1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/prefetch.h> 26 #include <linux/dma-fence-array.h> 27 #include <linux/sched.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/signal.h> 30 31 #include "i915_drv.h" 32 #include "i915_active.h" 33 #include "i915_reset.h" 34 35 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 36 { 37 return "i915"; 38 } 39 40 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 41 { 42 /* 43 * The timeline struct (as part of the ppgtt underneath a context) 44 * may be freed when the request is no longer in use by the GPU. 45 * We could extend the life of a context to beyond that of all 46 * fences, possibly keeping the hw resource around indefinitely, 47 * or we just give them a false name. Since 48 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 49 * lie seems justifiable. 50 */ 51 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 52 return "signaled"; 53 54 return to_request(fence)->timeline->name; 55 } 56 57 static bool i915_fence_signaled(struct dma_fence *fence) 58 { 59 return i915_request_completed(to_request(fence)); 60 } 61 62 static bool i915_fence_enable_signaling(struct dma_fence *fence) 63 { 64 return i915_request_enable_breadcrumb(to_request(fence)); 65 } 66 67 static signed long i915_fence_wait(struct dma_fence *fence, 68 bool interruptible, 69 signed long timeout) 70 { 71 return i915_request_wait(to_request(fence), interruptible, timeout); 72 } 73 74 static void i915_fence_release(struct dma_fence *fence) 75 { 76 struct i915_request *rq = to_request(fence); 77 78 /* 79 * The request is put onto a RCU freelist (i.e. the address 80 * is immediately reused), mark the fences as being freed now. 81 * Otherwise the debugobjects for the fences are only marked as 82 * freed when the slab cache itself is freed, and so we would get 83 * caught trying to reuse dead objects. 84 */ 85 i915_sw_fence_fini(&rq->submit); 86 87 kmem_cache_free(rq->i915->requests, rq); 88 } 89 90 const struct dma_fence_ops i915_fence_ops = { 91 .get_driver_name = i915_fence_get_driver_name, 92 .get_timeline_name = i915_fence_get_timeline_name, 93 .enable_signaling = i915_fence_enable_signaling, 94 .signaled = i915_fence_signaled, 95 .wait = i915_fence_wait, 96 .release = i915_fence_release, 97 }; 98 99 static inline void 100 i915_request_remove_from_client(struct i915_request *request) 101 { 102 struct drm_i915_file_private *file_priv; 103 104 file_priv = request->file_priv; 105 if (!file_priv) 106 return; 107 108 spin_lock(&file_priv->mm.lock); 109 if (request->file_priv) { 110 list_del(&request->client_link); 111 request->file_priv = NULL; 112 } 113 spin_unlock(&file_priv->mm.lock); 114 } 115 116 static void reserve_gt(struct drm_i915_private *i915) 117 { 118 if (!i915->gt.active_requests++) 119 i915_gem_unpark(i915); 120 } 121 122 static void unreserve_gt(struct drm_i915_private *i915) 123 { 124 GEM_BUG_ON(!i915->gt.active_requests); 125 if (!--i915->gt.active_requests) 126 i915_gem_park(i915); 127 } 128 129 static void advance_ring(struct i915_request *request) 130 { 131 struct intel_ring *ring = request->ring; 132 unsigned int tail; 133 134 /* 135 * We know the GPU must have read the request to have 136 * sent us the seqno + interrupt, so use the position 137 * of tail of the request to update the last known position 138 * of the GPU head. 139 * 140 * Note this requires that we are always called in request 141 * completion order. 142 */ 143 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list)); 144 if (list_is_last(&request->ring_link, &ring->request_list)) { 145 /* 146 * We may race here with execlists resubmitting this request 147 * as we retire it. The resubmission will move the ring->tail 148 * forwards (to request->wa_tail). We either read the 149 * current value that was written to hw, or the value that 150 * is just about to be. Either works, if we miss the last two 151 * noops - they are safe to be replayed on a reset. 152 */ 153 GEM_TRACE("marking %s as inactive\n", ring->timeline->name); 154 tail = READ_ONCE(request->tail); 155 list_del(&ring->active_link); 156 } else { 157 tail = request->postfix; 158 } 159 list_del_init(&request->ring_link); 160 161 ring->head = tail; 162 } 163 164 static void free_capture_list(struct i915_request *request) 165 { 166 struct i915_capture_list *capture; 167 168 capture = request->capture_list; 169 while (capture) { 170 struct i915_capture_list *next = capture->next; 171 172 kfree(capture); 173 capture = next; 174 } 175 } 176 177 static void __retire_engine_request(struct intel_engine_cs *engine, 178 struct i915_request *rq) 179 { 180 GEM_TRACE("%s(%s) fence %llx:%lld, global=%d, current %d:%d\n", 181 __func__, engine->name, 182 rq->fence.context, rq->fence.seqno, 183 rq->global_seqno, 184 hwsp_seqno(rq), 185 intel_engine_get_seqno(engine)); 186 187 GEM_BUG_ON(!i915_request_completed(rq)); 188 189 local_irq_disable(); 190 191 spin_lock(&engine->timeline.lock); 192 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests)); 193 list_del_init(&rq->link); 194 spin_unlock(&engine->timeline.lock); 195 196 spin_lock(&rq->lock); 197 i915_request_mark_complete(rq); 198 if (!i915_request_signaled(rq)) 199 dma_fence_signal_locked(&rq->fence); 200 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 201 i915_request_cancel_breadcrumb(rq); 202 if (rq->waitboost) { 203 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 204 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 205 } 206 spin_unlock(&rq->lock); 207 208 local_irq_enable(); 209 210 /* 211 * The backing object for the context is done after switching to the 212 * *next* context. Therefore we cannot retire the previous context until 213 * the next context has already started running. However, since we 214 * cannot take the required locks at i915_request_submit() we 215 * defer the unpinning of the active context to now, retirement of 216 * the subsequent request. 217 */ 218 if (engine->last_retired_context) 219 intel_context_unpin(engine->last_retired_context); 220 engine->last_retired_context = rq->hw_context; 221 } 222 223 static void __retire_engine_upto(struct intel_engine_cs *engine, 224 struct i915_request *rq) 225 { 226 struct i915_request *tmp; 227 228 if (list_empty(&rq->link)) 229 return; 230 231 do { 232 tmp = list_first_entry(&engine->timeline.requests, 233 typeof(*tmp), link); 234 235 GEM_BUG_ON(tmp->engine != engine); 236 __retire_engine_request(engine, tmp); 237 } while (tmp != rq); 238 } 239 240 static void i915_request_retire(struct i915_request *request) 241 { 242 struct i915_active_request *active, *next; 243 244 GEM_TRACE("%s fence %llx:%lld, global=%d, current %d:%d\n", 245 request->engine->name, 246 request->fence.context, request->fence.seqno, 247 request->global_seqno, 248 hwsp_seqno(request), 249 intel_engine_get_seqno(request->engine)); 250 251 lockdep_assert_held(&request->i915->drm.struct_mutex); 252 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit)); 253 GEM_BUG_ON(!i915_request_completed(request)); 254 255 trace_i915_request_retire(request); 256 257 advance_ring(request); 258 free_capture_list(request); 259 260 /* 261 * Walk through the active list, calling retire on each. This allows 262 * objects to track their GPU activity and mark themselves as idle 263 * when their *last* active request is completed (updating state 264 * tracking lists for eviction, active references for GEM, etc). 265 * 266 * As the ->retire() may free the node, we decouple it first and 267 * pass along the auxiliary information (to avoid dereferencing 268 * the node after the callback). 269 */ 270 list_for_each_entry_safe(active, next, &request->active_list, link) { 271 /* 272 * In microbenchmarks or focusing upon time inside the kernel, 273 * we may spend an inordinate amount of time simply handling 274 * the retirement of requests and processing their callbacks. 275 * Of which, this loop itself is particularly hot due to the 276 * cache misses when jumping around the list of 277 * i915_active_request. So we try to keep this loop as 278 * streamlined as possible and also prefetch the next 279 * i915_active_request to try and hide the likely cache miss. 280 */ 281 prefetchw(next); 282 283 INIT_LIST_HEAD(&active->link); 284 RCU_INIT_POINTER(active->request, NULL); 285 286 active->retire(active, request); 287 } 288 289 i915_request_remove_from_client(request); 290 291 /* Retirement decays the ban score as it is a sign of ctx progress */ 292 atomic_dec_if_positive(&request->gem_context->ban_score); 293 intel_context_unpin(request->hw_context); 294 295 __retire_engine_upto(request->engine, request); 296 297 unreserve_gt(request->i915); 298 299 i915_sched_node_fini(request->i915, &request->sched); 300 i915_request_put(request); 301 } 302 303 void i915_request_retire_upto(struct i915_request *rq) 304 { 305 struct intel_ring *ring = rq->ring; 306 struct i915_request *tmp; 307 308 GEM_TRACE("%s fence %llx:%lld, global=%d, current %d:%d\n", 309 rq->engine->name, 310 rq->fence.context, rq->fence.seqno, 311 rq->global_seqno, 312 hwsp_seqno(rq), 313 intel_engine_get_seqno(rq->engine)); 314 315 lockdep_assert_held(&rq->i915->drm.struct_mutex); 316 GEM_BUG_ON(!i915_request_completed(rq)); 317 318 if (list_empty(&rq->ring_link)) 319 return; 320 321 do { 322 tmp = list_first_entry(&ring->request_list, 323 typeof(*tmp), ring_link); 324 325 i915_request_retire(tmp); 326 } while (tmp != rq); 327 } 328 329 static u32 timeline_get_seqno(struct i915_timeline *tl) 330 { 331 return tl->seqno += 1 + tl->has_initial_breadcrumb; 332 } 333 334 static void move_to_timeline(struct i915_request *request, 335 struct i915_timeline *timeline) 336 { 337 GEM_BUG_ON(request->timeline == &request->engine->timeline); 338 lockdep_assert_held(&request->engine->timeline.lock); 339 340 spin_lock(&request->timeline->lock); 341 list_move_tail(&request->link, &timeline->requests); 342 spin_unlock(&request->timeline->lock); 343 } 344 345 static u32 next_global_seqno(struct i915_timeline *tl) 346 { 347 if (!++tl->seqno) 348 ++tl->seqno; 349 return tl->seqno; 350 } 351 352 void __i915_request_submit(struct i915_request *request) 353 { 354 struct intel_engine_cs *engine = request->engine; 355 u32 seqno; 356 357 GEM_TRACE("%s fence %llx:%lld -> global=%d, current %d:%d\n", 358 engine->name, 359 request->fence.context, request->fence.seqno, 360 engine->timeline.seqno + 1, 361 hwsp_seqno(request), 362 intel_engine_get_seqno(engine)); 363 364 GEM_BUG_ON(!irqs_disabled()); 365 lockdep_assert_held(&engine->timeline.lock); 366 367 GEM_BUG_ON(request->global_seqno); 368 369 seqno = next_global_seqno(&engine->timeline); 370 GEM_BUG_ON(!seqno); 371 GEM_BUG_ON(intel_engine_signaled(engine, seqno)); 372 373 /* We may be recursing from the signal callback of another i915 fence */ 374 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 375 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 376 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 377 request->global_seqno = seqno; 378 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 379 !i915_request_enable_breadcrumb(request)) 380 intel_engine_queue_breadcrumbs(engine); 381 spin_unlock(&request->lock); 382 383 engine->emit_fini_breadcrumb(request, 384 request->ring->vaddr + request->postfix); 385 386 /* Transfer from per-context onto the global per-engine timeline */ 387 move_to_timeline(request, &engine->timeline); 388 389 trace_i915_request_execute(request); 390 } 391 392 void i915_request_submit(struct i915_request *request) 393 { 394 struct intel_engine_cs *engine = request->engine; 395 unsigned long flags; 396 397 /* Will be called from irq-context when using foreign fences. */ 398 spin_lock_irqsave(&engine->timeline.lock, flags); 399 400 __i915_request_submit(request); 401 402 spin_unlock_irqrestore(&engine->timeline.lock, flags); 403 } 404 405 void __i915_request_unsubmit(struct i915_request *request) 406 { 407 struct intel_engine_cs *engine = request->engine; 408 409 GEM_TRACE("%s fence %llx:%lld <- global=%d, current %d:%d\n", 410 engine->name, 411 request->fence.context, request->fence.seqno, 412 request->global_seqno, 413 hwsp_seqno(request), 414 intel_engine_get_seqno(engine)); 415 416 GEM_BUG_ON(!irqs_disabled()); 417 lockdep_assert_held(&engine->timeline.lock); 418 419 /* 420 * Only unwind in reverse order, required so that the per-context list 421 * is kept in seqno/ring order. 422 */ 423 GEM_BUG_ON(!request->global_seqno); 424 GEM_BUG_ON(request->global_seqno != engine->timeline.seqno); 425 GEM_BUG_ON(intel_engine_has_completed(engine, request->global_seqno)); 426 engine->timeline.seqno--; 427 428 /* We may be recursing from the signal callback of another i915 fence */ 429 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 430 request->global_seqno = 0; 431 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 432 i915_request_cancel_breadcrumb(request); 433 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 434 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 435 spin_unlock(&request->lock); 436 437 /* Transfer back from the global per-engine timeline to per-context */ 438 move_to_timeline(request, request->timeline); 439 440 /* 441 * We don't need to wake_up any waiters on request->execute, they 442 * will get woken by any other event or us re-adding this request 443 * to the engine timeline (__i915_request_submit()). The waiters 444 * should be quite adapt at finding that the request now has a new 445 * global_seqno to the one they went to sleep on. 446 */ 447 } 448 449 void i915_request_unsubmit(struct i915_request *request) 450 { 451 struct intel_engine_cs *engine = request->engine; 452 unsigned long flags; 453 454 /* Will be called from irq-context when using foreign fences. */ 455 spin_lock_irqsave(&engine->timeline.lock, flags); 456 457 __i915_request_unsubmit(request); 458 459 spin_unlock_irqrestore(&engine->timeline.lock, flags); 460 } 461 462 static int __i915_sw_fence_call 463 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 464 { 465 struct i915_request *request = 466 container_of(fence, typeof(*request), submit); 467 468 switch (state) { 469 case FENCE_COMPLETE: 470 trace_i915_request_submit(request); 471 /* 472 * We need to serialize use of the submit_request() callback 473 * with its hotplugging performed during an emergency 474 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 475 * critical section in order to force i915_gem_set_wedged() to 476 * wait until the submit_request() is completed before 477 * proceeding. 478 */ 479 rcu_read_lock(); 480 request->engine->submit_request(request); 481 rcu_read_unlock(); 482 break; 483 484 case FENCE_FREE: 485 i915_request_put(request); 486 break; 487 } 488 489 return NOTIFY_DONE; 490 } 491 492 static void ring_retire_requests(struct intel_ring *ring) 493 { 494 struct i915_request *rq, *rn; 495 496 list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) { 497 if (!i915_request_completed(rq)) 498 break; 499 500 i915_request_retire(rq); 501 } 502 } 503 504 static noinline struct i915_request * 505 i915_request_alloc_slow(struct intel_context *ce) 506 { 507 struct intel_ring *ring = ce->ring; 508 struct i915_request *rq; 509 510 if (list_empty(&ring->request_list)) 511 goto out; 512 513 /* Ratelimit ourselves to prevent oom from malicious clients */ 514 rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link); 515 cond_synchronize_rcu(rq->rcustate); 516 517 /* Retire our old requests in the hope that we free some */ 518 ring_retire_requests(ring); 519 520 out: 521 return kmem_cache_alloc(ce->gem_context->i915->requests, GFP_KERNEL); 522 } 523 524 static int add_timeline_barrier(struct i915_request *rq) 525 { 526 return i915_request_await_active_request(rq, &rq->timeline->barrier); 527 } 528 529 /** 530 * i915_request_alloc - allocate a request structure 531 * 532 * @engine: engine that we wish to issue the request on. 533 * @ctx: context that the request will be associated with. 534 * 535 * Returns a pointer to the allocated request if successful, 536 * or an error code if not. 537 */ 538 struct i915_request * 539 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx) 540 { 541 struct drm_i915_private *i915 = engine->i915; 542 struct i915_request *rq; 543 struct intel_context *ce; 544 int ret; 545 546 lockdep_assert_held(&i915->drm.struct_mutex); 547 548 /* 549 * Preempt contexts are reserved for exclusive use to inject a 550 * preemption context switch. They are never to be used for any trivial 551 * request! 552 */ 553 GEM_BUG_ON(ctx == i915->preempt_context); 554 555 /* 556 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 557 * EIO if the GPU is already wedged. 558 */ 559 if (i915_terminally_wedged(&i915->gpu_error)) 560 return ERR_PTR(-EIO); 561 562 /* 563 * Pinning the contexts may generate requests in order to acquire 564 * GGTT space, so do this first before we reserve a seqno for 565 * ourselves. 566 */ 567 ce = intel_context_pin(ctx, engine); 568 if (IS_ERR(ce)) 569 return ERR_CAST(ce); 570 571 reserve_gt(i915); 572 573 /* Move our oldest request to the slab-cache (if not in use!) */ 574 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link); 575 if (!list_is_last(&rq->ring_link, &ce->ring->request_list) && 576 i915_request_completed(rq)) 577 i915_request_retire(rq); 578 579 /* 580 * Beware: Dragons be flying overhead. 581 * 582 * We use RCU to look up requests in flight. The lookups may 583 * race with the request being allocated from the slab freelist. 584 * That is the request we are writing to here, may be in the process 585 * of being read by __i915_active_request_get_rcu(). As such, 586 * we have to be very careful when overwriting the contents. During 587 * the RCU lookup, we change chase the request->engine pointer, 588 * read the request->global_seqno and increment the reference count. 589 * 590 * The reference count is incremented atomically. If it is zero, 591 * the lookup knows the request is unallocated and complete. Otherwise, 592 * it is either still in use, or has been reallocated and reset 593 * with dma_fence_init(). This increment is safe for release as we 594 * check that the request we have a reference to and matches the active 595 * request. 596 * 597 * Before we increment the refcount, we chase the request->engine 598 * pointer. We must not call kmem_cache_zalloc() or else we set 599 * that pointer to NULL and cause a crash during the lookup. If 600 * we see the request is completed (based on the value of the 601 * old engine and seqno), the lookup is complete and reports NULL. 602 * If we decide the request is not completed (new engine or seqno), 603 * then we grab a reference and double check that it is still the 604 * active request - which it won't be and restart the lookup. 605 * 606 * Do not use kmem_cache_zalloc() here! 607 */ 608 rq = kmem_cache_alloc(i915->requests, 609 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 610 if (unlikely(!rq)) { 611 rq = i915_request_alloc_slow(ce); 612 if (!rq) { 613 ret = -ENOMEM; 614 goto err_unreserve; 615 } 616 } 617 618 rq->rcustate = get_state_synchronize_rcu(); 619 620 INIT_LIST_HEAD(&rq->active_list); 621 rq->i915 = i915; 622 rq->engine = engine; 623 rq->gem_context = ctx; 624 rq->hw_context = ce; 625 rq->ring = ce->ring; 626 rq->timeline = ce->ring->timeline; 627 GEM_BUG_ON(rq->timeline == &engine->timeline); 628 rq->hwsp_seqno = rq->timeline->hwsp_seqno; 629 630 spin_lock_init(&rq->lock); 631 dma_fence_init(&rq->fence, 632 &i915_fence_ops, 633 &rq->lock, 634 rq->timeline->fence_context, 635 timeline_get_seqno(rq->timeline)); 636 637 /* We bump the ref for the fence chain */ 638 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 639 640 i915_sched_node_init(&rq->sched); 641 642 /* No zalloc, must clear what we need by hand */ 643 rq->global_seqno = 0; 644 rq->file_priv = NULL; 645 rq->batch = NULL; 646 rq->capture_list = NULL; 647 rq->waitboost = false; 648 649 /* 650 * Reserve space in the ring buffer for all the commands required to 651 * eventually emit this request. This is to guarantee that the 652 * i915_request_add() call can't fail. Note that the reserve may need 653 * to be redone if the request is not actually submitted straight 654 * away, e.g. because a GPU scheduler has deferred it. 655 * 656 * Note that due to how we add reserved_space to intel_ring_begin() 657 * we need to double our request to ensure that if we need to wrap 658 * around inside i915_request_add() there is sufficient space at 659 * the beginning of the ring as well. 660 */ 661 rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32); 662 663 /* 664 * Record the position of the start of the request so that 665 * should we detect the updated seqno part-way through the 666 * GPU processing the request, we never over-estimate the 667 * position of the head. 668 */ 669 rq->head = rq->ring->emit; 670 671 ret = add_timeline_barrier(rq); 672 if (ret) 673 goto err_unwind; 674 675 ret = engine->request_alloc(rq); 676 if (ret) 677 goto err_unwind; 678 679 /* Keep a second pin for the dual retirement along engine and ring */ 680 __intel_context_pin(ce); 681 682 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 683 684 /* Check that we didn't interrupt ourselves with a new request */ 685 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno); 686 return rq; 687 688 err_unwind: 689 ce->ring->emit = rq->head; 690 691 /* Make sure we didn't add ourselves to external state before freeing */ 692 GEM_BUG_ON(!list_empty(&rq->active_list)); 693 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 694 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 695 696 kmem_cache_free(i915->requests, rq); 697 err_unreserve: 698 unreserve_gt(i915); 699 intel_context_unpin(ce); 700 return ERR_PTR(ret); 701 } 702 703 static int 704 i915_request_await_request(struct i915_request *to, struct i915_request *from) 705 { 706 int ret; 707 708 GEM_BUG_ON(to == from); 709 GEM_BUG_ON(to->timeline == from->timeline); 710 711 if (i915_request_completed(from)) 712 return 0; 713 714 if (to->engine->schedule) { 715 ret = i915_sched_node_add_dependency(to->i915, 716 &to->sched, 717 &from->sched); 718 if (ret < 0) 719 return ret; 720 } 721 722 if (to->engine == from->engine) { 723 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 724 &from->submit, 725 I915_FENCE_GFP); 726 } else { 727 ret = i915_sw_fence_await_dma_fence(&to->submit, 728 &from->fence, 0, 729 I915_FENCE_GFP); 730 } 731 732 return ret < 0 ? ret : 0; 733 } 734 735 int 736 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 737 { 738 struct dma_fence **child = &fence; 739 unsigned int nchild = 1; 740 int ret; 741 742 /* 743 * Note that if the fence-array was created in signal-on-any mode, 744 * we should *not* decompose it into its individual fences. However, 745 * we don't currently store which mode the fence-array is operating 746 * in. Fortunately, the only user of signal-on-any is private to 747 * amdgpu and we should not see any incoming fence-array from 748 * sync-file being in signal-on-any mode. 749 */ 750 if (dma_fence_is_array(fence)) { 751 struct dma_fence_array *array = to_dma_fence_array(fence); 752 753 child = array->fences; 754 nchild = array->num_fences; 755 GEM_BUG_ON(!nchild); 756 } 757 758 do { 759 fence = *child++; 760 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 761 continue; 762 763 /* 764 * Requests on the same timeline are explicitly ordered, along 765 * with their dependencies, by i915_request_add() which ensures 766 * that requests are submitted in-order through each ring. 767 */ 768 if (fence->context == rq->fence.context) 769 continue; 770 771 /* Squash repeated waits to the same timelines */ 772 if (fence->context != rq->i915->mm.unordered_timeline && 773 i915_timeline_sync_is_later(rq->timeline, fence)) 774 continue; 775 776 if (dma_fence_is_i915(fence)) 777 ret = i915_request_await_request(rq, to_request(fence)); 778 else 779 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 780 I915_FENCE_TIMEOUT, 781 I915_FENCE_GFP); 782 if (ret < 0) 783 return ret; 784 785 /* Record the latest fence used against each timeline */ 786 if (fence->context != rq->i915->mm.unordered_timeline) 787 i915_timeline_sync_set(rq->timeline, fence); 788 } while (--nchild); 789 790 return 0; 791 } 792 793 /** 794 * i915_request_await_object - set this request to (async) wait upon a bo 795 * @to: request we are wishing to use 796 * @obj: object which may be in use on another ring. 797 * @write: whether the wait is on behalf of a writer 798 * 799 * This code is meant to abstract object synchronization with the GPU. 800 * Conceptually we serialise writes between engines inside the GPU. 801 * We only allow one engine to write into a buffer at any time, but 802 * multiple readers. To ensure each has a coherent view of memory, we must: 803 * 804 * - If there is an outstanding write request to the object, the new 805 * request must wait for it to complete (either CPU or in hw, requests 806 * on the same ring will be naturally ordered). 807 * 808 * - If we are a write request (pending_write_domain is set), the new 809 * request must wait for outstanding read requests to complete. 810 * 811 * Returns 0 if successful, else propagates up the lower layer error. 812 */ 813 int 814 i915_request_await_object(struct i915_request *to, 815 struct drm_i915_gem_object *obj, 816 bool write) 817 { 818 struct dma_fence *excl; 819 int ret = 0; 820 821 if (write) { 822 struct dma_fence **shared; 823 unsigned int count, i; 824 825 ret = reservation_object_get_fences_rcu(obj->resv, 826 &excl, &count, &shared); 827 if (ret) 828 return ret; 829 830 for (i = 0; i < count; i++) { 831 ret = i915_request_await_dma_fence(to, shared[i]); 832 if (ret) 833 break; 834 835 dma_fence_put(shared[i]); 836 } 837 838 for (; i < count; i++) 839 dma_fence_put(shared[i]); 840 kfree(shared); 841 } else { 842 excl = reservation_object_get_excl_rcu(obj->resv); 843 } 844 845 if (excl) { 846 if (ret == 0) 847 ret = i915_request_await_dma_fence(to, excl); 848 849 dma_fence_put(excl); 850 } 851 852 return ret; 853 } 854 855 void i915_request_skip(struct i915_request *rq, int error) 856 { 857 void *vaddr = rq->ring->vaddr; 858 u32 head; 859 860 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 861 dma_fence_set_error(&rq->fence, error); 862 863 /* 864 * As this request likely depends on state from the lost 865 * context, clear out all the user operations leaving the 866 * breadcrumb at the end (so we get the fence notifications). 867 */ 868 head = rq->infix; 869 if (rq->postfix < head) { 870 memset(vaddr + head, 0, rq->ring->size - head); 871 head = 0; 872 } 873 memset(vaddr + head, 0, rq->postfix - head); 874 } 875 876 /* 877 * NB: This function is not allowed to fail. Doing so would mean the the 878 * request is not being tracked for completion but the work itself is 879 * going to happen on the hardware. This would be a Bad Thing(tm). 880 */ 881 void i915_request_add(struct i915_request *request) 882 { 883 struct intel_engine_cs *engine = request->engine; 884 struct i915_timeline *timeline = request->timeline; 885 struct intel_ring *ring = request->ring; 886 struct i915_request *prev; 887 u32 *cs; 888 889 GEM_TRACE("%s fence %llx:%lld\n", 890 engine->name, request->fence.context, request->fence.seqno); 891 892 lockdep_assert_held(&request->i915->drm.struct_mutex); 893 trace_i915_request_add(request); 894 895 /* 896 * Make sure that no request gazumped us - if it was allocated after 897 * our i915_request_alloc() and called __i915_request_add() before 898 * us, the timeline will hold its seqno which is later than ours. 899 */ 900 GEM_BUG_ON(timeline->seqno != request->fence.seqno); 901 902 /* 903 * To ensure that this call will not fail, space for its emissions 904 * should already have been reserved in the ring buffer. Let the ring 905 * know that it is time to use that space up. 906 */ 907 GEM_BUG_ON(request->reserved_space > request->ring->space); 908 request->reserved_space = 0; 909 910 /* 911 * Record the position of the start of the breadcrumb so that 912 * should we detect the updated seqno part-way through the 913 * GPU processing the request, we never over-estimate the 914 * position of the ring's HEAD. 915 */ 916 cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw); 917 GEM_BUG_ON(IS_ERR(cs)); 918 request->postfix = intel_ring_offset(request, cs); 919 920 /* 921 * Seal the request and mark it as pending execution. Note that 922 * we may inspect this state, without holding any locks, during 923 * hangcheck. Hence we apply the barrier to ensure that we do not 924 * see a more recent value in the hws than we are tracking. 925 */ 926 927 prev = i915_active_request_raw(&timeline->last_request, 928 &request->i915->drm.struct_mutex); 929 if (prev && !i915_request_completed(prev)) { 930 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit, 931 &request->submitq); 932 if (engine->schedule) 933 __i915_sched_node_add_dependency(&request->sched, 934 &prev->sched, 935 &request->dep, 936 0); 937 } 938 939 spin_lock_irq(&timeline->lock); 940 list_add_tail(&request->link, &timeline->requests); 941 spin_unlock_irq(&timeline->lock); 942 943 GEM_BUG_ON(timeline->seqno != request->fence.seqno); 944 __i915_active_request_set(&timeline->last_request, request); 945 946 list_add_tail(&request->ring_link, &ring->request_list); 947 if (list_is_first(&request->ring_link, &ring->request_list)) { 948 GEM_TRACE("marking %s as active\n", ring->timeline->name); 949 list_add(&ring->active_link, &request->i915->gt.active_rings); 950 } 951 request->emitted_jiffies = jiffies; 952 953 /* 954 * Let the backend know a new request has arrived that may need 955 * to adjust the existing execution schedule due to a high priority 956 * request - i.e. we may want to preempt the current request in order 957 * to run a high priority dependency chain *before* we can execute this 958 * request. 959 * 960 * This is called before the request is ready to run so that we can 961 * decide whether to preempt the entire chain so that it is ready to 962 * run at the earliest possible convenience. 963 */ 964 local_bh_disable(); 965 rcu_read_lock(); /* RCU serialisation for set-wedged protection */ 966 if (engine->schedule) { 967 struct i915_sched_attr attr = request->gem_context->sched; 968 969 /* 970 * Boost priorities to new clients (new request flows). 971 * 972 * Allow interactive/synchronous clients to jump ahead of 973 * the bulk clients. (FQ_CODEL) 974 */ 975 if (list_empty(&request->sched.signalers_list)) 976 attr.priority |= I915_PRIORITY_NEWCLIENT; 977 978 engine->schedule(request, &attr); 979 } 980 rcu_read_unlock(); 981 i915_sw_fence_commit(&request->submit); 982 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 983 984 /* 985 * In typical scenarios, we do not expect the previous request on 986 * the timeline to be still tracked by timeline->last_request if it 987 * has been completed. If the completed request is still here, that 988 * implies that request retirement is a long way behind submission, 989 * suggesting that we haven't been retiring frequently enough from 990 * the combination of retire-before-alloc, waiters and the background 991 * retirement worker. So if the last request on this timeline was 992 * already completed, do a catch up pass, flushing the retirement queue 993 * up to this client. Since we have now moved the heaviest operations 994 * during retirement onto secondary workers, such as freeing objects 995 * or contexts, retiring a bunch of requests is mostly list management 996 * (and cache misses), and so we should not be overly penalizing this 997 * client by performing excess work, though we may still performing 998 * work on behalf of others -- but instead we should benefit from 999 * improved resource management. (Well, that's the theory at least.) 1000 */ 1001 if (prev && i915_request_completed(prev)) 1002 i915_request_retire_upto(prev); 1003 } 1004 1005 static unsigned long local_clock_us(unsigned int *cpu) 1006 { 1007 unsigned long t; 1008 1009 /* 1010 * Cheaply and approximately convert from nanoseconds to microseconds. 1011 * The result and subsequent calculations are also defined in the same 1012 * approximate microseconds units. The principal source of timing 1013 * error here is from the simple truncation. 1014 * 1015 * Note that local_clock() is only defined wrt to the current CPU; 1016 * the comparisons are no longer valid if we switch CPUs. Instead of 1017 * blocking preemption for the entire busywait, we can detect the CPU 1018 * switch and use that as indicator of system load and a reason to 1019 * stop busywaiting, see busywait_stop(). 1020 */ 1021 *cpu = get_cpu(); 1022 t = local_clock() >> 10; 1023 put_cpu(); 1024 1025 return t; 1026 } 1027 1028 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1029 { 1030 unsigned int this_cpu; 1031 1032 if (time_after(local_clock_us(&this_cpu), timeout)) 1033 return true; 1034 1035 return this_cpu != cpu; 1036 } 1037 1038 static bool __i915_spin_request(const struct i915_request * const rq, 1039 int state, unsigned long timeout_us) 1040 { 1041 unsigned int cpu; 1042 1043 /* 1044 * Only wait for the request if we know it is likely to complete. 1045 * 1046 * We don't track the timestamps around requests, nor the average 1047 * request length, so we do not have a good indicator that this 1048 * request will complete within the timeout. What we do know is the 1049 * order in which requests are executed by the context and so we can 1050 * tell if the request has been started. If the request is not even 1051 * running yet, it is a fair assumption that it will not complete 1052 * within our relatively short timeout. 1053 */ 1054 if (!i915_request_is_running(rq)) 1055 return false; 1056 1057 /* 1058 * When waiting for high frequency requests, e.g. during synchronous 1059 * rendering split between the CPU and GPU, the finite amount of time 1060 * required to set up the irq and wait upon it limits the response 1061 * rate. By busywaiting on the request completion for a short while we 1062 * can service the high frequency waits as quick as possible. However, 1063 * if it is a slow request, we want to sleep as quickly as possible. 1064 * The tradeoff between waiting and sleeping is roughly the time it 1065 * takes to sleep on a request, on the order of a microsecond. 1066 */ 1067 1068 timeout_us += local_clock_us(&cpu); 1069 do { 1070 if (i915_request_completed(rq)) 1071 return true; 1072 1073 if (signal_pending_state(state, current)) 1074 break; 1075 1076 if (busywait_stop(timeout_us, cpu)) 1077 break; 1078 1079 cpu_relax(); 1080 } while (!need_resched()); 1081 1082 return false; 1083 } 1084 1085 struct request_wait { 1086 struct dma_fence_cb cb; 1087 struct task_struct *tsk; 1088 }; 1089 1090 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1091 { 1092 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1093 1094 wake_up_process(wait->tsk); 1095 } 1096 1097 /** 1098 * i915_request_wait - wait until execution of request has finished 1099 * @rq: the request to wait upon 1100 * @flags: how to wait 1101 * @timeout: how long to wait in jiffies 1102 * 1103 * i915_request_wait() waits for the request to be completed, for a 1104 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1105 * unbounded wait). 1106 * 1107 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED 1108 * in via the flags, and vice versa if the struct_mutex is not held, the caller 1109 * must not specify that the wait is locked. 1110 * 1111 * Returns the remaining time (in jiffies) if the request completed, which may 1112 * be zero or -ETIME if the request is unfinished after the timeout expires. 1113 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1114 * pending before the request completes. 1115 */ 1116 long i915_request_wait(struct i915_request *rq, 1117 unsigned int flags, 1118 long timeout) 1119 { 1120 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1121 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1122 struct request_wait wait; 1123 1124 might_sleep(); 1125 GEM_BUG_ON(timeout < 0); 1126 1127 if (i915_request_completed(rq)) 1128 return timeout; 1129 1130 if (!timeout) 1131 return -ETIME; 1132 1133 trace_i915_request_wait_begin(rq, flags); 1134 1135 /* Optimistic short spin before touching IRQs */ 1136 if (__i915_spin_request(rq, state, 5)) 1137 goto out; 1138 1139 if (flags & I915_WAIT_PRIORITY) 1140 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1141 1142 wait.tsk = current; 1143 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1144 goto out; 1145 1146 for (;;) { 1147 set_current_state(state); 1148 1149 if (i915_request_completed(rq)) 1150 break; 1151 1152 if (signal_pending_state(state, current)) { 1153 timeout = -ERESTARTSYS; 1154 break; 1155 } 1156 1157 if (!timeout) { 1158 timeout = -ETIME; 1159 break; 1160 } 1161 1162 timeout = io_schedule_timeout(timeout); 1163 } 1164 __set_current_state(TASK_RUNNING); 1165 1166 dma_fence_remove_callback(&rq->fence, &wait.cb); 1167 1168 out: 1169 trace_i915_request_wait_end(rq); 1170 return timeout; 1171 } 1172 1173 void i915_retire_requests(struct drm_i915_private *i915) 1174 { 1175 struct intel_ring *ring, *tmp; 1176 1177 lockdep_assert_held(&i915->drm.struct_mutex); 1178 1179 if (!i915->gt.active_requests) 1180 return; 1181 1182 list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link) 1183 ring_retire_requests(ring); 1184 } 1185 1186 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1187 #include "selftests/mock_request.c" 1188 #include "selftests/i915_request.c" 1189 #endif 1190