unpreemptible critical section, it will not be removed. Some 371 * GPU functions may even be stuck waiting for the paired request 372 * (__await_execution) to be submitted and cannot be preempted 373 * until the bond is executing. 374 * 375 * As we know that there are always preemption points between 376 * requests, we know that only the currently executing request 377 * may be still active even though we have cleared the flag. 378 * However, we can't rely on our tracking of ELSP[0] to know 379 * which request is currently active and so maybe stuck, as 380 * the tracking maybe an event behind. Instead assume that 381 * if the context is still inflight, then it is still active 382 * even if the active flag has been cleared. 383 * 384 * To further complicate matters, if there a pending promotion, the HW 385 * may either perform a context switch to the second inflight execlists, 386 * or it may switch to the pending set of execlists. In the case of the 387 * latter, it may send the ACK and we process the event copying the 388 * pending[] over top of inflight[], _overwriting_ our *active. Since 389 * this implies the HW is arbitrating and not struck in *active, we do 390 * not worry about complete accuracy, but we do require no read/write 391 * tearing of the pointer [the read of the pointer must be valid, even 392 * as the array is being overwritten, for which we require the writes 393 * to avoid tearing.] 394 * 395 * Note that the read of *execlists->active may race with the promotion 396 * of execlists->pending[] to execlists->inflight[], overwritting 397 * the value at *execlists->active. This is fine. The promotion implies 398 * that we received an ACK from the HW, and so the context is not 399 * stuck -- if we do not see ourselves in *active, the inflight status 400 * is valid. If instead we see ourselves being copied into *active, 401 * we are inflight and may signal the callback. 402 */ 403 if (!intel_context_inflight(signal->context)) 404 return false; 405 406 rcu_read_lock(); 407 for (port = __engine_active(signal->engine); 408 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 409 port++) { 410 if (rq->context == signal->context) { 411 inflight = i915_seqno_passed(rq->fence.seqno, 412 signal->fence.seqno); 413 break; 414 } 415 } 416 rcu_read_unlock(); 417 418 return inflight; 419 } 420 421 static int 422 __await_execution(struct i915_request *rq, 423 struct i915_request *signal, 424 void (*hook)(struct i915_request *rq, 425 struct dma_fence *signal), 426 gfp_t gfp) 427 { 428 struct execute_cb *cb; 429 430 if (i915_request_is_active(signal)) { 431 if (hook) 432 hook(rq, &signal->fence); 433 return 0; 434 } 435 436 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 437 if (!cb) 438 return -ENOMEM; 439 440 cb->fence = &rq->submit; 441 i915_sw_fence_await(cb->fence); 442 init_irq_work(&cb->work, irq_execute_cb); 443 444 if (hook) { 445 cb->hook = hook; 446 cb->signal = i915_request_get(signal); 447 cb->work.func = irq_execute_cb_hook; 448 } 449 450 /* 451 * Register the callback first, then see if the signaler is already 452 * active. This ensures that if we race with the 453 * __notify_execute_cb from i915_request_submit() and we are not 454 * included in that list, we get a second bite of the cherry and 455 * execute it ourselves. After this point, a future 456 * i915_request_submit() will notify us. 457 * 458 * In i915_request_retire() we set the ACTIVE bit on a completed 459 * request (then flush the execute_cb). So by registering the 460 * callback first, then checking the ACTIVE bit, we serialise with 461 * the completed/retired request. 462 */ 463 if (llist_add(&cb->work.llnode, &signal->execute_cb)) { 464 if (i915_request_is_active(signal) || 465 __request_in_flight(signal)) 466 __notify_execute_cb_imm(signal); 467 } 468 469 return 0; 470 } 471 472 static bool fatal_error(int error) 473 { 474 switch (error) { 475 case 0: /* not an error! */ 476 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 477 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 478 return false; 479 default: 480 return true; 481 } 482 } 483 484 void __i915_request_skip(struct i915_request *rq) 485 { 486 GEM_BUG_ON(!fatal_error(rq->fence.error)); 487 488 if (rq->infix == rq->postfix) 489 return; 490 491 /* 492 * As this request likely depends on state from the lost 493 * context, clear out all the user operations leaving the 494 * breadcrumb at the end (so we get the fence notifications). 495 */ 496 __i915_request_fill(rq, 0); 497 rq->infix = rq->postfix; 498 } 499 500 void i915_request_set_error_once(struct i915_request *rq, int error) 501 { 502 int old; 503 504 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 505 506 if (i915_request_signaled(rq)) 507 return; 508 509 old = READ_ONCE(rq->fence.error); 510 do { 511 if (fatal_error(old)) 512 return; 513 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 514 } 515 516 bool __i915_request_submit(struct i915_request *request) 517 { 518 struct intel_engine_cs *engine = request->engine; 519 bool result = false; 520 521 RQ_TRACE(request, "\n"); 522 523 GEM_BUG_ON(!irqs_disabled()); 524 lockdep_assert_held(&engine->active.lock); 525 526 /* 527 * With the advent of preempt-to-busy, we frequently encounter 528 * requests that we have unsubmitted from HW, but left running 529 * until the next ack and so have completed in the meantime. On 530 * resubmission of that completed request, we can skip 531 * updating the payload, and execlists can even skip submitting 532 * the request. 533 * 534 * We must remove the request from the caller's priority queue, 535 * and the caller must only call us when the request is in their 536 * priority queue, under the active.lock. This ensures that the 537 * request has *not* yet been retired and we can safely move 538 * the request into the engine->active.list where it will be 539 * dropped upon retiring. (Otherwise if resubmit a *retired* 540 * request, this would be a horrible use-after-free.) 541 */ 542 if (i915_request_completed(request)) 543 goto xfer; 544 545 if (unlikely(intel_context_is_banned(request->context))) 546 i915_request_set_error_once(request, -EIO); 547 if (unlikely(fatal_error(request->fence.error))) 548 __i915_request_skip(request); 549 550 /* 551 * Are we using semaphores when the gpu is already saturated? 552 * 553 * Using semaphores incurs a cost in having the GPU poll a 554 * memory location, busywaiting for it to change. The continual 555 * memory reads can have a noticeable impact on the rest of the 556 * system with the extra bus traffic, stalling the cpu as it too 557 * tries to access memory across the bus (perf stat -e bus-cycles). 558 * 559 * If we installed a semaphore on this request and we only submit 560 * the request after the signaler completed, that indicates the 561 * system is overloaded and using semaphores at this time only 562 * increases the amount of work we are doing. If so, we disable 563 * further use of semaphores until we are idle again, whence we 564 * optimistically try again. 565 */ 566 if (request->sched.semaphores && 567 i915_sw_fence_signaled(&request->semaphore)) 568 engine->saturated |= request->sched.semaphores; 569 570 engine->emit_fini_breadcrumb(request, 571 request->ring->vaddr + request->postfix); 572 573 trace_i915_request_execute(request); 574 engine->serial++; 575 result = true; 576 577 xfer: 578 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 579 list_move_tail(&request->sched.link, &engine->active.requests); 580 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 581 } 582 583 /* 584 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 585 * 586 * In the future, perhaps when we have an active time-slicing scheduler, 587 * it will be interesting to unsubmit parallel execution and remove 588 * busywaits from the GPU until their master is restarted. This is 589 * quite hairy, we have to carefully rollback the fence and do a 590 * preempt-to-idle cycle on the target engine, all the while the 591 * master execute_cb may refire. 592 */ 593 __notify_execute_cb_irq(request); 594 595 /* We may be recursing from the signal callback of another i915 fence */ 596 if (!i915_request_signaled(request)) { 597 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 598 599 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 600 &request->fence.flags) && 601 !i915_request_enable_breadcrumb(request)) 602 intel_engine_signal_breadcrumbs(engine); 603 604 spin_unlock(&request->lock); 605 } 606 607 return result; 608 } 609 610 void i915_request_submit(struct i915_request *request) 611 { 612 struct intel_engine_cs *engine = request->engine; 613 unsigned long flags; 614 615 /* Will be called from irq-context when using foreign fences. */ 616 spin_lock_irqsave(&engine->active.lock, flags); 617 618 __i915_request_submit(request); 619 620 spin_unlock_irqrestore(&engine->active.lock, flags); 621 } 622 623 void __i915_request_unsubmit(struct i915_request *request) 624 { 625 struct intel_engine_cs *engine = request->engine; 626 627 /* 628 * Only unwind in reverse order, required so that the per-context list 629 * is kept in seqno/ring order. 630 */ 631 RQ_TRACE(request, "\n"); 632 633 GEM_BUG_ON(!irqs_disabled()); 634 lockdep_assert_held(&engine->active.lock); 635 636 /* 637 * Before we remove this breadcrumb from the signal list, we have 638 * to ensure that a concurrent dma_fence_enable_signaling() does not 639 * attach itself. We first mark the request as no longer active and 640 * make sure that is visible to other cores, and then remove the 641 * breadcrumb if attached. 642 */ 643 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 644 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 645 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 646 i915_request_cancel_breadcrumb(request); 647 648 /* We've already spun, don't charge on resubmitting. */ 649 if (request->sched.semaphores && i915_request_started(request)) 650 request->sched.semaphores = 0; 651 652 /* 653 * We don't need to wake_up any waiters on request->execute, they 654 * will get woken by any other event or us re-adding this request 655 * to the engine timeline (__i915_request_submit()). The waiters 656 * should be quite adapt at finding that the request now has a new 657 * global_seqno to the one they went to sleep on. 658 */ 659 } 660 661 void i915_request_unsubmit(struct i915_request *request) 662 { 663 struct intel_engine_cs *engine = request->engine; 664 unsigned long flags; 665 666 /* Will be called from irq-context when using foreign fences. */ 667 spin_lock_irqsave(&engine->active.lock, flags); 668 669 __i915_request_unsubmit(request); 670 671 spin_unlock_irqrestore(&engine->active.lock, flags); 672 } 673 674 static int __i915_sw_fence_call 675 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 676 { 677 struct i915_request *request = 678 container_of(fence, typeof(*request), submit); 679 680 switch (state) { 681 case FENCE_COMPLETE: 682 trace_i915_request_submit(request); 683 684 if (unlikely(fence->error)) 685 i915_request_set_error_once(request, fence->error); 686 687 /* 688 * We need to serialize use of the submit_request() callback 689 * with its hotplugging performed during an emergency 690 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 691 * critical section in order to force i915_gem_set_wedged() to 692 * wait until the submit_request() is completed before 693 * proceeding. 694 */ 695 rcu_read_lock(); 696 request->engine->submit_request(request); 697 rcu_read_unlock(); 698 break; 699 700 case FENCE_FREE: 701 i915_request_put(request); 702 break; 703 } 704 705 return NOTIFY_DONE; 706 } 707 708 static int __i915_sw_fence_call 709 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 710 { 711 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 712 713 switch (state) { 714 case FENCE_COMPLETE: 715 break; 716 717 case FENCE_FREE: 718 i915_request_put(rq); 719 break; 720 } 721 722 return NOTIFY_DONE; 723 } 724 725 static void retire_requests(struct intel_timeline *tl) 726 { 727 struct i915_request *rq, *rn; 728 729 list_for_each_entry_safe(rq, rn, &tl->requests, link) 730 if (!i915_request_retire(rq)) 731 break; 732 } 733 734 static noinline struct i915_request * 735 request_alloc_slow(struct intel_timeline *tl, 736 struct i915_request **rsvd, 737 gfp_t gfp) 738 { 739 struct i915_request *rq; 740 741 /* If we cannot wait, dip into our reserves */ 742 if (!gfpflags_allow_blocking(gfp)) { 743 rq = xchg(rsvd, NULL); 744 if (!rq) /* Use the normal failure path for one final WARN */ 745 goto out; 746 747 return rq; 748 } 749 750 if (list_empty(&tl->requests)) 751 goto out; 752 753 /* Move our oldest request to the slab-cache (if not in use!) */ 754 rq = list_first_entry(&tl->requests, typeof(*rq), link); 755 i915_request_retire(rq); 756 757 rq = kmem_cache_alloc(global.slab_requests, 758 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 759 if (rq) 760 return rq; 761 762 /* Ratelimit ourselves to prevent oom from malicious clients */ 763 rq = list_last_entry(&tl->requests, typeof(*rq), link); 764 cond_synchronize_rcu(rq->rcustate); 765 766 /* Retire our old requests in the hope that we free some */ 767 retire_requests(tl); 768 769 out: 770 return kmem_cache_alloc(global.slab_requests, gfp); 771 } 772 773 static void __i915_request_ctor(void *arg) 774 { 775 struct i915_request *rq = arg; 776 777 spin_lock_init(&rq->lock); 778 i915_sched_node_init(&rq->sched); 779 i915_sw_fence_init(&rq->submit, submit_notify); 780 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 781 782 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 783 784 rq->capture_list = NULL; 785 786 init_llist_head(&rq->execute_cb); 787 } 788 789 struct i915_request * 790 __i915_request_create(struct intel_context *ce, gfp_t gfp) 791 { 792 struct intel_timeline *tl = ce->timeline; 793 struct i915_request *rq; 794 u32 seqno; 795 int ret; 796 797 might_sleep_if(gfpflags_allow_blocking(gfp)); 798 799 /* Check that the caller provided an already pinned context */ 800 __intel_context_pin(ce); 801 802 /* 803 * Beware: Dragons be flying overhead. 804 * 805 * We use RCU to look up requests in flight. The lookups may 806 * race with the request being allocated from the slab freelist. 807 * That is the request we are writing to here, may be in the process 808 * of being read by __i915_active_request_get_rcu(). As such, 809 * we have to be very careful when overwriting the contents. During 810 * the RCU lookup, we change chase the request->engine pointer, 811 * read the request->global_seqno and increment the reference count. 812 * 813 * The reference count is incremented atomically. If it is zero, 814 * the lookup knows the request is unallocated and complete. Otherwise, 815 * it is either still in use, or has been reallocated and reset 816 * with dma_fence_init(). This increment is safe for release as we 817 * check that the request we have a reference to and matches the active 818 * request. 819 * 820 * Before we increment the refcount, we chase the request->engine 821 * pointer. We must not call kmem_cache_zalloc() or else we set 822 * that pointer to NULL and cause a crash during the lookup. If 823 * we see the request is completed (based on the value of the 824 * old engine and seqno), the lookup is complete and reports NULL. 825 * If we decide the request is not completed (new engine or seqno), 826 * then we grab a reference and double check that it is still the 827 * active request - which it won't be and restart the lookup. 828 * 829 * Do not use kmem_cache_zalloc() here! 830 */ 831 rq = kmem_cache_alloc(global.slab_requests, 832 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 833 if (unlikely(!rq)) { 834 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 835 if (!rq) { 836 ret = -ENOMEM; 837 goto err_unreserve; 838 } 839 } 840 841 rq->context = ce; 842 rq->engine = ce->engine; 843 rq->ring = ce->ring; 844 rq->execution_mask = ce->engine->mask; 845 846 kref_init(&rq->fence.refcount); 847 rq->fence.flags = 0; 848 rq->fence.error = 0; 849 INIT_LIST_HEAD(&rq->fence.cb_list); 850 851 ret = intel_timeline_get_seqno(tl, rq, &seqno); 852 if (ret) 853 goto err_free; 854 855 rq->fence.context = tl->fence_context; 856 rq->fence.seqno = seqno; 857 858 RCU_INIT_POINTER(rq->timeline, tl); 859 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 860 rq->hwsp_seqno = tl->hwsp_seqno; 861 GEM_BUG_ON(i915_request_completed(rq)); 862 863 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 864 865 /* We bump the ref for the fence chain */ 866 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 867 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 868 869 i915_sched_node_reinit(&rq->sched); 870 871 /* No zalloc, everything must be cleared after use */ 872 rq->batch = NULL; 873 GEM_BUG_ON(rq->capture_list); 874 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 875 876 /* 877 * Reserve space in the ring buffer for all the commands required to 878 * eventually emit this request. This is to guarantee that the 879 * i915_request_add() call can't fail. Note that the reserve may need 880 * to be redone if the request is not actually submitted straight 881 * away, e.g. because a GPU scheduler has deferred it. 882 * 883 * Note that due to how we add reserved_space to intel_ring_begin() 884 * we need to double our request to ensure that if we need to wrap 885 * around inside i915_request_add() there is sufficient space at 886 * the beginning of the ring as well. 887 */ 888 rq->reserved_space = 889 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 890 891 /* 892 * Record the position of the start of the request so that 893 * should we detect the updated seqno part-way through the 894 * GPU processing the request, we never over-estimate the 895 * position of the head. 896 */ 897 rq->head = rq->ring->emit; 898 899 ret = rq->engine->request_alloc(rq); 900 if (ret) 901 goto err_unwind; 902 903 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 904 905 intel_context_mark_active(ce); 906 list_add_tail_rcu(&rq->link, &tl->requests); 907 908 return rq; 909 910 err_unwind: 911 ce->ring->emit = rq->head; 912 913 /* Make sure we didn't add ourselves to external state before freeing */ 914 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 915 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 916 917 err_free: 918 kmem_cache_free(global.slab_requests, rq); 919 err_unreserve: 920 intel_context_unpin(ce); 921 return ERR_PTR(ret); 922 } 923 924 struct i915_request * 925 i915_request_create(struct intel_context *ce) 926 { 927 struct i915_request *rq; 928 struct intel_timeline *tl; 929 930 tl = intel_context_timeline_lock(ce); 931 if (IS_ERR(tl)) 932 return ERR_CAST(tl); 933 934 /* Move our oldest request to the slab-cache (if not in use!) */ 935 rq = list_first_entry(&tl->requests, typeof(*rq), link); 936 if (!list_is_last(&rq->link, &tl->requests)) 937 i915_request_retire(rq); 938 939 intel_context_enter(ce); 940 rq = __i915_request_create(ce, GFP_KERNEL); 941 intel_context_exit(ce); /* active reference transferred to request */ 942 if (IS_ERR(rq)) 943 goto err_unlock; 944 945 /* Check that we do not interrupt ourselves with a new request */ 946 rq->cookie = lockdep_pin_lock(&tl->mutex); 947 948 return rq; 949 950 err_unlock: 951 intel_context_timeline_unlock(tl); 952 return rq; 953 } 954 955 static int 956 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 957 { 958 struct dma_fence *fence; 959 int err; 960 961 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 962 return 0; 963 964 if (i915_request_started(signal)) 965 return 0; 966 967 fence = NULL; 968 rcu_read_lock(); 969 spin_lock_irq(&signal->lock); 970 do { 971 struct list_head *pos = READ_ONCE(signal->link.prev); 972 struct i915_request *prev; 973 974 /* Confirm signal has not been retired, the link is valid */ 975 if (unlikely(i915_request_started(signal))) 976 break; 977 978 /* Is signal the earliest request on its timeline? */ 979 if (pos == &rcu_dereference(signal->timeline)->requests) 980 break; 981 982 /* 983 * Peek at the request before us in the timeline. That 984 * request will only be valid before it is retired, so 985 * after acquiring a reference to it, confirm that it is 986 * still part of the signaler's timeline. 987 */ 988 prev = list_entry(pos, typeof(*prev), link); 989 if (!i915_request_get_rcu(prev)) 990 break; 991 992 /* After the strong barrier, confirm prev is still attached */ 993 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 994 i915_request_put(prev); 995 break; 996 } 997 998 fence = &prev->fence; 999 } while (0); 1000 spin_unlock_irq(&signal->lock); 1001 rcu_read_unlock(); 1002 if (!fence) 1003 return 0; 1004 1005 err = 0; 1006 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1007 err = i915_sw_fence_await_dma_fence(&rq->submit, 1008 fence, 0, 1009 I915_FENCE_GFP); 1010 dma_fence_put(fence); 1011 1012 return err; 1013 } 1014 1015 static intel_engine_mask_t 1016 already_busywaiting(struct i915_request *rq) 1017 { 1018 /* 1019 * Polling a semaphore causes bus traffic, delaying other users of 1020 * both the GPU and CPU. We want to limit the impact on others, 1021 * while taking advantage of early submission to reduce GPU 1022 * latency. Therefore we restrict ourselves to not using more 1023 * than one semaphore from each source, and not using a semaphore 1024 * if we have detected the engine is saturated (i.e. would not be 1025 * submitted early and cause bus traffic reading an already passed 1026 * semaphore). 1027 * 1028 * See the are-we-too-late? check in __i915_request_submit(). 1029 */ 1030 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1031 } 1032 1033 static int 1034 __emit_semaphore_wait(struct i915_request *to, 1035 struct i915_request *from, 1036 u32 seqno) 1037 { 1038 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1039 u32 hwsp_offset; 1040 int len, err; 1041 u32 *cs; 1042 1043 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1044 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1045 1046 /* We need to pin the signaler's HWSP until we are finished reading. */ 1047 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1048 if (err) 1049 return err; 1050 1051 len = 4; 1052 if (has_token) 1053 len += 2; 1054 1055 cs = intel_ring_begin(to, len); 1056 if (IS_ERR(cs)) 1057 return PTR_ERR(cs); 1058 1059 /* 1060 * Using greater-than-or-equal here means we have to worry 1061 * about seqno wraparound. To side step that issue, we swap 1062 * the timeline HWSP upon wrapping, so that everyone listening 1063 * for the old (pre-wrap) values do not see the much smaller 1064 * (post-wrap) values than they were expecting (and so wait 1065 * forever). 1066 */ 1067 *cs++ = (MI_SEMAPHORE_WAIT | 1068 MI_SEMAPHORE_GLOBAL_GTT | 1069 MI_SEMAPHORE_POLL | 1070 MI_SEMAPHORE_SAD_GTE_SDD) + 1071 has_token; 1072 *cs++ = seqno; 1073 *cs++ = hwsp_offset; 1074 *cs++ = 0; 1075 if (has_token) { 1076 *cs++ = 0; 1077 *cs++ = MI_NOOP; 1078 } 1079 1080 intel_ring_advance(to, cs); 1081 return 0; 1082 } 1083 1084 static int 1085 emit_semaphore_wait(struct i915_request *to, 1086 struct i915_request *from, 1087 gfp_t gfp) 1088 { 1089 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1090 struct i915_sw_fence *wait = &to->submit; 1091 1092 if (!intel_context_use_semaphores(to->context)) 1093 goto await_fence; 1094 1095 if (i915_request_has_initial_breadcrumb(to)) 1096 goto await_fence; 1097 1098 if (!rcu_access_pointer(from->hwsp_cacheline)) 1099 goto await_fence; 1100 1101 /* 1102 * If this or its dependents are waiting on an external fence 1103 * that may fail catastrophically, then we want to avoid using 1104 * sempahores as they bypass the fence signaling metadata, and we 1105 * lose the fence->error propagation. 1106 */ 1107 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1108 goto await_fence; 1109 1110 /* Just emit the first semaphore we see as request space is limited. */ 1111 if (already_busywaiting(to) & mask) 1112 goto await_fence; 1113 1114 if (i915_request_await_start(to, from) < 0) 1115 goto await_fence; 1116 1117 /* Only submit our spinner after the signaler is running! */ 1118 if (__await_execution(to, from, NULL, gfp)) 1119 goto await_fence; 1120 1121 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1122 goto await_fence; 1123 1124 to->sched.semaphores |= mask; 1125 wait = &to->semaphore; 1126 1127 await_fence: 1128 return i915_sw_fence_await_dma_fence(wait, 1129 &from->fence, 0, 1130 I915_FENCE_GFP); 1131 } 1132 1133 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1134 struct dma_fence *fence) 1135 { 1136 return __intel_timeline_sync_is_later(tl, 1137 fence->context, 1138 fence->seqno - 1); 1139 } 1140 1141 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1142 const struct dma_fence *fence) 1143 { 1144 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1145 } 1146 1147 static int 1148 __i915_request_await_execution(struct i915_request *to, 1149 struct i915_request *from, 1150 void (*hook)(struct i915_request *rq, 1151 struct dma_fence *signal)) 1152 { 1153 int err; 1154 1155 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1156 1157 /* Submit both requests at the same time */ 1158 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1159 if (err) 1160 return err; 1161 1162 /* Squash repeated depenendices to the same timelines */ 1163 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1164 &from->fence)) 1165 return 0; 1166 1167 /* 1168 * Wait until the start of this request. 1169 * 1170 * The execution cb fires when we submit the request to HW. But in 1171 * many cases this may be long before the request itself is ready to 1172 * run (consider that we submit 2 requests for the same context, where 1173 * the request of interest is behind an indefinite spinner). So we hook 1174 * up to both to reduce our queues and keep the execution lag minimised 1175 * in the worst case, though we hope that the await_start is elided. 1176 */ 1177 err = i915_request_await_start(to, from); 1178 if (err < 0) 1179 return err; 1180 1181 /* 1182 * Ensure both start together [after all semaphores in signal] 1183 * 1184 * Now that we are queued to the HW at roughly the same time (thanks 1185 * to the execute cb) and are ready to run at roughly the same time 1186 * (thanks to the await start), our signaler may still be indefinitely 1187 * delayed by waiting on a semaphore from a remote engine. If our 1188 * signaler depends on a semaphore, so indirectly do we, and we do not 1189 * want to start our payload until our signaler also starts theirs. 1190 * So we wait. 1191 * 1192 * However, there is also a second condition for which we need to wait 1193 * for the precise start of the signaler. Consider that the signaler 1194 * was submitted in a chain of requests following another context 1195 * (with just an ordinary intra-engine fence dependency between the 1196 * two). In this case the signaler is queued to HW, but not for 1197 * immediate execution, and so we must wait until it reaches the 1198 * active slot. 1199 */ 1200 if (intel_engine_has_semaphores(to->engine) && 1201 !i915_request_has_initial_breadcrumb(to)) { 1202 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1203 if (err < 0) 1204 return err; 1205 } 1206 1207 /* Couple the dependency tree for PI on this exposed to->fence */ 1208 if (to->engine->schedule) { 1209 err = i915_sched_node_add_dependency(&to->sched, 1210 &from->sched, 1211 I915_DEPENDENCY_WEAK); 1212 if (err < 0) 1213 return err; 1214 } 1215 1216 return intel_timeline_sync_set_start(i915_request_timeline(to), 1217 &from->fence); 1218 } 1219 1220 static void mark_external(struct i915_request *rq) 1221 { 1222 /* 1223 * The downside of using semaphores is that we lose metadata passing 1224 * along the signaling chain. This is particularly nasty when we 1225 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1226 * fatal errors we want to scrub the request before it is executed, 1227 * which means that we cannot preload the request onto HW and have 1228 * it wait upon a semaphore. 1229 */ 1230 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1231 } 1232 1233 static int 1234 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1235 { 1236 mark_external(rq); 1237 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1238 i915_fence_context_timeout(rq->engine->i915, 1239 fence->context), 1240 I915_FENCE_GFP); 1241 } 1242 1243 static int 1244 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1245 { 1246 struct dma_fence *iter; 1247 int err = 0; 1248 1249 if (!to_dma_fence_chain(fence)) 1250 return __i915_request_await_external(rq, fence); 1251 1252 dma_fence_chain_for_each(iter, fence) { 1253 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1254 1255 if (!dma_fence_is_i915(chain->fence)) { 1256 err = __i915_request_await_external(rq, iter); 1257 break; 1258 } 1259 1260 err = i915_request_await_dma_fence(rq, chain->fence); 1261 if (err < 0) 1262 break; 1263 } 1264 1265 dma_fence_put(iter); 1266 return err; 1267 } 1268 1269 int 1270 i915_request_await_execution(struct i915_request *rq, 1271 struct dma_fence *fence, 1272 void (*hook)(struct i915_request *rq, 1273 struct dma_fence *signal)) 1274 { 1275 struct dma_fence **child = &fence; 1276 unsigned int nchild = 1; 1277 int ret; 1278 1279 if (dma_fence_is_array(fence)) { 1280 struct dma_fence_array *array = to_dma_fence_array(fence); 1281 1282 /* XXX Error for signal-on-any fence arrays */ 1283 1284 child = array->fences; 1285 nchild = array->num_fences; 1286 GEM_BUG_ON(!nchild); 1287 } 1288 1289 do { 1290 fence = *child++; 1291 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1292 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1293 continue; 1294 } 1295 1296 if (fence->context == rq->fence.context) 1297 continue; 1298 1299 /* 1300 * We don't squash repeated fence dependencies here as we 1301 * want to run our callback in all cases. 1302 */ 1303 1304 if (dma_fence_is_i915(fence)) 1305 ret = __i915_request_await_execution(rq, 1306 to_request(fence), 1307 hook); 1308 else 1309 ret = i915_request_await_external(rq, fence); 1310 if (ret < 0) 1311 return ret; 1312 } while (--nchild); 1313 1314 return 0; 1315 } 1316 1317 static int 1318 await_request_submit(struct i915_request *to, struct i915_request *from) 1319 { 1320 /* 1321 * If we are waiting on a virtual engine, then it may be 1322 * constrained to execute on a single engine *prior* to submission. 1323 * When it is submitted, it will be first submitted to the virtual 1324 * engine and then passed to the physical engine. We cannot allow 1325 * the waiter to be submitted immediately to the physical engine 1326 * as it may then bypass the virtual request. 1327 */ 1328 if (to->engine == READ_ONCE(from->engine)) 1329 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1330 &from->submit, 1331 I915_FENCE_GFP); 1332 else 1333 return __i915_request_await_execution(to, from, NULL); 1334 } 1335 1336 static int 1337 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1338 { 1339 int ret; 1340 1341 GEM_BUG_ON(to == from); 1342 GEM_BUG_ON(to->timeline == from->timeline); 1343 1344 if (i915_request_completed(from)) { 1345 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1346 return 0; 1347 } 1348 1349 if (to->engine->schedule) { 1350 ret = i915_sched_node_add_dependency(&to->sched, 1351 &from->sched, 1352 I915_DEPENDENCY_EXTERNAL); 1353 if (ret < 0) 1354 return ret; 1355 } 1356 1357 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1358 ret = await_request_submit(to, from); 1359 else 1360 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1361 if (ret < 0) 1362 return ret; 1363 1364 return 0; 1365 } 1366 1367 int 1368 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1369 { 1370 struct dma_fence **child = &fence; 1371 unsigned int nchild = 1; 1372 int ret; 1373 1374 /* 1375 * Note that if the fence-array was created in signal-on-any mode, 1376 * we should *not* decompose it into its individual fences. However, 1377 * we don't currently store which mode the fence-array is operating 1378 * in. Fortunately, the only user of signal-on-any is private to 1379 * amdgpu and we should not see any incoming fence-array from 1380 * sync-file being in signal-on-any mode. 1381 */ 1382 if (dma_fence_is_array(fence)) { 1383 struct dma_fence_array *array = to_dma_fence_array(fence); 1384 1385 child = array->fences; 1386 nchild = array->num_fences; 1387 GEM_BUG_ON(!nchild); 1388 } 1389 1390 do { 1391 fence = *child++; 1392 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1393 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1394 continue; 1395 } 1396 1397 /* 1398 * Requests on the same timeline are explicitly ordered, along 1399 * with their dependencies, by i915_request_add() which ensures 1400 * that requests are submitted in-order through each ring. 1401 */ 1402 if (fence->context == rq->fence.context) 1403 continue; 1404 1405 /* Squash repeated waits to the same timelines */ 1406 if (fence->context && 1407 intel_timeline_sync_is_later(i915_request_timeline(rq), 1408 fence)) 1409 continue; 1410 1411 if (dma_fence_is_i915(fence)) 1412 ret = i915_request_await_request(rq, to_request(fence)); 1413 else 1414 ret = i915_request_await_external(rq, fence); 1415 if (ret < 0) 1416 return ret; 1417 1418 /* Record the latest fence used against each timeline */ 1419 if (fence->context) 1420 intel_timeline_sync_set(i915_request_timeline(rq), 1421 fence); 1422 } while (--nchild); 1423 1424 return 0; 1425 } 1426 1427 /** 1428 * i915_request_await_object - set this request to (async) wait upon a bo 1429 * @to: request we are wishing to use 1430 * @obj: object which may be in use on another ring. 1431 * @write: whether the wait is on behalf of a writer 1432 * 1433 * This code is meant to abstract object synchronization with the GPU. 1434 * Conceptually we serialise writes between engines inside the GPU. 1435 * We only allow one engine to write into a buffer at any time, but 1436 * multiple readers. To ensure each has a coherent view of memory, we must: 1437 * 1438 * - If there is an outstanding write request to the object, the new 1439 * request must wait for it to complete (either CPU or in hw, requests 1440 * on the same ring will be naturally ordered). 1441 * 1442 * - If we are a write request (pending_write_domain is set), the new 1443 * request must wait for outstanding read requests to complete. 1444 * 1445 * Returns 0 if successful, else propagates up the lower layer error. 1446 */ 1447 int 1448 i915_request_await_object(struct i915_request *to, 1449 struct drm_i915_gem_object *obj, 1450 bool write) 1451 { 1452 struct dma_fence *excl; 1453 int ret = 0; 1454 1455 if (write) { 1456 struct dma_fence **shared; 1457 unsigned int count, i; 1458 1459 ret = dma_resv_get_fences_rcu(obj->base.resv, 1460 &excl, &count, &shared); 1461 if (ret) 1462 return ret; 1463 1464 for (i = 0; i < count; i++) { 1465 ret = i915_request_await_dma_fence(to, shared[i]); 1466 if (ret) 1467 break; 1468 1469 dma_fence_put(shared[i]); 1470 } 1471 1472 for (; i < count; i++) 1473 dma_fence_put(shared[i]); 1474 kfree(shared); 1475 } else { 1476 excl = dma_resv_get_excl_rcu(obj->base.resv); 1477 } 1478 1479 if (excl) { 1480 if (ret == 0) 1481 ret = i915_request_await_dma_fence(to, excl); 1482 1483 dma_fence_put(excl); 1484 } 1485 1486 return ret; 1487 } 1488 1489 static struct i915_request * 1490 __i915_request_add_to_timeline(struct i915_request *rq) 1491 { 1492 struct intel_timeline *timeline = i915_request_timeline(rq); 1493 struct i915_request *prev; 1494 1495 /* 1496 * Dependency tracking and request ordering along the timeline 1497 * is special cased so that we can eliminate redundant ordering 1498 * operations while building the request (we know that the timeline 1499 * itself is ordered, and here we guarantee it). 1500 * 1501 * As we know we will need to emit tracking along the timeline, 1502 * we embed the hooks into our request struct -- at the cost of 1503 * having to have specialised no-allocation interfaces (which will 1504 * be beneficial elsewhere). 1505 * 1506 * A second benefit to open-coding i915_request_await_request is 1507 * that we can apply a slight variant of the rules specialised 1508 * for timelines that jump between engines (such as virtual engines). 1509 * If we consider the case of virtual engine, we must emit a dma-fence 1510 * to prevent scheduling of the second request until the first is 1511 * complete (to maximise our greedy late load balancing) and this 1512 * precludes optimising to use semaphores serialisation of a single 1513 * timeline across engines. 1514 */ 1515 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1516 &rq->fence)); 1517 if (prev && !i915_request_completed(prev)) { 1518 /* 1519 * The requests are supposed to be kept in order. However, 1520 * we need to be wary in case the timeline->last_request 1521 * is used as a barrier for external modification to this 1522 * context. 1523 */ 1524 GEM_BUG_ON(prev->context == rq->context && 1525 i915_seqno_passed(prev->fence.seqno, 1526 rq->fence.seqno)); 1527 1528 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1529 i915_sw_fence_await_sw_fence(&rq->submit, 1530 &prev->submit, 1531 &rq->submitq); 1532 else 1533 __i915_sw_fence_await_dma_fence(&rq->submit, 1534 &prev->fence, 1535 &rq->dmaq); 1536 if (rq->engine->schedule) 1537 __i915_sched_node_add_dependency(&rq->sched, 1538 &prev->sched, 1539 &rq->dep, 1540 0); 1541 } 1542 1543 /* 1544 * Make sure that no request gazumped us - if it was allocated after 1545 * our i915_request_alloc() and called __i915_request_add() before 1546 * us, the timeline will hold its seqno which is later than ours. 1547 */ 1548 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1549 1550 return prev; 1551 } 1552 1553 /* 1554 * NB: This function is not allowed to fail. Doing so would mean the the 1555 * request is not being tracked for completion but the work itself is 1556 * going to happen on the hardware. This would be a Bad Thing(tm). 1557 */ 1558 struct i915_request *__i915_request_commit(struct i915_request *rq) 1559 { 1560 struct intel_engine_cs *engine = rq->engine; 1561 struct intel_ring *ring = rq->ring; 1562 u32 *cs; 1563 1564 RQ_TRACE(rq, "\n"); 1565 1566 /* 1567 * To ensure that this call will not fail, space for its emissions 1568 * should already have been reserved in the ring buffer. Let the ring 1569 * know that it is time to use that space up. 1570 */ 1571 GEM_BUG_ON(rq->reserved_space > ring->space); 1572 rq->reserved_space = 0; 1573 rq->emitted_jiffies = jiffies; 1574 1575 /* 1576 * Record the position of the start of the breadcrumb so that 1577 * should we detect the updated seqno part-way through the 1578 * GPU processing the request, we never over-estimate the 1579 * position of the ring's HEAD. 1580 */ 1581 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1582 GEM_BUG_ON(IS_ERR(cs)); 1583 rq->postfix = intel_ring_offset(rq, cs); 1584 1585 return __i915_request_add_to_timeline(rq); 1586 } 1587 1588 void __i915_request_queue(struct i915_request *rq, 1589 const struct i915_sched_attr *attr) 1590 { 1591 /* 1592 * Let the backend know a new request has arrived that may need 1593 * to adjust the existing execution schedule due to a high priority 1594 * request - i.e. we may want to preempt the current request in order 1595 * to run a high priority dependency chain *before* we can execute this 1596 * request. 1597 * 1598 * This is called before the request is ready to run so that we can 1599 * decide whether to preempt the entire chain so that it is ready to 1600 * run at the earliest possible convenience. 1601 */ 1602 if (attr && rq->engine->schedule) 1603 rq->engine->schedule(rq, attr); 1604 i915_sw_fence_commit(&rq->semaphore); 1605 i915_sw_fence_commit(&rq->submit); 1606 } 1607 1608 void i915_request_add(struct i915_request *rq) 1609 { 1610 struct intel_timeline * const tl = i915_request_timeline(rq); 1611 struct i915_sched_attr attr = {}; 1612 struct i915_gem_context *ctx; 1613 1614 lockdep_assert_held(&tl->mutex); 1615 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1616 1617 trace_i915_request_add(rq); 1618 __i915_request_commit(rq); 1619 1620 /* XXX placeholder for selftests */ 1621 rcu_read_lock(); 1622 ctx = rcu_dereference(rq->context->gem_context); 1623 if (ctx) 1624 attr = ctx->sched; 1625 rcu_read_unlock(); 1626 1627 __i915_request_queue(rq, &attr); 1628 1629 mutex_unlock(&tl->mutex); 1630 } 1631 1632 static unsigned long local_clock_ns(unsigned int *cpu) 1633 { 1634 unsigned long t; 1635 1636 /* 1637 * Cheaply and approximately convert from nanoseconds to microseconds. 1638 * The result and subsequent calculations are also defined in the same 1639 * approximate microseconds units. The principal source of timing 1640 * error here is from the simple truncation. 1641 * 1642 * Note that local_clock() is only defined wrt to the current CPU; 1643 * the comparisons are no longer valid if we switch CPUs. Instead of 1644 * blocking preemption for the entire busywait, we can detect the CPU 1645 * switch and use that as indicator of system load and a reason to 1646 * stop busywaiting, see busywait_stop(). 1647 */ 1648 *cpu = get_cpu(); 1649 t = local_clock(); 1650 put_cpu(); 1651 1652 return t; 1653 } 1654 1655 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1656 { 1657 unsigned int this_cpu; 1658 1659 if (time_after(local_clock_ns(&this_cpu), timeout)) 1660 return true; 1661 1662 return this_cpu != cpu; 1663 } 1664 1665 static bool __i915_spin_request(struct i915_request * const rq, int state) 1666 { 1667 unsigned long timeout_ns; 1668 unsigned int cpu; 1669 1670 /* 1671 * Only wait for the request if we know it is likely to complete. 1672 * 1673 * We don't track the timestamps around requests, nor the average 1674 * request length, so we do not have a good indicator that this 1675 * request will complete within the timeout. What we do know is the 1676 * order in which requests are executed by the context and so we can 1677 * tell if the request has been started. If the request is not even 1678 * running yet, it is a fair assumption that it will not complete 1679 * within our relatively short timeout. 1680 */ 1681 if (!i915_request_is_running(rq)) 1682 return false; 1683 1684 /* 1685 * When waiting for high frequency requests, e.g. during synchronous 1686 * rendering split between the CPU and GPU, the finite amount of time 1687 * required to set up the irq and wait upon it limits the response 1688 * rate. By busywaiting on the request completion for a short while we 1689 * can service the high frequency waits as quick as possible. However, 1690 * if it is a slow request, we want to sleep as quickly as possible. 1691 * The tradeoff between waiting and sleeping is roughly the time it 1692 * takes to sleep on a request, on the order of a microsecond. 1693 */ 1694 1695 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1696 timeout_ns += local_clock_ns(&cpu); 1697 do { 1698 if (dma_fence_is_signaled(&rq->fence)) 1699 return true; 1700 1701 if (signal_pending_state(state, current)) 1702 break; 1703 1704 if (busywait_stop(timeout_ns, cpu)) 1705 break; 1706 1707 cpu_relax(); 1708 } while (!need_resched()); 1709 1710 return false; 1711 } 1712 1713 struct request_wait { 1714 struct dma_fence_cb cb; 1715 struct task_struct *tsk; 1716 }; 1717 1718 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1719 { 1720 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1721 1722 wake_up_process(fetch_and_zero(&wait->tsk)); 1723 } 1724 1725 /** 1726 * i915_request_wait - wait until execution of request has finished 1727 * @rq: the request to wait upon 1728 * @flags: how to wait 1729 * @timeout: how long to wait in jiffies 1730 * 1731 * i915_request_wait() waits for the request to be completed, for a 1732 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1733 * unbounded wait). 1734 * 1735 * Returns the remaining time (in jiffies) if the request completed, which may 1736 * be zero or -ETIME if the request is unfinished after the timeout expires. 1737 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1738 * pending before the request completes. 1739 */ 1740 long i915_request_wait(struct i915_request *rq, 1741 unsigned int flags, 1742 long timeout) 1743 { 1744 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1745 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1746 struct request_wait wait; 1747 1748 might_sleep(); 1749 GEM_BUG_ON(timeout < 0); 1750 1751 if (dma_fence_is_signaled(&rq->fence)) 1752 return timeout; 1753 1754 if (!timeout) 1755 return -ETIME; 1756 1757 trace_i915_request_wait_begin(rq, flags); 1758 1759 /* 1760 * We must never wait on the GPU while holding a lock as we 1761 * may need to perform a GPU reset. So while we don't need to 1762 * serialise wait/reset with an explicit lock, we do want 1763 * lockdep to detect potential dependency cycles. 1764 */ 1765 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1766 1767 /* 1768 * Optimistic spin before touching IRQs. 1769 * 1770 * We may use a rather large value here to offset the penalty of 1771 * switching away from the active task. Frequently, the client will 1772 * wait upon an old swapbuffer to throttle itself to remain within a 1773 * frame of the gpu. If the client is running in lockstep with the gpu, 1774 * then it should not be waiting long at all, and a sleep now will incur 1775 * extra scheduler latency in producing the next frame. To try to 1776 * avoid adding the cost of enabling/disabling the interrupt to the 1777 * short wait, we first spin to see if the request would have completed 1778 * in the time taken to setup the interrupt. 1779 * 1780 * We need upto 5us to enable the irq, and upto 20us to hide the 1781 * scheduler latency of a context switch, ignoring the secondary 1782 * impacts from a context switch such as cache eviction. 1783 * 1784 * The scheme used for low-latency IO is called "hybrid interrupt 1785 * polling". The suggestion there is to sleep until just before you 1786 * expect to be woken by the device interrupt and then poll for its 1787 * completion. That requires having a good predictor for the request 1788 * duration, which we currently lack. 1789 */ 1790 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1791 __i915_spin_request(rq, state)) 1792 goto out; 1793 1794 /* 1795 * This client is about to stall waiting for the GPU. In many cases 1796 * this is undesirable and limits the throughput of the system, as 1797 * many clients cannot continue processing user input/output whilst 1798 * blocked. RPS autotuning may take tens of milliseconds to respond 1799 * to the GPU load and thus incurs additional latency for the client. 1800 * We can circumvent that by promoting the GPU frequency to maximum 1801 * before we sleep. This makes the GPU throttle up much more quickly 1802 * (good for benchmarks and user experience, e.g. window animations), 1803 * but at a cost of spending more power processing the workload 1804 * (bad for battery). 1805 */ 1806 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1807 intel_rps_boost(rq); 1808 1809 wait.tsk = current; 1810 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1811 goto out; 1812 1813 /* 1814 * Flush the submission tasklet, but only if it may help this request. 1815 * 1816 * We sometimes experience some latency between the HW interrupts and 1817 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1818 * be due to lazy CS events), so lets run the tasklet manually if there 1819 * is a chance it may submit this request. If the request is not ready 1820 * to run, as it is waiting for other fences to be signaled, flushing 1821 * the tasklet is busy work without any advantage for this client. 1822 * 1823 * If the HW is being lazy, this is the last chance before we go to 1824 * sleep to catch any pending events. We will check periodically in 1825 * the heartbeat to flush the submission tasklets as a last resort 1826 * for unhappy HW. 1827 */ 1828 if (i915_request_is_ready(rq)) 1829 intel_engine_flush_submission(rq->engine); 1830 1831 for (;;) { 1832 set_current_state(state); 1833 1834 if (dma_fence_is_signaled(&rq->fence)) 1835 break; 1836 1837 if (signal_pending_state(state, current)) { 1838 timeout = -ERESTARTSYS; 1839 break; 1840 } 1841 1842 if (!timeout) { 1843 timeout = -ETIME; 1844 break; 1845 } 1846 1847 timeout = io_schedule_timeout(timeout); 1848 } 1849 __set_current_state(TASK_RUNNING); 1850 1851 if (READ_ONCE(wait.tsk)) 1852 dma_fence_remove_callback(&rq->fence, &wait.cb); 1853 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1854 1855 out: 1856 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1857 trace_i915_request_wait_end(rq); 1858 return timeout; 1859 } 1860 1861 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1862 #include "selftests/mock_request.c" 1863 #include "selftests/i915_request.c" 1864 #endif 1865 1866 static void i915_global_request_shrink(void) 1867 { 1868 kmem_cache_shrink(global.slab_execute_cbs); 1869 kmem_cache_shrink(global.slab_requests); 1870 } 1871 1872 static void i915_global_request_exit(void) 1873 { 1874 kmem_cache_destroy(global.slab_execute_cbs); 1875 kmem_cache_destroy(global.slab_requests); 1876 } 1877 1878 static struct i915_global_request global = { { 1879 .shrink = i915_global_request_shrink, 1880 .exit = i915_global_request_exit, 1881 } }; 1882 1883 int __init i915_global_request_init(void) 1884 { 1885 global.slab_requests = 1886 kmem_cache_create("i915_request", 1887 sizeof(struct i915_request), 1888 __alignof__(struct i915_request), 1889 SLAB_HWCACHE_ALIGN | 1890 SLAB_RECLAIM_ACCOUNT | 1891 SLAB_TYPESAFE_BY_RCU, 1892 __i915_request_ctor); 1893 if (!global.slab_requests) 1894 return -ENOMEM; 1895 1896 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1897 SLAB_HWCACHE_ALIGN | 1898 SLAB_RECLAIM_ACCOUNT | 1899 SLAB_TYPESAFE_BY_RCU); 1900 if (!global.slab_execute_cbs) 1901 goto err_requests; 1902 1903 i915_global_register(&global.base); 1904 return 0; 1905 1906 err_requests: 1907 kmem_cache_destroy(global.slab_requests); 1908 return -ENOMEM; 1909 } 1910