1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 #include "gt/intel_ring.h" 35 #include "gt/intel_rps.h" 36 37 #include "i915_active.h" 38 #include "i915_drv.h" 39 #include "i915_globals.h" 40 #include "i915_trace.h" 41 #include "intel_pm.h" 42 43 struct execute_cb { 44 struct list_head link; 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_dependencies; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 static void i915_fence_release(struct dma_fence *fence) 106 { 107 struct i915_request *rq = to_request(fence); 108 109 /* 110 * The request is put onto a RCU freelist (i.e. the address 111 * is immediately reused), mark the fences as being freed now. 112 * Otherwise the debugobjects for the fences are only marked as 113 * freed when the slab cache itself is freed, and so we would get 114 * caught trying to reuse dead objects. 115 */ 116 i915_sw_fence_fini(&rq->submit); 117 i915_sw_fence_fini(&rq->semaphore); 118 119 kmem_cache_free(global.slab_requests, rq); 120 } 121 122 const struct dma_fence_ops i915_fence_ops = { 123 .get_driver_name = i915_fence_get_driver_name, 124 .get_timeline_name = i915_fence_get_timeline_name, 125 .enable_signaling = i915_fence_enable_signaling, 126 .signaled = i915_fence_signaled, 127 .wait = i915_fence_wait, 128 .release = i915_fence_release, 129 }; 130 131 static void irq_execute_cb(struct irq_work *wrk) 132 { 133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 134 135 i915_sw_fence_complete(cb->fence); 136 kmem_cache_free(global.slab_execute_cbs, cb); 137 } 138 139 static void irq_execute_cb_hook(struct irq_work *wrk) 140 { 141 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 142 143 cb->hook(container_of(cb->fence, struct i915_request, submit), 144 &cb->signal->fence); 145 i915_request_put(cb->signal); 146 147 irq_execute_cb(wrk); 148 } 149 150 static void __notify_execute_cb(struct i915_request *rq) 151 { 152 struct execute_cb *cb; 153 154 lockdep_assert_held(&rq->lock); 155 156 if (list_empty(&rq->execute_cb)) 157 return; 158 159 list_for_each_entry(cb, &rq->execute_cb, link) 160 irq_work_queue(&cb->work); 161 162 /* 163 * XXX Rollback on __i915_request_unsubmit() 164 * 165 * In the future, perhaps when we have an active time-slicing scheduler, 166 * it will be interesting to unsubmit parallel execution and remove 167 * busywaits from the GPU until their master is restarted. This is 168 * quite hairy, we have to carefully rollback the fence and do a 169 * preempt-to-idle cycle on the target engine, all the while the 170 * master execute_cb may refire. 171 */ 172 INIT_LIST_HEAD(&rq->execute_cb); 173 } 174 175 static inline void 176 remove_from_client(struct i915_request *request) 177 { 178 struct drm_i915_file_private *file_priv; 179 180 if (!READ_ONCE(request->file_priv)) 181 return; 182 183 rcu_read_lock(); 184 file_priv = xchg(&request->file_priv, NULL); 185 if (file_priv) { 186 spin_lock(&file_priv->mm.lock); 187 list_del(&request->client_link); 188 spin_unlock(&file_priv->mm.lock); 189 } 190 rcu_read_unlock(); 191 } 192 193 static void free_capture_list(struct i915_request *request) 194 { 195 struct i915_capture_list *capture; 196 197 capture = fetch_and_zero(&request->capture_list); 198 while (capture) { 199 struct i915_capture_list *next = capture->next; 200 201 kfree(capture); 202 capture = next; 203 } 204 } 205 206 static void remove_from_engine(struct i915_request *rq) 207 { 208 struct intel_engine_cs *engine, *locked; 209 210 /* 211 * Virtual engines complicate acquiring the engine timeline lock, 212 * as their rq->engine pointer is not stable until under that 213 * engine lock. The simple ploy we use is to take the lock then 214 * check that the rq still belongs to the newly locked engine. 215 */ 216 locked = READ_ONCE(rq->engine); 217 spin_lock_irq(&locked->active.lock); 218 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 219 spin_unlock(&locked->active.lock); 220 spin_lock(&engine->active.lock); 221 locked = engine; 222 } 223 list_del_init(&rq->sched.link); 224 spin_unlock_irq(&locked->active.lock); 225 } 226 227 bool i915_request_retire(struct i915_request *rq) 228 { 229 if (!i915_request_completed(rq)) 230 return false; 231 232 RQ_TRACE(rq, "\n"); 233 234 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 235 trace_i915_request_retire(rq); 236 237 /* 238 * We know the GPU must have read the request to have 239 * sent us the seqno + interrupt, so use the position 240 * of tail of the request to update the last known position 241 * of the GPU head. 242 * 243 * Note this requires that we are always called in request 244 * completion order. 245 */ 246 GEM_BUG_ON(!list_is_first(&rq->link, 247 &i915_request_timeline(rq)->requests)); 248 rq->ring->head = rq->postfix; 249 250 /* 251 * We only loosely track inflight requests across preemption, 252 * and so we may find ourselves attempting to retire a _completed_ 253 * request that we have removed from the HW and put back on a run 254 * queue. 255 */ 256 remove_from_engine(rq); 257 258 spin_lock_irq(&rq->lock); 259 i915_request_mark_complete(rq); 260 if (!i915_request_signaled(rq)) 261 dma_fence_signal_locked(&rq->fence); 262 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 263 i915_request_cancel_breadcrumb(rq); 264 if (i915_request_has_waitboost(rq)) { 265 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 266 atomic_dec(&rq->engine->gt->rps.num_waiters); 267 } 268 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 269 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 270 __notify_execute_cb(rq); 271 } 272 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 273 spin_unlock_irq(&rq->lock); 274 275 remove_from_client(rq); 276 list_del(&rq->link); 277 278 intel_context_exit(rq->context); 279 intel_context_unpin(rq->context); 280 281 free_capture_list(rq); 282 i915_sched_node_fini(&rq->sched); 283 i915_request_put(rq); 284 285 return true; 286 } 287 288 void i915_request_retire_upto(struct i915_request *rq) 289 { 290 struct intel_timeline * const tl = i915_request_timeline(rq); 291 struct i915_request *tmp; 292 293 RQ_TRACE(rq, "\n"); 294 295 GEM_BUG_ON(!i915_request_completed(rq)); 296 297 do { 298 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 299 } while (i915_request_retire(tmp) && tmp != rq); 300 } 301 302 static int 303 __await_execution(struct i915_request *rq, 304 struct i915_request *signal, 305 void (*hook)(struct i915_request *rq, 306 struct dma_fence *signal), 307 gfp_t gfp) 308 { 309 struct execute_cb *cb; 310 311 if (i915_request_is_active(signal)) { 312 if (hook) 313 hook(rq, &signal->fence); 314 return 0; 315 } 316 317 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 318 if (!cb) 319 return -ENOMEM; 320 321 cb->fence = &rq->submit; 322 i915_sw_fence_await(cb->fence); 323 init_irq_work(&cb->work, irq_execute_cb); 324 325 if (hook) { 326 cb->hook = hook; 327 cb->signal = i915_request_get(signal); 328 cb->work.func = irq_execute_cb_hook; 329 } 330 331 spin_lock_irq(&signal->lock); 332 if (i915_request_is_active(signal)) { 333 if (hook) { 334 hook(rq, &signal->fence); 335 i915_request_put(signal); 336 } 337 i915_sw_fence_complete(cb->fence); 338 kmem_cache_free(global.slab_execute_cbs, cb); 339 } else { 340 list_add_tail(&cb->link, &signal->execute_cb); 341 } 342 spin_unlock_irq(&signal->lock); 343 344 /* Copy across semaphore status as we need the same behaviour */ 345 rq->sched.flags |= signal->sched.flags; 346 return 0; 347 } 348 349 bool __i915_request_submit(struct i915_request *request) 350 { 351 struct intel_engine_cs *engine = request->engine; 352 bool result = false; 353 354 RQ_TRACE(request, "\n"); 355 356 GEM_BUG_ON(!irqs_disabled()); 357 lockdep_assert_held(&engine->active.lock); 358 359 /* 360 * With the advent of preempt-to-busy, we frequently encounter 361 * requests that we have unsubmitted from HW, but left running 362 * until the next ack and so have completed in the meantime. On 363 * resubmission of that completed request, we can skip 364 * updating the payload, and execlists can even skip submitting 365 * the request. 366 * 367 * We must remove the request from the caller's priority queue, 368 * and the caller must only call us when the request is in their 369 * priority queue, under the active.lock. This ensures that the 370 * request has *not* yet been retired and we can safely move 371 * the request into the engine->active.list where it will be 372 * dropped upon retiring. (Otherwise if resubmit a *retired* 373 * request, this would be a horrible use-after-free.) 374 */ 375 if (i915_request_completed(request)) 376 goto xfer; 377 378 if (intel_context_is_banned(request->context)) 379 i915_request_skip(request, -EIO); 380 381 /* 382 * Are we using semaphores when the gpu is already saturated? 383 * 384 * Using semaphores incurs a cost in having the GPU poll a 385 * memory location, busywaiting for it to change. The continual 386 * memory reads can have a noticeable impact on the rest of the 387 * system with the extra bus traffic, stalling the cpu as it too 388 * tries to access memory across the bus (perf stat -e bus-cycles). 389 * 390 * If we installed a semaphore on this request and we only submit 391 * the request after the signaler completed, that indicates the 392 * system is overloaded and using semaphores at this time only 393 * increases the amount of work we are doing. If so, we disable 394 * further use of semaphores until we are idle again, whence we 395 * optimistically try again. 396 */ 397 if (request->sched.semaphores && 398 i915_sw_fence_signaled(&request->semaphore)) 399 engine->saturated |= request->sched.semaphores; 400 401 engine->emit_fini_breadcrumb(request, 402 request->ring->vaddr + request->postfix); 403 404 trace_i915_request_execute(request); 405 engine->serial++; 406 result = true; 407 408 xfer: /* We may be recursing from the signal callback of another i915 fence */ 409 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 410 411 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) 412 list_move_tail(&request->sched.link, &engine->active.requests); 413 414 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 415 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 416 !i915_request_enable_breadcrumb(request)) 417 intel_engine_signal_breadcrumbs(engine); 418 419 __notify_execute_cb(request); 420 421 spin_unlock(&request->lock); 422 423 return result; 424 } 425 426 void i915_request_submit(struct i915_request *request) 427 { 428 struct intel_engine_cs *engine = request->engine; 429 unsigned long flags; 430 431 /* Will be called from irq-context when using foreign fences. */ 432 spin_lock_irqsave(&engine->active.lock, flags); 433 434 __i915_request_submit(request); 435 436 spin_unlock_irqrestore(&engine->active.lock, flags); 437 } 438 439 void __i915_request_unsubmit(struct i915_request *request) 440 { 441 struct intel_engine_cs *engine = request->engine; 442 443 RQ_TRACE(request, "\n"); 444 445 GEM_BUG_ON(!irqs_disabled()); 446 lockdep_assert_held(&engine->active.lock); 447 448 /* 449 * Only unwind in reverse order, required so that the per-context list 450 * is kept in seqno/ring order. 451 */ 452 453 /* We may be recursing from the signal callback of another i915 fence */ 454 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 455 456 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 457 i915_request_cancel_breadcrumb(request); 458 459 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 460 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 461 462 spin_unlock(&request->lock); 463 464 /* We've already spun, don't charge on resubmitting. */ 465 if (request->sched.semaphores && i915_request_started(request)) { 466 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 467 request->sched.semaphores = 0; 468 } 469 470 /* 471 * We don't need to wake_up any waiters on request->execute, they 472 * will get woken by any other event or us re-adding this request 473 * to the engine timeline (__i915_request_submit()). The waiters 474 * should be quite adapt at finding that the request now has a new 475 * global_seqno to the one they went to sleep on. 476 */ 477 } 478 479 void i915_request_unsubmit(struct i915_request *request) 480 { 481 struct intel_engine_cs *engine = request->engine; 482 unsigned long flags; 483 484 /* Will be called from irq-context when using foreign fences. */ 485 spin_lock_irqsave(&engine->active.lock, flags); 486 487 __i915_request_unsubmit(request); 488 489 spin_unlock_irqrestore(&engine->active.lock, flags); 490 } 491 492 static int __i915_sw_fence_call 493 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 494 { 495 struct i915_request *request = 496 container_of(fence, typeof(*request), submit); 497 498 switch (state) { 499 case FENCE_COMPLETE: 500 trace_i915_request_submit(request); 501 502 if (unlikely(fence->error)) 503 i915_request_skip(request, fence->error); 504 505 /* 506 * We need to serialize use of the submit_request() callback 507 * with its hotplugging performed during an emergency 508 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 509 * critical section in order to force i915_gem_set_wedged() to 510 * wait until the submit_request() is completed before 511 * proceeding. 512 */ 513 rcu_read_lock(); 514 request->engine->submit_request(request); 515 rcu_read_unlock(); 516 break; 517 518 case FENCE_FREE: 519 i915_request_put(request); 520 break; 521 } 522 523 return NOTIFY_DONE; 524 } 525 526 static int __i915_sw_fence_call 527 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 528 { 529 struct i915_request *request = 530 container_of(fence, typeof(*request), semaphore); 531 532 switch (state) { 533 case FENCE_COMPLETE: 534 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 535 break; 536 537 case FENCE_FREE: 538 i915_request_put(request); 539 break; 540 } 541 542 return NOTIFY_DONE; 543 } 544 545 static void retire_requests(struct intel_timeline *tl) 546 { 547 struct i915_request *rq, *rn; 548 549 list_for_each_entry_safe(rq, rn, &tl->requests, link) 550 if (!i915_request_retire(rq)) 551 break; 552 } 553 554 static noinline struct i915_request * 555 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 556 { 557 struct i915_request *rq; 558 559 if (list_empty(&tl->requests)) 560 goto out; 561 562 if (!gfpflags_allow_blocking(gfp)) 563 goto out; 564 565 /* Move our oldest request to the slab-cache (if not in use!) */ 566 rq = list_first_entry(&tl->requests, typeof(*rq), link); 567 i915_request_retire(rq); 568 569 rq = kmem_cache_alloc(global.slab_requests, 570 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 571 if (rq) 572 return rq; 573 574 /* Ratelimit ourselves to prevent oom from malicious clients */ 575 rq = list_last_entry(&tl->requests, typeof(*rq), link); 576 cond_synchronize_rcu(rq->rcustate); 577 578 /* Retire our old requests in the hope that we free some */ 579 retire_requests(tl); 580 581 out: 582 return kmem_cache_alloc(global.slab_requests, gfp); 583 } 584 585 static void __i915_request_ctor(void *arg) 586 { 587 struct i915_request *rq = arg; 588 589 spin_lock_init(&rq->lock); 590 i915_sched_node_init(&rq->sched); 591 i915_sw_fence_init(&rq->submit, submit_notify); 592 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 593 594 rq->file_priv = NULL; 595 rq->capture_list = NULL; 596 597 INIT_LIST_HEAD(&rq->execute_cb); 598 } 599 600 struct i915_request * 601 __i915_request_create(struct intel_context *ce, gfp_t gfp) 602 { 603 struct intel_timeline *tl = ce->timeline; 604 struct i915_request *rq; 605 u32 seqno; 606 int ret; 607 608 might_sleep_if(gfpflags_allow_blocking(gfp)); 609 610 /* Check that the caller provided an already pinned context */ 611 __intel_context_pin(ce); 612 613 /* 614 * Beware: Dragons be flying overhead. 615 * 616 * We use RCU to look up requests in flight. The lookups may 617 * race with the request being allocated from the slab freelist. 618 * That is the request we are writing to here, may be in the process 619 * of being read by __i915_active_request_get_rcu(). As such, 620 * we have to be very careful when overwriting the contents. During 621 * the RCU lookup, we change chase the request->engine pointer, 622 * read the request->global_seqno and increment the reference count. 623 * 624 * The reference count is incremented atomically. If it is zero, 625 * the lookup knows the request is unallocated and complete. Otherwise, 626 * it is either still in use, or has been reallocated and reset 627 * with dma_fence_init(). This increment is safe for release as we 628 * check that the request we have a reference to and matches the active 629 * request. 630 * 631 * Before we increment the refcount, we chase the request->engine 632 * pointer. We must not call kmem_cache_zalloc() or else we set 633 * that pointer to NULL and cause a crash during the lookup. If 634 * we see the request is completed (based on the value of the 635 * old engine and seqno), the lookup is complete and reports NULL. 636 * If we decide the request is not completed (new engine or seqno), 637 * then we grab a reference and double check that it is still the 638 * active request - which it won't be and restart the lookup. 639 * 640 * Do not use kmem_cache_zalloc() here! 641 */ 642 rq = kmem_cache_alloc(global.slab_requests, 643 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 644 if (unlikely(!rq)) { 645 rq = request_alloc_slow(tl, gfp); 646 if (!rq) { 647 ret = -ENOMEM; 648 goto err_unreserve; 649 } 650 } 651 652 ret = intel_timeline_get_seqno(tl, rq, &seqno); 653 if (ret) 654 goto err_free; 655 656 rq->i915 = ce->engine->i915; 657 rq->context = ce; 658 rq->engine = ce->engine; 659 rq->ring = ce->ring; 660 rq->execution_mask = ce->engine->mask; 661 rq->flags = 0; 662 663 RCU_INIT_POINTER(rq->timeline, tl); 664 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 665 rq->hwsp_seqno = tl->hwsp_seqno; 666 667 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 668 669 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 670 tl->fence_context, seqno); 671 672 /* We bump the ref for the fence chain */ 673 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 674 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 675 676 i915_sched_node_reinit(&rq->sched); 677 678 /* No zalloc, everything must be cleared after use */ 679 rq->batch = NULL; 680 GEM_BUG_ON(rq->file_priv); 681 GEM_BUG_ON(rq->capture_list); 682 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 683 684 /* 685 * Reserve space in the ring buffer for all the commands required to 686 * eventually emit this request. This is to guarantee that the 687 * i915_request_add() call can't fail. Note that the reserve may need 688 * to be redone if the request is not actually submitted straight 689 * away, e.g. because a GPU scheduler has deferred it. 690 * 691 * Note that due to how we add reserved_space to intel_ring_begin() 692 * we need to double our request to ensure that if we need to wrap 693 * around inside i915_request_add() there is sufficient space at 694 * the beginning of the ring as well. 695 */ 696 rq->reserved_space = 697 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 698 699 /* 700 * Record the position of the start of the request so that 701 * should we detect the updated seqno part-way through the 702 * GPU processing the request, we never over-estimate the 703 * position of the head. 704 */ 705 rq->head = rq->ring->emit; 706 707 ret = rq->engine->request_alloc(rq); 708 if (ret) 709 goto err_unwind; 710 711 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 712 713 intel_context_mark_active(ce); 714 return rq; 715 716 err_unwind: 717 ce->ring->emit = rq->head; 718 719 /* Make sure we didn't add ourselves to external state before freeing */ 720 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 721 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 722 723 err_free: 724 kmem_cache_free(global.slab_requests, rq); 725 err_unreserve: 726 intel_context_unpin(ce); 727 return ERR_PTR(ret); 728 } 729 730 struct i915_request * 731 i915_request_create(struct intel_context *ce) 732 { 733 struct i915_request *rq; 734 struct intel_timeline *tl; 735 736 tl = intel_context_timeline_lock(ce); 737 if (IS_ERR(tl)) 738 return ERR_CAST(tl); 739 740 /* Move our oldest request to the slab-cache (if not in use!) */ 741 rq = list_first_entry(&tl->requests, typeof(*rq), link); 742 if (!list_is_last(&rq->link, &tl->requests)) 743 i915_request_retire(rq); 744 745 intel_context_enter(ce); 746 rq = __i915_request_create(ce, GFP_KERNEL); 747 intel_context_exit(ce); /* active reference transferred to request */ 748 if (IS_ERR(rq)) 749 goto err_unlock; 750 751 /* Check that we do not interrupt ourselves with a new request */ 752 rq->cookie = lockdep_pin_lock(&tl->mutex); 753 754 return rq; 755 756 err_unlock: 757 intel_context_timeline_unlock(tl); 758 return rq; 759 } 760 761 static int 762 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 763 { 764 struct dma_fence *fence; 765 int err; 766 767 GEM_BUG_ON(i915_request_timeline(rq) == 768 rcu_access_pointer(signal->timeline)); 769 770 fence = NULL; 771 rcu_read_lock(); 772 spin_lock_irq(&signal->lock); 773 if (!i915_request_started(signal) && 774 !list_is_first(&signal->link, 775 &rcu_dereference(signal->timeline)->requests)) { 776 struct i915_request *prev = list_prev_entry(signal, link); 777 778 /* 779 * Peek at the request before us in the timeline. That 780 * request will only be valid before it is retired, so 781 * after acquiring a reference to it, confirm that it is 782 * still part of the signaler's timeline. 783 */ 784 if (i915_request_get_rcu(prev)) { 785 if (list_next_entry(prev, link) == signal) 786 fence = &prev->fence; 787 else 788 i915_request_put(prev); 789 } 790 } 791 spin_unlock_irq(&signal->lock); 792 rcu_read_unlock(); 793 if (!fence) 794 return 0; 795 796 err = 0; 797 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 798 err = i915_sw_fence_await_dma_fence(&rq->submit, 799 fence, 0, 800 I915_FENCE_GFP); 801 dma_fence_put(fence); 802 803 return err; 804 } 805 806 static intel_engine_mask_t 807 already_busywaiting(struct i915_request *rq) 808 { 809 /* 810 * Polling a semaphore causes bus traffic, delaying other users of 811 * both the GPU and CPU. We want to limit the impact on others, 812 * while taking advantage of early submission to reduce GPU 813 * latency. Therefore we restrict ourselves to not using more 814 * than one semaphore from each source, and not using a semaphore 815 * if we have detected the engine is saturated (i.e. would not be 816 * submitted early and cause bus traffic reading an already passed 817 * semaphore). 818 * 819 * See the are-we-too-late? check in __i915_request_submit(). 820 */ 821 return rq->sched.semaphores | rq->engine->saturated; 822 } 823 824 static int 825 __emit_semaphore_wait(struct i915_request *to, 826 struct i915_request *from, 827 u32 seqno) 828 { 829 const int has_token = INTEL_GEN(to->i915) >= 12; 830 u32 hwsp_offset; 831 int len, err; 832 u32 *cs; 833 834 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 835 836 /* We need to pin the signaler's HWSP until we are finished reading. */ 837 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 838 if (err) 839 return err; 840 841 len = 4; 842 if (has_token) 843 len += 2; 844 845 cs = intel_ring_begin(to, len); 846 if (IS_ERR(cs)) 847 return PTR_ERR(cs); 848 849 /* 850 * Using greater-than-or-equal here means we have to worry 851 * about seqno wraparound. To side step that issue, we swap 852 * the timeline HWSP upon wrapping, so that everyone listening 853 * for the old (pre-wrap) values do not see the much smaller 854 * (post-wrap) values than they were expecting (and so wait 855 * forever). 856 */ 857 *cs++ = (MI_SEMAPHORE_WAIT | 858 MI_SEMAPHORE_GLOBAL_GTT | 859 MI_SEMAPHORE_POLL | 860 MI_SEMAPHORE_SAD_GTE_SDD) + 861 has_token; 862 *cs++ = seqno; 863 *cs++ = hwsp_offset; 864 *cs++ = 0; 865 if (has_token) { 866 *cs++ = 0; 867 *cs++ = MI_NOOP; 868 } 869 870 intel_ring_advance(to, cs); 871 return 0; 872 } 873 874 static int 875 emit_semaphore_wait(struct i915_request *to, 876 struct i915_request *from, 877 gfp_t gfp) 878 { 879 /* Just emit the first semaphore we see as request space is limited. */ 880 if (already_busywaiting(to) & from->engine->mask) 881 goto await_fence; 882 883 if (i915_request_await_start(to, from) < 0) 884 goto await_fence; 885 886 /* Only submit our spinner after the signaler is running! */ 887 if (__await_execution(to, from, NULL, gfp)) 888 goto await_fence; 889 890 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 891 goto await_fence; 892 893 to->sched.semaphores |= from->engine->mask; 894 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 895 return 0; 896 897 await_fence: 898 return i915_sw_fence_await_dma_fence(&to->submit, 899 &from->fence, 0, 900 I915_FENCE_GFP); 901 } 902 903 static int 904 i915_request_await_request(struct i915_request *to, struct i915_request *from) 905 { 906 int ret; 907 908 GEM_BUG_ON(to == from); 909 GEM_BUG_ON(to->timeline == from->timeline); 910 911 if (i915_request_completed(from)) 912 return 0; 913 914 if (to->engine->schedule) { 915 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 916 if (ret < 0) 917 return ret; 918 } 919 920 if (to->engine == from->engine) 921 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 922 &from->submit, 923 I915_FENCE_GFP); 924 else if (intel_context_use_semaphores(to->context)) 925 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 926 else 927 ret = i915_sw_fence_await_dma_fence(&to->submit, 928 &from->fence, 0, 929 I915_FENCE_GFP); 930 if (ret < 0) 931 return ret; 932 933 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 934 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 935 &from->fence, 0, 936 I915_FENCE_GFP); 937 if (ret < 0) 938 return ret; 939 } 940 941 return 0; 942 } 943 944 int 945 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 946 { 947 struct dma_fence **child = &fence; 948 unsigned int nchild = 1; 949 int ret; 950 951 /* 952 * Note that if the fence-array was created in signal-on-any mode, 953 * we should *not* decompose it into its individual fences. However, 954 * we don't currently store which mode the fence-array is operating 955 * in. Fortunately, the only user of signal-on-any is private to 956 * amdgpu and we should not see any incoming fence-array from 957 * sync-file being in signal-on-any mode. 958 */ 959 if (dma_fence_is_array(fence)) { 960 struct dma_fence_array *array = to_dma_fence_array(fence); 961 962 child = array->fences; 963 nchild = array->num_fences; 964 GEM_BUG_ON(!nchild); 965 } 966 967 do { 968 fence = *child++; 969 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 970 i915_sw_fence_set_error_once(&rq->submit, fence->error); 971 continue; 972 } 973 974 /* 975 * Requests on the same timeline are explicitly ordered, along 976 * with their dependencies, by i915_request_add() which ensures 977 * that requests are submitted in-order through each ring. 978 */ 979 if (fence->context == rq->fence.context) 980 continue; 981 982 /* Squash repeated waits to the same timelines */ 983 if (fence->context && 984 intel_timeline_sync_is_later(i915_request_timeline(rq), 985 fence)) 986 continue; 987 988 if (dma_fence_is_i915(fence)) 989 ret = i915_request_await_request(rq, to_request(fence)); 990 else 991 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 992 fence->context ? I915_FENCE_TIMEOUT : 0, 993 I915_FENCE_GFP); 994 if (ret < 0) 995 return ret; 996 997 /* Record the latest fence used against each timeline */ 998 if (fence->context) 999 intel_timeline_sync_set(i915_request_timeline(rq), 1000 fence); 1001 } while (--nchild); 1002 1003 return 0; 1004 } 1005 1006 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1007 struct dma_fence *fence) 1008 { 1009 return __intel_timeline_sync_is_later(tl, 1010 fence->context, 1011 fence->seqno - 1); 1012 } 1013 1014 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1015 const struct dma_fence *fence) 1016 { 1017 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1018 } 1019 1020 static int 1021 __i915_request_await_execution(struct i915_request *to, 1022 struct i915_request *from, 1023 void (*hook)(struct i915_request *rq, 1024 struct dma_fence *signal)) 1025 { 1026 int err; 1027 1028 /* Submit both requests at the same time */ 1029 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1030 if (err) 1031 return err; 1032 1033 /* Squash repeated depenendices to the same timelines */ 1034 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1035 &from->fence)) 1036 return 0; 1037 1038 /* Ensure both start together [after all semaphores in signal] */ 1039 if (intel_engine_has_semaphores(to->engine)) 1040 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1041 else 1042 err = i915_request_await_start(to, from); 1043 if (err < 0) 1044 return err; 1045 1046 /* Couple the dependency tree for PI on this exposed to->fence */ 1047 if (to->engine->schedule) { 1048 err = i915_sched_node_add_dependency(&to->sched, &from->sched); 1049 if (err < 0) 1050 return err; 1051 } 1052 1053 return intel_timeline_sync_set_start(i915_request_timeline(to), 1054 &from->fence); 1055 } 1056 1057 int 1058 i915_request_await_execution(struct i915_request *rq, 1059 struct dma_fence *fence, 1060 void (*hook)(struct i915_request *rq, 1061 struct dma_fence *signal)) 1062 { 1063 struct dma_fence **child = &fence; 1064 unsigned int nchild = 1; 1065 int ret; 1066 1067 if (dma_fence_is_array(fence)) { 1068 struct dma_fence_array *array = to_dma_fence_array(fence); 1069 1070 /* XXX Error for signal-on-any fence arrays */ 1071 1072 child = array->fences; 1073 nchild = array->num_fences; 1074 GEM_BUG_ON(!nchild); 1075 } 1076 1077 do { 1078 fence = *child++; 1079 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1080 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1081 continue; 1082 } 1083 1084 /* 1085 * We don't squash repeated fence dependencies here as we 1086 * want to run our callback in all cases. 1087 */ 1088 1089 if (dma_fence_is_i915(fence)) 1090 ret = __i915_request_await_execution(rq, 1091 to_request(fence), 1092 hook); 1093 else 1094 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1095 I915_FENCE_TIMEOUT, 1096 GFP_KERNEL); 1097 if (ret < 0) 1098 return ret; 1099 } while (--nchild); 1100 1101 return 0; 1102 } 1103 1104 /** 1105 * i915_request_await_object - set this request to (async) wait upon a bo 1106 * @to: request we are wishing to use 1107 * @obj: object which may be in use on another ring. 1108 * @write: whether the wait is on behalf of a writer 1109 * 1110 * This code is meant to abstract object synchronization with the GPU. 1111 * Conceptually we serialise writes between engines inside the GPU. 1112 * We only allow one engine to write into a buffer at any time, but 1113 * multiple readers. To ensure each has a coherent view of memory, we must: 1114 * 1115 * - If there is an outstanding write request to the object, the new 1116 * request must wait for it to complete (either CPU or in hw, requests 1117 * on the same ring will be naturally ordered). 1118 * 1119 * - If we are a write request (pending_write_domain is set), the new 1120 * request must wait for outstanding read requests to complete. 1121 * 1122 * Returns 0 if successful, else propagates up the lower layer error. 1123 */ 1124 int 1125 i915_request_await_object(struct i915_request *to, 1126 struct drm_i915_gem_object *obj, 1127 bool write) 1128 { 1129 struct dma_fence *excl; 1130 int ret = 0; 1131 1132 if (write) { 1133 struct dma_fence **shared; 1134 unsigned int count, i; 1135 1136 ret = dma_resv_get_fences_rcu(obj->base.resv, 1137 &excl, &count, &shared); 1138 if (ret) 1139 return ret; 1140 1141 for (i = 0; i < count; i++) { 1142 ret = i915_request_await_dma_fence(to, shared[i]); 1143 if (ret) 1144 break; 1145 1146 dma_fence_put(shared[i]); 1147 } 1148 1149 for (; i < count; i++) 1150 dma_fence_put(shared[i]); 1151 kfree(shared); 1152 } else { 1153 excl = dma_resv_get_excl_rcu(obj->base.resv); 1154 } 1155 1156 if (excl) { 1157 if (ret == 0) 1158 ret = i915_request_await_dma_fence(to, excl); 1159 1160 dma_fence_put(excl); 1161 } 1162 1163 return ret; 1164 } 1165 1166 void i915_request_skip(struct i915_request *rq, int error) 1167 { 1168 void *vaddr = rq->ring->vaddr; 1169 u32 head; 1170 1171 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1172 dma_fence_set_error(&rq->fence, error); 1173 1174 if (rq->infix == rq->postfix) 1175 return; 1176 1177 /* 1178 * As this request likely depends on state from the lost 1179 * context, clear out all the user operations leaving the 1180 * breadcrumb at the end (so we get the fence notifications). 1181 */ 1182 head = rq->infix; 1183 if (rq->postfix < head) { 1184 memset(vaddr + head, 0, rq->ring->size - head); 1185 head = 0; 1186 } 1187 memset(vaddr + head, 0, rq->postfix - head); 1188 rq->infix = rq->postfix; 1189 } 1190 1191 static struct i915_request * 1192 __i915_request_add_to_timeline(struct i915_request *rq) 1193 { 1194 struct intel_timeline *timeline = i915_request_timeline(rq); 1195 struct i915_request *prev; 1196 1197 /* 1198 * Dependency tracking and request ordering along the timeline 1199 * is special cased so that we can eliminate redundant ordering 1200 * operations while building the request (we know that the timeline 1201 * itself is ordered, and here we guarantee it). 1202 * 1203 * As we know we will need to emit tracking along the timeline, 1204 * we embed the hooks into our request struct -- at the cost of 1205 * having to have specialised no-allocation interfaces (which will 1206 * be beneficial elsewhere). 1207 * 1208 * A second benefit to open-coding i915_request_await_request is 1209 * that we can apply a slight variant of the rules specialised 1210 * for timelines that jump between engines (such as virtual engines). 1211 * If we consider the case of virtual engine, we must emit a dma-fence 1212 * to prevent scheduling of the second request until the first is 1213 * complete (to maximise our greedy late load balancing) and this 1214 * precludes optimising to use semaphores serialisation of a single 1215 * timeline across engines. 1216 */ 1217 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1218 &rq->fence)); 1219 if (prev && !i915_request_completed(prev)) { 1220 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1221 i915_sw_fence_await_sw_fence(&rq->submit, 1222 &prev->submit, 1223 &rq->submitq); 1224 else 1225 __i915_sw_fence_await_dma_fence(&rq->submit, 1226 &prev->fence, 1227 &rq->dmaq); 1228 if (rq->engine->schedule) 1229 __i915_sched_node_add_dependency(&rq->sched, 1230 &prev->sched, 1231 &rq->dep, 1232 0); 1233 } 1234 1235 list_add_tail(&rq->link, &timeline->requests); 1236 1237 /* 1238 * Make sure that no request gazumped us - if it was allocated after 1239 * our i915_request_alloc() and called __i915_request_add() before 1240 * us, the timeline will hold its seqno which is later than ours. 1241 */ 1242 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1243 1244 return prev; 1245 } 1246 1247 /* 1248 * NB: This function is not allowed to fail. Doing so would mean the the 1249 * request is not being tracked for completion but the work itself is 1250 * going to happen on the hardware. This would be a Bad Thing(tm). 1251 */ 1252 struct i915_request *__i915_request_commit(struct i915_request *rq) 1253 { 1254 struct intel_engine_cs *engine = rq->engine; 1255 struct intel_ring *ring = rq->ring; 1256 u32 *cs; 1257 1258 RQ_TRACE(rq, "\n"); 1259 1260 /* 1261 * To ensure that this call will not fail, space for its emissions 1262 * should already have been reserved in the ring buffer. Let the ring 1263 * know that it is time to use that space up. 1264 */ 1265 GEM_BUG_ON(rq->reserved_space > ring->space); 1266 rq->reserved_space = 0; 1267 rq->emitted_jiffies = jiffies; 1268 1269 /* 1270 * Record the position of the start of the breadcrumb so that 1271 * should we detect the updated seqno part-way through the 1272 * GPU processing the request, we never over-estimate the 1273 * position of the ring's HEAD. 1274 */ 1275 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1276 GEM_BUG_ON(IS_ERR(cs)); 1277 rq->postfix = intel_ring_offset(rq, cs); 1278 1279 return __i915_request_add_to_timeline(rq); 1280 } 1281 1282 void __i915_request_queue(struct i915_request *rq, 1283 const struct i915_sched_attr *attr) 1284 { 1285 /* 1286 * Let the backend know a new request has arrived that may need 1287 * to adjust the existing execution schedule due to a high priority 1288 * request - i.e. we may want to preempt the current request in order 1289 * to run a high priority dependency chain *before* we can execute this 1290 * request. 1291 * 1292 * This is called before the request is ready to run so that we can 1293 * decide whether to preempt the entire chain so that it is ready to 1294 * run at the earliest possible convenience. 1295 */ 1296 i915_sw_fence_commit(&rq->semaphore); 1297 if (attr && rq->engine->schedule) 1298 rq->engine->schedule(rq, attr); 1299 i915_sw_fence_commit(&rq->submit); 1300 } 1301 1302 void i915_request_add(struct i915_request *rq) 1303 { 1304 struct intel_timeline * const tl = i915_request_timeline(rq); 1305 struct i915_sched_attr attr = {}; 1306 struct i915_request *prev; 1307 1308 lockdep_assert_held(&tl->mutex); 1309 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1310 1311 trace_i915_request_add(rq); 1312 1313 prev = __i915_request_commit(rq); 1314 1315 if (rcu_access_pointer(rq->context->gem_context)) 1316 attr = i915_request_gem_context(rq)->sched; 1317 1318 /* 1319 * Boost actual workloads past semaphores! 1320 * 1321 * With semaphores we spin on one engine waiting for another, 1322 * simply to reduce the latency of starting our work when 1323 * the signaler completes. However, if there is any other 1324 * work that we could be doing on this engine instead, that 1325 * is better utilisation and will reduce the overall duration 1326 * of the current work. To avoid PI boosting a semaphore 1327 * far in the distance past over useful work, we keep a history 1328 * of any semaphore use along our dependency chain. 1329 */ 1330 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1331 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1332 1333 /* 1334 * Boost priorities to new clients (new request flows). 1335 * 1336 * Allow interactive/synchronous clients to jump ahead of 1337 * the bulk clients. (FQ_CODEL) 1338 */ 1339 if (list_empty(&rq->sched.signalers_list)) 1340 attr.priority |= I915_PRIORITY_WAIT; 1341 1342 local_bh_disable(); 1343 __i915_request_queue(rq, &attr); 1344 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1345 1346 /* 1347 * In typical scenarios, we do not expect the previous request on 1348 * the timeline to be still tracked by timeline->last_request if it 1349 * has been completed. If the completed request is still here, that 1350 * implies that request retirement is a long way behind submission, 1351 * suggesting that we haven't been retiring frequently enough from 1352 * the combination of retire-before-alloc, waiters and the background 1353 * retirement worker. So if the last request on this timeline was 1354 * already completed, do a catch up pass, flushing the retirement queue 1355 * up to this client. Since we have now moved the heaviest operations 1356 * during retirement onto secondary workers, such as freeing objects 1357 * or contexts, retiring a bunch of requests is mostly list management 1358 * (and cache misses), and so we should not be overly penalizing this 1359 * client by performing excess work, though we may still performing 1360 * work on behalf of others -- but instead we should benefit from 1361 * improved resource management. (Well, that's the theory at least.) 1362 */ 1363 if (prev && 1364 i915_request_completed(prev) && 1365 rcu_access_pointer(prev->timeline) == tl) 1366 i915_request_retire_upto(prev); 1367 1368 mutex_unlock(&tl->mutex); 1369 } 1370 1371 static unsigned long local_clock_us(unsigned int *cpu) 1372 { 1373 unsigned long t; 1374 1375 /* 1376 * Cheaply and approximately convert from nanoseconds to microseconds. 1377 * The result and subsequent calculations are also defined in the same 1378 * approximate microseconds units. The principal source of timing 1379 * error here is from the simple truncation. 1380 * 1381 * Note that local_clock() is only defined wrt to the current CPU; 1382 * the comparisons are no longer valid if we switch CPUs. Instead of 1383 * blocking preemption for the entire busywait, we can detect the CPU 1384 * switch and use that as indicator of system load and a reason to 1385 * stop busywaiting, see busywait_stop(). 1386 */ 1387 *cpu = get_cpu(); 1388 t = local_clock() >> 10; 1389 put_cpu(); 1390 1391 return t; 1392 } 1393 1394 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1395 { 1396 unsigned int this_cpu; 1397 1398 if (time_after(local_clock_us(&this_cpu), timeout)) 1399 return true; 1400 1401 return this_cpu != cpu; 1402 } 1403 1404 static bool __i915_spin_request(const struct i915_request * const rq, 1405 int state, unsigned long timeout_us) 1406 { 1407 unsigned int cpu; 1408 1409 /* 1410 * Only wait for the request if we know it is likely to complete. 1411 * 1412 * We don't track the timestamps around requests, nor the average 1413 * request length, so we do not have a good indicator that this 1414 * request will complete within the timeout. What we do know is the 1415 * order in which requests are executed by the context and so we can 1416 * tell if the request has been started. If the request is not even 1417 * running yet, it is a fair assumption that it will not complete 1418 * within our relatively short timeout. 1419 */ 1420 if (!i915_request_is_running(rq)) 1421 return false; 1422 1423 /* 1424 * When waiting for high frequency requests, e.g. during synchronous 1425 * rendering split between the CPU and GPU, the finite amount of time 1426 * required to set up the irq and wait upon it limits the response 1427 * rate. By busywaiting on the request completion for a short while we 1428 * can service the high frequency waits as quick as possible. However, 1429 * if it is a slow request, we want to sleep as quickly as possible. 1430 * The tradeoff between waiting and sleeping is roughly the time it 1431 * takes to sleep on a request, on the order of a microsecond. 1432 */ 1433 1434 timeout_us += local_clock_us(&cpu); 1435 do { 1436 if (i915_request_completed(rq)) 1437 return true; 1438 1439 if (signal_pending_state(state, current)) 1440 break; 1441 1442 if (busywait_stop(timeout_us, cpu)) 1443 break; 1444 1445 cpu_relax(); 1446 } while (!need_resched()); 1447 1448 return false; 1449 } 1450 1451 struct request_wait { 1452 struct dma_fence_cb cb; 1453 struct task_struct *tsk; 1454 }; 1455 1456 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1457 { 1458 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1459 1460 wake_up_process(wait->tsk); 1461 } 1462 1463 /** 1464 * i915_request_wait - wait until execution of request has finished 1465 * @rq: the request to wait upon 1466 * @flags: how to wait 1467 * @timeout: how long to wait in jiffies 1468 * 1469 * i915_request_wait() waits for the request to be completed, for a 1470 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1471 * unbounded wait). 1472 * 1473 * Returns the remaining time (in jiffies) if the request completed, which may 1474 * be zero or -ETIME if the request is unfinished after the timeout expires. 1475 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1476 * pending before the request completes. 1477 */ 1478 long i915_request_wait(struct i915_request *rq, 1479 unsigned int flags, 1480 long timeout) 1481 { 1482 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1483 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1484 struct request_wait wait; 1485 1486 might_sleep(); 1487 GEM_BUG_ON(timeout < 0); 1488 1489 if (dma_fence_is_signaled(&rq->fence)) 1490 return timeout; 1491 1492 if (!timeout) 1493 return -ETIME; 1494 1495 trace_i915_request_wait_begin(rq, flags); 1496 1497 /* 1498 * We must never wait on the GPU while holding a lock as we 1499 * may need to perform a GPU reset. So while we don't need to 1500 * serialise wait/reset with an explicit lock, we do want 1501 * lockdep to detect potential dependency cycles. 1502 */ 1503 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1504 1505 /* 1506 * Optimistic spin before touching IRQs. 1507 * 1508 * We may use a rather large value here to offset the penalty of 1509 * switching away from the active task. Frequently, the client will 1510 * wait upon an old swapbuffer to throttle itself to remain within a 1511 * frame of the gpu. If the client is running in lockstep with the gpu, 1512 * then it should not be waiting long at all, and a sleep now will incur 1513 * extra scheduler latency in producing the next frame. To try to 1514 * avoid adding the cost of enabling/disabling the interrupt to the 1515 * short wait, we first spin to see if the request would have completed 1516 * in the time taken to setup the interrupt. 1517 * 1518 * We need upto 5us to enable the irq, and upto 20us to hide the 1519 * scheduler latency of a context switch, ignoring the secondary 1520 * impacts from a context switch such as cache eviction. 1521 * 1522 * The scheme used for low-latency IO is called "hybrid interrupt 1523 * polling". The suggestion there is to sleep until just before you 1524 * expect to be woken by the device interrupt and then poll for its 1525 * completion. That requires having a good predictor for the request 1526 * duration, which we currently lack. 1527 */ 1528 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) && 1529 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1530 dma_fence_signal(&rq->fence); 1531 goto out; 1532 } 1533 1534 /* 1535 * This client is about to stall waiting for the GPU. In many cases 1536 * this is undesirable and limits the throughput of the system, as 1537 * many clients cannot continue processing user input/output whilst 1538 * blocked. RPS autotuning may take tens of milliseconds to respond 1539 * to the GPU load and thus incurs additional latency for the client. 1540 * We can circumvent that by promoting the GPU frequency to maximum 1541 * before we sleep. This makes the GPU throttle up much more quickly 1542 * (good for benchmarks and user experience, e.g. window animations), 1543 * but at a cost of spending more power processing the workload 1544 * (bad for battery). 1545 */ 1546 if (flags & I915_WAIT_PRIORITY) { 1547 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1548 intel_rps_boost(rq); 1549 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1550 } 1551 1552 wait.tsk = current; 1553 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1554 goto out; 1555 1556 for (;;) { 1557 set_current_state(state); 1558 1559 if (i915_request_completed(rq)) { 1560 dma_fence_signal(&rq->fence); 1561 break; 1562 } 1563 1564 if (signal_pending_state(state, current)) { 1565 timeout = -ERESTARTSYS; 1566 break; 1567 } 1568 1569 if (!timeout) { 1570 timeout = -ETIME; 1571 break; 1572 } 1573 1574 intel_engine_flush_submission(rq->engine); 1575 timeout = io_schedule_timeout(timeout); 1576 } 1577 __set_current_state(TASK_RUNNING); 1578 1579 dma_fence_remove_callback(&rq->fence, &wait.cb); 1580 1581 out: 1582 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1583 trace_i915_request_wait_end(rq); 1584 return timeout; 1585 } 1586 1587 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1588 #include "selftests/mock_request.c" 1589 #include "selftests/i915_request.c" 1590 #endif 1591 1592 static void i915_global_request_shrink(void) 1593 { 1594 kmem_cache_shrink(global.slab_dependencies); 1595 kmem_cache_shrink(global.slab_execute_cbs); 1596 kmem_cache_shrink(global.slab_requests); 1597 } 1598 1599 static void i915_global_request_exit(void) 1600 { 1601 kmem_cache_destroy(global.slab_dependencies); 1602 kmem_cache_destroy(global.slab_execute_cbs); 1603 kmem_cache_destroy(global.slab_requests); 1604 } 1605 1606 static struct i915_global_request global = { { 1607 .shrink = i915_global_request_shrink, 1608 .exit = i915_global_request_exit, 1609 } }; 1610 1611 int __init i915_global_request_init(void) 1612 { 1613 global.slab_requests = 1614 kmem_cache_create("i915_request", 1615 sizeof(struct i915_request), 1616 __alignof__(struct i915_request), 1617 SLAB_HWCACHE_ALIGN | 1618 SLAB_RECLAIM_ACCOUNT | 1619 SLAB_TYPESAFE_BY_RCU, 1620 __i915_request_ctor); 1621 if (!global.slab_requests) 1622 return -ENOMEM; 1623 1624 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1625 SLAB_HWCACHE_ALIGN | 1626 SLAB_RECLAIM_ACCOUNT | 1627 SLAB_TYPESAFE_BY_RCU); 1628 if (!global.slab_execute_cbs) 1629 goto err_requests; 1630 1631 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1632 SLAB_HWCACHE_ALIGN | 1633 SLAB_RECLAIM_ACCOUNT); 1634 if (!global.slab_dependencies) 1635 goto err_execute_cbs; 1636 1637 i915_global_register(&global.base); 1638 return 0; 1639 1640 err_execute_cbs: 1641 kmem_cache_destroy(global.slab_execute_cbs); 1642 err_requests: 1643 kmem_cache_destroy(global.slab_requests); 1644 return -ENOMEM; 1645 } 1646