xref: /openbmc/linux/drivers/gpu/drm/i915/i915_request.c (revision 817396dc9f6ab2481b94071de2e586aae876e89c)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36 
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42 
43 struct execute_cb {
44 	struct list_head link;
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_dependencies;
55 	struct kmem_cache *slab_execute_cbs;
56 } global;
57 
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return dev_name(to_request(fence)->i915->drm.dev);
61 }
62 
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	const struct i915_gem_context *ctx;
66 
67 	/*
68 	 * The timeline struct (as part of the ppgtt underneath a context)
69 	 * may be freed when the request is no longer in use by the GPU.
70 	 * We could extend the life of a context to beyond that of all
71 	 * fences, possibly keeping the hw resource around indefinitely,
72 	 * or we just give them a false name. Since
73 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 	 * lie seems justifiable.
75 	 */
76 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 		return "signaled";
78 
79 	ctx = i915_request_gem_context(to_request(fence));
80 	if (!ctx)
81 		return "[" DRIVER_NAME "]";
82 
83 	return ctx->name;
84 }
85 
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 	return i915_request_completed(to_request(fence));
89 }
90 
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 	return i915_request_enable_breadcrumb(to_request(fence));
94 }
95 
96 static signed long i915_fence_wait(struct dma_fence *fence,
97 				   bool interruptible,
98 				   signed long timeout)
99 {
100 	return i915_request_wait(to_request(fence),
101 				 interruptible | I915_WAIT_PRIORITY,
102 				 timeout);
103 }
104 
105 static void i915_fence_release(struct dma_fence *fence)
106 {
107 	struct i915_request *rq = to_request(fence);
108 
109 	/*
110 	 * The request is put onto a RCU freelist (i.e. the address
111 	 * is immediately reused), mark the fences as being freed now.
112 	 * Otherwise the debugobjects for the fences are only marked as
113 	 * freed when the slab cache itself is freed, and so we would get
114 	 * caught trying to reuse dead objects.
115 	 */
116 	i915_sw_fence_fini(&rq->submit);
117 	i915_sw_fence_fini(&rq->semaphore);
118 
119 	kmem_cache_free(global.slab_requests, rq);
120 }
121 
122 const struct dma_fence_ops i915_fence_ops = {
123 	.get_driver_name = i915_fence_get_driver_name,
124 	.get_timeline_name = i915_fence_get_timeline_name,
125 	.enable_signaling = i915_fence_enable_signaling,
126 	.signaled = i915_fence_signaled,
127 	.wait = i915_fence_wait,
128 	.release = i915_fence_release,
129 };
130 
131 static void irq_execute_cb(struct irq_work *wrk)
132 {
133 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134 
135 	i915_sw_fence_complete(cb->fence);
136 	kmem_cache_free(global.slab_execute_cbs, cb);
137 }
138 
139 static void irq_execute_cb_hook(struct irq_work *wrk)
140 {
141 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
142 
143 	cb->hook(container_of(cb->fence, struct i915_request, submit),
144 		 &cb->signal->fence);
145 	i915_request_put(cb->signal);
146 
147 	irq_execute_cb(wrk);
148 }
149 
150 static void __notify_execute_cb(struct i915_request *rq)
151 {
152 	struct execute_cb *cb;
153 
154 	lockdep_assert_held(&rq->lock);
155 
156 	if (list_empty(&rq->execute_cb))
157 		return;
158 
159 	list_for_each_entry(cb, &rq->execute_cb, link)
160 		irq_work_queue(&cb->work);
161 
162 	/*
163 	 * XXX Rollback on __i915_request_unsubmit()
164 	 *
165 	 * In the future, perhaps when we have an active time-slicing scheduler,
166 	 * it will be interesting to unsubmit parallel execution and remove
167 	 * busywaits from the GPU until their master is restarted. This is
168 	 * quite hairy, we have to carefully rollback the fence and do a
169 	 * preempt-to-idle cycle on the target engine, all the while the
170 	 * master execute_cb may refire.
171 	 */
172 	INIT_LIST_HEAD(&rq->execute_cb);
173 }
174 
175 static inline void
176 remove_from_client(struct i915_request *request)
177 {
178 	struct drm_i915_file_private *file_priv;
179 
180 	if (!READ_ONCE(request->file_priv))
181 		return;
182 
183 	rcu_read_lock();
184 	file_priv = xchg(&request->file_priv, NULL);
185 	if (file_priv) {
186 		spin_lock(&file_priv->mm.lock);
187 		list_del(&request->client_link);
188 		spin_unlock(&file_priv->mm.lock);
189 	}
190 	rcu_read_unlock();
191 }
192 
193 static void free_capture_list(struct i915_request *request)
194 {
195 	struct i915_capture_list *capture;
196 
197 	capture = fetch_and_zero(&request->capture_list);
198 	while (capture) {
199 		struct i915_capture_list *next = capture->next;
200 
201 		kfree(capture);
202 		capture = next;
203 	}
204 }
205 
206 static void remove_from_engine(struct i915_request *rq)
207 {
208 	struct intel_engine_cs *engine, *locked;
209 
210 	/*
211 	 * Virtual engines complicate acquiring the engine timeline lock,
212 	 * as their rq->engine pointer is not stable until under that
213 	 * engine lock. The simple ploy we use is to take the lock then
214 	 * check that the rq still belongs to the newly locked engine.
215 	 */
216 	locked = READ_ONCE(rq->engine);
217 	spin_lock_irq(&locked->active.lock);
218 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
219 		spin_unlock(&locked->active.lock);
220 		spin_lock(&engine->active.lock);
221 		locked = engine;
222 	}
223 	list_del_init(&rq->sched.link);
224 	spin_unlock_irq(&locked->active.lock);
225 }
226 
227 bool i915_request_retire(struct i915_request *rq)
228 {
229 	if (!i915_request_completed(rq))
230 		return false;
231 
232 	RQ_TRACE(rq, "\n");
233 
234 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
235 	trace_i915_request_retire(rq);
236 
237 	/*
238 	 * We know the GPU must have read the request to have
239 	 * sent us the seqno + interrupt, so use the position
240 	 * of tail of the request to update the last known position
241 	 * of the GPU head.
242 	 *
243 	 * Note this requires that we are always called in request
244 	 * completion order.
245 	 */
246 	GEM_BUG_ON(!list_is_first(&rq->link,
247 				  &i915_request_timeline(rq)->requests));
248 	rq->ring->head = rq->postfix;
249 
250 	/*
251 	 * We only loosely track inflight requests across preemption,
252 	 * and so we may find ourselves attempting to retire a _completed_
253 	 * request that we have removed from the HW and put back on a run
254 	 * queue.
255 	 */
256 	remove_from_engine(rq);
257 
258 	spin_lock_irq(&rq->lock);
259 	i915_request_mark_complete(rq);
260 	if (!i915_request_signaled(rq))
261 		dma_fence_signal_locked(&rq->fence);
262 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
263 		i915_request_cancel_breadcrumb(rq);
264 	if (i915_request_has_waitboost(rq)) {
265 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
266 		atomic_dec(&rq->engine->gt->rps.num_waiters);
267 	}
268 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
269 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
270 		__notify_execute_cb(rq);
271 	}
272 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
273 	spin_unlock_irq(&rq->lock);
274 
275 	remove_from_client(rq);
276 	list_del(&rq->link);
277 
278 	intel_context_exit(rq->context);
279 	intel_context_unpin(rq->context);
280 
281 	free_capture_list(rq);
282 	i915_sched_node_fini(&rq->sched);
283 	i915_request_put(rq);
284 
285 	return true;
286 }
287 
288 void i915_request_retire_upto(struct i915_request *rq)
289 {
290 	struct intel_timeline * const tl = i915_request_timeline(rq);
291 	struct i915_request *tmp;
292 
293 	RQ_TRACE(rq, "\n");
294 
295 	GEM_BUG_ON(!i915_request_completed(rq));
296 
297 	do {
298 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299 	} while (i915_request_retire(tmp) && tmp != rq);
300 }
301 
302 static int
303 __await_execution(struct i915_request *rq,
304 		  struct i915_request *signal,
305 		  void (*hook)(struct i915_request *rq,
306 			       struct dma_fence *signal),
307 		  gfp_t gfp)
308 {
309 	struct execute_cb *cb;
310 
311 	if (i915_request_is_active(signal)) {
312 		if (hook)
313 			hook(rq, &signal->fence);
314 		return 0;
315 	}
316 
317 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318 	if (!cb)
319 		return -ENOMEM;
320 
321 	cb->fence = &rq->submit;
322 	i915_sw_fence_await(cb->fence);
323 	init_irq_work(&cb->work, irq_execute_cb);
324 
325 	if (hook) {
326 		cb->hook = hook;
327 		cb->signal = i915_request_get(signal);
328 		cb->work.func = irq_execute_cb_hook;
329 	}
330 
331 	spin_lock_irq(&signal->lock);
332 	if (i915_request_is_active(signal)) {
333 		if (hook) {
334 			hook(rq, &signal->fence);
335 			i915_request_put(signal);
336 		}
337 		i915_sw_fence_complete(cb->fence);
338 		kmem_cache_free(global.slab_execute_cbs, cb);
339 	} else {
340 		list_add_tail(&cb->link, &signal->execute_cb);
341 	}
342 	spin_unlock_irq(&signal->lock);
343 
344 	/* Copy across semaphore status as we need the same behaviour */
345 	rq->sched.flags |= signal->sched.flags;
346 	return 0;
347 }
348 
349 bool __i915_request_submit(struct i915_request *request)
350 {
351 	struct intel_engine_cs *engine = request->engine;
352 	bool result = false;
353 
354 	RQ_TRACE(request, "\n");
355 
356 	GEM_BUG_ON(!irqs_disabled());
357 	lockdep_assert_held(&engine->active.lock);
358 
359 	/*
360 	 * With the advent of preempt-to-busy, we frequently encounter
361 	 * requests that we have unsubmitted from HW, but left running
362 	 * until the next ack and so have completed in the meantime. On
363 	 * resubmission of that completed request, we can skip
364 	 * updating the payload, and execlists can even skip submitting
365 	 * the request.
366 	 *
367 	 * We must remove the request from the caller's priority queue,
368 	 * and the caller must only call us when the request is in their
369 	 * priority queue, under the active.lock. This ensures that the
370 	 * request has *not* yet been retired and we can safely move
371 	 * the request into the engine->active.list where it will be
372 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
373 	 * request, this would be a horrible use-after-free.)
374 	 */
375 	if (i915_request_completed(request))
376 		goto xfer;
377 
378 	if (intel_context_is_banned(request->context))
379 		i915_request_skip(request, -EIO);
380 
381 	/*
382 	 * Are we using semaphores when the gpu is already saturated?
383 	 *
384 	 * Using semaphores incurs a cost in having the GPU poll a
385 	 * memory location, busywaiting for it to change. The continual
386 	 * memory reads can have a noticeable impact on the rest of the
387 	 * system with the extra bus traffic, stalling the cpu as it too
388 	 * tries to access memory across the bus (perf stat -e bus-cycles).
389 	 *
390 	 * If we installed a semaphore on this request and we only submit
391 	 * the request after the signaler completed, that indicates the
392 	 * system is overloaded and using semaphores at this time only
393 	 * increases the amount of work we are doing. If so, we disable
394 	 * further use of semaphores until we are idle again, whence we
395 	 * optimistically try again.
396 	 */
397 	if (request->sched.semaphores &&
398 	    i915_sw_fence_signaled(&request->semaphore))
399 		engine->saturated |= request->sched.semaphores;
400 
401 	engine->emit_fini_breadcrumb(request,
402 				     request->ring->vaddr + request->postfix);
403 
404 	trace_i915_request_execute(request);
405 	engine->serial++;
406 	result = true;
407 
408 xfer:	/* We may be recursing from the signal callback of another i915 fence */
409 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
410 
411 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
412 		list_move_tail(&request->sched.link, &engine->active.requests);
413 
414 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
415 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
416 	    !i915_request_enable_breadcrumb(request))
417 		intel_engine_signal_breadcrumbs(engine);
418 
419 	__notify_execute_cb(request);
420 
421 	spin_unlock(&request->lock);
422 
423 	return result;
424 }
425 
426 void i915_request_submit(struct i915_request *request)
427 {
428 	struct intel_engine_cs *engine = request->engine;
429 	unsigned long flags;
430 
431 	/* Will be called from irq-context when using foreign fences. */
432 	spin_lock_irqsave(&engine->active.lock, flags);
433 
434 	__i915_request_submit(request);
435 
436 	spin_unlock_irqrestore(&engine->active.lock, flags);
437 }
438 
439 void __i915_request_unsubmit(struct i915_request *request)
440 {
441 	struct intel_engine_cs *engine = request->engine;
442 
443 	RQ_TRACE(request, "\n");
444 
445 	GEM_BUG_ON(!irqs_disabled());
446 	lockdep_assert_held(&engine->active.lock);
447 
448 	/*
449 	 * Only unwind in reverse order, required so that the per-context list
450 	 * is kept in seqno/ring order.
451 	 */
452 
453 	/* We may be recursing from the signal callback of another i915 fence */
454 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
455 
456 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
457 		i915_request_cancel_breadcrumb(request);
458 
459 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
460 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
461 
462 	spin_unlock(&request->lock);
463 
464 	/* We've already spun, don't charge on resubmitting. */
465 	if (request->sched.semaphores && i915_request_started(request)) {
466 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
467 		request->sched.semaphores = 0;
468 	}
469 
470 	/*
471 	 * We don't need to wake_up any waiters on request->execute, they
472 	 * will get woken by any other event or us re-adding this request
473 	 * to the engine timeline (__i915_request_submit()). The waiters
474 	 * should be quite adapt at finding that the request now has a new
475 	 * global_seqno to the one they went to sleep on.
476 	 */
477 }
478 
479 void i915_request_unsubmit(struct i915_request *request)
480 {
481 	struct intel_engine_cs *engine = request->engine;
482 	unsigned long flags;
483 
484 	/* Will be called from irq-context when using foreign fences. */
485 	spin_lock_irqsave(&engine->active.lock, flags);
486 
487 	__i915_request_unsubmit(request);
488 
489 	spin_unlock_irqrestore(&engine->active.lock, flags);
490 }
491 
492 static int __i915_sw_fence_call
493 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
494 {
495 	struct i915_request *request =
496 		container_of(fence, typeof(*request), submit);
497 
498 	switch (state) {
499 	case FENCE_COMPLETE:
500 		trace_i915_request_submit(request);
501 
502 		if (unlikely(fence->error))
503 			i915_request_skip(request, fence->error);
504 
505 		/*
506 		 * We need to serialize use of the submit_request() callback
507 		 * with its hotplugging performed during an emergency
508 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
509 		 * critical section in order to force i915_gem_set_wedged() to
510 		 * wait until the submit_request() is completed before
511 		 * proceeding.
512 		 */
513 		rcu_read_lock();
514 		request->engine->submit_request(request);
515 		rcu_read_unlock();
516 		break;
517 
518 	case FENCE_FREE:
519 		i915_request_put(request);
520 		break;
521 	}
522 
523 	return NOTIFY_DONE;
524 }
525 
526 static int __i915_sw_fence_call
527 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
528 {
529 	struct i915_request *request =
530 		container_of(fence, typeof(*request), semaphore);
531 
532 	switch (state) {
533 	case FENCE_COMPLETE:
534 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
535 		break;
536 
537 	case FENCE_FREE:
538 		i915_request_put(request);
539 		break;
540 	}
541 
542 	return NOTIFY_DONE;
543 }
544 
545 static void retire_requests(struct intel_timeline *tl)
546 {
547 	struct i915_request *rq, *rn;
548 
549 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
550 		if (!i915_request_retire(rq))
551 			break;
552 }
553 
554 static noinline struct i915_request *
555 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
556 {
557 	struct i915_request *rq;
558 
559 	if (list_empty(&tl->requests))
560 		goto out;
561 
562 	if (!gfpflags_allow_blocking(gfp))
563 		goto out;
564 
565 	/* Move our oldest request to the slab-cache (if not in use!) */
566 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
567 	i915_request_retire(rq);
568 
569 	rq = kmem_cache_alloc(global.slab_requests,
570 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
571 	if (rq)
572 		return rq;
573 
574 	/* Ratelimit ourselves to prevent oom from malicious clients */
575 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
576 	cond_synchronize_rcu(rq->rcustate);
577 
578 	/* Retire our old requests in the hope that we free some */
579 	retire_requests(tl);
580 
581 out:
582 	return kmem_cache_alloc(global.slab_requests, gfp);
583 }
584 
585 static void __i915_request_ctor(void *arg)
586 {
587 	struct i915_request *rq = arg;
588 
589 	spin_lock_init(&rq->lock);
590 	i915_sched_node_init(&rq->sched);
591 	i915_sw_fence_init(&rq->submit, submit_notify);
592 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
593 
594 	rq->file_priv = NULL;
595 	rq->capture_list = NULL;
596 
597 	INIT_LIST_HEAD(&rq->execute_cb);
598 }
599 
600 struct i915_request *
601 __i915_request_create(struct intel_context *ce, gfp_t gfp)
602 {
603 	struct intel_timeline *tl = ce->timeline;
604 	struct i915_request *rq;
605 	u32 seqno;
606 	int ret;
607 
608 	might_sleep_if(gfpflags_allow_blocking(gfp));
609 
610 	/* Check that the caller provided an already pinned context */
611 	__intel_context_pin(ce);
612 
613 	/*
614 	 * Beware: Dragons be flying overhead.
615 	 *
616 	 * We use RCU to look up requests in flight. The lookups may
617 	 * race with the request being allocated from the slab freelist.
618 	 * That is the request we are writing to here, may be in the process
619 	 * of being read by __i915_active_request_get_rcu(). As such,
620 	 * we have to be very careful when overwriting the contents. During
621 	 * the RCU lookup, we change chase the request->engine pointer,
622 	 * read the request->global_seqno and increment the reference count.
623 	 *
624 	 * The reference count is incremented atomically. If it is zero,
625 	 * the lookup knows the request is unallocated and complete. Otherwise,
626 	 * it is either still in use, or has been reallocated and reset
627 	 * with dma_fence_init(). This increment is safe for release as we
628 	 * check that the request we have a reference to and matches the active
629 	 * request.
630 	 *
631 	 * Before we increment the refcount, we chase the request->engine
632 	 * pointer. We must not call kmem_cache_zalloc() or else we set
633 	 * that pointer to NULL and cause a crash during the lookup. If
634 	 * we see the request is completed (based on the value of the
635 	 * old engine and seqno), the lookup is complete and reports NULL.
636 	 * If we decide the request is not completed (new engine or seqno),
637 	 * then we grab a reference and double check that it is still the
638 	 * active request - which it won't be and restart the lookup.
639 	 *
640 	 * Do not use kmem_cache_zalloc() here!
641 	 */
642 	rq = kmem_cache_alloc(global.slab_requests,
643 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
644 	if (unlikely(!rq)) {
645 		rq = request_alloc_slow(tl, gfp);
646 		if (!rq) {
647 			ret = -ENOMEM;
648 			goto err_unreserve;
649 		}
650 	}
651 
652 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
653 	if (ret)
654 		goto err_free;
655 
656 	rq->i915 = ce->engine->i915;
657 	rq->context = ce;
658 	rq->engine = ce->engine;
659 	rq->ring = ce->ring;
660 	rq->execution_mask = ce->engine->mask;
661 	rq->flags = 0;
662 
663 	RCU_INIT_POINTER(rq->timeline, tl);
664 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
665 	rq->hwsp_seqno = tl->hwsp_seqno;
666 
667 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
668 
669 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
670 		       tl->fence_context, seqno);
671 
672 	/* We bump the ref for the fence chain */
673 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
674 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
675 
676 	i915_sched_node_reinit(&rq->sched);
677 
678 	/* No zalloc, everything must be cleared after use */
679 	rq->batch = NULL;
680 	GEM_BUG_ON(rq->file_priv);
681 	GEM_BUG_ON(rq->capture_list);
682 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
683 
684 	/*
685 	 * Reserve space in the ring buffer for all the commands required to
686 	 * eventually emit this request. This is to guarantee that the
687 	 * i915_request_add() call can't fail. Note that the reserve may need
688 	 * to be redone if the request is not actually submitted straight
689 	 * away, e.g. because a GPU scheduler has deferred it.
690 	 *
691 	 * Note that due to how we add reserved_space to intel_ring_begin()
692 	 * we need to double our request to ensure that if we need to wrap
693 	 * around inside i915_request_add() there is sufficient space at
694 	 * the beginning of the ring as well.
695 	 */
696 	rq->reserved_space =
697 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
698 
699 	/*
700 	 * Record the position of the start of the request so that
701 	 * should we detect the updated seqno part-way through the
702 	 * GPU processing the request, we never over-estimate the
703 	 * position of the head.
704 	 */
705 	rq->head = rq->ring->emit;
706 
707 	ret = rq->engine->request_alloc(rq);
708 	if (ret)
709 		goto err_unwind;
710 
711 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
712 
713 	intel_context_mark_active(ce);
714 	return rq;
715 
716 err_unwind:
717 	ce->ring->emit = rq->head;
718 
719 	/* Make sure we didn't add ourselves to external state before freeing */
720 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
721 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
722 
723 err_free:
724 	kmem_cache_free(global.slab_requests, rq);
725 err_unreserve:
726 	intel_context_unpin(ce);
727 	return ERR_PTR(ret);
728 }
729 
730 struct i915_request *
731 i915_request_create(struct intel_context *ce)
732 {
733 	struct i915_request *rq;
734 	struct intel_timeline *tl;
735 
736 	tl = intel_context_timeline_lock(ce);
737 	if (IS_ERR(tl))
738 		return ERR_CAST(tl);
739 
740 	/* Move our oldest request to the slab-cache (if not in use!) */
741 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
742 	if (!list_is_last(&rq->link, &tl->requests))
743 		i915_request_retire(rq);
744 
745 	intel_context_enter(ce);
746 	rq = __i915_request_create(ce, GFP_KERNEL);
747 	intel_context_exit(ce); /* active reference transferred to request */
748 	if (IS_ERR(rq))
749 		goto err_unlock;
750 
751 	/* Check that we do not interrupt ourselves with a new request */
752 	rq->cookie = lockdep_pin_lock(&tl->mutex);
753 
754 	return rq;
755 
756 err_unlock:
757 	intel_context_timeline_unlock(tl);
758 	return rq;
759 }
760 
761 static int
762 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
763 {
764 	struct dma_fence *fence;
765 	int err;
766 
767 	GEM_BUG_ON(i915_request_timeline(rq) ==
768 		   rcu_access_pointer(signal->timeline));
769 
770 	fence = NULL;
771 	rcu_read_lock();
772 	spin_lock_irq(&signal->lock);
773 	if (!i915_request_started(signal) &&
774 	    !list_is_first(&signal->link,
775 			   &rcu_dereference(signal->timeline)->requests)) {
776 		struct i915_request *prev = list_prev_entry(signal, link);
777 
778 		/*
779 		 * Peek at the request before us in the timeline. That
780 		 * request will only be valid before it is retired, so
781 		 * after acquiring a reference to it, confirm that it is
782 		 * still part of the signaler's timeline.
783 		 */
784 		if (i915_request_get_rcu(prev)) {
785 			if (list_next_entry(prev, link) == signal)
786 				fence = &prev->fence;
787 			else
788 				i915_request_put(prev);
789 		}
790 	}
791 	spin_unlock_irq(&signal->lock);
792 	rcu_read_unlock();
793 	if (!fence)
794 		return 0;
795 
796 	err = 0;
797 	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
798 		err = i915_sw_fence_await_dma_fence(&rq->submit,
799 						    fence, 0,
800 						    I915_FENCE_GFP);
801 	dma_fence_put(fence);
802 
803 	return err;
804 }
805 
806 static intel_engine_mask_t
807 already_busywaiting(struct i915_request *rq)
808 {
809 	/*
810 	 * Polling a semaphore causes bus traffic, delaying other users of
811 	 * both the GPU and CPU. We want to limit the impact on others,
812 	 * while taking advantage of early submission to reduce GPU
813 	 * latency. Therefore we restrict ourselves to not using more
814 	 * than one semaphore from each source, and not using a semaphore
815 	 * if we have detected the engine is saturated (i.e. would not be
816 	 * submitted early and cause bus traffic reading an already passed
817 	 * semaphore).
818 	 *
819 	 * See the are-we-too-late? check in __i915_request_submit().
820 	 */
821 	return rq->sched.semaphores | rq->engine->saturated;
822 }
823 
824 static int
825 __emit_semaphore_wait(struct i915_request *to,
826 		      struct i915_request *from,
827 		      u32 seqno)
828 {
829 	const int has_token = INTEL_GEN(to->i915) >= 12;
830 	u32 hwsp_offset;
831 	int len, err;
832 	u32 *cs;
833 
834 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
835 
836 	/* We need to pin the signaler's HWSP until we are finished reading. */
837 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
838 	if (err)
839 		return err;
840 
841 	len = 4;
842 	if (has_token)
843 		len += 2;
844 
845 	cs = intel_ring_begin(to, len);
846 	if (IS_ERR(cs))
847 		return PTR_ERR(cs);
848 
849 	/*
850 	 * Using greater-than-or-equal here means we have to worry
851 	 * about seqno wraparound. To side step that issue, we swap
852 	 * the timeline HWSP upon wrapping, so that everyone listening
853 	 * for the old (pre-wrap) values do not see the much smaller
854 	 * (post-wrap) values than they were expecting (and so wait
855 	 * forever).
856 	 */
857 	*cs++ = (MI_SEMAPHORE_WAIT |
858 		 MI_SEMAPHORE_GLOBAL_GTT |
859 		 MI_SEMAPHORE_POLL |
860 		 MI_SEMAPHORE_SAD_GTE_SDD) +
861 		has_token;
862 	*cs++ = seqno;
863 	*cs++ = hwsp_offset;
864 	*cs++ = 0;
865 	if (has_token) {
866 		*cs++ = 0;
867 		*cs++ = MI_NOOP;
868 	}
869 
870 	intel_ring_advance(to, cs);
871 	return 0;
872 }
873 
874 static int
875 emit_semaphore_wait(struct i915_request *to,
876 		    struct i915_request *from,
877 		    gfp_t gfp)
878 {
879 	/* Just emit the first semaphore we see as request space is limited. */
880 	if (already_busywaiting(to) & from->engine->mask)
881 		goto await_fence;
882 
883 	if (i915_request_await_start(to, from) < 0)
884 		goto await_fence;
885 
886 	/* Only submit our spinner after the signaler is running! */
887 	if (__await_execution(to, from, NULL, gfp))
888 		goto await_fence;
889 
890 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
891 		goto await_fence;
892 
893 	to->sched.semaphores |= from->engine->mask;
894 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
895 	return 0;
896 
897 await_fence:
898 	return i915_sw_fence_await_dma_fence(&to->submit,
899 					     &from->fence, 0,
900 					     I915_FENCE_GFP);
901 }
902 
903 static int
904 i915_request_await_request(struct i915_request *to, struct i915_request *from)
905 {
906 	int ret;
907 
908 	GEM_BUG_ON(to == from);
909 	GEM_BUG_ON(to->timeline == from->timeline);
910 
911 	if (i915_request_completed(from))
912 		return 0;
913 
914 	if (to->engine->schedule) {
915 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
916 		if (ret < 0)
917 			return ret;
918 	}
919 
920 	if (to->engine == from->engine)
921 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
922 						       &from->submit,
923 						       I915_FENCE_GFP);
924 	else if (intel_context_use_semaphores(to->context))
925 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
926 	else
927 		ret = i915_sw_fence_await_dma_fence(&to->submit,
928 						    &from->fence, 0,
929 						    I915_FENCE_GFP);
930 	if (ret < 0)
931 		return ret;
932 
933 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
934 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
935 						    &from->fence, 0,
936 						    I915_FENCE_GFP);
937 		if (ret < 0)
938 			return ret;
939 	}
940 
941 	return 0;
942 }
943 
944 int
945 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
946 {
947 	struct dma_fence **child = &fence;
948 	unsigned int nchild = 1;
949 	int ret;
950 
951 	/*
952 	 * Note that if the fence-array was created in signal-on-any mode,
953 	 * we should *not* decompose it into its individual fences. However,
954 	 * we don't currently store which mode the fence-array is operating
955 	 * in. Fortunately, the only user of signal-on-any is private to
956 	 * amdgpu and we should not see any incoming fence-array from
957 	 * sync-file being in signal-on-any mode.
958 	 */
959 	if (dma_fence_is_array(fence)) {
960 		struct dma_fence_array *array = to_dma_fence_array(fence);
961 
962 		child = array->fences;
963 		nchild = array->num_fences;
964 		GEM_BUG_ON(!nchild);
965 	}
966 
967 	do {
968 		fence = *child++;
969 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
970 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
971 			continue;
972 		}
973 
974 		/*
975 		 * Requests on the same timeline are explicitly ordered, along
976 		 * with their dependencies, by i915_request_add() which ensures
977 		 * that requests are submitted in-order through each ring.
978 		 */
979 		if (fence->context == rq->fence.context)
980 			continue;
981 
982 		/* Squash repeated waits to the same timelines */
983 		if (fence->context &&
984 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
985 						 fence))
986 			continue;
987 
988 		if (dma_fence_is_i915(fence))
989 			ret = i915_request_await_request(rq, to_request(fence));
990 		else
991 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
992 							    fence->context ? I915_FENCE_TIMEOUT : 0,
993 							    I915_FENCE_GFP);
994 		if (ret < 0)
995 			return ret;
996 
997 		/* Record the latest fence used against each timeline */
998 		if (fence->context)
999 			intel_timeline_sync_set(i915_request_timeline(rq),
1000 						fence);
1001 	} while (--nchild);
1002 
1003 	return 0;
1004 }
1005 
1006 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1007 					  struct dma_fence *fence)
1008 {
1009 	return __intel_timeline_sync_is_later(tl,
1010 					      fence->context,
1011 					      fence->seqno - 1);
1012 }
1013 
1014 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1015 					 const struct dma_fence *fence)
1016 {
1017 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1018 }
1019 
1020 static int
1021 __i915_request_await_execution(struct i915_request *to,
1022 			       struct i915_request *from,
1023 			       void (*hook)(struct i915_request *rq,
1024 					    struct dma_fence *signal))
1025 {
1026 	int err;
1027 
1028 	/* Submit both requests at the same time */
1029 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1030 	if (err)
1031 		return err;
1032 
1033 	/* Squash repeated depenendices to the same timelines */
1034 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1035 					  &from->fence))
1036 		return 0;
1037 
1038 	/* Ensure both start together [after all semaphores in signal] */
1039 	if (intel_engine_has_semaphores(to->engine))
1040 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1041 	else
1042 		err = i915_request_await_start(to, from);
1043 	if (err < 0)
1044 		return err;
1045 
1046 	/* Couple the dependency tree for PI on this exposed to->fence */
1047 	if (to->engine->schedule) {
1048 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1049 		if (err < 0)
1050 			return err;
1051 	}
1052 
1053 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1054 					     &from->fence);
1055 }
1056 
1057 int
1058 i915_request_await_execution(struct i915_request *rq,
1059 			     struct dma_fence *fence,
1060 			     void (*hook)(struct i915_request *rq,
1061 					  struct dma_fence *signal))
1062 {
1063 	struct dma_fence **child = &fence;
1064 	unsigned int nchild = 1;
1065 	int ret;
1066 
1067 	if (dma_fence_is_array(fence)) {
1068 		struct dma_fence_array *array = to_dma_fence_array(fence);
1069 
1070 		/* XXX Error for signal-on-any fence arrays */
1071 
1072 		child = array->fences;
1073 		nchild = array->num_fences;
1074 		GEM_BUG_ON(!nchild);
1075 	}
1076 
1077 	do {
1078 		fence = *child++;
1079 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1080 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1081 			continue;
1082 		}
1083 
1084 		/*
1085 		 * We don't squash repeated fence dependencies here as we
1086 		 * want to run our callback in all cases.
1087 		 */
1088 
1089 		if (dma_fence_is_i915(fence))
1090 			ret = __i915_request_await_execution(rq,
1091 							     to_request(fence),
1092 							     hook);
1093 		else
1094 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1095 							    I915_FENCE_TIMEOUT,
1096 							    GFP_KERNEL);
1097 		if (ret < 0)
1098 			return ret;
1099 	} while (--nchild);
1100 
1101 	return 0;
1102 }
1103 
1104 /**
1105  * i915_request_await_object - set this request to (async) wait upon a bo
1106  * @to: request we are wishing to use
1107  * @obj: object which may be in use on another ring.
1108  * @write: whether the wait is on behalf of a writer
1109  *
1110  * This code is meant to abstract object synchronization with the GPU.
1111  * Conceptually we serialise writes between engines inside the GPU.
1112  * We only allow one engine to write into a buffer at any time, but
1113  * multiple readers. To ensure each has a coherent view of memory, we must:
1114  *
1115  * - If there is an outstanding write request to the object, the new
1116  *   request must wait for it to complete (either CPU or in hw, requests
1117  *   on the same ring will be naturally ordered).
1118  *
1119  * - If we are a write request (pending_write_domain is set), the new
1120  *   request must wait for outstanding read requests to complete.
1121  *
1122  * Returns 0 if successful, else propagates up the lower layer error.
1123  */
1124 int
1125 i915_request_await_object(struct i915_request *to,
1126 			  struct drm_i915_gem_object *obj,
1127 			  bool write)
1128 {
1129 	struct dma_fence *excl;
1130 	int ret = 0;
1131 
1132 	if (write) {
1133 		struct dma_fence **shared;
1134 		unsigned int count, i;
1135 
1136 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1137 							&excl, &count, &shared);
1138 		if (ret)
1139 			return ret;
1140 
1141 		for (i = 0; i < count; i++) {
1142 			ret = i915_request_await_dma_fence(to, shared[i]);
1143 			if (ret)
1144 				break;
1145 
1146 			dma_fence_put(shared[i]);
1147 		}
1148 
1149 		for (; i < count; i++)
1150 			dma_fence_put(shared[i]);
1151 		kfree(shared);
1152 	} else {
1153 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1154 	}
1155 
1156 	if (excl) {
1157 		if (ret == 0)
1158 			ret = i915_request_await_dma_fence(to, excl);
1159 
1160 		dma_fence_put(excl);
1161 	}
1162 
1163 	return ret;
1164 }
1165 
1166 void i915_request_skip(struct i915_request *rq, int error)
1167 {
1168 	void *vaddr = rq->ring->vaddr;
1169 	u32 head;
1170 
1171 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1172 	dma_fence_set_error(&rq->fence, error);
1173 
1174 	if (rq->infix == rq->postfix)
1175 		return;
1176 
1177 	/*
1178 	 * As this request likely depends on state from the lost
1179 	 * context, clear out all the user operations leaving the
1180 	 * breadcrumb at the end (so we get the fence notifications).
1181 	 */
1182 	head = rq->infix;
1183 	if (rq->postfix < head) {
1184 		memset(vaddr + head, 0, rq->ring->size - head);
1185 		head = 0;
1186 	}
1187 	memset(vaddr + head, 0, rq->postfix - head);
1188 	rq->infix = rq->postfix;
1189 }
1190 
1191 static struct i915_request *
1192 __i915_request_add_to_timeline(struct i915_request *rq)
1193 {
1194 	struct intel_timeline *timeline = i915_request_timeline(rq);
1195 	struct i915_request *prev;
1196 
1197 	/*
1198 	 * Dependency tracking and request ordering along the timeline
1199 	 * is special cased so that we can eliminate redundant ordering
1200 	 * operations while building the request (we know that the timeline
1201 	 * itself is ordered, and here we guarantee it).
1202 	 *
1203 	 * As we know we will need to emit tracking along the timeline,
1204 	 * we embed the hooks into our request struct -- at the cost of
1205 	 * having to have specialised no-allocation interfaces (which will
1206 	 * be beneficial elsewhere).
1207 	 *
1208 	 * A second benefit to open-coding i915_request_await_request is
1209 	 * that we can apply a slight variant of the rules specialised
1210 	 * for timelines that jump between engines (such as virtual engines).
1211 	 * If we consider the case of virtual engine, we must emit a dma-fence
1212 	 * to prevent scheduling of the second request until the first is
1213 	 * complete (to maximise our greedy late load balancing) and this
1214 	 * precludes optimising to use semaphores serialisation of a single
1215 	 * timeline across engines.
1216 	 */
1217 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1218 						  &rq->fence));
1219 	if (prev && !i915_request_completed(prev)) {
1220 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1221 			i915_sw_fence_await_sw_fence(&rq->submit,
1222 						     &prev->submit,
1223 						     &rq->submitq);
1224 		else
1225 			__i915_sw_fence_await_dma_fence(&rq->submit,
1226 							&prev->fence,
1227 							&rq->dmaq);
1228 		if (rq->engine->schedule)
1229 			__i915_sched_node_add_dependency(&rq->sched,
1230 							 &prev->sched,
1231 							 &rq->dep,
1232 							 0);
1233 	}
1234 
1235 	list_add_tail(&rq->link, &timeline->requests);
1236 
1237 	/*
1238 	 * Make sure that no request gazumped us - if it was allocated after
1239 	 * our i915_request_alloc() and called __i915_request_add() before
1240 	 * us, the timeline will hold its seqno which is later than ours.
1241 	 */
1242 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1243 
1244 	return prev;
1245 }
1246 
1247 /*
1248  * NB: This function is not allowed to fail. Doing so would mean the the
1249  * request is not being tracked for completion but the work itself is
1250  * going to happen on the hardware. This would be a Bad Thing(tm).
1251  */
1252 struct i915_request *__i915_request_commit(struct i915_request *rq)
1253 {
1254 	struct intel_engine_cs *engine = rq->engine;
1255 	struct intel_ring *ring = rq->ring;
1256 	u32 *cs;
1257 
1258 	RQ_TRACE(rq, "\n");
1259 
1260 	/*
1261 	 * To ensure that this call will not fail, space for its emissions
1262 	 * should already have been reserved in the ring buffer. Let the ring
1263 	 * know that it is time to use that space up.
1264 	 */
1265 	GEM_BUG_ON(rq->reserved_space > ring->space);
1266 	rq->reserved_space = 0;
1267 	rq->emitted_jiffies = jiffies;
1268 
1269 	/*
1270 	 * Record the position of the start of the breadcrumb so that
1271 	 * should we detect the updated seqno part-way through the
1272 	 * GPU processing the request, we never over-estimate the
1273 	 * position of the ring's HEAD.
1274 	 */
1275 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1276 	GEM_BUG_ON(IS_ERR(cs));
1277 	rq->postfix = intel_ring_offset(rq, cs);
1278 
1279 	return __i915_request_add_to_timeline(rq);
1280 }
1281 
1282 void __i915_request_queue(struct i915_request *rq,
1283 			  const struct i915_sched_attr *attr)
1284 {
1285 	/*
1286 	 * Let the backend know a new request has arrived that may need
1287 	 * to adjust the existing execution schedule due to a high priority
1288 	 * request - i.e. we may want to preempt the current request in order
1289 	 * to run a high priority dependency chain *before* we can execute this
1290 	 * request.
1291 	 *
1292 	 * This is called before the request is ready to run so that we can
1293 	 * decide whether to preempt the entire chain so that it is ready to
1294 	 * run at the earliest possible convenience.
1295 	 */
1296 	i915_sw_fence_commit(&rq->semaphore);
1297 	if (attr && rq->engine->schedule)
1298 		rq->engine->schedule(rq, attr);
1299 	i915_sw_fence_commit(&rq->submit);
1300 }
1301 
1302 void i915_request_add(struct i915_request *rq)
1303 {
1304 	struct intel_timeline * const tl = i915_request_timeline(rq);
1305 	struct i915_sched_attr attr = {};
1306 	struct i915_request *prev;
1307 
1308 	lockdep_assert_held(&tl->mutex);
1309 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1310 
1311 	trace_i915_request_add(rq);
1312 
1313 	prev = __i915_request_commit(rq);
1314 
1315 	if (rcu_access_pointer(rq->context->gem_context))
1316 		attr = i915_request_gem_context(rq)->sched;
1317 
1318 	/*
1319 	 * Boost actual workloads past semaphores!
1320 	 *
1321 	 * With semaphores we spin on one engine waiting for another,
1322 	 * simply to reduce the latency of starting our work when
1323 	 * the signaler completes. However, if there is any other
1324 	 * work that we could be doing on this engine instead, that
1325 	 * is better utilisation and will reduce the overall duration
1326 	 * of the current work. To avoid PI boosting a semaphore
1327 	 * far in the distance past over useful work, we keep a history
1328 	 * of any semaphore use along our dependency chain.
1329 	 */
1330 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1331 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1332 
1333 	/*
1334 	 * Boost priorities to new clients (new request flows).
1335 	 *
1336 	 * Allow interactive/synchronous clients to jump ahead of
1337 	 * the bulk clients. (FQ_CODEL)
1338 	 */
1339 	if (list_empty(&rq->sched.signalers_list))
1340 		attr.priority |= I915_PRIORITY_WAIT;
1341 
1342 	local_bh_disable();
1343 	__i915_request_queue(rq, &attr);
1344 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1345 
1346 	/*
1347 	 * In typical scenarios, we do not expect the previous request on
1348 	 * the timeline to be still tracked by timeline->last_request if it
1349 	 * has been completed. If the completed request is still here, that
1350 	 * implies that request retirement is a long way behind submission,
1351 	 * suggesting that we haven't been retiring frequently enough from
1352 	 * the combination of retire-before-alloc, waiters and the background
1353 	 * retirement worker. So if the last request on this timeline was
1354 	 * already completed, do a catch up pass, flushing the retirement queue
1355 	 * up to this client. Since we have now moved the heaviest operations
1356 	 * during retirement onto secondary workers, such as freeing objects
1357 	 * or contexts, retiring a bunch of requests is mostly list management
1358 	 * (and cache misses), and so we should not be overly penalizing this
1359 	 * client by performing excess work, though we may still performing
1360 	 * work on behalf of others -- but instead we should benefit from
1361 	 * improved resource management. (Well, that's the theory at least.)
1362 	 */
1363 	if (prev &&
1364 	    i915_request_completed(prev) &&
1365 	    rcu_access_pointer(prev->timeline) == tl)
1366 		i915_request_retire_upto(prev);
1367 
1368 	mutex_unlock(&tl->mutex);
1369 }
1370 
1371 static unsigned long local_clock_us(unsigned int *cpu)
1372 {
1373 	unsigned long t;
1374 
1375 	/*
1376 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1377 	 * The result and subsequent calculations are also defined in the same
1378 	 * approximate microseconds units. The principal source of timing
1379 	 * error here is from the simple truncation.
1380 	 *
1381 	 * Note that local_clock() is only defined wrt to the current CPU;
1382 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1383 	 * blocking preemption for the entire busywait, we can detect the CPU
1384 	 * switch and use that as indicator of system load and a reason to
1385 	 * stop busywaiting, see busywait_stop().
1386 	 */
1387 	*cpu = get_cpu();
1388 	t = local_clock() >> 10;
1389 	put_cpu();
1390 
1391 	return t;
1392 }
1393 
1394 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1395 {
1396 	unsigned int this_cpu;
1397 
1398 	if (time_after(local_clock_us(&this_cpu), timeout))
1399 		return true;
1400 
1401 	return this_cpu != cpu;
1402 }
1403 
1404 static bool __i915_spin_request(const struct i915_request * const rq,
1405 				int state, unsigned long timeout_us)
1406 {
1407 	unsigned int cpu;
1408 
1409 	/*
1410 	 * Only wait for the request if we know it is likely to complete.
1411 	 *
1412 	 * We don't track the timestamps around requests, nor the average
1413 	 * request length, so we do not have a good indicator that this
1414 	 * request will complete within the timeout. What we do know is the
1415 	 * order in which requests are executed by the context and so we can
1416 	 * tell if the request has been started. If the request is not even
1417 	 * running yet, it is a fair assumption that it will not complete
1418 	 * within our relatively short timeout.
1419 	 */
1420 	if (!i915_request_is_running(rq))
1421 		return false;
1422 
1423 	/*
1424 	 * When waiting for high frequency requests, e.g. during synchronous
1425 	 * rendering split between the CPU and GPU, the finite amount of time
1426 	 * required to set up the irq and wait upon it limits the response
1427 	 * rate. By busywaiting on the request completion for a short while we
1428 	 * can service the high frequency waits as quick as possible. However,
1429 	 * if it is a slow request, we want to sleep as quickly as possible.
1430 	 * The tradeoff between waiting and sleeping is roughly the time it
1431 	 * takes to sleep on a request, on the order of a microsecond.
1432 	 */
1433 
1434 	timeout_us += local_clock_us(&cpu);
1435 	do {
1436 		if (i915_request_completed(rq))
1437 			return true;
1438 
1439 		if (signal_pending_state(state, current))
1440 			break;
1441 
1442 		if (busywait_stop(timeout_us, cpu))
1443 			break;
1444 
1445 		cpu_relax();
1446 	} while (!need_resched());
1447 
1448 	return false;
1449 }
1450 
1451 struct request_wait {
1452 	struct dma_fence_cb cb;
1453 	struct task_struct *tsk;
1454 };
1455 
1456 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1457 {
1458 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1459 
1460 	wake_up_process(wait->tsk);
1461 }
1462 
1463 /**
1464  * i915_request_wait - wait until execution of request has finished
1465  * @rq: the request to wait upon
1466  * @flags: how to wait
1467  * @timeout: how long to wait in jiffies
1468  *
1469  * i915_request_wait() waits for the request to be completed, for a
1470  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1471  * unbounded wait).
1472  *
1473  * Returns the remaining time (in jiffies) if the request completed, which may
1474  * be zero or -ETIME if the request is unfinished after the timeout expires.
1475  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1476  * pending before the request completes.
1477  */
1478 long i915_request_wait(struct i915_request *rq,
1479 		       unsigned int flags,
1480 		       long timeout)
1481 {
1482 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1483 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1484 	struct request_wait wait;
1485 
1486 	might_sleep();
1487 	GEM_BUG_ON(timeout < 0);
1488 
1489 	if (dma_fence_is_signaled(&rq->fence))
1490 		return timeout;
1491 
1492 	if (!timeout)
1493 		return -ETIME;
1494 
1495 	trace_i915_request_wait_begin(rq, flags);
1496 
1497 	/*
1498 	 * We must never wait on the GPU while holding a lock as we
1499 	 * may need to perform a GPU reset. So while we don't need to
1500 	 * serialise wait/reset with an explicit lock, we do want
1501 	 * lockdep to detect potential dependency cycles.
1502 	 */
1503 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1504 
1505 	/*
1506 	 * Optimistic spin before touching IRQs.
1507 	 *
1508 	 * We may use a rather large value here to offset the penalty of
1509 	 * switching away from the active task. Frequently, the client will
1510 	 * wait upon an old swapbuffer to throttle itself to remain within a
1511 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1512 	 * then it should not be waiting long at all, and a sleep now will incur
1513 	 * extra scheduler latency in producing the next frame. To try to
1514 	 * avoid adding the cost of enabling/disabling the interrupt to the
1515 	 * short wait, we first spin to see if the request would have completed
1516 	 * in the time taken to setup the interrupt.
1517 	 *
1518 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1519 	 * scheduler latency of a context switch, ignoring the secondary
1520 	 * impacts from a context switch such as cache eviction.
1521 	 *
1522 	 * The scheme used for low-latency IO is called "hybrid interrupt
1523 	 * polling". The suggestion there is to sleep until just before you
1524 	 * expect to be woken by the device interrupt and then poll for its
1525 	 * completion. That requires having a good predictor for the request
1526 	 * duration, which we currently lack.
1527 	 */
1528 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1529 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1530 		dma_fence_signal(&rq->fence);
1531 		goto out;
1532 	}
1533 
1534 	/*
1535 	 * This client is about to stall waiting for the GPU. In many cases
1536 	 * this is undesirable and limits the throughput of the system, as
1537 	 * many clients cannot continue processing user input/output whilst
1538 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1539 	 * to the GPU load and thus incurs additional latency for the client.
1540 	 * We can circumvent that by promoting the GPU frequency to maximum
1541 	 * before we sleep. This makes the GPU throttle up much more quickly
1542 	 * (good for benchmarks and user experience, e.g. window animations),
1543 	 * but at a cost of spending more power processing the workload
1544 	 * (bad for battery).
1545 	 */
1546 	if (flags & I915_WAIT_PRIORITY) {
1547 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1548 			intel_rps_boost(rq);
1549 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1550 	}
1551 
1552 	wait.tsk = current;
1553 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1554 		goto out;
1555 
1556 	for (;;) {
1557 		set_current_state(state);
1558 
1559 		if (i915_request_completed(rq)) {
1560 			dma_fence_signal(&rq->fence);
1561 			break;
1562 		}
1563 
1564 		if (signal_pending_state(state, current)) {
1565 			timeout = -ERESTARTSYS;
1566 			break;
1567 		}
1568 
1569 		if (!timeout) {
1570 			timeout = -ETIME;
1571 			break;
1572 		}
1573 
1574 		intel_engine_flush_submission(rq->engine);
1575 		timeout = io_schedule_timeout(timeout);
1576 	}
1577 	__set_current_state(TASK_RUNNING);
1578 
1579 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1580 
1581 out:
1582 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1583 	trace_i915_request_wait_end(rq);
1584 	return timeout;
1585 }
1586 
1587 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1588 #include "selftests/mock_request.c"
1589 #include "selftests/i915_request.c"
1590 #endif
1591 
1592 static void i915_global_request_shrink(void)
1593 {
1594 	kmem_cache_shrink(global.slab_dependencies);
1595 	kmem_cache_shrink(global.slab_execute_cbs);
1596 	kmem_cache_shrink(global.slab_requests);
1597 }
1598 
1599 static void i915_global_request_exit(void)
1600 {
1601 	kmem_cache_destroy(global.slab_dependencies);
1602 	kmem_cache_destroy(global.slab_execute_cbs);
1603 	kmem_cache_destroy(global.slab_requests);
1604 }
1605 
1606 static struct i915_global_request global = { {
1607 	.shrink = i915_global_request_shrink,
1608 	.exit = i915_global_request_exit,
1609 } };
1610 
1611 int __init i915_global_request_init(void)
1612 {
1613 	global.slab_requests =
1614 		kmem_cache_create("i915_request",
1615 				  sizeof(struct i915_request),
1616 				  __alignof__(struct i915_request),
1617 				  SLAB_HWCACHE_ALIGN |
1618 				  SLAB_RECLAIM_ACCOUNT |
1619 				  SLAB_TYPESAFE_BY_RCU,
1620 				  __i915_request_ctor);
1621 	if (!global.slab_requests)
1622 		return -ENOMEM;
1623 
1624 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1625 					     SLAB_HWCACHE_ALIGN |
1626 					     SLAB_RECLAIM_ACCOUNT |
1627 					     SLAB_TYPESAFE_BY_RCU);
1628 	if (!global.slab_execute_cbs)
1629 		goto err_requests;
1630 
1631 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1632 					      SLAB_HWCACHE_ALIGN |
1633 					      SLAB_RECLAIM_ACCOUNT);
1634 	if (!global.slab_dependencies)
1635 		goto err_execute_cbs;
1636 
1637 	i915_global_register(&global.base);
1638 	return 0;
1639 
1640 err_execute_cbs:
1641 	kmem_cache_destroy(global.slab_execute_cbs);
1642 err_requests:
1643 	kmem_cache_destroy(global.slab_requests);
1644 	return -ENOMEM;
1645 }
1646