1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_ring.h"
37 #include "gt/intel_rps.h"
38 
39 #include "i915_active.h"
40 #include "i915_drv.h"
41 #include "i915_globals.h"
42 #include "i915_trace.h"
43 #include "intel_pm.h"
44 
45 struct execute_cb {
46 	struct irq_work work;
47 	struct i915_sw_fence *fence;
48 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49 	struct i915_request *signal;
50 };
51 
52 static struct i915_global_request {
53 	struct i915_global base;
54 	struct kmem_cache *slab_requests;
55 	struct kmem_cache *slab_execute_cbs;
56 } global;
57 
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return dev_name(to_request(fence)->engine->i915->drm.dev);
61 }
62 
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	const struct i915_gem_context *ctx;
66 
67 	/*
68 	 * The timeline struct (as part of the ppgtt underneath a context)
69 	 * may be freed when the request is no longer in use by the GPU.
70 	 * We could extend the life of a context to beyond that of all
71 	 * fences, possibly keeping the hw resource around indefinitely,
72 	 * or we just give them a false name. Since
73 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 	 * lie seems justifiable.
75 	 */
76 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 		return "signaled";
78 
79 	ctx = i915_request_gem_context(to_request(fence));
80 	if (!ctx)
81 		return "[" DRIVER_NAME "]";
82 
83 	return ctx->name;
84 }
85 
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 	return i915_request_completed(to_request(fence));
89 }
90 
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 	return i915_request_enable_breadcrumb(to_request(fence));
94 }
95 
96 static signed long i915_fence_wait(struct dma_fence *fence,
97 				   bool interruptible,
98 				   signed long timeout)
99 {
100 	return i915_request_wait(to_request(fence),
101 				 interruptible | I915_WAIT_PRIORITY,
102 				 timeout);
103 }
104 
105 struct kmem_cache *i915_request_slab_cache(void)
106 {
107 	return global.slab_requests;
108 }
109 
110 static void i915_fence_release(struct dma_fence *fence)
111 {
112 	struct i915_request *rq = to_request(fence);
113 
114 	/*
115 	 * The request is put onto a RCU freelist (i.e. the address
116 	 * is immediately reused), mark the fences as being freed now.
117 	 * Otherwise the debugobjects for the fences are only marked as
118 	 * freed when the slab cache itself is freed, and so we would get
119 	 * caught trying to reuse dead objects.
120 	 */
121 	i915_sw_fence_fini(&rq->submit);
122 	i915_sw_fence_fini(&rq->semaphore);
123 
124 	/*
125 	 * Keep one request on each engine for reserved use under mempressure
126 	 *
127 	 * We do not hold a reference to the engine here and so have to be
128 	 * very careful in what rq->engine we poke. The virtual engine is
129 	 * referenced via the rq->context and we released that ref during
130 	 * i915_request_retire(), ergo we must not dereference a virtual
131 	 * engine here. Not that we would want to, as the only consumer of
132 	 * the reserved engine->request_pool is the power management parking,
133 	 * which must-not-fail, and that is only run on the physical engines.
134 	 *
135 	 * Since the request must have been executed to be have completed,
136 	 * we know that it will have been processed by the HW and will
137 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
138 	 * at this point is stable. rq->execution_mask will be a single
139 	 * bit if the last and _only_ engine it could execution on was a
140 	 * physical engine, if it's multiple bits then it started on and
141 	 * could still be on a virtual engine. Thus if the mask is not a
142 	 * power-of-two we assume that rq->engine may still be a virtual
143 	 * engine and so a dangling invalid pointer that we cannot dereference
144 	 *
145 	 * For example, consider the flow of a bonded request through a virtual
146 	 * engine. The request is created with a wide engine mask (all engines
147 	 * that we might execute on). On processing the bond, the request mask
148 	 * is reduced to one or more engines. If the request is subsequently
149 	 * bound to a single engine, it will then be constrained to only
150 	 * execute on that engine and never returned to the virtual engine
151 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
152 	 * know that if the rq->execution_mask is a single bit, rq->engine
153 	 * can be a physical engine with the exact corresponding mask.
154 	 */
155 	if (is_power_of_2(rq->execution_mask) &&
156 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
157 		return;
158 
159 	kmem_cache_free(global.slab_requests, rq);
160 }
161 
162 const struct dma_fence_ops i915_fence_ops = {
163 	.get_driver_name = i915_fence_get_driver_name,
164 	.get_timeline_name = i915_fence_get_timeline_name,
165 	.enable_signaling = i915_fence_enable_signaling,
166 	.signaled = i915_fence_signaled,
167 	.wait = i915_fence_wait,
168 	.release = i915_fence_release,
169 };
170 
171 static void irq_execute_cb(struct irq_work *wrk)
172 {
173 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
174 
175 	i915_sw_fence_complete(cb->fence);
176 	kmem_cache_free(global.slab_execute_cbs, cb);
177 }
178 
179 static void irq_execute_cb_hook(struct irq_work *wrk)
180 {
181 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
182 
183 	cb->hook(container_of(cb->fence, struct i915_request, submit),
184 		 &cb->signal->fence);
185 	i915_request_put(cb->signal);
186 
187 	irq_execute_cb(wrk);
188 }
189 
190 static __always_inline void
191 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
192 {
193 	struct execute_cb *cb, *cn;
194 
195 	if (llist_empty(&rq->execute_cb))
196 		return;
197 
198 	llist_for_each_entry_safe(cb, cn,
199 				  llist_del_all(&rq->execute_cb),
200 				  work.llnode)
201 		fn(&cb->work);
202 }
203 
204 static void __notify_execute_cb_irq(struct i915_request *rq)
205 {
206 	__notify_execute_cb(rq, irq_work_queue);
207 }
208 
209 static bool irq_work_imm(struct irq_work *wrk)
210 {
211 	wrk->func(wrk);
212 	return false;
213 }
214 
215 static void __notify_execute_cb_imm(struct i915_request *rq)
216 {
217 	__notify_execute_cb(rq, irq_work_imm);
218 }
219 
220 static void free_capture_list(struct i915_request *request)
221 {
222 	struct i915_capture_list *capture;
223 
224 	capture = fetch_and_zero(&request->capture_list);
225 	while (capture) {
226 		struct i915_capture_list *next = capture->next;
227 
228 		kfree(capture);
229 		capture = next;
230 	}
231 }
232 
233 static void __i915_request_fill(struct i915_request *rq, u8 val)
234 {
235 	void *vaddr = rq->ring->vaddr;
236 	u32 head;
237 
238 	head = rq->infix;
239 	if (rq->postfix < head) {
240 		memset(vaddr + head, val, rq->ring->size - head);
241 		head = 0;
242 	}
243 	memset(vaddr + head, val, rq->postfix - head);
244 }
245 
246 static void remove_from_engine(struct i915_request *rq)
247 {
248 	struct intel_engine_cs *engine, *locked;
249 
250 	/*
251 	 * Virtual engines complicate acquiring the engine timeline lock,
252 	 * as their rq->engine pointer is not stable until under that
253 	 * engine lock. The simple ploy we use is to take the lock then
254 	 * check that the rq still belongs to the newly locked engine.
255 	 */
256 	locked = READ_ONCE(rq->engine);
257 	spin_lock_irq(&locked->active.lock);
258 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
259 		spin_unlock(&locked->active.lock);
260 		spin_lock(&engine->active.lock);
261 		locked = engine;
262 	}
263 	list_del_init(&rq->sched.link);
264 
265 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
266 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
267 
268 	/* Prevent further __await_execution() registering a cb, then flush */
269 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
270 
271 	spin_unlock_irq(&locked->active.lock);
272 
273 	__notify_execute_cb_imm(rq);
274 }
275 
276 bool i915_request_retire(struct i915_request *rq)
277 {
278 	if (!i915_request_completed(rq))
279 		return false;
280 
281 	RQ_TRACE(rq, "\n");
282 
283 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
284 	trace_i915_request_retire(rq);
285 	i915_request_mark_complete(rq);
286 
287 	/*
288 	 * We know the GPU must have read the request to have
289 	 * sent us the seqno + interrupt, so use the position
290 	 * of tail of the request to update the last known position
291 	 * of the GPU head.
292 	 *
293 	 * Note this requires that we are always called in request
294 	 * completion order.
295 	 */
296 	GEM_BUG_ON(!list_is_first(&rq->link,
297 				  &i915_request_timeline(rq)->requests));
298 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
299 		/* Poison before we release our space in the ring */
300 		__i915_request_fill(rq, POISON_FREE);
301 	rq->ring->head = rq->postfix;
302 
303 	if (!i915_request_signaled(rq)) {
304 		spin_lock_irq(&rq->lock);
305 		dma_fence_signal_locked(&rq->fence);
306 		spin_unlock_irq(&rq->lock);
307 	}
308 
309 	if (i915_request_has_waitboost(rq)) {
310 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
311 		atomic_dec(&rq->engine->gt->rps.num_waiters);
312 	}
313 
314 	/*
315 	 * We only loosely track inflight requests across preemption,
316 	 * and so we may find ourselves attempting to retire a _completed_
317 	 * request that we have removed from the HW and put back on a run
318 	 * queue.
319 	 *
320 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
321 	 * after removing the breadcrumb and signaling it, so that we do not
322 	 * inadvertently attach the breadcrumb to a completed request.
323 	 */
324 	remove_from_engine(rq);
325 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326 
327 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328 
329 	intel_context_exit(rq->context);
330 	intel_context_unpin(rq->context);
331 
332 	free_capture_list(rq);
333 	i915_sched_node_fini(&rq->sched);
334 	i915_request_put(rq);
335 
336 	return true;
337 }
338 
339 void i915_request_retire_upto(struct i915_request *rq)
340 {
341 	struct intel_timeline * const tl = i915_request_timeline(rq);
342 	struct i915_request *tmp;
343 
344 	RQ_TRACE(rq, "\n");
345 
346 	GEM_BUG_ON(!i915_request_completed(rq));
347 
348 	do {
349 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
350 	} while (i915_request_retire(tmp) && tmp != rq);
351 }
352 
353 static struct i915_request * const *
354 __engine_active(struct intel_engine_cs *engine)
355 {
356 	return READ_ONCE(engine->execlists.active);
357 }
358 
359 static bool __request_in_flight(const struct i915_request *signal)
360 {
361 	struct i915_request * const *port, *rq;
362 	bool inflight = false;
363 
364 	if (!i915_request_is_ready(signal))
365 		return false;
366 
367 	/*
368 	 * Even if we have unwound the request, it may still be on
369 	 * the GPU (preempt-to-busy). If that request is inside an
370 	 * unpreemptible critical section, it will not be removed. Some
371 	 * GPU functions may even be stuck waiting for the paired request
372 	 * (__await_execution) to be submitted and cannot be preempted
373 	 * until the bond is executing.
374 	 *
375 	 * As we know that there are always preemption points between
376 	 * requests, we know that only the currently executing request
377 	 * may be still active even though we have cleared the flag.
378 	 * However, we can't rely on our tracking of ELSP[0] to know
379 	 * which request is currently active and so maybe stuck, as
380 	 * the tracking maybe an event behind. Instead assume that
381 	 * if the context is still inflight, then it is still active
382 	 * even if the active flag has been cleared.
383 	 *
384 	 * To further complicate matters, if there a pending promotion, the HW
385 	 * may either perform a context switch to the second inflight execlists,
386 	 * or it may switch to the pending set of execlists. In the case of the
387 	 * latter, it may send the ACK and we process the event copying the
388 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
389 	 * this implies the HW is arbitrating and not struck in *active, we do
390 	 * not worry about complete accuracy, but we do require no read/write
391 	 * tearing of the pointer [the read of the pointer must be valid, even
392 	 * as the array is being overwritten, for which we require the writes
393 	 * to avoid tearing.]
394 	 *
395 	 * Note that the read of *execlists->active may race with the promotion
396 	 * of execlists->pending[] to execlists->inflight[], overwritting
397 	 * the value at *execlists->active. This is fine. The promotion implies
398 	 * that we received an ACK from the HW, and so the context is not
399 	 * stuck -- if we do not see ourselves in *active, the inflight status
400 	 * is valid. If instead we see ourselves being copied into *active,
401 	 * we are inflight and may signal the callback.
402 	 */
403 	if (!intel_context_inflight(signal->context))
404 		return false;
405 
406 	rcu_read_lock();
407 	for (port = __engine_active(signal->engine);
408 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
409 	     port++) {
410 		if (rq->context == signal->context) {
411 			inflight = i915_seqno_passed(rq->fence.seqno,
412 						     signal->fence.seqno);
413 			break;
414 		}
415 	}
416 	rcu_read_unlock();
417 
418 	return inflight;
419 }
420 
421 static int
422 __await_execution(struct i915_request *rq,
423 		  struct i915_request *signal,
424 		  void (*hook)(struct i915_request *rq,
425 			       struct dma_fence *signal),
426 		  gfp_t gfp)
427 {
428 	struct execute_cb *cb;
429 
430 	if (i915_request_is_active(signal)) {
431 		if (hook)
432 			hook(rq, &signal->fence);
433 		return 0;
434 	}
435 
436 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
437 	if (!cb)
438 		return -ENOMEM;
439 
440 	cb->fence = &rq->submit;
441 	i915_sw_fence_await(cb->fence);
442 	init_irq_work(&cb->work, irq_execute_cb);
443 
444 	if (hook) {
445 		cb->hook = hook;
446 		cb->signal = i915_request_get(signal);
447 		cb->work.func = irq_execute_cb_hook;
448 	}
449 
450 	/*
451 	 * Register the callback first, then see if the signaler is already
452 	 * active. This ensures that if we race with the
453 	 * __notify_execute_cb from i915_request_submit() and we are not
454 	 * included in that list, we get a second bite of the cherry and
455 	 * execute it ourselves. After this point, a future
456 	 * i915_request_submit() will notify us.
457 	 *
458 	 * In i915_request_retire() we set the ACTIVE bit on a completed
459 	 * request (then flush the execute_cb). So by registering the
460 	 * callback first, then checking the ACTIVE bit, we serialise with
461 	 * the completed/retired request.
462 	 */
463 	if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
464 		if (i915_request_is_active(signal) ||
465 		    __request_in_flight(signal))
466 			__notify_execute_cb_imm(signal);
467 	}
468 
469 	return 0;
470 }
471 
472 static bool fatal_error(int error)
473 {
474 	switch (error) {
475 	case 0: /* not an error! */
476 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
477 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
478 		return false;
479 	default:
480 		return true;
481 	}
482 }
483 
484 void __i915_request_skip(struct i915_request *rq)
485 {
486 	GEM_BUG_ON(!fatal_error(rq->fence.error));
487 
488 	if (rq->infix == rq->postfix)
489 		return;
490 
491 	/*
492 	 * As this request likely depends on state from the lost
493 	 * context, clear out all the user operations leaving the
494 	 * breadcrumb at the end (so we get the fence notifications).
495 	 */
496 	__i915_request_fill(rq, 0);
497 	rq->infix = rq->postfix;
498 }
499 
500 void i915_request_set_error_once(struct i915_request *rq, int error)
501 {
502 	int old;
503 
504 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
505 
506 	if (i915_request_signaled(rq))
507 		return;
508 
509 	old = READ_ONCE(rq->fence.error);
510 	do {
511 		if (fatal_error(old))
512 			return;
513 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
514 }
515 
516 bool __i915_request_submit(struct i915_request *request)
517 {
518 	struct intel_engine_cs *engine = request->engine;
519 	bool result = false;
520 
521 	RQ_TRACE(request, "\n");
522 
523 	GEM_BUG_ON(!irqs_disabled());
524 	lockdep_assert_held(&engine->active.lock);
525 
526 	/*
527 	 * With the advent of preempt-to-busy, we frequently encounter
528 	 * requests that we have unsubmitted from HW, but left running
529 	 * until the next ack and so have completed in the meantime. On
530 	 * resubmission of that completed request, we can skip
531 	 * updating the payload, and execlists can even skip submitting
532 	 * the request.
533 	 *
534 	 * We must remove the request from the caller's priority queue,
535 	 * and the caller must only call us when the request is in their
536 	 * priority queue, under the active.lock. This ensures that the
537 	 * request has *not* yet been retired and we can safely move
538 	 * the request into the engine->active.list where it will be
539 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
540 	 * request, this would be a horrible use-after-free.)
541 	 */
542 	if (i915_request_completed(request))
543 		goto xfer;
544 
545 	if (unlikely(intel_context_is_banned(request->context)))
546 		i915_request_set_error_once(request, -EIO);
547 	if (unlikely(fatal_error(request->fence.error)))
548 		__i915_request_skip(request);
549 
550 	/*
551 	 * Are we using semaphores when the gpu is already saturated?
552 	 *
553 	 * Using semaphores incurs a cost in having the GPU poll a
554 	 * memory location, busywaiting for it to change. The continual
555 	 * memory reads can have a noticeable impact on the rest of the
556 	 * system with the extra bus traffic, stalling the cpu as it too
557 	 * tries to access memory across the bus (perf stat -e bus-cycles).
558 	 *
559 	 * If we installed a semaphore on this request and we only submit
560 	 * the request after the signaler completed, that indicates the
561 	 * system is overloaded and using semaphores at this time only
562 	 * increases the amount of work we are doing. If so, we disable
563 	 * further use of semaphores until we are idle again, whence we
564 	 * optimistically try again.
565 	 */
566 	if (request->sched.semaphores &&
567 	    i915_sw_fence_signaled(&request->semaphore))
568 		engine->saturated |= request->sched.semaphores;
569 
570 	engine->emit_fini_breadcrumb(request,
571 				     request->ring->vaddr + request->postfix);
572 
573 	trace_i915_request_execute(request);
574 	engine->serial++;
575 	result = true;
576 
577 xfer:
578 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
579 		list_move_tail(&request->sched.link, &engine->active.requests);
580 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
581 	}
582 
583 	/*
584 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
585 	 *
586 	 * In the future, perhaps when we have an active time-slicing scheduler,
587 	 * it will be interesting to unsubmit parallel execution and remove
588 	 * busywaits from the GPU until their master is restarted. This is
589 	 * quite hairy, we have to carefully rollback the fence and do a
590 	 * preempt-to-idle cycle on the target engine, all the while the
591 	 * master execute_cb may refire.
592 	 */
593 	__notify_execute_cb_irq(request);
594 
595 	/* We may be recursing from the signal callback of another i915 fence */
596 	if (!i915_request_signaled(request)) {
597 		spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
598 
599 		if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
600 			     &request->fence.flags) &&
601 		    !i915_request_enable_breadcrumb(request))
602 			intel_engine_signal_breadcrumbs(engine);
603 
604 		spin_unlock(&request->lock);
605 	}
606 
607 	return result;
608 }
609 
610 void i915_request_submit(struct i915_request *request)
611 {
612 	struct intel_engine_cs *engine = request->engine;
613 	unsigned long flags;
614 
615 	/* Will be called from irq-context when using foreign fences. */
616 	spin_lock_irqsave(&engine->active.lock, flags);
617 
618 	__i915_request_submit(request);
619 
620 	spin_unlock_irqrestore(&engine->active.lock, flags);
621 }
622 
623 void __i915_request_unsubmit(struct i915_request *request)
624 {
625 	struct intel_engine_cs *engine = request->engine;
626 
627 	/*
628 	 * Only unwind in reverse order, required so that the per-context list
629 	 * is kept in seqno/ring order.
630 	 */
631 	RQ_TRACE(request, "\n");
632 
633 	GEM_BUG_ON(!irqs_disabled());
634 	lockdep_assert_held(&engine->active.lock);
635 
636 	/*
637 	 * Before we remove this breadcrumb from the signal list, we have
638 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
639 	 * attach itself. We first mark the request as no longer active and
640 	 * make sure that is visible to other cores, and then remove the
641 	 * breadcrumb if attached.
642 	 */
643 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
644 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
645 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
646 		i915_request_cancel_breadcrumb(request);
647 
648 	/* We've already spun, don't charge on resubmitting. */
649 	if (request->sched.semaphores && i915_request_started(request))
650 		request->sched.semaphores = 0;
651 
652 	/*
653 	 * We don't need to wake_up any waiters on request->execute, they
654 	 * will get woken by any other event or us re-adding this request
655 	 * to the engine timeline (__i915_request_submit()). The waiters
656 	 * should be quite adapt at finding that the request now has a new
657 	 * global_seqno to the one they went to sleep on.
658 	 */
659 }
660 
661 void i915_request_unsubmit(struct i915_request *request)
662 {
663 	struct intel_engine_cs *engine = request->engine;
664 	unsigned long flags;
665 
666 	/* Will be called from irq-context when using foreign fences. */
667 	spin_lock_irqsave(&engine->active.lock, flags);
668 
669 	__i915_request_unsubmit(request);
670 
671 	spin_unlock_irqrestore(&engine->active.lock, flags);
672 }
673 
674 static int __i915_sw_fence_call
675 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
676 {
677 	struct i915_request *request =
678 		container_of(fence, typeof(*request), submit);
679 
680 	switch (state) {
681 	case FENCE_COMPLETE:
682 		trace_i915_request_submit(request);
683 
684 		if (unlikely(fence->error))
685 			i915_request_set_error_once(request, fence->error);
686 
687 		/*
688 		 * We need to serialize use of the submit_request() callback
689 		 * with its hotplugging performed during an emergency
690 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
691 		 * critical section in order to force i915_gem_set_wedged() to
692 		 * wait until the submit_request() is completed before
693 		 * proceeding.
694 		 */
695 		rcu_read_lock();
696 		request->engine->submit_request(request);
697 		rcu_read_unlock();
698 		break;
699 
700 	case FENCE_FREE:
701 		i915_request_put(request);
702 		break;
703 	}
704 
705 	return NOTIFY_DONE;
706 }
707 
708 static int __i915_sw_fence_call
709 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
710 {
711 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
712 
713 	switch (state) {
714 	case FENCE_COMPLETE:
715 		break;
716 
717 	case FENCE_FREE:
718 		i915_request_put(rq);
719 		break;
720 	}
721 
722 	return NOTIFY_DONE;
723 }
724 
725 static void retire_requests(struct intel_timeline *tl)
726 {
727 	struct i915_request *rq, *rn;
728 
729 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
730 		if (!i915_request_retire(rq))
731 			break;
732 }
733 
734 static noinline struct i915_request *
735 request_alloc_slow(struct intel_timeline *tl,
736 		   struct i915_request **rsvd,
737 		   gfp_t gfp)
738 {
739 	struct i915_request *rq;
740 
741 	/* If we cannot wait, dip into our reserves */
742 	if (!gfpflags_allow_blocking(gfp)) {
743 		rq = xchg(rsvd, NULL);
744 		if (!rq) /* Use the normal failure path for one final WARN */
745 			goto out;
746 
747 		return rq;
748 	}
749 
750 	if (list_empty(&tl->requests))
751 		goto out;
752 
753 	/* Move our oldest request to the slab-cache (if not in use!) */
754 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
755 	i915_request_retire(rq);
756 
757 	rq = kmem_cache_alloc(global.slab_requests,
758 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
759 	if (rq)
760 		return rq;
761 
762 	/* Ratelimit ourselves to prevent oom from malicious clients */
763 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
764 	cond_synchronize_rcu(rq->rcustate);
765 
766 	/* Retire our old requests in the hope that we free some */
767 	retire_requests(tl);
768 
769 out:
770 	return kmem_cache_alloc(global.slab_requests, gfp);
771 }
772 
773 static void __i915_request_ctor(void *arg)
774 {
775 	struct i915_request *rq = arg;
776 
777 	spin_lock_init(&rq->lock);
778 	i915_sched_node_init(&rq->sched);
779 	i915_sw_fence_init(&rq->submit, submit_notify);
780 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
781 
782 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
783 
784 	rq->capture_list = NULL;
785 
786 	init_llist_head(&rq->execute_cb);
787 }
788 
789 struct i915_request *
790 __i915_request_create(struct intel_context *ce, gfp_t gfp)
791 {
792 	struct intel_timeline *tl = ce->timeline;
793 	struct i915_request *rq;
794 	u32 seqno;
795 	int ret;
796 
797 	might_sleep_if(gfpflags_allow_blocking(gfp));
798 
799 	/* Check that the caller provided an already pinned context */
800 	__intel_context_pin(ce);
801 
802 	/*
803 	 * Beware: Dragons be flying overhead.
804 	 *
805 	 * We use RCU to look up requests in flight. The lookups may
806 	 * race with the request being allocated from the slab freelist.
807 	 * That is the request we are writing to here, may be in the process
808 	 * of being read by __i915_active_request_get_rcu(). As such,
809 	 * we have to be very careful when overwriting the contents. During
810 	 * the RCU lookup, we change chase the request->engine pointer,
811 	 * read the request->global_seqno and increment the reference count.
812 	 *
813 	 * The reference count is incremented atomically. If it is zero,
814 	 * the lookup knows the request is unallocated and complete. Otherwise,
815 	 * it is either still in use, or has been reallocated and reset
816 	 * with dma_fence_init(). This increment is safe for release as we
817 	 * check that the request we have a reference to and matches the active
818 	 * request.
819 	 *
820 	 * Before we increment the refcount, we chase the request->engine
821 	 * pointer. We must not call kmem_cache_zalloc() or else we set
822 	 * that pointer to NULL and cause a crash during the lookup. If
823 	 * we see the request is completed (based on the value of the
824 	 * old engine and seqno), the lookup is complete and reports NULL.
825 	 * If we decide the request is not completed (new engine or seqno),
826 	 * then we grab a reference and double check that it is still the
827 	 * active request - which it won't be and restart the lookup.
828 	 *
829 	 * Do not use kmem_cache_zalloc() here!
830 	 */
831 	rq = kmem_cache_alloc(global.slab_requests,
832 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
833 	if (unlikely(!rq)) {
834 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
835 		if (!rq) {
836 			ret = -ENOMEM;
837 			goto err_unreserve;
838 		}
839 	}
840 
841 	rq->context = ce;
842 	rq->engine = ce->engine;
843 	rq->ring = ce->ring;
844 	rq->execution_mask = ce->engine->mask;
845 
846 	kref_init(&rq->fence.refcount);
847 	rq->fence.flags = 0;
848 	rq->fence.error = 0;
849 	INIT_LIST_HEAD(&rq->fence.cb_list);
850 
851 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
852 	if (ret)
853 		goto err_free;
854 
855 	rq->fence.context = tl->fence_context;
856 	rq->fence.seqno = seqno;
857 
858 	RCU_INIT_POINTER(rq->timeline, tl);
859 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
860 	rq->hwsp_seqno = tl->hwsp_seqno;
861 	GEM_BUG_ON(i915_request_completed(rq));
862 
863 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
864 
865 	/* We bump the ref for the fence chain */
866 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
867 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
868 
869 	i915_sched_node_reinit(&rq->sched);
870 
871 	/* No zalloc, everything must be cleared after use */
872 	rq->batch = NULL;
873 	GEM_BUG_ON(rq->capture_list);
874 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
875 
876 	/*
877 	 * Reserve space in the ring buffer for all the commands required to
878 	 * eventually emit this request. This is to guarantee that the
879 	 * i915_request_add() call can't fail. Note that the reserve may need
880 	 * to be redone if the request is not actually submitted straight
881 	 * away, e.g. because a GPU scheduler has deferred it.
882 	 *
883 	 * Note that due to how we add reserved_space to intel_ring_begin()
884 	 * we need to double our request to ensure that if we need to wrap
885 	 * around inside i915_request_add() there is sufficient space at
886 	 * the beginning of the ring as well.
887 	 */
888 	rq->reserved_space =
889 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
890 
891 	/*
892 	 * Record the position of the start of the request so that
893 	 * should we detect the updated seqno part-way through the
894 	 * GPU processing the request, we never over-estimate the
895 	 * position of the head.
896 	 */
897 	rq->head = rq->ring->emit;
898 
899 	ret = rq->engine->request_alloc(rq);
900 	if (ret)
901 		goto err_unwind;
902 
903 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
904 
905 	intel_context_mark_active(ce);
906 	list_add_tail_rcu(&rq->link, &tl->requests);
907 
908 	return rq;
909 
910 err_unwind:
911 	ce->ring->emit = rq->head;
912 
913 	/* Make sure we didn't add ourselves to external state before freeing */
914 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
915 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
916 
917 err_free:
918 	kmem_cache_free(global.slab_requests, rq);
919 err_unreserve:
920 	intel_context_unpin(ce);
921 	return ERR_PTR(ret);
922 }
923 
924 struct i915_request *
925 i915_request_create(struct intel_context *ce)
926 {
927 	struct i915_request *rq;
928 	struct intel_timeline *tl;
929 
930 	tl = intel_context_timeline_lock(ce);
931 	if (IS_ERR(tl))
932 		return ERR_CAST(tl);
933 
934 	/* Move our oldest request to the slab-cache (if not in use!) */
935 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
936 	if (!list_is_last(&rq->link, &tl->requests))
937 		i915_request_retire(rq);
938 
939 	intel_context_enter(ce);
940 	rq = __i915_request_create(ce, GFP_KERNEL);
941 	intel_context_exit(ce); /* active reference transferred to request */
942 	if (IS_ERR(rq))
943 		goto err_unlock;
944 
945 	/* Check that we do not interrupt ourselves with a new request */
946 	rq->cookie = lockdep_pin_lock(&tl->mutex);
947 
948 	return rq;
949 
950 err_unlock:
951 	intel_context_timeline_unlock(tl);
952 	return rq;
953 }
954 
955 static int
956 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
957 {
958 	struct dma_fence *fence;
959 	int err;
960 
961 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
962 		return 0;
963 
964 	if (i915_request_started(signal))
965 		return 0;
966 
967 	fence = NULL;
968 	rcu_read_lock();
969 	spin_lock_irq(&signal->lock);
970 	do {
971 		struct list_head *pos = READ_ONCE(signal->link.prev);
972 		struct i915_request *prev;
973 
974 		/* Confirm signal has not been retired, the link is valid */
975 		if (unlikely(i915_request_started(signal)))
976 			break;
977 
978 		/* Is signal the earliest request on its timeline? */
979 		if (pos == &rcu_dereference(signal->timeline)->requests)
980 			break;
981 
982 		/*
983 		 * Peek at the request before us in the timeline. That
984 		 * request will only be valid before it is retired, so
985 		 * after acquiring a reference to it, confirm that it is
986 		 * still part of the signaler's timeline.
987 		 */
988 		prev = list_entry(pos, typeof(*prev), link);
989 		if (!i915_request_get_rcu(prev))
990 			break;
991 
992 		/* After the strong barrier, confirm prev is still attached */
993 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
994 			i915_request_put(prev);
995 			break;
996 		}
997 
998 		fence = &prev->fence;
999 	} while (0);
1000 	spin_unlock_irq(&signal->lock);
1001 	rcu_read_unlock();
1002 	if (!fence)
1003 		return 0;
1004 
1005 	err = 0;
1006 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1007 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1008 						    fence, 0,
1009 						    I915_FENCE_GFP);
1010 	dma_fence_put(fence);
1011 
1012 	return err;
1013 }
1014 
1015 static intel_engine_mask_t
1016 already_busywaiting(struct i915_request *rq)
1017 {
1018 	/*
1019 	 * Polling a semaphore causes bus traffic, delaying other users of
1020 	 * both the GPU and CPU. We want to limit the impact on others,
1021 	 * while taking advantage of early submission to reduce GPU
1022 	 * latency. Therefore we restrict ourselves to not using more
1023 	 * than one semaphore from each source, and not using a semaphore
1024 	 * if we have detected the engine is saturated (i.e. would not be
1025 	 * submitted early and cause bus traffic reading an already passed
1026 	 * semaphore).
1027 	 *
1028 	 * See the are-we-too-late? check in __i915_request_submit().
1029 	 */
1030 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1031 }
1032 
1033 static int
1034 __emit_semaphore_wait(struct i915_request *to,
1035 		      struct i915_request *from,
1036 		      u32 seqno)
1037 {
1038 	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1039 	u32 hwsp_offset;
1040 	int len, err;
1041 	u32 *cs;
1042 
1043 	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1044 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1045 
1046 	/* We need to pin the signaler's HWSP until we are finished reading. */
1047 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1048 	if (err)
1049 		return err;
1050 
1051 	len = 4;
1052 	if (has_token)
1053 		len += 2;
1054 
1055 	cs = intel_ring_begin(to, len);
1056 	if (IS_ERR(cs))
1057 		return PTR_ERR(cs);
1058 
1059 	/*
1060 	 * Using greater-than-or-equal here means we have to worry
1061 	 * about seqno wraparound. To side step that issue, we swap
1062 	 * the timeline HWSP upon wrapping, so that everyone listening
1063 	 * for the old (pre-wrap) values do not see the much smaller
1064 	 * (post-wrap) values than they were expecting (and so wait
1065 	 * forever).
1066 	 */
1067 	*cs++ = (MI_SEMAPHORE_WAIT |
1068 		 MI_SEMAPHORE_GLOBAL_GTT |
1069 		 MI_SEMAPHORE_POLL |
1070 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1071 		has_token;
1072 	*cs++ = seqno;
1073 	*cs++ = hwsp_offset;
1074 	*cs++ = 0;
1075 	if (has_token) {
1076 		*cs++ = 0;
1077 		*cs++ = MI_NOOP;
1078 	}
1079 
1080 	intel_ring_advance(to, cs);
1081 	return 0;
1082 }
1083 
1084 static int
1085 emit_semaphore_wait(struct i915_request *to,
1086 		    struct i915_request *from,
1087 		    gfp_t gfp)
1088 {
1089 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1090 	struct i915_sw_fence *wait = &to->submit;
1091 
1092 	if (!intel_context_use_semaphores(to->context))
1093 		goto await_fence;
1094 
1095 	if (i915_request_has_initial_breadcrumb(to))
1096 		goto await_fence;
1097 
1098 	if (!rcu_access_pointer(from->hwsp_cacheline))
1099 		goto await_fence;
1100 
1101 	/*
1102 	 * If this or its dependents are waiting on an external fence
1103 	 * that may fail catastrophically, then we want to avoid using
1104 	 * sempahores as they bypass the fence signaling metadata, and we
1105 	 * lose the fence->error propagation.
1106 	 */
1107 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1108 		goto await_fence;
1109 
1110 	/* Just emit the first semaphore we see as request space is limited. */
1111 	if (already_busywaiting(to) & mask)
1112 		goto await_fence;
1113 
1114 	if (i915_request_await_start(to, from) < 0)
1115 		goto await_fence;
1116 
1117 	/* Only submit our spinner after the signaler is running! */
1118 	if (__await_execution(to, from, NULL, gfp))
1119 		goto await_fence;
1120 
1121 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1122 		goto await_fence;
1123 
1124 	to->sched.semaphores |= mask;
1125 	wait = &to->semaphore;
1126 
1127 await_fence:
1128 	return i915_sw_fence_await_dma_fence(wait,
1129 					     &from->fence, 0,
1130 					     I915_FENCE_GFP);
1131 }
1132 
1133 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1134 					  struct dma_fence *fence)
1135 {
1136 	return __intel_timeline_sync_is_later(tl,
1137 					      fence->context,
1138 					      fence->seqno - 1);
1139 }
1140 
1141 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1142 					 const struct dma_fence *fence)
1143 {
1144 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1145 }
1146 
1147 static int
1148 __i915_request_await_execution(struct i915_request *to,
1149 			       struct i915_request *from,
1150 			       void (*hook)(struct i915_request *rq,
1151 					    struct dma_fence *signal))
1152 {
1153 	int err;
1154 
1155 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1156 
1157 	/* Submit both requests at the same time */
1158 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1159 	if (err)
1160 		return err;
1161 
1162 	/* Squash repeated depenendices to the same timelines */
1163 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1164 					  &from->fence))
1165 		return 0;
1166 
1167 	/*
1168 	 * Wait until the start of this request.
1169 	 *
1170 	 * The execution cb fires when we submit the request to HW. But in
1171 	 * many cases this may be long before the request itself is ready to
1172 	 * run (consider that we submit 2 requests for the same context, where
1173 	 * the request of interest is behind an indefinite spinner). So we hook
1174 	 * up to both to reduce our queues and keep the execution lag minimised
1175 	 * in the worst case, though we hope that the await_start is elided.
1176 	 */
1177 	err = i915_request_await_start(to, from);
1178 	if (err < 0)
1179 		return err;
1180 
1181 	/*
1182 	 * Ensure both start together [after all semaphores in signal]
1183 	 *
1184 	 * Now that we are queued to the HW at roughly the same time (thanks
1185 	 * to the execute cb) and are ready to run at roughly the same time
1186 	 * (thanks to the await start), our signaler may still be indefinitely
1187 	 * delayed by waiting on a semaphore from a remote engine. If our
1188 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1189 	 * want to start our payload until our signaler also starts theirs.
1190 	 * So we wait.
1191 	 *
1192 	 * However, there is also a second condition for which we need to wait
1193 	 * for the precise start of the signaler. Consider that the signaler
1194 	 * was submitted in a chain of requests following another context
1195 	 * (with just an ordinary intra-engine fence dependency between the
1196 	 * two). In this case the signaler is queued to HW, but not for
1197 	 * immediate execution, and so we must wait until it reaches the
1198 	 * active slot.
1199 	 */
1200 	if (intel_engine_has_semaphores(to->engine) &&
1201 	    !i915_request_has_initial_breadcrumb(to)) {
1202 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1203 		if (err < 0)
1204 			return err;
1205 	}
1206 
1207 	/* Couple the dependency tree for PI on this exposed to->fence */
1208 	if (to->engine->schedule) {
1209 		err = i915_sched_node_add_dependency(&to->sched,
1210 						     &from->sched,
1211 						     I915_DEPENDENCY_WEAK);
1212 		if (err < 0)
1213 			return err;
1214 	}
1215 
1216 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1217 					     &from->fence);
1218 }
1219 
1220 static void mark_external(struct i915_request *rq)
1221 {
1222 	/*
1223 	 * The downside of using semaphores is that we lose metadata passing
1224 	 * along the signaling chain. This is particularly nasty when we
1225 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1226 	 * fatal errors we want to scrub the request before it is executed,
1227 	 * which means that we cannot preload the request onto HW and have
1228 	 * it wait upon a semaphore.
1229 	 */
1230 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1231 }
1232 
1233 static int
1234 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1235 {
1236 	mark_external(rq);
1237 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1238 					     i915_fence_context_timeout(rq->engine->i915,
1239 									fence->context),
1240 					     I915_FENCE_GFP);
1241 }
1242 
1243 static int
1244 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1245 {
1246 	struct dma_fence *iter;
1247 	int err = 0;
1248 
1249 	if (!to_dma_fence_chain(fence))
1250 		return __i915_request_await_external(rq, fence);
1251 
1252 	dma_fence_chain_for_each(iter, fence) {
1253 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1254 
1255 		if (!dma_fence_is_i915(chain->fence)) {
1256 			err = __i915_request_await_external(rq, iter);
1257 			break;
1258 		}
1259 
1260 		err = i915_request_await_dma_fence(rq, chain->fence);
1261 		if (err < 0)
1262 			break;
1263 	}
1264 
1265 	dma_fence_put(iter);
1266 	return err;
1267 }
1268 
1269 int
1270 i915_request_await_execution(struct i915_request *rq,
1271 			     struct dma_fence *fence,
1272 			     void (*hook)(struct i915_request *rq,
1273 					  struct dma_fence *signal))
1274 {
1275 	struct dma_fence **child = &fence;
1276 	unsigned int nchild = 1;
1277 	int ret;
1278 
1279 	if (dma_fence_is_array(fence)) {
1280 		struct dma_fence_array *array = to_dma_fence_array(fence);
1281 
1282 		/* XXX Error for signal-on-any fence arrays */
1283 
1284 		child = array->fences;
1285 		nchild = array->num_fences;
1286 		GEM_BUG_ON(!nchild);
1287 	}
1288 
1289 	do {
1290 		fence = *child++;
1291 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1292 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1293 			continue;
1294 		}
1295 
1296 		if (fence->context == rq->fence.context)
1297 			continue;
1298 
1299 		/*
1300 		 * We don't squash repeated fence dependencies here as we
1301 		 * want to run our callback in all cases.
1302 		 */
1303 
1304 		if (dma_fence_is_i915(fence))
1305 			ret = __i915_request_await_execution(rq,
1306 							     to_request(fence),
1307 							     hook);
1308 		else
1309 			ret = i915_request_await_external(rq, fence);
1310 		if (ret < 0)
1311 			return ret;
1312 	} while (--nchild);
1313 
1314 	return 0;
1315 }
1316 
1317 static int
1318 await_request_submit(struct i915_request *to, struct i915_request *from)
1319 {
1320 	/*
1321 	 * If we are waiting on a virtual engine, then it may be
1322 	 * constrained to execute on a single engine *prior* to submission.
1323 	 * When it is submitted, it will be first submitted to the virtual
1324 	 * engine and then passed to the physical engine. We cannot allow
1325 	 * the waiter to be submitted immediately to the physical engine
1326 	 * as it may then bypass the virtual request.
1327 	 */
1328 	if (to->engine == READ_ONCE(from->engine))
1329 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1330 							&from->submit,
1331 							I915_FENCE_GFP);
1332 	else
1333 		return __i915_request_await_execution(to, from, NULL);
1334 }
1335 
1336 static int
1337 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1338 {
1339 	int ret;
1340 
1341 	GEM_BUG_ON(to == from);
1342 	GEM_BUG_ON(to->timeline == from->timeline);
1343 
1344 	if (i915_request_completed(from)) {
1345 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1346 		return 0;
1347 	}
1348 
1349 	if (to->engine->schedule) {
1350 		ret = i915_sched_node_add_dependency(&to->sched,
1351 						     &from->sched,
1352 						     I915_DEPENDENCY_EXTERNAL);
1353 		if (ret < 0)
1354 			return ret;
1355 	}
1356 
1357 	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1358 		ret = await_request_submit(to, from);
1359 	else
1360 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1361 	if (ret < 0)
1362 		return ret;
1363 
1364 	return 0;
1365 }
1366 
1367 int
1368 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1369 {
1370 	struct dma_fence **child = &fence;
1371 	unsigned int nchild = 1;
1372 	int ret;
1373 
1374 	/*
1375 	 * Note that if the fence-array was created in signal-on-any mode,
1376 	 * we should *not* decompose it into its individual fences. However,
1377 	 * we don't currently store which mode the fence-array is operating
1378 	 * in. Fortunately, the only user of signal-on-any is private to
1379 	 * amdgpu and we should not see any incoming fence-array from
1380 	 * sync-file being in signal-on-any mode.
1381 	 */
1382 	if (dma_fence_is_array(fence)) {
1383 		struct dma_fence_array *array = to_dma_fence_array(fence);
1384 
1385 		child = array->fences;
1386 		nchild = array->num_fences;
1387 		GEM_BUG_ON(!nchild);
1388 	}
1389 
1390 	do {
1391 		fence = *child++;
1392 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1393 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1394 			continue;
1395 		}
1396 
1397 		/*
1398 		 * Requests on the same timeline are explicitly ordered, along
1399 		 * with their dependencies, by i915_request_add() which ensures
1400 		 * that requests are submitted in-order through each ring.
1401 		 */
1402 		if (fence->context == rq->fence.context)
1403 			continue;
1404 
1405 		/* Squash repeated waits to the same timelines */
1406 		if (fence->context &&
1407 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1408 						 fence))
1409 			continue;
1410 
1411 		if (dma_fence_is_i915(fence))
1412 			ret = i915_request_await_request(rq, to_request(fence));
1413 		else
1414 			ret = i915_request_await_external(rq, fence);
1415 		if (ret < 0)
1416 			return ret;
1417 
1418 		/* Record the latest fence used against each timeline */
1419 		if (fence->context)
1420 			intel_timeline_sync_set(i915_request_timeline(rq),
1421 						fence);
1422 	} while (--nchild);
1423 
1424 	return 0;
1425 }
1426 
1427 /**
1428  * i915_request_await_object - set this request to (async) wait upon a bo
1429  * @to: request we are wishing to use
1430  * @obj: object which may be in use on another ring.
1431  * @write: whether the wait is on behalf of a writer
1432  *
1433  * This code is meant to abstract object synchronization with the GPU.
1434  * Conceptually we serialise writes between engines inside the GPU.
1435  * We only allow one engine to write into a buffer at any time, but
1436  * multiple readers. To ensure each has a coherent view of memory, we must:
1437  *
1438  * - If there is an outstanding write request to the object, the new
1439  *   request must wait for it to complete (either CPU or in hw, requests
1440  *   on the same ring will be naturally ordered).
1441  *
1442  * - If we are a write request (pending_write_domain is set), the new
1443  *   request must wait for outstanding read requests to complete.
1444  *
1445  * Returns 0 if successful, else propagates up the lower layer error.
1446  */
1447 int
1448 i915_request_await_object(struct i915_request *to,
1449 			  struct drm_i915_gem_object *obj,
1450 			  bool write)
1451 {
1452 	struct dma_fence *excl;
1453 	int ret = 0;
1454 
1455 	if (write) {
1456 		struct dma_fence **shared;
1457 		unsigned int count, i;
1458 
1459 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1460 							&excl, &count, &shared);
1461 		if (ret)
1462 			return ret;
1463 
1464 		for (i = 0; i < count; i++) {
1465 			ret = i915_request_await_dma_fence(to, shared[i]);
1466 			if (ret)
1467 				break;
1468 
1469 			dma_fence_put(shared[i]);
1470 		}
1471 
1472 		for (; i < count; i++)
1473 			dma_fence_put(shared[i]);
1474 		kfree(shared);
1475 	} else {
1476 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1477 	}
1478 
1479 	if (excl) {
1480 		if (ret == 0)
1481 			ret = i915_request_await_dma_fence(to, excl);
1482 
1483 		dma_fence_put(excl);
1484 	}
1485 
1486 	return ret;
1487 }
1488 
1489 static struct i915_request *
1490 __i915_request_add_to_timeline(struct i915_request *rq)
1491 {
1492 	struct intel_timeline *timeline = i915_request_timeline(rq);
1493 	struct i915_request *prev;
1494 
1495 	/*
1496 	 * Dependency tracking and request ordering along the timeline
1497 	 * is special cased so that we can eliminate redundant ordering
1498 	 * operations while building the request (we know that the timeline
1499 	 * itself is ordered, and here we guarantee it).
1500 	 *
1501 	 * As we know we will need to emit tracking along the timeline,
1502 	 * we embed the hooks into our request struct -- at the cost of
1503 	 * having to have specialised no-allocation interfaces (which will
1504 	 * be beneficial elsewhere).
1505 	 *
1506 	 * A second benefit to open-coding i915_request_await_request is
1507 	 * that we can apply a slight variant of the rules specialised
1508 	 * for timelines that jump between engines (such as virtual engines).
1509 	 * If we consider the case of virtual engine, we must emit a dma-fence
1510 	 * to prevent scheduling of the second request until the first is
1511 	 * complete (to maximise our greedy late load balancing) and this
1512 	 * precludes optimising to use semaphores serialisation of a single
1513 	 * timeline across engines.
1514 	 */
1515 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1516 						  &rq->fence));
1517 	if (prev && !i915_request_completed(prev)) {
1518 		/*
1519 		 * The requests are supposed to be kept in order. However,
1520 		 * we need to be wary in case the timeline->last_request
1521 		 * is used as a barrier for external modification to this
1522 		 * context.
1523 		 */
1524 		GEM_BUG_ON(prev->context == rq->context &&
1525 			   i915_seqno_passed(prev->fence.seqno,
1526 					     rq->fence.seqno));
1527 
1528 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1529 			i915_sw_fence_await_sw_fence(&rq->submit,
1530 						     &prev->submit,
1531 						     &rq->submitq);
1532 		else
1533 			__i915_sw_fence_await_dma_fence(&rq->submit,
1534 							&prev->fence,
1535 							&rq->dmaq);
1536 		if (rq->engine->schedule)
1537 			__i915_sched_node_add_dependency(&rq->sched,
1538 							 &prev->sched,
1539 							 &rq->dep,
1540 							 0);
1541 	}
1542 
1543 	/*
1544 	 * Make sure that no request gazumped us - if it was allocated after
1545 	 * our i915_request_alloc() and called __i915_request_add() before
1546 	 * us, the timeline will hold its seqno which is later than ours.
1547 	 */
1548 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1549 
1550 	return prev;
1551 }
1552 
1553 /*
1554  * NB: This function is not allowed to fail. Doing so would mean the the
1555  * request is not being tracked for completion but the work itself is
1556  * going to happen on the hardware. This would be a Bad Thing(tm).
1557  */
1558 struct i915_request *__i915_request_commit(struct i915_request *rq)
1559 {
1560 	struct intel_engine_cs *engine = rq->engine;
1561 	struct intel_ring *ring = rq->ring;
1562 	u32 *cs;
1563 
1564 	RQ_TRACE(rq, "\n");
1565 
1566 	/*
1567 	 * To ensure that this call will not fail, space for its emissions
1568 	 * should already have been reserved in the ring buffer. Let the ring
1569 	 * know that it is time to use that space up.
1570 	 */
1571 	GEM_BUG_ON(rq->reserved_space > ring->space);
1572 	rq->reserved_space = 0;
1573 	rq->emitted_jiffies = jiffies;
1574 
1575 	/*
1576 	 * Record the position of the start of the breadcrumb so that
1577 	 * should we detect the updated seqno part-way through the
1578 	 * GPU processing the request, we never over-estimate the
1579 	 * position of the ring's HEAD.
1580 	 */
1581 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1582 	GEM_BUG_ON(IS_ERR(cs));
1583 	rq->postfix = intel_ring_offset(rq, cs);
1584 
1585 	return __i915_request_add_to_timeline(rq);
1586 }
1587 
1588 void __i915_request_queue(struct i915_request *rq,
1589 			  const struct i915_sched_attr *attr)
1590 {
1591 	/*
1592 	 * Let the backend know a new request has arrived that may need
1593 	 * to adjust the existing execution schedule due to a high priority
1594 	 * request - i.e. we may want to preempt the current request in order
1595 	 * to run a high priority dependency chain *before* we can execute this
1596 	 * request.
1597 	 *
1598 	 * This is called before the request is ready to run so that we can
1599 	 * decide whether to preempt the entire chain so that it is ready to
1600 	 * run at the earliest possible convenience.
1601 	 */
1602 	if (attr && rq->engine->schedule)
1603 		rq->engine->schedule(rq, attr);
1604 	i915_sw_fence_commit(&rq->semaphore);
1605 	i915_sw_fence_commit(&rq->submit);
1606 }
1607 
1608 void i915_request_add(struct i915_request *rq)
1609 {
1610 	struct intel_timeline * const tl = i915_request_timeline(rq);
1611 	struct i915_sched_attr attr = {};
1612 	struct i915_gem_context *ctx;
1613 
1614 	lockdep_assert_held(&tl->mutex);
1615 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1616 
1617 	trace_i915_request_add(rq);
1618 	__i915_request_commit(rq);
1619 
1620 	/* XXX placeholder for selftests */
1621 	rcu_read_lock();
1622 	ctx = rcu_dereference(rq->context->gem_context);
1623 	if (ctx)
1624 		attr = ctx->sched;
1625 	rcu_read_unlock();
1626 
1627 	__i915_request_queue(rq, &attr);
1628 
1629 	mutex_unlock(&tl->mutex);
1630 }
1631 
1632 static unsigned long local_clock_ns(unsigned int *cpu)
1633 {
1634 	unsigned long t;
1635 
1636 	/*
1637 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1638 	 * The result and subsequent calculations are also defined in the same
1639 	 * approximate microseconds units. The principal source of timing
1640 	 * error here is from the simple truncation.
1641 	 *
1642 	 * Note that local_clock() is only defined wrt to the current CPU;
1643 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1644 	 * blocking preemption for the entire busywait, we can detect the CPU
1645 	 * switch and use that as indicator of system load and a reason to
1646 	 * stop busywaiting, see busywait_stop().
1647 	 */
1648 	*cpu = get_cpu();
1649 	t = local_clock();
1650 	put_cpu();
1651 
1652 	return t;
1653 }
1654 
1655 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1656 {
1657 	unsigned int this_cpu;
1658 
1659 	if (time_after(local_clock_ns(&this_cpu), timeout))
1660 		return true;
1661 
1662 	return this_cpu != cpu;
1663 }
1664 
1665 static bool __i915_spin_request(struct i915_request * const rq, int state)
1666 {
1667 	unsigned long timeout_ns;
1668 	unsigned int cpu;
1669 
1670 	/*
1671 	 * Only wait for the request if we know it is likely to complete.
1672 	 *
1673 	 * We don't track the timestamps around requests, nor the average
1674 	 * request length, so we do not have a good indicator that this
1675 	 * request will complete within the timeout. What we do know is the
1676 	 * order in which requests are executed by the context and so we can
1677 	 * tell if the request has been started. If the request is not even
1678 	 * running yet, it is a fair assumption that it will not complete
1679 	 * within our relatively short timeout.
1680 	 */
1681 	if (!i915_request_is_running(rq))
1682 		return false;
1683 
1684 	/*
1685 	 * When waiting for high frequency requests, e.g. during synchronous
1686 	 * rendering split between the CPU and GPU, the finite amount of time
1687 	 * required to set up the irq and wait upon it limits the response
1688 	 * rate. By busywaiting on the request completion for a short while we
1689 	 * can service the high frequency waits as quick as possible. However,
1690 	 * if it is a slow request, we want to sleep as quickly as possible.
1691 	 * The tradeoff between waiting and sleeping is roughly the time it
1692 	 * takes to sleep on a request, on the order of a microsecond.
1693 	 */
1694 
1695 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1696 	timeout_ns += local_clock_ns(&cpu);
1697 	do {
1698 		if (dma_fence_is_signaled(&rq->fence))
1699 			return true;
1700 
1701 		if (signal_pending_state(state, current))
1702 			break;
1703 
1704 		if (busywait_stop(timeout_ns, cpu))
1705 			break;
1706 
1707 		cpu_relax();
1708 	} while (!need_resched());
1709 
1710 	return false;
1711 }
1712 
1713 struct request_wait {
1714 	struct dma_fence_cb cb;
1715 	struct task_struct *tsk;
1716 };
1717 
1718 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1719 {
1720 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1721 
1722 	wake_up_process(fetch_and_zero(&wait->tsk));
1723 }
1724 
1725 /**
1726  * i915_request_wait - wait until execution of request has finished
1727  * @rq: the request to wait upon
1728  * @flags: how to wait
1729  * @timeout: how long to wait in jiffies
1730  *
1731  * i915_request_wait() waits for the request to be completed, for a
1732  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1733  * unbounded wait).
1734  *
1735  * Returns the remaining time (in jiffies) if the request completed, which may
1736  * be zero or -ETIME if the request is unfinished after the timeout expires.
1737  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1738  * pending before the request completes.
1739  */
1740 long i915_request_wait(struct i915_request *rq,
1741 		       unsigned int flags,
1742 		       long timeout)
1743 {
1744 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1745 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1746 	struct request_wait wait;
1747 
1748 	might_sleep();
1749 	GEM_BUG_ON(timeout < 0);
1750 
1751 	if (dma_fence_is_signaled(&rq->fence))
1752 		return timeout;
1753 
1754 	if (!timeout)
1755 		return -ETIME;
1756 
1757 	trace_i915_request_wait_begin(rq, flags);
1758 
1759 	/*
1760 	 * We must never wait on the GPU while holding a lock as we
1761 	 * may need to perform a GPU reset. So while we don't need to
1762 	 * serialise wait/reset with an explicit lock, we do want
1763 	 * lockdep to detect potential dependency cycles.
1764 	 */
1765 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1766 
1767 	/*
1768 	 * Optimistic spin before touching IRQs.
1769 	 *
1770 	 * We may use a rather large value here to offset the penalty of
1771 	 * switching away from the active task. Frequently, the client will
1772 	 * wait upon an old swapbuffer to throttle itself to remain within a
1773 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1774 	 * then it should not be waiting long at all, and a sleep now will incur
1775 	 * extra scheduler latency in producing the next frame. To try to
1776 	 * avoid adding the cost of enabling/disabling the interrupt to the
1777 	 * short wait, we first spin to see if the request would have completed
1778 	 * in the time taken to setup the interrupt.
1779 	 *
1780 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1781 	 * scheduler latency of a context switch, ignoring the secondary
1782 	 * impacts from a context switch such as cache eviction.
1783 	 *
1784 	 * The scheme used for low-latency IO is called "hybrid interrupt
1785 	 * polling". The suggestion there is to sleep until just before you
1786 	 * expect to be woken by the device interrupt and then poll for its
1787 	 * completion. That requires having a good predictor for the request
1788 	 * duration, which we currently lack.
1789 	 */
1790 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1791 	    __i915_spin_request(rq, state))
1792 		goto out;
1793 
1794 	/*
1795 	 * This client is about to stall waiting for the GPU. In many cases
1796 	 * this is undesirable and limits the throughput of the system, as
1797 	 * many clients cannot continue processing user input/output whilst
1798 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1799 	 * to the GPU load and thus incurs additional latency for the client.
1800 	 * We can circumvent that by promoting the GPU frequency to maximum
1801 	 * before we sleep. This makes the GPU throttle up much more quickly
1802 	 * (good for benchmarks and user experience, e.g. window animations),
1803 	 * but at a cost of spending more power processing the workload
1804 	 * (bad for battery).
1805 	 */
1806 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1807 		intel_rps_boost(rq);
1808 
1809 	wait.tsk = current;
1810 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1811 		goto out;
1812 
1813 	/*
1814 	 * Flush the submission tasklet, but only if it may help this request.
1815 	 *
1816 	 * We sometimes experience some latency between the HW interrupts and
1817 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1818 	 * be due to lazy CS events), so lets run the tasklet manually if there
1819 	 * is a chance it may submit this request. If the request is not ready
1820 	 * to run, as it is waiting for other fences to be signaled, flushing
1821 	 * the tasklet is busy work without any advantage for this client.
1822 	 *
1823 	 * If the HW is being lazy, this is the last chance before we go to
1824 	 * sleep to catch any pending events. We will check periodically in
1825 	 * the heartbeat to flush the submission tasklets as a last resort
1826 	 * for unhappy HW.
1827 	 */
1828 	if (i915_request_is_ready(rq))
1829 		intel_engine_flush_submission(rq->engine);
1830 
1831 	for (;;) {
1832 		set_current_state(state);
1833 
1834 		if (dma_fence_is_signaled(&rq->fence))
1835 			break;
1836 
1837 		if (signal_pending_state(state, current)) {
1838 			timeout = -ERESTARTSYS;
1839 			break;
1840 		}
1841 
1842 		if (!timeout) {
1843 			timeout = -ETIME;
1844 			break;
1845 		}
1846 
1847 		timeout = io_schedule_timeout(timeout);
1848 	}
1849 	__set_current_state(TASK_RUNNING);
1850 
1851 	if (READ_ONCE(wait.tsk))
1852 		dma_fence_remove_callback(&rq->fence, &wait.cb);
1853 	GEM_BUG_ON(!list_empty(&wait.cb.node));
1854 
1855 out:
1856 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1857 	trace_i915_request_wait_end(rq);
1858 	return timeout;
1859 }
1860 
1861 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1862 #include "selftests/mock_request.c"
1863 #include "selftests/i915_request.c"
1864 #endif
1865 
1866 static void i915_global_request_shrink(void)
1867 {
1868 	kmem_cache_shrink(global.slab_execute_cbs);
1869 	kmem_cache_shrink(global.slab_requests);
1870 }
1871 
1872 static void i915_global_request_exit(void)
1873 {
1874 	kmem_cache_destroy(global.slab_execute_cbs);
1875 	kmem_cache_destroy(global.slab_requests);
1876 }
1877 
1878 static struct i915_global_request global = { {
1879 	.shrink = i915_global_request_shrink,
1880 	.exit = i915_global_request_exit,
1881 } };
1882 
1883 int __init i915_global_request_init(void)
1884 {
1885 	global.slab_requests =
1886 		kmem_cache_create("i915_request",
1887 				  sizeof(struct i915_request),
1888 				  __alignof__(struct i915_request),
1889 				  SLAB_HWCACHE_ALIGN |
1890 				  SLAB_RECLAIM_ACCOUNT |
1891 				  SLAB_TYPESAFE_BY_RCU,
1892 				  __i915_request_ctor);
1893 	if (!global.slab_requests)
1894 		return -ENOMEM;
1895 
1896 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1897 					     SLAB_HWCACHE_ALIGN |
1898 					     SLAB_RECLAIM_ACCOUNT |
1899 					     SLAB_TYPESAFE_BY_RCU);
1900 	if (!global.slab_execute_cbs)
1901 		goto err_requests;
1902 
1903 	i915_global_register(&global.base);
1904 	return 0;
1905 
1906 err_requests:
1907 	kmem_cache_destroy(global.slab_requests);
1908 	return -ENOMEM;
1909 }
1910