1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_engine.h" 37 #include "gt/intel_engine_heartbeat.h" 38 #include "gt/intel_gpu_commands.h" 39 #include "gt/intel_reset.h" 40 #include "gt/intel_ring.h" 41 #include "gt/intel_rps.h" 42 43 #include "i915_active.h" 44 #include "i915_drv.h" 45 #include "i915_globals.h" 46 #include "i915_trace.h" 47 #include "intel_pm.h" 48 49 struct execute_cb { 50 struct irq_work work; 51 struct i915_sw_fence *fence; 52 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 53 struct i915_request *signal; 54 }; 55 56 static struct i915_global_request { 57 struct i915_global base; 58 struct kmem_cache *slab_requests; 59 struct kmem_cache *slab_execute_cbs; 60 } global; 61 62 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 63 { 64 return dev_name(to_request(fence)->engine->i915->drm.dev); 65 } 66 67 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 68 { 69 const struct i915_gem_context *ctx; 70 71 /* 72 * The timeline struct (as part of the ppgtt underneath a context) 73 * may be freed when the request is no longer in use by the GPU. 74 * We could extend the life of a context to beyond that of all 75 * fences, possibly keeping the hw resource around indefinitely, 76 * or we just give them a false name. Since 77 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 78 * lie seems justifiable. 79 */ 80 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 81 return "signaled"; 82 83 ctx = i915_request_gem_context(to_request(fence)); 84 if (!ctx) 85 return "[" DRIVER_NAME "]"; 86 87 return ctx->name; 88 } 89 90 static bool i915_fence_signaled(struct dma_fence *fence) 91 { 92 return i915_request_completed(to_request(fence)); 93 } 94 95 static bool i915_fence_enable_signaling(struct dma_fence *fence) 96 { 97 return i915_request_enable_breadcrumb(to_request(fence)); 98 } 99 100 static signed long i915_fence_wait(struct dma_fence *fence, 101 bool interruptible, 102 signed long timeout) 103 { 104 return i915_request_wait(to_request(fence), 105 interruptible | I915_WAIT_PRIORITY, 106 timeout); 107 } 108 109 struct kmem_cache *i915_request_slab_cache(void) 110 { 111 return global.slab_requests; 112 } 113 114 static void i915_fence_release(struct dma_fence *fence) 115 { 116 struct i915_request *rq = to_request(fence); 117 118 /* 119 * The request is put onto a RCU freelist (i.e. the address 120 * is immediately reused), mark the fences as being freed now. 121 * Otherwise the debugobjects for the fences are only marked as 122 * freed when the slab cache itself is freed, and so we would get 123 * caught trying to reuse dead objects. 124 */ 125 i915_sw_fence_fini(&rq->submit); 126 i915_sw_fence_fini(&rq->semaphore); 127 128 /* 129 * Keep one request on each engine for reserved use under mempressure 130 * 131 * We do not hold a reference to the engine here and so have to be 132 * very careful in what rq->engine we poke. The virtual engine is 133 * referenced via the rq->context and we released that ref during 134 * i915_request_retire(), ergo we must not dereference a virtual 135 * engine here. Not that we would want to, as the only consumer of 136 * the reserved engine->request_pool is the power management parking, 137 * which must-not-fail, and that is only run on the physical engines. 138 * 139 * Since the request must have been executed to be have completed, 140 * we know that it will have been processed by the HW and will 141 * not be unsubmitted again, so rq->engine and rq->execution_mask 142 * at this point is stable. rq->execution_mask will be a single 143 * bit if the last and _only_ engine it could execution on was a 144 * physical engine, if it's multiple bits then it started on and 145 * could still be on a virtual engine. Thus if the mask is not a 146 * power-of-two we assume that rq->engine may still be a virtual 147 * engine and so a dangling invalid pointer that we cannot dereference 148 * 149 * For example, consider the flow of a bonded request through a virtual 150 * engine. The request is created with a wide engine mask (all engines 151 * that we might execute on). On processing the bond, the request mask 152 * is reduced to one or more engines. If the request is subsequently 153 * bound to a single engine, it will then be constrained to only 154 * execute on that engine and never returned to the virtual engine 155 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 156 * know that if the rq->execution_mask is a single bit, rq->engine 157 * can be a physical engine with the exact corresponding mask. 158 */ 159 if (is_power_of_2(rq->execution_mask) && 160 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 161 return; 162 163 kmem_cache_free(global.slab_requests, rq); 164 } 165 166 const struct dma_fence_ops i915_fence_ops = { 167 .get_driver_name = i915_fence_get_driver_name, 168 .get_timeline_name = i915_fence_get_timeline_name, 169 .enable_signaling = i915_fence_enable_signaling, 170 .signaled = i915_fence_signaled, 171 .wait = i915_fence_wait, 172 .release = i915_fence_release, 173 }; 174 175 static void irq_execute_cb(struct irq_work *wrk) 176 { 177 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 178 179 i915_sw_fence_complete(cb->fence); 180 kmem_cache_free(global.slab_execute_cbs, cb); 181 } 182 183 static void irq_execute_cb_hook(struct irq_work *wrk) 184 { 185 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 186 187 cb->hook(container_of(cb->fence, struct i915_request, submit), 188 &cb->signal->fence); 189 i915_request_put(cb->signal); 190 191 irq_execute_cb(wrk); 192 } 193 194 static __always_inline void 195 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 196 { 197 struct execute_cb *cb, *cn; 198 199 if (llist_empty(&rq->execute_cb)) 200 return; 201 202 llist_for_each_entry_safe(cb, cn, 203 llist_del_all(&rq->execute_cb), 204 work.node.llist) 205 fn(&cb->work); 206 } 207 208 static void __notify_execute_cb_irq(struct i915_request *rq) 209 { 210 __notify_execute_cb(rq, irq_work_queue); 211 } 212 213 static bool irq_work_imm(struct irq_work *wrk) 214 { 215 wrk->func(wrk); 216 return false; 217 } 218 219 static void __notify_execute_cb_imm(struct i915_request *rq) 220 { 221 __notify_execute_cb(rq, irq_work_imm); 222 } 223 224 static void free_capture_list(struct i915_request *request) 225 { 226 struct i915_capture_list *capture; 227 228 capture = fetch_and_zero(&request->capture_list); 229 while (capture) { 230 struct i915_capture_list *next = capture->next; 231 232 kfree(capture); 233 capture = next; 234 } 235 } 236 237 static void __i915_request_fill(struct i915_request *rq, u8 val) 238 { 239 void *vaddr = rq->ring->vaddr; 240 u32 head; 241 242 head = rq->infix; 243 if (rq->postfix < head) { 244 memset(vaddr + head, val, rq->ring->size - head); 245 head = 0; 246 } 247 memset(vaddr + head, val, rq->postfix - head); 248 } 249 250 /** 251 * i915_request_active_engine 252 * @rq: request to inspect 253 * @active: pointer in which to return the active engine 254 * 255 * Fills the currently active engine to the @active pointer if the request 256 * is active and still not completed. 257 * 258 * Returns true if request was active or false otherwise. 259 */ 260 bool 261 i915_request_active_engine(struct i915_request *rq, 262 struct intel_engine_cs **active) 263 { 264 struct intel_engine_cs *engine, *locked; 265 bool ret = false; 266 267 /* 268 * Serialise with __i915_request_submit() so that it sees 269 * is-banned?, or we know the request is already inflight. 270 * 271 * Note that rq->engine is unstable, and so we double 272 * check that we have acquired the lock on the final engine. 273 */ 274 locked = READ_ONCE(rq->engine); 275 spin_lock_irq(&locked->active.lock); 276 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 277 spin_unlock(&locked->active.lock); 278 locked = engine; 279 spin_lock(&locked->active.lock); 280 } 281 282 if (i915_request_is_active(rq)) { 283 if (!__i915_request_is_complete(rq)) 284 *active = locked; 285 ret = true; 286 } 287 288 spin_unlock_irq(&locked->active.lock); 289 290 return ret; 291 } 292 293 294 static void remove_from_engine(struct i915_request *rq) 295 { 296 struct intel_engine_cs *engine, *locked; 297 298 /* 299 * Virtual engines complicate acquiring the engine timeline lock, 300 * as their rq->engine pointer is not stable until under that 301 * engine lock. The simple ploy we use is to take the lock then 302 * check that the rq still belongs to the newly locked engine. 303 */ 304 locked = READ_ONCE(rq->engine); 305 spin_lock_irq(&locked->active.lock); 306 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 307 spin_unlock(&locked->active.lock); 308 spin_lock(&engine->active.lock); 309 locked = engine; 310 } 311 list_del_init(&rq->sched.link); 312 313 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 314 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 315 316 /* Prevent further __await_execution() registering a cb, then flush */ 317 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 318 319 spin_unlock_irq(&locked->active.lock); 320 321 __notify_execute_cb_imm(rq); 322 } 323 324 static void __rq_init_watchdog(struct i915_request *rq) 325 { 326 rq->watchdog.timer.function = NULL; 327 } 328 329 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 330 { 331 struct i915_request *rq = 332 container_of(hrtimer, struct i915_request, watchdog.timer); 333 struct intel_gt *gt = rq->engine->gt; 334 335 if (!i915_request_completed(rq)) { 336 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 337 schedule_work(>->watchdog.work); 338 } else { 339 i915_request_put(rq); 340 } 341 342 return HRTIMER_NORESTART; 343 } 344 345 static void __rq_arm_watchdog(struct i915_request *rq) 346 { 347 struct i915_request_watchdog *wdg = &rq->watchdog; 348 struct intel_context *ce = rq->context; 349 350 if (!ce->watchdog.timeout_us) 351 return; 352 353 i915_request_get(rq); 354 355 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 356 wdg->timer.function = __rq_watchdog_expired; 357 hrtimer_start_range_ns(&wdg->timer, 358 ns_to_ktime(ce->watchdog.timeout_us * 359 NSEC_PER_USEC), 360 NSEC_PER_MSEC, 361 HRTIMER_MODE_REL); 362 } 363 364 static void __rq_cancel_watchdog(struct i915_request *rq) 365 { 366 struct i915_request_watchdog *wdg = &rq->watchdog; 367 368 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 369 i915_request_put(rq); 370 } 371 372 bool i915_request_retire(struct i915_request *rq) 373 { 374 if (!__i915_request_is_complete(rq)) 375 return false; 376 377 RQ_TRACE(rq, "\n"); 378 379 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 380 trace_i915_request_retire(rq); 381 i915_request_mark_complete(rq); 382 383 __rq_cancel_watchdog(rq); 384 385 /* 386 * We know the GPU must have read the request to have 387 * sent us the seqno + interrupt, so use the position 388 * of tail of the request to update the last known position 389 * of the GPU head. 390 * 391 * Note this requires that we are always called in request 392 * completion order. 393 */ 394 GEM_BUG_ON(!list_is_first(&rq->link, 395 &i915_request_timeline(rq)->requests)); 396 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 397 /* Poison before we release our space in the ring */ 398 __i915_request_fill(rq, POISON_FREE); 399 rq->ring->head = rq->postfix; 400 401 if (!i915_request_signaled(rq)) { 402 spin_lock_irq(&rq->lock); 403 dma_fence_signal_locked(&rq->fence); 404 spin_unlock_irq(&rq->lock); 405 } 406 407 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 408 atomic_dec(&rq->engine->gt->rps.num_waiters); 409 410 /* 411 * We only loosely track inflight requests across preemption, 412 * and so we may find ourselves attempting to retire a _completed_ 413 * request that we have removed from the HW and put back on a run 414 * queue. 415 * 416 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 417 * after removing the breadcrumb and signaling it, so that we do not 418 * inadvertently attach the breadcrumb to a completed request. 419 */ 420 if (!list_empty(&rq->sched.link)) 421 remove_from_engine(rq); 422 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 423 424 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 425 426 intel_context_exit(rq->context); 427 intel_context_unpin(rq->context); 428 429 free_capture_list(rq); 430 i915_sched_node_fini(&rq->sched); 431 i915_request_put(rq); 432 433 return true; 434 } 435 436 void i915_request_retire_upto(struct i915_request *rq) 437 { 438 struct intel_timeline * const tl = i915_request_timeline(rq); 439 struct i915_request *tmp; 440 441 RQ_TRACE(rq, "\n"); 442 GEM_BUG_ON(!__i915_request_is_complete(rq)); 443 444 do { 445 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 446 } while (i915_request_retire(tmp) && tmp != rq); 447 } 448 449 static struct i915_request * const * 450 __engine_active(struct intel_engine_cs *engine) 451 { 452 return READ_ONCE(engine->execlists.active); 453 } 454 455 static bool __request_in_flight(const struct i915_request *signal) 456 { 457 struct i915_request * const *port, *rq; 458 bool inflight = false; 459 460 if (!i915_request_is_ready(signal)) 461 return false; 462 463 /* 464 * Even if we have unwound the request, it may still be on 465 * the GPU (preempt-to-busy). If that request is inside an 466 * unpreemptible critical section, it will not be removed. Some 467 * GPU functions may even be stuck waiting for the paired request 468 * (__await_execution) to be submitted and cannot be preempted 469 * until the bond is executing. 470 * 471 * As we know that there are always preemption points between 472 * requests, we know that only the currently executing request 473 * may be still active even though we have cleared the flag. 474 * However, we can't rely on our tracking of ELSP[0] to know 475 * which request is currently active and so maybe stuck, as 476 * the tracking maybe an event behind. Instead assume that 477 * if the context is still inflight, then it is still active 478 * even if the active flag has been cleared. 479 * 480 * To further complicate matters, if there a pending promotion, the HW 481 * may either perform a context switch to the second inflight execlists, 482 * or it may switch to the pending set of execlists. In the case of the 483 * latter, it may send the ACK and we process the event copying the 484 * pending[] over top of inflight[], _overwriting_ our *active. Since 485 * this implies the HW is arbitrating and not struck in *active, we do 486 * not worry about complete accuracy, but we do require no read/write 487 * tearing of the pointer [the read of the pointer must be valid, even 488 * as the array is being overwritten, for which we require the writes 489 * to avoid tearing.] 490 * 491 * Note that the read of *execlists->active may race with the promotion 492 * of execlists->pending[] to execlists->inflight[], overwritting 493 * the value at *execlists->active. This is fine. The promotion implies 494 * that we received an ACK from the HW, and so the context is not 495 * stuck -- if we do not see ourselves in *active, the inflight status 496 * is valid. If instead we see ourselves being copied into *active, 497 * we are inflight and may signal the callback. 498 */ 499 if (!intel_context_inflight(signal->context)) 500 return false; 501 502 rcu_read_lock(); 503 for (port = __engine_active(signal->engine); 504 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 505 port++) { 506 if (rq->context == signal->context) { 507 inflight = i915_seqno_passed(rq->fence.seqno, 508 signal->fence.seqno); 509 break; 510 } 511 } 512 rcu_read_unlock(); 513 514 return inflight; 515 } 516 517 static int 518 __await_execution(struct i915_request *rq, 519 struct i915_request *signal, 520 void (*hook)(struct i915_request *rq, 521 struct dma_fence *signal), 522 gfp_t gfp) 523 { 524 struct execute_cb *cb; 525 526 if (i915_request_is_active(signal)) { 527 if (hook) 528 hook(rq, &signal->fence); 529 return 0; 530 } 531 532 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 533 if (!cb) 534 return -ENOMEM; 535 536 cb->fence = &rq->submit; 537 i915_sw_fence_await(cb->fence); 538 init_irq_work(&cb->work, irq_execute_cb); 539 540 if (hook) { 541 cb->hook = hook; 542 cb->signal = i915_request_get(signal); 543 cb->work.func = irq_execute_cb_hook; 544 } 545 546 /* 547 * Register the callback first, then see if the signaler is already 548 * active. This ensures that if we race with the 549 * __notify_execute_cb from i915_request_submit() and we are not 550 * included in that list, we get a second bite of the cherry and 551 * execute it ourselves. After this point, a future 552 * i915_request_submit() will notify us. 553 * 554 * In i915_request_retire() we set the ACTIVE bit on a completed 555 * request (then flush the execute_cb). So by registering the 556 * callback first, then checking the ACTIVE bit, we serialise with 557 * the completed/retired request. 558 */ 559 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 560 if (i915_request_is_active(signal) || 561 __request_in_flight(signal)) 562 __notify_execute_cb_imm(signal); 563 } 564 565 return 0; 566 } 567 568 static bool fatal_error(int error) 569 { 570 switch (error) { 571 case 0: /* not an error! */ 572 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 573 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 574 return false; 575 default: 576 return true; 577 } 578 } 579 580 void __i915_request_skip(struct i915_request *rq) 581 { 582 GEM_BUG_ON(!fatal_error(rq->fence.error)); 583 584 if (rq->infix == rq->postfix) 585 return; 586 587 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 588 589 /* 590 * As this request likely depends on state from the lost 591 * context, clear out all the user operations leaving the 592 * breadcrumb at the end (so we get the fence notifications). 593 */ 594 __i915_request_fill(rq, 0); 595 rq->infix = rq->postfix; 596 } 597 598 bool i915_request_set_error_once(struct i915_request *rq, int error) 599 { 600 int old; 601 602 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 603 604 if (i915_request_signaled(rq)) 605 return false; 606 607 old = READ_ONCE(rq->fence.error); 608 do { 609 if (fatal_error(old)) 610 return false; 611 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 612 613 return true; 614 } 615 616 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 617 { 618 if (__i915_request_is_complete(rq)) 619 return NULL; 620 621 GEM_BUG_ON(i915_request_signaled(rq)); 622 623 /* As soon as the request is completed, it may be retired */ 624 rq = i915_request_get(rq); 625 626 i915_request_set_error_once(rq, -EIO); 627 i915_request_mark_complete(rq); 628 629 return rq; 630 } 631 632 bool __i915_request_submit(struct i915_request *request) 633 { 634 struct intel_engine_cs *engine = request->engine; 635 bool result = false; 636 637 RQ_TRACE(request, "\n"); 638 639 GEM_BUG_ON(!irqs_disabled()); 640 lockdep_assert_held(&engine->active.lock); 641 642 /* 643 * With the advent of preempt-to-busy, we frequently encounter 644 * requests that we have unsubmitted from HW, but left running 645 * until the next ack and so have completed in the meantime. On 646 * resubmission of that completed request, we can skip 647 * updating the payload, and execlists can even skip submitting 648 * the request. 649 * 650 * We must remove the request from the caller's priority queue, 651 * and the caller must only call us when the request is in their 652 * priority queue, under the active.lock. This ensures that the 653 * request has *not* yet been retired and we can safely move 654 * the request into the engine->active.list where it will be 655 * dropped upon retiring. (Otherwise if resubmit a *retired* 656 * request, this would be a horrible use-after-free.) 657 */ 658 if (__i915_request_is_complete(request)) { 659 list_del_init(&request->sched.link); 660 goto active; 661 } 662 663 if (unlikely(intel_context_is_banned(request->context))) 664 i915_request_set_error_once(request, -EIO); 665 666 if (unlikely(fatal_error(request->fence.error))) 667 __i915_request_skip(request); 668 669 /* 670 * Are we using semaphores when the gpu is already saturated? 671 * 672 * Using semaphores incurs a cost in having the GPU poll a 673 * memory location, busywaiting for it to change. The continual 674 * memory reads can have a noticeable impact on the rest of the 675 * system with the extra bus traffic, stalling the cpu as it too 676 * tries to access memory across the bus (perf stat -e bus-cycles). 677 * 678 * If we installed a semaphore on this request and we only submit 679 * the request after the signaler completed, that indicates the 680 * system is overloaded and using semaphores at this time only 681 * increases the amount of work we are doing. If so, we disable 682 * further use of semaphores until we are idle again, whence we 683 * optimistically try again. 684 */ 685 if (request->sched.semaphores && 686 i915_sw_fence_signaled(&request->semaphore)) 687 engine->saturated |= request->sched.semaphores; 688 689 engine->emit_fini_breadcrumb(request, 690 request->ring->vaddr + request->postfix); 691 692 trace_i915_request_execute(request); 693 engine->serial++; 694 result = true; 695 696 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 697 list_move_tail(&request->sched.link, &engine->active.requests); 698 active: 699 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 700 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 701 702 /* 703 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 704 * 705 * In the future, perhaps when we have an active time-slicing scheduler, 706 * it will be interesting to unsubmit parallel execution and remove 707 * busywaits from the GPU until their master is restarted. This is 708 * quite hairy, we have to carefully rollback the fence and do a 709 * preempt-to-idle cycle on the target engine, all the while the 710 * master execute_cb may refire. 711 */ 712 __notify_execute_cb_irq(request); 713 714 /* We may be recursing from the signal callback of another i915 fence */ 715 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 716 i915_request_enable_breadcrumb(request); 717 718 return result; 719 } 720 721 void i915_request_submit(struct i915_request *request) 722 { 723 struct intel_engine_cs *engine = request->engine; 724 unsigned long flags; 725 726 /* Will be called from irq-context when using foreign fences. */ 727 spin_lock_irqsave(&engine->active.lock, flags); 728 729 __i915_request_submit(request); 730 731 spin_unlock_irqrestore(&engine->active.lock, flags); 732 } 733 734 void __i915_request_unsubmit(struct i915_request *request) 735 { 736 struct intel_engine_cs *engine = request->engine; 737 738 /* 739 * Only unwind in reverse order, required so that the per-context list 740 * is kept in seqno/ring order. 741 */ 742 RQ_TRACE(request, "\n"); 743 744 GEM_BUG_ON(!irqs_disabled()); 745 lockdep_assert_held(&engine->active.lock); 746 747 /* 748 * Before we remove this breadcrumb from the signal list, we have 749 * to ensure that a concurrent dma_fence_enable_signaling() does not 750 * attach itself. We first mark the request as no longer active and 751 * make sure that is visible to other cores, and then remove the 752 * breadcrumb if attached. 753 */ 754 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 755 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 756 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 757 i915_request_cancel_breadcrumb(request); 758 759 /* We've already spun, don't charge on resubmitting. */ 760 if (request->sched.semaphores && __i915_request_has_started(request)) 761 request->sched.semaphores = 0; 762 763 /* 764 * We don't need to wake_up any waiters on request->execute, they 765 * will get woken by any other event or us re-adding this request 766 * to the engine timeline (__i915_request_submit()). The waiters 767 * should be quite adapt at finding that the request now has a new 768 * global_seqno to the one they went to sleep on. 769 */ 770 } 771 772 void i915_request_unsubmit(struct i915_request *request) 773 { 774 struct intel_engine_cs *engine = request->engine; 775 unsigned long flags; 776 777 /* Will be called from irq-context when using foreign fences. */ 778 spin_lock_irqsave(&engine->active.lock, flags); 779 780 __i915_request_unsubmit(request); 781 782 spin_unlock_irqrestore(&engine->active.lock, flags); 783 } 784 785 static void __cancel_request(struct i915_request *rq) 786 { 787 struct intel_engine_cs *engine = NULL; 788 789 i915_request_active_engine(rq, &engine); 790 791 if (engine && intel_engine_pulse(engine)) 792 intel_gt_handle_error(engine->gt, engine->mask, 0, 793 "request cancellation by %s", 794 current->comm); 795 } 796 797 void i915_request_cancel(struct i915_request *rq, int error) 798 { 799 if (!i915_request_set_error_once(rq, error)) 800 return; 801 802 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 803 804 __cancel_request(rq); 805 } 806 807 static int __i915_sw_fence_call 808 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 809 { 810 struct i915_request *request = 811 container_of(fence, typeof(*request), submit); 812 813 switch (state) { 814 case FENCE_COMPLETE: 815 trace_i915_request_submit(request); 816 817 if (unlikely(fence->error)) 818 i915_request_set_error_once(request, fence->error); 819 else 820 __rq_arm_watchdog(request); 821 822 /* 823 * We need to serialize use of the submit_request() callback 824 * with its hotplugging performed during an emergency 825 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 826 * critical section in order to force i915_gem_set_wedged() to 827 * wait until the submit_request() is completed before 828 * proceeding. 829 */ 830 rcu_read_lock(); 831 request->engine->submit_request(request); 832 rcu_read_unlock(); 833 break; 834 835 case FENCE_FREE: 836 i915_request_put(request); 837 break; 838 } 839 840 return NOTIFY_DONE; 841 } 842 843 static int __i915_sw_fence_call 844 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 845 { 846 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 847 848 switch (state) { 849 case FENCE_COMPLETE: 850 break; 851 852 case FENCE_FREE: 853 i915_request_put(rq); 854 break; 855 } 856 857 return NOTIFY_DONE; 858 } 859 860 static void retire_requests(struct intel_timeline *tl) 861 { 862 struct i915_request *rq, *rn; 863 864 list_for_each_entry_safe(rq, rn, &tl->requests, link) 865 if (!i915_request_retire(rq)) 866 break; 867 } 868 869 static noinline struct i915_request * 870 request_alloc_slow(struct intel_timeline *tl, 871 struct i915_request **rsvd, 872 gfp_t gfp) 873 { 874 struct i915_request *rq; 875 876 /* If we cannot wait, dip into our reserves */ 877 if (!gfpflags_allow_blocking(gfp)) { 878 rq = xchg(rsvd, NULL); 879 if (!rq) /* Use the normal failure path for one final WARN */ 880 goto out; 881 882 return rq; 883 } 884 885 if (list_empty(&tl->requests)) 886 goto out; 887 888 /* Move our oldest request to the slab-cache (if not in use!) */ 889 rq = list_first_entry(&tl->requests, typeof(*rq), link); 890 i915_request_retire(rq); 891 892 rq = kmem_cache_alloc(global.slab_requests, 893 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 894 if (rq) 895 return rq; 896 897 /* Ratelimit ourselves to prevent oom from malicious clients */ 898 rq = list_last_entry(&tl->requests, typeof(*rq), link); 899 cond_synchronize_rcu(rq->rcustate); 900 901 /* Retire our old requests in the hope that we free some */ 902 retire_requests(tl); 903 904 out: 905 return kmem_cache_alloc(global.slab_requests, gfp); 906 } 907 908 static void __i915_request_ctor(void *arg) 909 { 910 struct i915_request *rq = arg; 911 912 spin_lock_init(&rq->lock); 913 i915_sched_node_init(&rq->sched); 914 i915_sw_fence_init(&rq->submit, submit_notify); 915 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 916 917 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 918 919 rq->capture_list = NULL; 920 921 init_llist_head(&rq->execute_cb); 922 } 923 924 struct i915_request * 925 __i915_request_create(struct intel_context *ce, gfp_t gfp) 926 { 927 struct intel_timeline *tl = ce->timeline; 928 struct i915_request *rq; 929 u32 seqno; 930 int ret; 931 932 might_alloc(gfp); 933 934 /* Check that the caller provided an already pinned context */ 935 __intel_context_pin(ce); 936 937 /* 938 * Beware: Dragons be flying overhead. 939 * 940 * We use RCU to look up requests in flight. The lookups may 941 * race with the request being allocated from the slab freelist. 942 * That is the request we are writing to here, may be in the process 943 * of being read by __i915_active_request_get_rcu(). As such, 944 * we have to be very careful when overwriting the contents. During 945 * the RCU lookup, we change chase the request->engine pointer, 946 * read the request->global_seqno and increment the reference count. 947 * 948 * The reference count is incremented atomically. If it is zero, 949 * the lookup knows the request is unallocated and complete. Otherwise, 950 * it is either still in use, or has been reallocated and reset 951 * with dma_fence_init(). This increment is safe for release as we 952 * check that the request we have a reference to and matches the active 953 * request. 954 * 955 * Before we increment the refcount, we chase the request->engine 956 * pointer. We must not call kmem_cache_zalloc() or else we set 957 * that pointer to NULL and cause a crash during the lookup. If 958 * we see the request is completed (based on the value of the 959 * old engine and seqno), the lookup is complete and reports NULL. 960 * If we decide the request is not completed (new engine or seqno), 961 * then we grab a reference and double check that it is still the 962 * active request - which it won't be and restart the lookup. 963 * 964 * Do not use kmem_cache_zalloc() here! 965 */ 966 rq = kmem_cache_alloc(global.slab_requests, 967 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 968 if (unlikely(!rq)) { 969 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 970 if (!rq) { 971 ret = -ENOMEM; 972 goto err_unreserve; 973 } 974 } 975 976 rq->context = ce; 977 rq->engine = ce->engine; 978 rq->ring = ce->ring; 979 rq->execution_mask = ce->engine->mask; 980 981 kref_init(&rq->fence.refcount); 982 rq->fence.flags = 0; 983 rq->fence.error = 0; 984 INIT_LIST_HEAD(&rq->fence.cb_list); 985 986 ret = intel_timeline_get_seqno(tl, rq, &seqno); 987 if (ret) 988 goto err_free; 989 990 rq->fence.context = tl->fence_context; 991 rq->fence.seqno = seqno; 992 993 RCU_INIT_POINTER(rq->timeline, tl); 994 rq->hwsp_seqno = tl->hwsp_seqno; 995 GEM_BUG_ON(__i915_request_is_complete(rq)); 996 997 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 998 999 /* We bump the ref for the fence chain */ 1000 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 1001 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 1002 1003 i915_sched_node_reinit(&rq->sched); 1004 1005 /* No zalloc, everything must be cleared after use */ 1006 rq->batch = NULL; 1007 __rq_init_watchdog(rq); 1008 GEM_BUG_ON(rq->capture_list); 1009 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 1010 1011 /* 1012 * Reserve space in the ring buffer for all the commands required to 1013 * eventually emit this request. This is to guarantee that the 1014 * i915_request_add() call can't fail. Note that the reserve may need 1015 * to be redone if the request is not actually submitted straight 1016 * away, e.g. because a GPU scheduler has deferred it. 1017 * 1018 * Note that due to how we add reserved_space to intel_ring_begin() 1019 * we need to double our request to ensure that if we need to wrap 1020 * around inside i915_request_add() there is sufficient space at 1021 * the beginning of the ring as well. 1022 */ 1023 rq->reserved_space = 1024 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 1025 1026 /* 1027 * Record the position of the start of the request so that 1028 * should we detect the updated seqno part-way through the 1029 * GPU processing the request, we never over-estimate the 1030 * position of the head. 1031 */ 1032 rq->head = rq->ring->emit; 1033 1034 ret = rq->engine->request_alloc(rq); 1035 if (ret) 1036 goto err_unwind; 1037 1038 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1039 1040 intel_context_mark_active(ce); 1041 list_add_tail_rcu(&rq->link, &tl->requests); 1042 1043 return rq; 1044 1045 err_unwind: 1046 ce->ring->emit = rq->head; 1047 1048 /* Make sure we didn't add ourselves to external state before freeing */ 1049 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1050 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1051 1052 err_free: 1053 kmem_cache_free(global.slab_requests, rq); 1054 err_unreserve: 1055 intel_context_unpin(ce); 1056 return ERR_PTR(ret); 1057 } 1058 1059 struct i915_request * 1060 i915_request_create(struct intel_context *ce) 1061 { 1062 struct i915_request *rq; 1063 struct intel_timeline *tl; 1064 1065 tl = intel_context_timeline_lock(ce); 1066 if (IS_ERR(tl)) 1067 return ERR_CAST(tl); 1068 1069 /* Move our oldest request to the slab-cache (if not in use!) */ 1070 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1071 if (!list_is_last(&rq->link, &tl->requests)) 1072 i915_request_retire(rq); 1073 1074 intel_context_enter(ce); 1075 rq = __i915_request_create(ce, GFP_KERNEL); 1076 intel_context_exit(ce); /* active reference transferred to request */ 1077 if (IS_ERR(rq)) 1078 goto err_unlock; 1079 1080 /* Check that we do not interrupt ourselves with a new request */ 1081 rq->cookie = lockdep_pin_lock(&tl->mutex); 1082 1083 return rq; 1084 1085 err_unlock: 1086 intel_context_timeline_unlock(tl); 1087 return rq; 1088 } 1089 1090 static int 1091 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1092 { 1093 struct dma_fence *fence; 1094 int err; 1095 1096 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1097 return 0; 1098 1099 if (i915_request_started(signal)) 1100 return 0; 1101 1102 /* 1103 * The caller holds a reference on @signal, but we do not serialise 1104 * against it being retired and removed from the lists. 1105 * 1106 * We do not hold a reference to the request before @signal, and 1107 * so must be very careful to ensure that it is not _recycled_ as 1108 * we follow the link backwards. 1109 */ 1110 fence = NULL; 1111 rcu_read_lock(); 1112 do { 1113 struct list_head *pos = READ_ONCE(signal->link.prev); 1114 struct i915_request *prev; 1115 1116 /* Confirm signal has not been retired, the link is valid */ 1117 if (unlikely(__i915_request_has_started(signal))) 1118 break; 1119 1120 /* Is signal the earliest request on its timeline? */ 1121 if (pos == &rcu_dereference(signal->timeline)->requests) 1122 break; 1123 1124 /* 1125 * Peek at the request before us in the timeline. That 1126 * request will only be valid before it is retired, so 1127 * after acquiring a reference to it, confirm that it is 1128 * still part of the signaler's timeline. 1129 */ 1130 prev = list_entry(pos, typeof(*prev), link); 1131 if (!i915_request_get_rcu(prev)) 1132 break; 1133 1134 /* After the strong barrier, confirm prev is still attached */ 1135 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1136 i915_request_put(prev); 1137 break; 1138 } 1139 1140 fence = &prev->fence; 1141 } while (0); 1142 rcu_read_unlock(); 1143 if (!fence) 1144 return 0; 1145 1146 err = 0; 1147 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1148 err = i915_sw_fence_await_dma_fence(&rq->submit, 1149 fence, 0, 1150 I915_FENCE_GFP); 1151 dma_fence_put(fence); 1152 1153 return err; 1154 } 1155 1156 static intel_engine_mask_t 1157 already_busywaiting(struct i915_request *rq) 1158 { 1159 /* 1160 * Polling a semaphore causes bus traffic, delaying other users of 1161 * both the GPU and CPU. We want to limit the impact on others, 1162 * while taking advantage of early submission to reduce GPU 1163 * latency. Therefore we restrict ourselves to not using more 1164 * than one semaphore from each source, and not using a semaphore 1165 * if we have detected the engine is saturated (i.e. would not be 1166 * submitted early and cause bus traffic reading an already passed 1167 * semaphore). 1168 * 1169 * See the are-we-too-late? check in __i915_request_submit(). 1170 */ 1171 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1172 } 1173 1174 static int 1175 __emit_semaphore_wait(struct i915_request *to, 1176 struct i915_request *from, 1177 u32 seqno) 1178 { 1179 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1180 u32 hwsp_offset; 1181 int len, err; 1182 u32 *cs; 1183 1184 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1185 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1186 1187 /* We need to pin the signaler's HWSP until we are finished reading. */ 1188 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1189 if (err) 1190 return err; 1191 1192 len = 4; 1193 if (has_token) 1194 len += 2; 1195 1196 cs = intel_ring_begin(to, len); 1197 if (IS_ERR(cs)) 1198 return PTR_ERR(cs); 1199 1200 /* 1201 * Using greater-than-or-equal here means we have to worry 1202 * about seqno wraparound. To side step that issue, we swap 1203 * the timeline HWSP upon wrapping, so that everyone listening 1204 * for the old (pre-wrap) values do not see the much smaller 1205 * (post-wrap) values than they were expecting (and so wait 1206 * forever). 1207 */ 1208 *cs++ = (MI_SEMAPHORE_WAIT | 1209 MI_SEMAPHORE_GLOBAL_GTT | 1210 MI_SEMAPHORE_POLL | 1211 MI_SEMAPHORE_SAD_GTE_SDD) + 1212 has_token; 1213 *cs++ = seqno; 1214 *cs++ = hwsp_offset; 1215 *cs++ = 0; 1216 if (has_token) { 1217 *cs++ = 0; 1218 *cs++ = MI_NOOP; 1219 } 1220 1221 intel_ring_advance(to, cs); 1222 return 0; 1223 } 1224 1225 static int 1226 emit_semaphore_wait(struct i915_request *to, 1227 struct i915_request *from, 1228 gfp_t gfp) 1229 { 1230 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1231 struct i915_sw_fence *wait = &to->submit; 1232 1233 if (!intel_context_use_semaphores(to->context)) 1234 goto await_fence; 1235 1236 if (i915_request_has_initial_breadcrumb(to)) 1237 goto await_fence; 1238 1239 /* 1240 * If this or its dependents are waiting on an external fence 1241 * that may fail catastrophically, then we want to avoid using 1242 * sempahores as they bypass the fence signaling metadata, and we 1243 * lose the fence->error propagation. 1244 */ 1245 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1246 goto await_fence; 1247 1248 /* Just emit the first semaphore we see as request space is limited. */ 1249 if (already_busywaiting(to) & mask) 1250 goto await_fence; 1251 1252 if (i915_request_await_start(to, from) < 0) 1253 goto await_fence; 1254 1255 /* Only submit our spinner after the signaler is running! */ 1256 if (__await_execution(to, from, NULL, gfp)) 1257 goto await_fence; 1258 1259 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1260 goto await_fence; 1261 1262 to->sched.semaphores |= mask; 1263 wait = &to->semaphore; 1264 1265 await_fence: 1266 return i915_sw_fence_await_dma_fence(wait, 1267 &from->fence, 0, 1268 I915_FENCE_GFP); 1269 } 1270 1271 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1272 struct dma_fence *fence) 1273 { 1274 return __intel_timeline_sync_is_later(tl, 1275 fence->context, 1276 fence->seqno - 1); 1277 } 1278 1279 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1280 const struct dma_fence *fence) 1281 { 1282 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1283 } 1284 1285 static int 1286 __i915_request_await_execution(struct i915_request *to, 1287 struct i915_request *from, 1288 void (*hook)(struct i915_request *rq, 1289 struct dma_fence *signal)) 1290 { 1291 int err; 1292 1293 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1294 1295 /* Submit both requests at the same time */ 1296 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1297 if (err) 1298 return err; 1299 1300 /* Squash repeated depenendices to the same timelines */ 1301 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1302 &from->fence)) 1303 return 0; 1304 1305 /* 1306 * Wait until the start of this request. 1307 * 1308 * The execution cb fires when we submit the request to HW. But in 1309 * many cases this may be long before the request itself is ready to 1310 * run (consider that we submit 2 requests for the same context, where 1311 * the request of interest is behind an indefinite spinner). So we hook 1312 * up to both to reduce our queues and keep the execution lag minimised 1313 * in the worst case, though we hope that the await_start is elided. 1314 */ 1315 err = i915_request_await_start(to, from); 1316 if (err < 0) 1317 return err; 1318 1319 /* 1320 * Ensure both start together [after all semaphores in signal] 1321 * 1322 * Now that we are queued to the HW at roughly the same time (thanks 1323 * to the execute cb) and are ready to run at roughly the same time 1324 * (thanks to the await start), our signaler may still be indefinitely 1325 * delayed by waiting on a semaphore from a remote engine. If our 1326 * signaler depends on a semaphore, so indirectly do we, and we do not 1327 * want to start our payload until our signaler also starts theirs. 1328 * So we wait. 1329 * 1330 * However, there is also a second condition for which we need to wait 1331 * for the precise start of the signaler. Consider that the signaler 1332 * was submitted in a chain of requests following another context 1333 * (with just an ordinary intra-engine fence dependency between the 1334 * two). In this case the signaler is queued to HW, but not for 1335 * immediate execution, and so we must wait until it reaches the 1336 * active slot. 1337 */ 1338 if (intel_engine_has_semaphores(to->engine) && 1339 !i915_request_has_initial_breadcrumb(to)) { 1340 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1341 if (err < 0) 1342 return err; 1343 } 1344 1345 /* Couple the dependency tree for PI on this exposed to->fence */ 1346 if (to->engine->schedule) { 1347 err = i915_sched_node_add_dependency(&to->sched, 1348 &from->sched, 1349 I915_DEPENDENCY_WEAK); 1350 if (err < 0) 1351 return err; 1352 } 1353 1354 return intel_timeline_sync_set_start(i915_request_timeline(to), 1355 &from->fence); 1356 } 1357 1358 static void mark_external(struct i915_request *rq) 1359 { 1360 /* 1361 * The downside of using semaphores is that we lose metadata passing 1362 * along the signaling chain. This is particularly nasty when we 1363 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1364 * fatal errors we want to scrub the request before it is executed, 1365 * which means that we cannot preload the request onto HW and have 1366 * it wait upon a semaphore. 1367 */ 1368 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1369 } 1370 1371 static int 1372 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1373 { 1374 mark_external(rq); 1375 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1376 i915_fence_context_timeout(rq->engine->i915, 1377 fence->context), 1378 I915_FENCE_GFP); 1379 } 1380 1381 static int 1382 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1383 { 1384 struct dma_fence *iter; 1385 int err = 0; 1386 1387 if (!to_dma_fence_chain(fence)) 1388 return __i915_request_await_external(rq, fence); 1389 1390 dma_fence_chain_for_each(iter, fence) { 1391 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1392 1393 if (!dma_fence_is_i915(chain->fence)) { 1394 err = __i915_request_await_external(rq, iter); 1395 break; 1396 } 1397 1398 err = i915_request_await_dma_fence(rq, chain->fence); 1399 if (err < 0) 1400 break; 1401 } 1402 1403 dma_fence_put(iter); 1404 return err; 1405 } 1406 1407 int 1408 i915_request_await_execution(struct i915_request *rq, 1409 struct dma_fence *fence, 1410 void (*hook)(struct i915_request *rq, 1411 struct dma_fence *signal)) 1412 { 1413 struct dma_fence **child = &fence; 1414 unsigned int nchild = 1; 1415 int ret; 1416 1417 if (dma_fence_is_array(fence)) { 1418 struct dma_fence_array *array = to_dma_fence_array(fence); 1419 1420 /* XXX Error for signal-on-any fence arrays */ 1421 1422 child = array->fences; 1423 nchild = array->num_fences; 1424 GEM_BUG_ON(!nchild); 1425 } 1426 1427 do { 1428 fence = *child++; 1429 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1430 continue; 1431 1432 if (fence->context == rq->fence.context) 1433 continue; 1434 1435 /* 1436 * We don't squash repeated fence dependencies here as we 1437 * want to run our callback in all cases. 1438 */ 1439 1440 if (dma_fence_is_i915(fence)) 1441 ret = __i915_request_await_execution(rq, 1442 to_request(fence), 1443 hook); 1444 else 1445 ret = i915_request_await_external(rq, fence); 1446 if (ret < 0) 1447 return ret; 1448 } while (--nchild); 1449 1450 return 0; 1451 } 1452 1453 static int 1454 await_request_submit(struct i915_request *to, struct i915_request *from) 1455 { 1456 /* 1457 * If we are waiting on a virtual engine, then it may be 1458 * constrained to execute on a single engine *prior* to submission. 1459 * When it is submitted, it will be first submitted to the virtual 1460 * engine and then passed to the physical engine. We cannot allow 1461 * the waiter to be submitted immediately to the physical engine 1462 * as it may then bypass the virtual request. 1463 */ 1464 if (to->engine == READ_ONCE(from->engine)) 1465 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1466 &from->submit, 1467 I915_FENCE_GFP); 1468 else 1469 return __i915_request_await_execution(to, from, NULL); 1470 } 1471 1472 static int 1473 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1474 { 1475 int ret; 1476 1477 GEM_BUG_ON(to == from); 1478 GEM_BUG_ON(to->timeline == from->timeline); 1479 1480 if (i915_request_completed(from)) { 1481 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1482 return 0; 1483 } 1484 1485 if (to->engine->schedule) { 1486 ret = i915_sched_node_add_dependency(&to->sched, 1487 &from->sched, 1488 I915_DEPENDENCY_EXTERNAL); 1489 if (ret < 0) 1490 return ret; 1491 } 1492 1493 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1494 ret = await_request_submit(to, from); 1495 else 1496 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1497 if (ret < 0) 1498 return ret; 1499 1500 return 0; 1501 } 1502 1503 int 1504 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1505 { 1506 struct dma_fence **child = &fence; 1507 unsigned int nchild = 1; 1508 int ret; 1509 1510 /* 1511 * Note that if the fence-array was created in signal-on-any mode, 1512 * we should *not* decompose it into its individual fences. However, 1513 * we don't currently store which mode the fence-array is operating 1514 * in. Fortunately, the only user of signal-on-any is private to 1515 * amdgpu and we should not see any incoming fence-array from 1516 * sync-file being in signal-on-any mode. 1517 */ 1518 if (dma_fence_is_array(fence)) { 1519 struct dma_fence_array *array = to_dma_fence_array(fence); 1520 1521 child = array->fences; 1522 nchild = array->num_fences; 1523 GEM_BUG_ON(!nchild); 1524 } 1525 1526 do { 1527 fence = *child++; 1528 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1529 continue; 1530 1531 /* 1532 * Requests on the same timeline are explicitly ordered, along 1533 * with their dependencies, by i915_request_add() which ensures 1534 * that requests are submitted in-order through each ring. 1535 */ 1536 if (fence->context == rq->fence.context) 1537 continue; 1538 1539 /* Squash repeated waits to the same timelines */ 1540 if (fence->context && 1541 intel_timeline_sync_is_later(i915_request_timeline(rq), 1542 fence)) 1543 continue; 1544 1545 if (dma_fence_is_i915(fence)) 1546 ret = i915_request_await_request(rq, to_request(fence)); 1547 else 1548 ret = i915_request_await_external(rq, fence); 1549 if (ret < 0) 1550 return ret; 1551 1552 /* Record the latest fence used against each timeline */ 1553 if (fence->context) 1554 intel_timeline_sync_set(i915_request_timeline(rq), 1555 fence); 1556 } while (--nchild); 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * i915_request_await_object - set this request to (async) wait upon a bo 1563 * @to: request we are wishing to use 1564 * @obj: object which may be in use on another ring. 1565 * @write: whether the wait is on behalf of a writer 1566 * 1567 * This code is meant to abstract object synchronization with the GPU. 1568 * Conceptually we serialise writes between engines inside the GPU. 1569 * We only allow one engine to write into a buffer at any time, but 1570 * multiple readers. To ensure each has a coherent view of memory, we must: 1571 * 1572 * - If there is an outstanding write request to the object, the new 1573 * request must wait for it to complete (either CPU or in hw, requests 1574 * on the same ring will be naturally ordered). 1575 * 1576 * - If we are a write request (pending_write_domain is set), the new 1577 * request must wait for outstanding read requests to complete. 1578 * 1579 * Returns 0 if successful, else propagates up the lower layer error. 1580 */ 1581 int 1582 i915_request_await_object(struct i915_request *to, 1583 struct drm_i915_gem_object *obj, 1584 bool write) 1585 { 1586 struct dma_fence *excl; 1587 int ret = 0; 1588 1589 if (write) { 1590 struct dma_fence **shared; 1591 unsigned int count, i; 1592 1593 ret = dma_resv_get_fences(obj->base.resv, &excl, &count, 1594 &shared); 1595 if (ret) 1596 return ret; 1597 1598 for (i = 0; i < count; i++) { 1599 ret = i915_request_await_dma_fence(to, shared[i]); 1600 if (ret) 1601 break; 1602 1603 dma_fence_put(shared[i]); 1604 } 1605 1606 for (; i < count; i++) 1607 dma_fence_put(shared[i]); 1608 kfree(shared); 1609 } else { 1610 excl = dma_resv_get_excl_unlocked(obj->base.resv); 1611 } 1612 1613 if (excl) { 1614 if (ret == 0) 1615 ret = i915_request_await_dma_fence(to, excl); 1616 1617 dma_fence_put(excl); 1618 } 1619 1620 return ret; 1621 } 1622 1623 static struct i915_request * 1624 __i915_request_add_to_timeline(struct i915_request *rq) 1625 { 1626 struct intel_timeline *timeline = i915_request_timeline(rq); 1627 struct i915_request *prev; 1628 1629 /* 1630 * Dependency tracking and request ordering along the timeline 1631 * is special cased so that we can eliminate redundant ordering 1632 * operations while building the request (we know that the timeline 1633 * itself is ordered, and here we guarantee it). 1634 * 1635 * As we know we will need to emit tracking along the timeline, 1636 * we embed the hooks into our request struct -- at the cost of 1637 * having to have specialised no-allocation interfaces (which will 1638 * be beneficial elsewhere). 1639 * 1640 * A second benefit to open-coding i915_request_await_request is 1641 * that we can apply a slight variant of the rules specialised 1642 * for timelines that jump between engines (such as virtual engines). 1643 * If we consider the case of virtual engine, we must emit a dma-fence 1644 * to prevent scheduling of the second request until the first is 1645 * complete (to maximise our greedy late load balancing) and this 1646 * precludes optimising to use semaphores serialisation of a single 1647 * timeline across engines. 1648 */ 1649 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1650 &rq->fence)); 1651 if (prev && !__i915_request_is_complete(prev)) { 1652 /* 1653 * The requests are supposed to be kept in order. However, 1654 * we need to be wary in case the timeline->last_request 1655 * is used as a barrier for external modification to this 1656 * context. 1657 */ 1658 GEM_BUG_ON(prev->context == rq->context && 1659 i915_seqno_passed(prev->fence.seqno, 1660 rq->fence.seqno)); 1661 1662 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1663 i915_sw_fence_await_sw_fence(&rq->submit, 1664 &prev->submit, 1665 &rq->submitq); 1666 else 1667 __i915_sw_fence_await_dma_fence(&rq->submit, 1668 &prev->fence, 1669 &rq->dmaq); 1670 if (rq->engine->schedule) 1671 __i915_sched_node_add_dependency(&rq->sched, 1672 &prev->sched, 1673 &rq->dep, 1674 0); 1675 } 1676 1677 /* 1678 * Make sure that no request gazumped us - if it was allocated after 1679 * our i915_request_alloc() and called __i915_request_add() before 1680 * us, the timeline will hold its seqno which is later than ours. 1681 */ 1682 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1683 1684 return prev; 1685 } 1686 1687 /* 1688 * NB: This function is not allowed to fail. Doing so would mean the the 1689 * request is not being tracked for completion but the work itself is 1690 * going to happen on the hardware. This would be a Bad Thing(tm). 1691 */ 1692 struct i915_request *__i915_request_commit(struct i915_request *rq) 1693 { 1694 struct intel_engine_cs *engine = rq->engine; 1695 struct intel_ring *ring = rq->ring; 1696 u32 *cs; 1697 1698 RQ_TRACE(rq, "\n"); 1699 1700 /* 1701 * To ensure that this call will not fail, space for its emissions 1702 * should already have been reserved in the ring buffer. Let the ring 1703 * know that it is time to use that space up. 1704 */ 1705 GEM_BUG_ON(rq->reserved_space > ring->space); 1706 rq->reserved_space = 0; 1707 rq->emitted_jiffies = jiffies; 1708 1709 /* 1710 * Record the position of the start of the breadcrumb so that 1711 * should we detect the updated seqno part-way through the 1712 * GPU processing the request, we never over-estimate the 1713 * position of the ring's HEAD. 1714 */ 1715 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1716 GEM_BUG_ON(IS_ERR(cs)); 1717 rq->postfix = intel_ring_offset(rq, cs); 1718 1719 return __i915_request_add_to_timeline(rq); 1720 } 1721 1722 void __i915_request_queue_bh(struct i915_request *rq) 1723 { 1724 i915_sw_fence_commit(&rq->semaphore); 1725 i915_sw_fence_commit(&rq->submit); 1726 } 1727 1728 void __i915_request_queue(struct i915_request *rq, 1729 const struct i915_sched_attr *attr) 1730 { 1731 /* 1732 * Let the backend know a new request has arrived that may need 1733 * to adjust the existing execution schedule due to a high priority 1734 * request - i.e. we may want to preempt the current request in order 1735 * to run a high priority dependency chain *before* we can execute this 1736 * request. 1737 * 1738 * This is called before the request is ready to run so that we can 1739 * decide whether to preempt the entire chain so that it is ready to 1740 * run at the earliest possible convenience. 1741 */ 1742 if (attr && rq->engine->schedule) 1743 rq->engine->schedule(rq, attr); 1744 1745 local_bh_disable(); 1746 __i915_request_queue_bh(rq); 1747 local_bh_enable(); /* kick tasklets */ 1748 } 1749 1750 void i915_request_add(struct i915_request *rq) 1751 { 1752 struct intel_timeline * const tl = i915_request_timeline(rq); 1753 struct i915_sched_attr attr = {}; 1754 struct i915_gem_context *ctx; 1755 1756 lockdep_assert_held(&tl->mutex); 1757 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1758 1759 trace_i915_request_add(rq); 1760 __i915_request_commit(rq); 1761 1762 /* XXX placeholder for selftests */ 1763 rcu_read_lock(); 1764 ctx = rcu_dereference(rq->context->gem_context); 1765 if (ctx) 1766 attr = ctx->sched; 1767 rcu_read_unlock(); 1768 1769 __i915_request_queue(rq, &attr); 1770 1771 mutex_unlock(&tl->mutex); 1772 } 1773 1774 static unsigned long local_clock_ns(unsigned int *cpu) 1775 { 1776 unsigned long t; 1777 1778 /* 1779 * Cheaply and approximately convert from nanoseconds to microseconds. 1780 * The result and subsequent calculations are also defined in the same 1781 * approximate microseconds units. The principal source of timing 1782 * error here is from the simple truncation. 1783 * 1784 * Note that local_clock() is only defined wrt to the current CPU; 1785 * the comparisons are no longer valid if we switch CPUs. Instead of 1786 * blocking preemption for the entire busywait, we can detect the CPU 1787 * switch and use that as indicator of system load and a reason to 1788 * stop busywaiting, see busywait_stop(). 1789 */ 1790 *cpu = get_cpu(); 1791 t = local_clock(); 1792 put_cpu(); 1793 1794 return t; 1795 } 1796 1797 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1798 { 1799 unsigned int this_cpu; 1800 1801 if (time_after(local_clock_ns(&this_cpu), timeout)) 1802 return true; 1803 1804 return this_cpu != cpu; 1805 } 1806 1807 static bool __i915_spin_request(struct i915_request * const rq, int state) 1808 { 1809 unsigned long timeout_ns; 1810 unsigned int cpu; 1811 1812 /* 1813 * Only wait for the request if we know it is likely to complete. 1814 * 1815 * We don't track the timestamps around requests, nor the average 1816 * request length, so we do not have a good indicator that this 1817 * request will complete within the timeout. What we do know is the 1818 * order in which requests are executed by the context and so we can 1819 * tell if the request has been started. If the request is not even 1820 * running yet, it is a fair assumption that it will not complete 1821 * within our relatively short timeout. 1822 */ 1823 if (!i915_request_is_running(rq)) 1824 return false; 1825 1826 /* 1827 * When waiting for high frequency requests, e.g. during synchronous 1828 * rendering split between the CPU and GPU, the finite amount of time 1829 * required to set up the irq and wait upon it limits the response 1830 * rate. By busywaiting on the request completion for a short while we 1831 * can service the high frequency waits as quick as possible. However, 1832 * if it is a slow request, we want to sleep as quickly as possible. 1833 * The tradeoff between waiting and sleeping is roughly the time it 1834 * takes to sleep on a request, on the order of a microsecond. 1835 */ 1836 1837 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1838 timeout_ns += local_clock_ns(&cpu); 1839 do { 1840 if (dma_fence_is_signaled(&rq->fence)) 1841 return true; 1842 1843 if (signal_pending_state(state, current)) 1844 break; 1845 1846 if (busywait_stop(timeout_ns, cpu)) 1847 break; 1848 1849 cpu_relax(); 1850 } while (!need_resched()); 1851 1852 return false; 1853 } 1854 1855 struct request_wait { 1856 struct dma_fence_cb cb; 1857 struct task_struct *tsk; 1858 }; 1859 1860 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1861 { 1862 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1863 1864 wake_up_process(fetch_and_zero(&wait->tsk)); 1865 } 1866 1867 /** 1868 * i915_request_wait - wait until execution of request has finished 1869 * @rq: the request to wait upon 1870 * @flags: how to wait 1871 * @timeout: how long to wait in jiffies 1872 * 1873 * i915_request_wait() waits for the request to be completed, for a 1874 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1875 * unbounded wait). 1876 * 1877 * Returns the remaining time (in jiffies) if the request completed, which may 1878 * be zero or -ETIME if the request is unfinished after the timeout expires. 1879 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1880 * pending before the request completes. 1881 */ 1882 long i915_request_wait(struct i915_request *rq, 1883 unsigned int flags, 1884 long timeout) 1885 { 1886 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1887 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1888 struct request_wait wait; 1889 1890 might_sleep(); 1891 GEM_BUG_ON(timeout < 0); 1892 1893 if (dma_fence_is_signaled(&rq->fence)) 1894 return timeout; 1895 1896 if (!timeout) 1897 return -ETIME; 1898 1899 trace_i915_request_wait_begin(rq, flags); 1900 1901 /* 1902 * We must never wait on the GPU while holding a lock as we 1903 * may need to perform a GPU reset. So while we don't need to 1904 * serialise wait/reset with an explicit lock, we do want 1905 * lockdep to detect potential dependency cycles. 1906 */ 1907 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1908 1909 /* 1910 * Optimistic spin before touching IRQs. 1911 * 1912 * We may use a rather large value here to offset the penalty of 1913 * switching away from the active task. Frequently, the client will 1914 * wait upon an old swapbuffer to throttle itself to remain within a 1915 * frame of the gpu. If the client is running in lockstep with the gpu, 1916 * then it should not be waiting long at all, and a sleep now will incur 1917 * extra scheduler latency in producing the next frame. To try to 1918 * avoid adding the cost of enabling/disabling the interrupt to the 1919 * short wait, we first spin to see if the request would have completed 1920 * in the time taken to setup the interrupt. 1921 * 1922 * We need upto 5us to enable the irq, and upto 20us to hide the 1923 * scheduler latency of a context switch, ignoring the secondary 1924 * impacts from a context switch such as cache eviction. 1925 * 1926 * The scheme used for low-latency IO is called "hybrid interrupt 1927 * polling". The suggestion there is to sleep until just before you 1928 * expect to be woken by the device interrupt and then poll for its 1929 * completion. That requires having a good predictor for the request 1930 * duration, which we currently lack. 1931 */ 1932 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1933 __i915_spin_request(rq, state)) 1934 goto out; 1935 1936 /* 1937 * This client is about to stall waiting for the GPU. In many cases 1938 * this is undesirable and limits the throughput of the system, as 1939 * many clients cannot continue processing user input/output whilst 1940 * blocked. RPS autotuning may take tens of milliseconds to respond 1941 * to the GPU load and thus incurs additional latency for the client. 1942 * We can circumvent that by promoting the GPU frequency to maximum 1943 * before we sleep. This makes the GPU throttle up much more quickly 1944 * (good for benchmarks and user experience, e.g. window animations), 1945 * but at a cost of spending more power processing the workload 1946 * (bad for battery). 1947 */ 1948 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1949 intel_rps_boost(rq); 1950 1951 wait.tsk = current; 1952 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1953 goto out; 1954 1955 /* 1956 * Flush the submission tasklet, but only if it may help this request. 1957 * 1958 * We sometimes experience some latency between the HW interrupts and 1959 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1960 * be due to lazy CS events), so lets run the tasklet manually if there 1961 * is a chance it may submit this request. If the request is not ready 1962 * to run, as it is waiting for other fences to be signaled, flushing 1963 * the tasklet is busy work without any advantage for this client. 1964 * 1965 * If the HW is being lazy, this is the last chance before we go to 1966 * sleep to catch any pending events. We will check periodically in 1967 * the heartbeat to flush the submission tasklets as a last resort 1968 * for unhappy HW. 1969 */ 1970 if (i915_request_is_ready(rq)) 1971 __intel_engine_flush_submission(rq->engine, false); 1972 1973 for (;;) { 1974 set_current_state(state); 1975 1976 if (dma_fence_is_signaled(&rq->fence)) 1977 break; 1978 1979 if (signal_pending_state(state, current)) { 1980 timeout = -ERESTARTSYS; 1981 break; 1982 } 1983 1984 if (!timeout) { 1985 timeout = -ETIME; 1986 break; 1987 } 1988 1989 timeout = io_schedule_timeout(timeout); 1990 } 1991 __set_current_state(TASK_RUNNING); 1992 1993 if (READ_ONCE(wait.tsk)) 1994 dma_fence_remove_callback(&rq->fence, &wait.cb); 1995 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1996 1997 out: 1998 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1999 trace_i915_request_wait_end(rq); 2000 return timeout; 2001 } 2002 2003 static int print_sched_attr(const struct i915_sched_attr *attr, 2004 char *buf, int x, int len) 2005 { 2006 if (attr->priority == I915_PRIORITY_INVALID) 2007 return x; 2008 2009 x += snprintf(buf + x, len - x, 2010 " prio=%d", attr->priority); 2011 2012 return x; 2013 } 2014 2015 static char queue_status(const struct i915_request *rq) 2016 { 2017 if (i915_request_is_active(rq)) 2018 return 'E'; 2019 2020 if (i915_request_is_ready(rq)) 2021 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2022 2023 return 'U'; 2024 } 2025 2026 static const char *run_status(const struct i915_request *rq) 2027 { 2028 if (__i915_request_is_complete(rq)) 2029 return "!"; 2030 2031 if (__i915_request_has_started(rq)) 2032 return "*"; 2033 2034 if (!i915_sw_fence_signaled(&rq->semaphore)) 2035 return "&"; 2036 2037 return ""; 2038 } 2039 2040 static const char *fence_status(const struct i915_request *rq) 2041 { 2042 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2043 return "+"; 2044 2045 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2046 return "-"; 2047 2048 return ""; 2049 } 2050 2051 void i915_request_show(struct drm_printer *m, 2052 const struct i915_request *rq, 2053 const char *prefix, 2054 int indent) 2055 { 2056 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2057 char buf[80] = ""; 2058 int x = 0; 2059 2060 /* 2061 * The prefix is used to show the queue status, for which we use 2062 * the following flags: 2063 * 2064 * U [Unready] 2065 * - initial status upon being submitted by the user 2066 * 2067 * - the request is not ready for execution as it is waiting 2068 * for external fences 2069 * 2070 * R [Ready] 2071 * - all fences the request was waiting on have been signaled, 2072 * and the request is now ready for execution and will be 2073 * in a backend queue 2074 * 2075 * - a ready request may still need to wait on semaphores 2076 * [internal fences] 2077 * 2078 * V [Ready/virtual] 2079 * - same as ready, but queued over multiple backends 2080 * 2081 * E [Executing] 2082 * - the request has been transferred from the backend queue and 2083 * submitted for execution on HW 2084 * 2085 * - a completed request may still be regarded as executing, its 2086 * status may not be updated until it is retired and removed 2087 * from the lists 2088 */ 2089 2090 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2091 2092 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2093 prefix, indent, " ", 2094 queue_status(rq), 2095 rq->fence.context, rq->fence.seqno, 2096 run_status(rq), 2097 fence_status(rq), 2098 buf, 2099 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2100 name); 2101 } 2102 2103 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2104 #include "selftests/mock_request.c" 2105 #include "selftests/i915_request.c" 2106 #endif 2107 2108 static void i915_global_request_shrink(void) 2109 { 2110 kmem_cache_shrink(global.slab_execute_cbs); 2111 kmem_cache_shrink(global.slab_requests); 2112 } 2113 2114 static void i915_global_request_exit(void) 2115 { 2116 kmem_cache_destroy(global.slab_execute_cbs); 2117 kmem_cache_destroy(global.slab_requests); 2118 } 2119 2120 static struct i915_global_request global = { { 2121 .shrink = i915_global_request_shrink, 2122 .exit = i915_global_request_exit, 2123 } }; 2124 2125 int __init i915_global_request_init(void) 2126 { 2127 global.slab_requests = 2128 kmem_cache_create("i915_request", 2129 sizeof(struct i915_request), 2130 __alignof__(struct i915_request), 2131 SLAB_HWCACHE_ALIGN | 2132 SLAB_RECLAIM_ACCOUNT | 2133 SLAB_TYPESAFE_BY_RCU, 2134 __i915_request_ctor); 2135 if (!global.slab_requests) 2136 return -ENOMEM; 2137 2138 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 2139 SLAB_HWCACHE_ALIGN | 2140 SLAB_RECLAIM_ACCOUNT | 2141 SLAB_TYPESAFE_BY_RCU); 2142 if (!global.slab_execute_cbs) 2143 goto err_requests; 2144 2145 i915_global_register(&global.base); 2146 return 0; 2147 2148 err_requests: 2149 kmem_cache_destroy(global.slab_requests); 2150 return -ENOMEM; 2151 } 2152