1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_gpu_commands.h" 37 #include "gt/intel_ring.h" 38 #include "gt/intel_rps.h" 39 40 #include "i915_active.h" 41 #include "i915_drv.h" 42 #include "i915_globals.h" 43 #include "i915_trace.h" 44 #include "intel_pm.h" 45 46 struct execute_cb { 47 struct irq_work work; 48 struct i915_sw_fence *fence; 49 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 50 struct i915_request *signal; 51 }; 52 53 static struct i915_global_request { 54 struct i915_global base; 55 struct kmem_cache *slab_requests; 56 struct kmem_cache *slab_execute_cbs; 57 } global; 58 59 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 60 { 61 return dev_name(to_request(fence)->engine->i915->drm.dev); 62 } 63 64 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 65 { 66 const struct i915_gem_context *ctx; 67 68 /* 69 * The timeline struct (as part of the ppgtt underneath a context) 70 * may be freed when the request is no longer in use by the GPU. 71 * We could extend the life of a context to beyond that of all 72 * fences, possibly keeping the hw resource around indefinitely, 73 * or we just give them a false name. Since 74 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 75 * lie seems justifiable. 76 */ 77 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 78 return "signaled"; 79 80 ctx = i915_request_gem_context(to_request(fence)); 81 if (!ctx) 82 return "[" DRIVER_NAME "]"; 83 84 return ctx->name; 85 } 86 87 static bool i915_fence_signaled(struct dma_fence *fence) 88 { 89 return i915_request_completed(to_request(fence)); 90 } 91 92 static bool i915_fence_enable_signaling(struct dma_fence *fence) 93 { 94 return i915_request_enable_breadcrumb(to_request(fence)); 95 } 96 97 static signed long i915_fence_wait(struct dma_fence *fence, 98 bool interruptible, 99 signed long timeout) 100 { 101 return i915_request_wait(to_request(fence), 102 interruptible | I915_WAIT_PRIORITY, 103 timeout); 104 } 105 106 struct kmem_cache *i915_request_slab_cache(void) 107 { 108 return global.slab_requests; 109 } 110 111 static void i915_fence_release(struct dma_fence *fence) 112 { 113 struct i915_request *rq = to_request(fence); 114 115 /* 116 * The request is put onto a RCU freelist (i.e. the address 117 * is immediately reused), mark the fences as being freed now. 118 * Otherwise the debugobjects for the fences are only marked as 119 * freed when the slab cache itself is freed, and so we would get 120 * caught trying to reuse dead objects. 121 */ 122 i915_sw_fence_fini(&rq->submit); 123 i915_sw_fence_fini(&rq->semaphore); 124 125 /* 126 * Keep one request on each engine for reserved use under mempressure 127 * 128 * We do not hold a reference to the engine here and so have to be 129 * very careful in what rq->engine we poke. The virtual engine is 130 * referenced via the rq->context and we released that ref during 131 * i915_request_retire(), ergo we must not dereference a virtual 132 * engine here. Not that we would want to, as the only consumer of 133 * the reserved engine->request_pool is the power management parking, 134 * which must-not-fail, and that is only run on the physical engines. 135 * 136 * Since the request must have been executed to be have completed, 137 * we know that it will have been processed by the HW and will 138 * not be unsubmitted again, so rq->engine and rq->execution_mask 139 * at this point is stable. rq->execution_mask will be a single 140 * bit if the last and _only_ engine it could execution on was a 141 * physical engine, if it's multiple bits then it started on and 142 * could still be on a virtual engine. Thus if the mask is not a 143 * power-of-two we assume that rq->engine may still be a virtual 144 * engine and so a dangling invalid pointer that we cannot dereference 145 * 146 * For example, consider the flow of a bonded request through a virtual 147 * engine. The request is created with a wide engine mask (all engines 148 * that we might execute on). On processing the bond, the request mask 149 * is reduced to one or more engines. If the request is subsequently 150 * bound to a single engine, it will then be constrained to only 151 * execute on that engine and never returned to the virtual engine 152 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 153 * know that if the rq->execution_mask is a single bit, rq->engine 154 * can be a physical engine with the exact corresponding mask. 155 */ 156 if (is_power_of_2(rq->execution_mask) && 157 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 158 return; 159 160 kmem_cache_free(global.slab_requests, rq); 161 } 162 163 const struct dma_fence_ops i915_fence_ops = { 164 .get_driver_name = i915_fence_get_driver_name, 165 .get_timeline_name = i915_fence_get_timeline_name, 166 .enable_signaling = i915_fence_enable_signaling, 167 .signaled = i915_fence_signaled, 168 .wait = i915_fence_wait, 169 .release = i915_fence_release, 170 }; 171 172 static void irq_execute_cb(struct irq_work *wrk) 173 { 174 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 175 176 i915_sw_fence_complete(cb->fence); 177 kmem_cache_free(global.slab_execute_cbs, cb); 178 } 179 180 static void irq_execute_cb_hook(struct irq_work *wrk) 181 { 182 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 183 184 cb->hook(container_of(cb->fence, struct i915_request, submit), 185 &cb->signal->fence); 186 i915_request_put(cb->signal); 187 188 irq_execute_cb(wrk); 189 } 190 191 static __always_inline void 192 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 193 { 194 struct execute_cb *cb, *cn; 195 196 if (llist_empty(&rq->execute_cb)) 197 return; 198 199 llist_for_each_entry_safe(cb, cn, 200 llist_del_all(&rq->execute_cb), 201 work.node.llist) 202 fn(&cb->work); 203 } 204 205 static void __notify_execute_cb_irq(struct i915_request *rq) 206 { 207 __notify_execute_cb(rq, irq_work_queue); 208 } 209 210 static bool irq_work_imm(struct irq_work *wrk) 211 { 212 wrk->func(wrk); 213 return false; 214 } 215 216 static void __notify_execute_cb_imm(struct i915_request *rq) 217 { 218 __notify_execute_cb(rq, irq_work_imm); 219 } 220 221 static void free_capture_list(struct i915_request *request) 222 { 223 struct i915_capture_list *capture; 224 225 capture = fetch_and_zero(&request->capture_list); 226 while (capture) { 227 struct i915_capture_list *next = capture->next; 228 229 kfree(capture); 230 capture = next; 231 } 232 } 233 234 static void __i915_request_fill(struct i915_request *rq, u8 val) 235 { 236 void *vaddr = rq->ring->vaddr; 237 u32 head; 238 239 head = rq->infix; 240 if (rq->postfix < head) { 241 memset(vaddr + head, val, rq->ring->size - head); 242 head = 0; 243 } 244 memset(vaddr + head, val, rq->postfix - head); 245 } 246 247 static void remove_from_engine(struct i915_request *rq) 248 { 249 struct intel_engine_cs *engine, *locked; 250 251 /* 252 * Virtual engines complicate acquiring the engine timeline lock, 253 * as their rq->engine pointer is not stable until under that 254 * engine lock. The simple ploy we use is to take the lock then 255 * check that the rq still belongs to the newly locked engine. 256 */ 257 locked = READ_ONCE(rq->engine); 258 spin_lock_irq(&locked->active.lock); 259 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 260 spin_unlock(&locked->active.lock); 261 spin_lock(&engine->active.lock); 262 locked = engine; 263 } 264 list_del_init(&rq->sched.link); 265 266 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 267 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 268 269 /* Prevent further __await_execution() registering a cb, then flush */ 270 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 271 272 spin_unlock_irq(&locked->active.lock); 273 274 __notify_execute_cb_imm(rq); 275 } 276 277 bool i915_request_retire(struct i915_request *rq) 278 { 279 if (!i915_request_completed(rq)) 280 return false; 281 282 RQ_TRACE(rq, "\n"); 283 284 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 285 trace_i915_request_retire(rq); 286 i915_request_mark_complete(rq); 287 288 /* 289 * We know the GPU must have read the request to have 290 * sent us the seqno + interrupt, so use the position 291 * of tail of the request to update the last known position 292 * of the GPU head. 293 * 294 * Note this requires that we are always called in request 295 * completion order. 296 */ 297 GEM_BUG_ON(!list_is_first(&rq->link, 298 &i915_request_timeline(rq)->requests)); 299 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 300 /* Poison before we release our space in the ring */ 301 __i915_request_fill(rq, POISON_FREE); 302 rq->ring->head = rq->postfix; 303 304 if (!i915_request_signaled(rq)) { 305 spin_lock_irq(&rq->lock); 306 dma_fence_signal_locked(&rq->fence); 307 spin_unlock_irq(&rq->lock); 308 } 309 310 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 311 atomic_dec(&rq->engine->gt->rps.num_waiters); 312 313 /* 314 * We only loosely track inflight requests across preemption, 315 * and so we may find ourselves attempting to retire a _completed_ 316 * request that we have removed from the HW and put back on a run 317 * queue. 318 * 319 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 320 * after removing the breadcrumb and signaling it, so that we do not 321 * inadvertently attach the breadcrumb to a completed request. 322 */ 323 if (!list_empty(&rq->sched.link)) 324 remove_from_engine(rq); 325 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 326 327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 328 329 intel_context_exit(rq->context); 330 intel_context_unpin(rq->context); 331 332 free_capture_list(rq); 333 i915_sched_node_fini(&rq->sched); 334 i915_request_put(rq); 335 336 return true; 337 } 338 339 void i915_request_retire_upto(struct i915_request *rq) 340 { 341 struct intel_timeline * const tl = i915_request_timeline(rq); 342 struct i915_request *tmp; 343 344 RQ_TRACE(rq, "\n"); 345 346 GEM_BUG_ON(!i915_request_completed(rq)); 347 348 do { 349 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 350 } while (i915_request_retire(tmp) && tmp != rq); 351 } 352 353 static struct i915_request * const * 354 __engine_active(struct intel_engine_cs *engine) 355 { 356 return READ_ONCE(engine->execlists.active); 357 } 358 359 static bool __request_in_flight(const struct i915_request *signal) 360 { 361 struct i915_request * const *port, *rq; 362 bool inflight = false; 363 364 if (!i915_request_is_ready(signal)) 365 return false; 366 367 /* 368 * Even if we have unwound the request, it may still be on 369 * the GPU (preempt-to-busy). If that request is inside an 370 * unpreemptible critical section, it will not be removed. Some 371 * GPU functions may even be stuck waiting for the paired request 372 * (__await_execution) to be submitted and cannot be preempted 373 * until the bond is executing. 374 * 375 * As we know that there are always preemption points between 376 * requests, we know that only the currently executing request 377 * may be still active even though we have cleared the flag. 378 * However, we can't rely on our tracking of ELSP[0] to know 379 * which request is currently active and so maybe stuck, as 380 * the tracking maybe an event behind. Instead assume that 381 * if the context is still inflight, then it is still active 382 * even if the active flag has been cleared. 383 * 384 * To further complicate matters, if there a pending promotion, the HW 385 * may either perform a context switch to the second inflight execlists, 386 * or it may switch to the pending set of execlists. In the case of the 387 * latter, it may send the ACK and we process the event copying the 388 * pending[] over top of inflight[], _overwriting_ our *active. Since 389 * this implies the HW is arbitrating and not struck in *active, we do 390 * not worry about complete accuracy, but we do require no read/write 391 * tearing of the pointer [the read of the pointer must be valid, even 392 * as the array is being overwritten, for which we require the writes 393 * to avoid tearing.] 394 * 395 * Note that the read of *execlists->active may race with the promotion 396 * of execlists->pending[] to execlists->inflight[], overwritting 397 * the value at *execlists->active. This is fine. The promotion implies 398 * that we received an ACK from the HW, and so the context is not 399 * stuck -- if we do not see ourselves in *active, the inflight status 400 * is valid. If instead we see ourselves being copied into *active, 401 * we are inflight and may signal the callback. 402 */ 403 if (!intel_context_inflight(signal->context)) 404 return false; 405 406 rcu_read_lock(); 407 for (port = __engine_active(signal->engine); 408 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 409 port++) { 410 if (rq->context == signal->context) { 411 inflight = i915_seqno_passed(rq->fence.seqno, 412 signal->fence.seqno); 413 break; 414 } 415 } 416 rcu_read_unlock(); 417 418 return inflight; 419 } 420 421 static int 422 __await_execution(struct i915_request *rq, 423 struct i915_request *signal, 424 void (*hook)(struct i915_request *rq, 425 struct dma_fence *signal), 426 gfp_t gfp) 427 { 428 struct execute_cb *cb; 429 430 if (i915_request_is_active(signal)) { 431 if (hook) 432 hook(rq, &signal->fence); 433 return 0; 434 } 435 436 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 437 if (!cb) 438 return -ENOMEM; 439 440 cb->fence = &rq->submit; 441 i915_sw_fence_await(cb->fence); 442 init_irq_work(&cb->work, irq_execute_cb); 443 444 if (hook) { 445 cb->hook = hook; 446 cb->signal = i915_request_get(signal); 447 cb->work.func = irq_execute_cb_hook; 448 } 449 450 /* 451 * Register the callback first, then see if the signaler is already 452 * active. This ensures that if we race with the 453 * __notify_execute_cb from i915_request_submit() and we are not 454 * included in that list, we get a second bite of the cherry and 455 * execute it ourselves. After this point, a future 456 * i915_request_submit() will notify us. 457 * 458 * In i915_request_retire() we set the ACTIVE bit on a completed 459 * request (then flush the execute_cb). So by registering the 460 * callback first, then checking the ACTIVE bit, we serialise with 461 * the completed/retired request. 462 */ 463 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 464 if (i915_request_is_active(signal) || 465 __request_in_flight(signal)) 466 __notify_execute_cb_imm(signal); 467 } 468 469 return 0; 470 } 471 472 static bool fatal_error(int error) 473 { 474 switch (error) { 475 case 0: /* not an error! */ 476 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 477 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 478 return false; 479 default: 480 return true; 481 } 482 } 483 484 void __i915_request_skip(struct i915_request *rq) 485 { 486 GEM_BUG_ON(!fatal_error(rq->fence.error)); 487 488 if (rq->infix == rq->postfix) 489 return; 490 491 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 492 493 /* 494 * As this request likely depends on state from the lost 495 * context, clear out all the user operations leaving the 496 * breadcrumb at the end (so we get the fence notifications). 497 */ 498 __i915_request_fill(rq, 0); 499 rq->infix = rq->postfix; 500 } 501 502 void i915_request_set_error_once(struct i915_request *rq, int error) 503 { 504 int old; 505 506 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 507 508 if (i915_request_signaled(rq)) 509 return; 510 511 old = READ_ONCE(rq->fence.error); 512 do { 513 if (fatal_error(old)) 514 return; 515 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 516 } 517 518 void i915_request_mark_eio(struct i915_request *rq) 519 { 520 if (__i915_request_is_complete(rq)) 521 return; 522 523 GEM_BUG_ON(i915_request_signaled(rq)); 524 525 i915_request_set_error_once(rq, -EIO); 526 i915_request_mark_complete(rq); 527 } 528 529 bool __i915_request_submit(struct i915_request *request) 530 { 531 struct intel_engine_cs *engine = request->engine; 532 bool result = false; 533 534 RQ_TRACE(request, "\n"); 535 536 GEM_BUG_ON(!irqs_disabled()); 537 lockdep_assert_held(&engine->active.lock); 538 539 /* 540 * With the advent of preempt-to-busy, we frequently encounter 541 * requests that we have unsubmitted from HW, but left running 542 * until the next ack and so have completed in the meantime. On 543 * resubmission of that completed request, we can skip 544 * updating the payload, and execlists can even skip submitting 545 * the request. 546 * 547 * We must remove the request from the caller's priority queue, 548 * and the caller must only call us when the request is in their 549 * priority queue, under the active.lock. This ensures that the 550 * request has *not* yet been retired and we can safely move 551 * the request into the engine->active.list where it will be 552 * dropped upon retiring. (Otherwise if resubmit a *retired* 553 * request, this would be a horrible use-after-free.) 554 */ 555 if (i915_request_completed(request)) 556 goto xfer; 557 558 if (unlikely(intel_context_is_banned(request->context))) 559 i915_request_set_error_once(request, -EIO); 560 561 if (unlikely(fatal_error(request->fence.error))) 562 __i915_request_skip(request); 563 564 /* 565 * Are we using semaphores when the gpu is already saturated? 566 * 567 * Using semaphores incurs a cost in having the GPU poll a 568 * memory location, busywaiting for it to change. The continual 569 * memory reads can have a noticeable impact on the rest of the 570 * system with the extra bus traffic, stalling the cpu as it too 571 * tries to access memory across the bus (perf stat -e bus-cycles). 572 * 573 * If we installed a semaphore on this request and we only submit 574 * the request after the signaler completed, that indicates the 575 * system is overloaded and using semaphores at this time only 576 * increases the amount of work we are doing. If so, we disable 577 * further use of semaphores until we are idle again, whence we 578 * optimistically try again. 579 */ 580 if (request->sched.semaphores && 581 i915_sw_fence_signaled(&request->semaphore)) 582 engine->saturated |= request->sched.semaphores; 583 584 engine->emit_fini_breadcrumb(request, 585 request->ring->vaddr + request->postfix); 586 587 trace_i915_request_execute(request); 588 engine->serial++; 589 result = true; 590 591 xfer: 592 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 593 list_move_tail(&request->sched.link, &engine->active.requests); 594 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 595 } 596 597 /* 598 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 599 * 600 * In the future, perhaps when we have an active time-slicing scheduler, 601 * it will be interesting to unsubmit parallel execution and remove 602 * busywaits from the GPU until their master is restarted. This is 603 * quite hairy, we have to carefully rollback the fence and do a 604 * preempt-to-idle cycle on the target engine, all the while the 605 * master execute_cb may refire. 606 */ 607 __notify_execute_cb_irq(request); 608 609 /* We may be recursing from the signal callback of another i915 fence */ 610 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 611 i915_request_enable_breadcrumb(request); 612 613 return result; 614 } 615 616 void i915_request_submit(struct i915_request *request) 617 { 618 struct intel_engine_cs *engine = request->engine; 619 unsigned long flags; 620 621 /* Will be called from irq-context when using foreign fences. */ 622 spin_lock_irqsave(&engine->active.lock, flags); 623 624 __i915_request_submit(request); 625 626 spin_unlock_irqrestore(&engine->active.lock, flags); 627 } 628 629 void __i915_request_unsubmit(struct i915_request *request) 630 { 631 struct intel_engine_cs *engine = request->engine; 632 633 /* 634 * Only unwind in reverse order, required so that the per-context list 635 * is kept in seqno/ring order. 636 */ 637 RQ_TRACE(request, "\n"); 638 639 GEM_BUG_ON(!irqs_disabled()); 640 lockdep_assert_held(&engine->active.lock); 641 642 /* 643 * Before we remove this breadcrumb from the signal list, we have 644 * to ensure that a concurrent dma_fence_enable_signaling() does not 645 * attach itself. We first mark the request as no longer active and 646 * make sure that is visible to other cores, and then remove the 647 * breadcrumb if attached. 648 */ 649 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 650 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 651 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 652 i915_request_cancel_breadcrumb(request); 653 654 /* We've already spun, don't charge on resubmitting. */ 655 if (request->sched.semaphores && i915_request_started(request)) 656 request->sched.semaphores = 0; 657 658 /* 659 * We don't need to wake_up any waiters on request->execute, they 660 * will get woken by any other event or us re-adding this request 661 * to the engine timeline (__i915_request_submit()). The waiters 662 * should be quite adapt at finding that the request now has a new 663 * global_seqno to the one they went to sleep on. 664 */ 665 } 666 667 void i915_request_unsubmit(struct i915_request *request) 668 { 669 struct intel_engine_cs *engine = request->engine; 670 unsigned long flags; 671 672 /* Will be called from irq-context when using foreign fences. */ 673 spin_lock_irqsave(&engine->active.lock, flags); 674 675 __i915_request_unsubmit(request); 676 677 spin_unlock_irqrestore(&engine->active.lock, flags); 678 } 679 680 static int __i915_sw_fence_call 681 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 682 { 683 struct i915_request *request = 684 container_of(fence, typeof(*request), submit); 685 686 switch (state) { 687 case FENCE_COMPLETE: 688 trace_i915_request_submit(request); 689 690 if (unlikely(fence->error)) 691 i915_request_set_error_once(request, fence->error); 692 693 /* 694 * We need to serialize use of the submit_request() callback 695 * with its hotplugging performed during an emergency 696 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 697 * critical section in order to force i915_gem_set_wedged() to 698 * wait until the submit_request() is completed before 699 * proceeding. 700 */ 701 rcu_read_lock(); 702 request->engine->submit_request(request); 703 rcu_read_unlock(); 704 break; 705 706 case FENCE_FREE: 707 i915_request_put(request); 708 break; 709 } 710 711 return NOTIFY_DONE; 712 } 713 714 static int __i915_sw_fence_call 715 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 716 { 717 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 718 719 switch (state) { 720 case FENCE_COMPLETE: 721 break; 722 723 case FENCE_FREE: 724 i915_request_put(rq); 725 break; 726 } 727 728 return NOTIFY_DONE; 729 } 730 731 static void retire_requests(struct intel_timeline *tl) 732 { 733 struct i915_request *rq, *rn; 734 735 list_for_each_entry_safe(rq, rn, &tl->requests, link) 736 if (!i915_request_retire(rq)) 737 break; 738 } 739 740 static noinline struct i915_request * 741 request_alloc_slow(struct intel_timeline *tl, 742 struct i915_request **rsvd, 743 gfp_t gfp) 744 { 745 struct i915_request *rq; 746 747 /* If we cannot wait, dip into our reserves */ 748 if (!gfpflags_allow_blocking(gfp)) { 749 rq = xchg(rsvd, NULL); 750 if (!rq) /* Use the normal failure path for one final WARN */ 751 goto out; 752 753 return rq; 754 } 755 756 if (list_empty(&tl->requests)) 757 goto out; 758 759 /* Move our oldest request to the slab-cache (if not in use!) */ 760 rq = list_first_entry(&tl->requests, typeof(*rq), link); 761 i915_request_retire(rq); 762 763 rq = kmem_cache_alloc(global.slab_requests, 764 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 765 if (rq) 766 return rq; 767 768 /* Ratelimit ourselves to prevent oom from malicious clients */ 769 rq = list_last_entry(&tl->requests, typeof(*rq), link); 770 cond_synchronize_rcu(rq->rcustate); 771 772 /* Retire our old requests in the hope that we free some */ 773 retire_requests(tl); 774 775 out: 776 return kmem_cache_alloc(global.slab_requests, gfp); 777 } 778 779 static void __i915_request_ctor(void *arg) 780 { 781 struct i915_request *rq = arg; 782 783 spin_lock_init(&rq->lock); 784 i915_sched_node_init(&rq->sched); 785 i915_sw_fence_init(&rq->submit, submit_notify); 786 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 787 788 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 789 790 rq->capture_list = NULL; 791 792 init_llist_head(&rq->execute_cb); 793 } 794 795 struct i915_request * 796 __i915_request_create(struct intel_context *ce, gfp_t gfp) 797 { 798 struct intel_timeline *tl = ce->timeline; 799 struct i915_request *rq; 800 u32 seqno; 801 int ret; 802 803 might_sleep_if(gfpflags_allow_blocking(gfp)); 804 805 /* Check that the caller provided an already pinned context */ 806 __intel_context_pin(ce); 807 808 /* 809 * Beware: Dragons be flying overhead. 810 * 811 * We use RCU to look up requests in flight. The lookups may 812 * race with the request being allocated from the slab freelist. 813 * That is the request we are writing to here, may be in the process 814 * of being read by __i915_active_request_get_rcu(). As such, 815 * we have to be very careful when overwriting the contents. During 816 * the RCU lookup, we change chase the request->engine pointer, 817 * read the request->global_seqno and increment the reference count. 818 * 819 * The reference count is incremented atomically. If it is zero, 820 * the lookup knows the request is unallocated and complete. Otherwise, 821 * it is either still in use, or has been reallocated and reset 822 * with dma_fence_init(). This increment is safe for release as we 823 * check that the request we have a reference to and matches the active 824 * request. 825 * 826 * Before we increment the refcount, we chase the request->engine 827 * pointer. We must not call kmem_cache_zalloc() or else we set 828 * that pointer to NULL and cause a crash during the lookup. If 829 * we see the request is completed (based on the value of the 830 * old engine and seqno), the lookup is complete and reports NULL. 831 * If we decide the request is not completed (new engine or seqno), 832 * then we grab a reference and double check that it is still the 833 * active request - which it won't be and restart the lookup. 834 * 835 * Do not use kmem_cache_zalloc() here! 836 */ 837 rq = kmem_cache_alloc(global.slab_requests, 838 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 839 if (unlikely(!rq)) { 840 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 841 if (!rq) { 842 ret = -ENOMEM; 843 goto err_unreserve; 844 } 845 } 846 847 rq->context = ce; 848 rq->engine = ce->engine; 849 rq->ring = ce->ring; 850 rq->execution_mask = ce->engine->mask; 851 852 kref_init(&rq->fence.refcount); 853 rq->fence.flags = 0; 854 rq->fence.error = 0; 855 INIT_LIST_HEAD(&rq->fence.cb_list); 856 857 ret = intel_timeline_get_seqno(tl, rq, &seqno); 858 if (ret) 859 goto err_free; 860 861 rq->fence.context = tl->fence_context; 862 rq->fence.seqno = seqno; 863 864 RCU_INIT_POINTER(rq->timeline, tl); 865 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 866 rq->hwsp_seqno = tl->hwsp_seqno; 867 GEM_BUG_ON(i915_request_completed(rq)); 868 869 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 870 871 /* We bump the ref for the fence chain */ 872 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 873 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 874 875 i915_sched_node_reinit(&rq->sched); 876 877 /* No zalloc, everything must be cleared after use */ 878 rq->batch = NULL; 879 GEM_BUG_ON(rq->capture_list); 880 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 881 882 /* 883 * Reserve space in the ring buffer for all the commands required to 884 * eventually emit this request. This is to guarantee that the 885 * i915_request_add() call can't fail. Note that the reserve may need 886 * to be redone if the request is not actually submitted straight 887 * away, e.g. because a GPU scheduler has deferred it. 888 * 889 * Note that due to how we add reserved_space to intel_ring_begin() 890 * we need to double our request to ensure that if we need to wrap 891 * around inside i915_request_add() there is sufficient space at 892 * the beginning of the ring as well. 893 */ 894 rq->reserved_space = 895 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 896 897 /* 898 * Record the position of the start of the request so that 899 * should we detect the updated seqno part-way through the 900 * GPU processing the request, we never over-estimate the 901 * position of the head. 902 */ 903 rq->head = rq->ring->emit; 904 905 ret = rq->engine->request_alloc(rq); 906 if (ret) 907 goto err_unwind; 908 909 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 910 911 intel_context_mark_active(ce); 912 list_add_tail_rcu(&rq->link, &tl->requests); 913 914 return rq; 915 916 err_unwind: 917 ce->ring->emit = rq->head; 918 919 /* Make sure we didn't add ourselves to external state before freeing */ 920 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 921 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 922 923 err_free: 924 kmem_cache_free(global.slab_requests, rq); 925 err_unreserve: 926 intel_context_unpin(ce); 927 return ERR_PTR(ret); 928 } 929 930 struct i915_request * 931 i915_request_create(struct intel_context *ce) 932 { 933 struct i915_request *rq; 934 struct intel_timeline *tl; 935 936 tl = intel_context_timeline_lock(ce); 937 if (IS_ERR(tl)) 938 return ERR_CAST(tl); 939 940 /* Move our oldest request to the slab-cache (if not in use!) */ 941 rq = list_first_entry(&tl->requests, typeof(*rq), link); 942 if (!list_is_last(&rq->link, &tl->requests)) 943 i915_request_retire(rq); 944 945 intel_context_enter(ce); 946 rq = __i915_request_create(ce, GFP_KERNEL); 947 intel_context_exit(ce); /* active reference transferred to request */ 948 if (IS_ERR(rq)) 949 goto err_unlock; 950 951 /* Check that we do not interrupt ourselves with a new request */ 952 rq->cookie = lockdep_pin_lock(&tl->mutex); 953 954 return rq; 955 956 err_unlock: 957 intel_context_timeline_unlock(tl); 958 return rq; 959 } 960 961 static int 962 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 963 { 964 struct dma_fence *fence; 965 int err; 966 967 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 968 return 0; 969 970 if (i915_request_started(signal)) 971 return 0; 972 973 fence = NULL; 974 rcu_read_lock(); 975 spin_lock_irq(&signal->lock); 976 do { 977 struct list_head *pos = READ_ONCE(signal->link.prev); 978 struct i915_request *prev; 979 980 /* Confirm signal has not been retired, the link is valid */ 981 if (unlikely(i915_request_started(signal))) 982 break; 983 984 /* Is signal the earliest request on its timeline? */ 985 if (pos == &rcu_dereference(signal->timeline)->requests) 986 break; 987 988 /* 989 * Peek at the request before us in the timeline. That 990 * request will only be valid before it is retired, so 991 * after acquiring a reference to it, confirm that it is 992 * still part of the signaler's timeline. 993 */ 994 prev = list_entry(pos, typeof(*prev), link); 995 if (!i915_request_get_rcu(prev)) 996 break; 997 998 /* After the strong barrier, confirm prev is still attached */ 999 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1000 i915_request_put(prev); 1001 break; 1002 } 1003 1004 fence = &prev->fence; 1005 } while (0); 1006 spin_unlock_irq(&signal->lock); 1007 rcu_read_unlock(); 1008 if (!fence) 1009 return 0; 1010 1011 err = 0; 1012 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1013 err = i915_sw_fence_await_dma_fence(&rq->submit, 1014 fence, 0, 1015 I915_FENCE_GFP); 1016 dma_fence_put(fence); 1017 1018 return err; 1019 } 1020 1021 static intel_engine_mask_t 1022 already_busywaiting(struct i915_request *rq) 1023 { 1024 /* 1025 * Polling a semaphore causes bus traffic, delaying other users of 1026 * both the GPU and CPU. We want to limit the impact on others, 1027 * while taking advantage of early submission to reduce GPU 1028 * latency. Therefore we restrict ourselves to not using more 1029 * than one semaphore from each source, and not using a semaphore 1030 * if we have detected the engine is saturated (i.e. would not be 1031 * submitted early and cause bus traffic reading an already passed 1032 * semaphore). 1033 * 1034 * See the are-we-too-late? check in __i915_request_submit(). 1035 */ 1036 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1037 } 1038 1039 static int 1040 __emit_semaphore_wait(struct i915_request *to, 1041 struct i915_request *from, 1042 u32 seqno) 1043 { 1044 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1045 u32 hwsp_offset; 1046 int len, err; 1047 u32 *cs; 1048 1049 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1050 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1051 1052 /* We need to pin the signaler's HWSP until we are finished reading. */ 1053 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1054 if (err) 1055 return err; 1056 1057 len = 4; 1058 if (has_token) 1059 len += 2; 1060 1061 cs = intel_ring_begin(to, len); 1062 if (IS_ERR(cs)) 1063 return PTR_ERR(cs); 1064 1065 /* 1066 * Using greater-than-or-equal here means we have to worry 1067 * about seqno wraparound. To side step that issue, we swap 1068 * the timeline HWSP upon wrapping, so that everyone listening 1069 * for the old (pre-wrap) values do not see the much smaller 1070 * (post-wrap) values than they were expecting (and so wait 1071 * forever). 1072 */ 1073 *cs++ = (MI_SEMAPHORE_WAIT | 1074 MI_SEMAPHORE_GLOBAL_GTT | 1075 MI_SEMAPHORE_POLL | 1076 MI_SEMAPHORE_SAD_GTE_SDD) + 1077 has_token; 1078 *cs++ = seqno; 1079 *cs++ = hwsp_offset; 1080 *cs++ = 0; 1081 if (has_token) { 1082 *cs++ = 0; 1083 *cs++ = MI_NOOP; 1084 } 1085 1086 intel_ring_advance(to, cs); 1087 return 0; 1088 } 1089 1090 static int 1091 emit_semaphore_wait(struct i915_request *to, 1092 struct i915_request *from, 1093 gfp_t gfp) 1094 { 1095 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1096 struct i915_sw_fence *wait = &to->submit; 1097 1098 if (!intel_context_use_semaphores(to->context)) 1099 goto await_fence; 1100 1101 if (i915_request_has_initial_breadcrumb(to)) 1102 goto await_fence; 1103 1104 if (!rcu_access_pointer(from->hwsp_cacheline)) 1105 goto await_fence; 1106 1107 /* 1108 * If this or its dependents are waiting on an external fence 1109 * that may fail catastrophically, then we want to avoid using 1110 * sempahores as they bypass the fence signaling metadata, and we 1111 * lose the fence->error propagation. 1112 */ 1113 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1114 goto await_fence; 1115 1116 /* Just emit the first semaphore we see as request space is limited. */ 1117 if (already_busywaiting(to) & mask) 1118 goto await_fence; 1119 1120 if (i915_request_await_start(to, from) < 0) 1121 goto await_fence; 1122 1123 /* Only submit our spinner after the signaler is running! */ 1124 if (__await_execution(to, from, NULL, gfp)) 1125 goto await_fence; 1126 1127 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1128 goto await_fence; 1129 1130 to->sched.semaphores |= mask; 1131 wait = &to->semaphore; 1132 1133 await_fence: 1134 return i915_sw_fence_await_dma_fence(wait, 1135 &from->fence, 0, 1136 I915_FENCE_GFP); 1137 } 1138 1139 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1140 struct dma_fence *fence) 1141 { 1142 return __intel_timeline_sync_is_later(tl, 1143 fence->context, 1144 fence->seqno - 1); 1145 } 1146 1147 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1148 const struct dma_fence *fence) 1149 { 1150 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1151 } 1152 1153 static int 1154 __i915_request_await_execution(struct i915_request *to, 1155 struct i915_request *from, 1156 void (*hook)(struct i915_request *rq, 1157 struct dma_fence *signal)) 1158 { 1159 int err; 1160 1161 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1162 1163 /* Submit both requests at the same time */ 1164 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1165 if (err) 1166 return err; 1167 1168 /* Squash repeated depenendices to the same timelines */ 1169 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1170 &from->fence)) 1171 return 0; 1172 1173 /* 1174 * Wait until the start of this request. 1175 * 1176 * The execution cb fires when we submit the request to HW. But in 1177 * many cases this may be long before the request itself is ready to 1178 * run (consider that we submit 2 requests for the same context, where 1179 * the request of interest is behind an indefinite spinner). So we hook 1180 * up to both to reduce our queues and keep the execution lag minimised 1181 * in the worst case, though we hope that the await_start is elided. 1182 */ 1183 err = i915_request_await_start(to, from); 1184 if (err < 0) 1185 return err; 1186 1187 /* 1188 * Ensure both start together [after all semaphores in signal] 1189 * 1190 * Now that we are queued to the HW at roughly the same time (thanks 1191 * to the execute cb) and are ready to run at roughly the same time 1192 * (thanks to the await start), our signaler may still be indefinitely 1193 * delayed by waiting on a semaphore from a remote engine. If our 1194 * signaler depends on a semaphore, so indirectly do we, and we do not 1195 * want to start our payload until our signaler also starts theirs. 1196 * So we wait. 1197 * 1198 * However, there is also a second condition for which we need to wait 1199 * for the precise start of the signaler. Consider that the signaler 1200 * was submitted in a chain of requests following another context 1201 * (with just an ordinary intra-engine fence dependency between the 1202 * two). In this case the signaler is queued to HW, but not for 1203 * immediate execution, and so we must wait until it reaches the 1204 * active slot. 1205 */ 1206 if (intel_engine_has_semaphores(to->engine) && 1207 !i915_request_has_initial_breadcrumb(to)) { 1208 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1209 if (err < 0) 1210 return err; 1211 } 1212 1213 /* Couple the dependency tree for PI on this exposed to->fence */ 1214 if (to->engine->schedule) { 1215 err = i915_sched_node_add_dependency(&to->sched, 1216 &from->sched, 1217 I915_DEPENDENCY_WEAK); 1218 if (err < 0) 1219 return err; 1220 } 1221 1222 return intel_timeline_sync_set_start(i915_request_timeline(to), 1223 &from->fence); 1224 } 1225 1226 static void mark_external(struct i915_request *rq) 1227 { 1228 /* 1229 * The downside of using semaphores is that we lose metadata passing 1230 * along the signaling chain. This is particularly nasty when we 1231 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1232 * fatal errors we want to scrub the request before it is executed, 1233 * which means that we cannot preload the request onto HW and have 1234 * it wait upon a semaphore. 1235 */ 1236 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1237 } 1238 1239 static int 1240 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1241 { 1242 mark_external(rq); 1243 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1244 i915_fence_context_timeout(rq->engine->i915, 1245 fence->context), 1246 I915_FENCE_GFP); 1247 } 1248 1249 static int 1250 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1251 { 1252 struct dma_fence *iter; 1253 int err = 0; 1254 1255 if (!to_dma_fence_chain(fence)) 1256 return __i915_request_await_external(rq, fence); 1257 1258 dma_fence_chain_for_each(iter, fence) { 1259 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1260 1261 if (!dma_fence_is_i915(chain->fence)) { 1262 err = __i915_request_await_external(rq, iter); 1263 break; 1264 } 1265 1266 err = i915_request_await_dma_fence(rq, chain->fence); 1267 if (err < 0) 1268 break; 1269 } 1270 1271 dma_fence_put(iter); 1272 return err; 1273 } 1274 1275 int 1276 i915_request_await_execution(struct i915_request *rq, 1277 struct dma_fence *fence, 1278 void (*hook)(struct i915_request *rq, 1279 struct dma_fence *signal)) 1280 { 1281 struct dma_fence **child = &fence; 1282 unsigned int nchild = 1; 1283 int ret; 1284 1285 if (dma_fence_is_array(fence)) { 1286 struct dma_fence_array *array = to_dma_fence_array(fence); 1287 1288 /* XXX Error for signal-on-any fence arrays */ 1289 1290 child = array->fences; 1291 nchild = array->num_fences; 1292 GEM_BUG_ON(!nchild); 1293 } 1294 1295 do { 1296 fence = *child++; 1297 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1298 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1299 continue; 1300 } 1301 1302 if (fence->context == rq->fence.context) 1303 continue; 1304 1305 /* 1306 * We don't squash repeated fence dependencies here as we 1307 * want to run our callback in all cases. 1308 */ 1309 1310 if (dma_fence_is_i915(fence)) 1311 ret = __i915_request_await_execution(rq, 1312 to_request(fence), 1313 hook); 1314 else 1315 ret = i915_request_await_external(rq, fence); 1316 if (ret < 0) 1317 return ret; 1318 } while (--nchild); 1319 1320 return 0; 1321 } 1322 1323 static int 1324 await_request_submit(struct i915_request *to, struct i915_request *from) 1325 { 1326 /* 1327 * If we are waiting on a virtual engine, then it may be 1328 * constrained to execute on a single engine *prior* to submission. 1329 * When it is submitted, it will be first submitted to the virtual 1330 * engine and then passed to the physical engine. We cannot allow 1331 * the waiter to be submitted immediately to the physical engine 1332 * as it may then bypass the virtual request. 1333 */ 1334 if (to->engine == READ_ONCE(from->engine)) 1335 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1336 &from->submit, 1337 I915_FENCE_GFP); 1338 else 1339 return __i915_request_await_execution(to, from, NULL); 1340 } 1341 1342 static int 1343 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1344 { 1345 int ret; 1346 1347 GEM_BUG_ON(to == from); 1348 GEM_BUG_ON(to->timeline == from->timeline); 1349 1350 if (i915_request_completed(from)) { 1351 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1352 return 0; 1353 } 1354 1355 if (to->engine->schedule) { 1356 ret = i915_sched_node_add_dependency(&to->sched, 1357 &from->sched, 1358 I915_DEPENDENCY_EXTERNAL); 1359 if (ret < 0) 1360 return ret; 1361 } 1362 1363 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1364 ret = await_request_submit(to, from); 1365 else 1366 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1367 if (ret < 0) 1368 return ret; 1369 1370 return 0; 1371 } 1372 1373 int 1374 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1375 { 1376 struct dma_fence **child = &fence; 1377 unsigned int nchild = 1; 1378 int ret; 1379 1380 /* 1381 * Note that if the fence-array was created in signal-on-any mode, 1382 * we should *not* decompose it into its individual fences. However, 1383 * we don't currently store which mode the fence-array is operating 1384 * in. Fortunately, the only user of signal-on-any is private to 1385 * amdgpu and we should not see any incoming fence-array from 1386 * sync-file being in signal-on-any mode. 1387 */ 1388 if (dma_fence_is_array(fence)) { 1389 struct dma_fence_array *array = to_dma_fence_array(fence); 1390 1391 child = array->fences; 1392 nchild = array->num_fences; 1393 GEM_BUG_ON(!nchild); 1394 } 1395 1396 do { 1397 fence = *child++; 1398 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1399 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1400 continue; 1401 } 1402 1403 /* 1404 * Requests on the same timeline are explicitly ordered, along 1405 * with their dependencies, by i915_request_add() which ensures 1406 * that requests are submitted in-order through each ring. 1407 */ 1408 if (fence->context == rq->fence.context) 1409 continue; 1410 1411 /* Squash repeated waits to the same timelines */ 1412 if (fence->context && 1413 intel_timeline_sync_is_later(i915_request_timeline(rq), 1414 fence)) 1415 continue; 1416 1417 if (dma_fence_is_i915(fence)) 1418 ret = i915_request_await_request(rq, to_request(fence)); 1419 else 1420 ret = i915_request_await_external(rq, fence); 1421 if (ret < 0) 1422 return ret; 1423 1424 /* Record the latest fence used against each timeline */ 1425 if (fence->context) 1426 intel_timeline_sync_set(i915_request_timeline(rq), 1427 fence); 1428 } while (--nchild); 1429 1430 return 0; 1431 } 1432 1433 /** 1434 * i915_request_await_object - set this request to (async) wait upon a bo 1435 * @to: request we are wishing to use 1436 * @obj: object which may be in use on another ring. 1437 * @write: whether the wait is on behalf of a writer 1438 * 1439 * This code is meant to abstract object synchronization with the GPU. 1440 * Conceptually we serialise writes between engines inside the GPU. 1441 * We only allow one engine to write into a buffer at any time, but 1442 * multiple readers. To ensure each has a coherent view of memory, we must: 1443 * 1444 * - If there is an outstanding write request to the object, the new 1445 * request must wait for it to complete (either CPU or in hw, requests 1446 * on the same ring will be naturally ordered). 1447 * 1448 * - If we are a write request (pending_write_domain is set), the new 1449 * request must wait for outstanding read requests to complete. 1450 * 1451 * Returns 0 if successful, else propagates up the lower layer error. 1452 */ 1453 int 1454 i915_request_await_object(struct i915_request *to, 1455 struct drm_i915_gem_object *obj, 1456 bool write) 1457 { 1458 struct dma_fence *excl; 1459 int ret = 0; 1460 1461 if (write) { 1462 struct dma_fence **shared; 1463 unsigned int count, i; 1464 1465 ret = dma_resv_get_fences_rcu(obj->base.resv, 1466 &excl, &count, &shared); 1467 if (ret) 1468 return ret; 1469 1470 for (i = 0; i < count; i++) { 1471 ret = i915_request_await_dma_fence(to, shared[i]); 1472 if (ret) 1473 break; 1474 1475 dma_fence_put(shared[i]); 1476 } 1477 1478 for (; i < count; i++) 1479 dma_fence_put(shared[i]); 1480 kfree(shared); 1481 } else { 1482 excl = dma_resv_get_excl_rcu(obj->base.resv); 1483 } 1484 1485 if (excl) { 1486 if (ret == 0) 1487 ret = i915_request_await_dma_fence(to, excl); 1488 1489 dma_fence_put(excl); 1490 } 1491 1492 return ret; 1493 } 1494 1495 static struct i915_request * 1496 __i915_request_add_to_timeline(struct i915_request *rq) 1497 { 1498 struct intel_timeline *timeline = i915_request_timeline(rq); 1499 struct i915_request *prev; 1500 1501 /* 1502 * Dependency tracking and request ordering along the timeline 1503 * is special cased so that we can eliminate redundant ordering 1504 * operations while building the request (we know that the timeline 1505 * itself is ordered, and here we guarantee it). 1506 * 1507 * As we know we will need to emit tracking along the timeline, 1508 * we embed the hooks into our request struct -- at the cost of 1509 * having to have specialised no-allocation interfaces (which will 1510 * be beneficial elsewhere). 1511 * 1512 * A second benefit to open-coding i915_request_await_request is 1513 * that we can apply a slight variant of the rules specialised 1514 * for timelines that jump between engines (such as virtual engines). 1515 * If we consider the case of virtual engine, we must emit a dma-fence 1516 * to prevent scheduling of the second request until the first is 1517 * complete (to maximise our greedy late load balancing) and this 1518 * precludes optimising to use semaphores serialisation of a single 1519 * timeline across engines. 1520 */ 1521 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1522 &rq->fence)); 1523 if (prev && !i915_request_completed(prev)) { 1524 /* 1525 * The requests are supposed to be kept in order. However, 1526 * we need to be wary in case the timeline->last_request 1527 * is used as a barrier for external modification to this 1528 * context. 1529 */ 1530 GEM_BUG_ON(prev->context == rq->context && 1531 i915_seqno_passed(prev->fence.seqno, 1532 rq->fence.seqno)); 1533 1534 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1535 i915_sw_fence_await_sw_fence(&rq->submit, 1536 &prev->submit, 1537 &rq->submitq); 1538 else 1539 __i915_sw_fence_await_dma_fence(&rq->submit, 1540 &prev->fence, 1541 &rq->dmaq); 1542 if (rq->engine->schedule) 1543 __i915_sched_node_add_dependency(&rq->sched, 1544 &prev->sched, 1545 &rq->dep, 1546 0); 1547 } 1548 1549 /* 1550 * Make sure that no request gazumped us - if it was allocated after 1551 * our i915_request_alloc() and called __i915_request_add() before 1552 * us, the timeline will hold its seqno which is later than ours. 1553 */ 1554 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1555 1556 return prev; 1557 } 1558 1559 /* 1560 * NB: This function is not allowed to fail. Doing so would mean the the 1561 * request is not being tracked for completion but the work itself is 1562 * going to happen on the hardware. This would be a Bad Thing(tm). 1563 */ 1564 struct i915_request *__i915_request_commit(struct i915_request *rq) 1565 { 1566 struct intel_engine_cs *engine = rq->engine; 1567 struct intel_ring *ring = rq->ring; 1568 u32 *cs; 1569 1570 RQ_TRACE(rq, "\n"); 1571 1572 /* 1573 * To ensure that this call will not fail, space for its emissions 1574 * should already have been reserved in the ring buffer. Let the ring 1575 * know that it is time to use that space up. 1576 */ 1577 GEM_BUG_ON(rq->reserved_space > ring->space); 1578 rq->reserved_space = 0; 1579 rq->emitted_jiffies = jiffies; 1580 1581 /* 1582 * Record the position of the start of the breadcrumb so that 1583 * should we detect the updated seqno part-way through the 1584 * GPU processing the request, we never over-estimate the 1585 * position of the ring's HEAD. 1586 */ 1587 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1588 GEM_BUG_ON(IS_ERR(cs)); 1589 rq->postfix = intel_ring_offset(rq, cs); 1590 1591 return __i915_request_add_to_timeline(rq); 1592 } 1593 1594 void __i915_request_queue_bh(struct i915_request *rq) 1595 { 1596 i915_sw_fence_commit(&rq->semaphore); 1597 i915_sw_fence_commit(&rq->submit); 1598 } 1599 1600 void __i915_request_queue(struct i915_request *rq, 1601 const struct i915_sched_attr *attr) 1602 { 1603 /* 1604 * Let the backend know a new request has arrived that may need 1605 * to adjust the existing execution schedule due to a high priority 1606 * request - i.e. we may want to preempt the current request in order 1607 * to run a high priority dependency chain *before* we can execute this 1608 * request. 1609 * 1610 * This is called before the request is ready to run so that we can 1611 * decide whether to preempt the entire chain so that it is ready to 1612 * run at the earliest possible convenience. 1613 */ 1614 if (attr && rq->engine->schedule) 1615 rq->engine->schedule(rq, attr); 1616 1617 local_bh_disable(); 1618 __i915_request_queue_bh(rq); 1619 local_bh_enable(); /* kick tasklets */ 1620 } 1621 1622 void i915_request_add(struct i915_request *rq) 1623 { 1624 struct intel_timeline * const tl = i915_request_timeline(rq); 1625 struct i915_sched_attr attr = {}; 1626 struct i915_gem_context *ctx; 1627 1628 lockdep_assert_held(&tl->mutex); 1629 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1630 1631 trace_i915_request_add(rq); 1632 __i915_request_commit(rq); 1633 1634 /* XXX placeholder for selftests */ 1635 rcu_read_lock(); 1636 ctx = rcu_dereference(rq->context->gem_context); 1637 if (ctx) 1638 attr = ctx->sched; 1639 rcu_read_unlock(); 1640 1641 __i915_request_queue(rq, &attr); 1642 1643 mutex_unlock(&tl->mutex); 1644 } 1645 1646 static unsigned long local_clock_ns(unsigned int *cpu) 1647 { 1648 unsigned long t; 1649 1650 /* 1651 * Cheaply and approximately convert from nanoseconds to microseconds. 1652 * The result and subsequent calculations are also defined in the same 1653 * approximate microseconds units. The principal source of timing 1654 * error here is from the simple truncation. 1655 * 1656 * Note that local_clock() is only defined wrt to the current CPU; 1657 * the comparisons are no longer valid if we switch CPUs. Instead of 1658 * blocking preemption for the entire busywait, we can detect the CPU 1659 * switch and use that as indicator of system load and a reason to 1660 * stop busywaiting, see busywait_stop(). 1661 */ 1662 *cpu = get_cpu(); 1663 t = local_clock(); 1664 put_cpu(); 1665 1666 return t; 1667 } 1668 1669 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1670 { 1671 unsigned int this_cpu; 1672 1673 if (time_after(local_clock_ns(&this_cpu), timeout)) 1674 return true; 1675 1676 return this_cpu != cpu; 1677 } 1678 1679 static bool __i915_spin_request(struct i915_request * const rq, int state) 1680 { 1681 unsigned long timeout_ns; 1682 unsigned int cpu; 1683 1684 /* 1685 * Only wait for the request if we know it is likely to complete. 1686 * 1687 * We don't track the timestamps around requests, nor the average 1688 * request length, so we do not have a good indicator that this 1689 * request will complete within the timeout. What we do know is the 1690 * order in which requests are executed by the context and so we can 1691 * tell if the request has been started. If the request is not even 1692 * running yet, it is a fair assumption that it will not complete 1693 * within our relatively short timeout. 1694 */ 1695 if (!i915_request_is_running(rq)) 1696 return false; 1697 1698 /* 1699 * When waiting for high frequency requests, e.g. during synchronous 1700 * rendering split between the CPU and GPU, the finite amount of time 1701 * required to set up the irq and wait upon it limits the response 1702 * rate. By busywaiting on the request completion for a short while we 1703 * can service the high frequency waits as quick as possible. However, 1704 * if it is a slow request, we want to sleep as quickly as possible. 1705 * The tradeoff between waiting and sleeping is roughly the time it 1706 * takes to sleep on a request, on the order of a microsecond. 1707 */ 1708 1709 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1710 timeout_ns += local_clock_ns(&cpu); 1711 do { 1712 if (dma_fence_is_signaled(&rq->fence)) 1713 return true; 1714 1715 if (signal_pending_state(state, current)) 1716 break; 1717 1718 if (busywait_stop(timeout_ns, cpu)) 1719 break; 1720 1721 cpu_relax(); 1722 } while (!need_resched()); 1723 1724 return false; 1725 } 1726 1727 struct request_wait { 1728 struct dma_fence_cb cb; 1729 struct task_struct *tsk; 1730 }; 1731 1732 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1733 { 1734 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1735 1736 wake_up_process(fetch_and_zero(&wait->tsk)); 1737 } 1738 1739 /** 1740 * i915_request_wait - wait until execution of request has finished 1741 * @rq: the request to wait upon 1742 * @flags: how to wait 1743 * @timeout: how long to wait in jiffies 1744 * 1745 * i915_request_wait() waits for the request to be completed, for a 1746 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1747 * unbounded wait). 1748 * 1749 * Returns the remaining time (in jiffies) if the request completed, which may 1750 * be zero or -ETIME if the request is unfinished after the timeout expires. 1751 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1752 * pending before the request completes. 1753 */ 1754 long i915_request_wait(struct i915_request *rq, 1755 unsigned int flags, 1756 long timeout) 1757 { 1758 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1759 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1760 struct request_wait wait; 1761 1762 might_sleep(); 1763 GEM_BUG_ON(timeout < 0); 1764 1765 if (dma_fence_is_signaled(&rq->fence)) 1766 return timeout; 1767 1768 if (!timeout) 1769 return -ETIME; 1770 1771 trace_i915_request_wait_begin(rq, flags); 1772 1773 /* 1774 * We must never wait on the GPU while holding a lock as we 1775 * may need to perform a GPU reset. So while we don't need to 1776 * serialise wait/reset with an explicit lock, we do want 1777 * lockdep to detect potential dependency cycles. 1778 */ 1779 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1780 1781 /* 1782 * Optimistic spin before touching IRQs. 1783 * 1784 * We may use a rather large value here to offset the penalty of 1785 * switching away from the active task. Frequently, the client will 1786 * wait upon an old swapbuffer to throttle itself to remain within a 1787 * frame of the gpu. If the client is running in lockstep with the gpu, 1788 * then it should not be waiting long at all, and a sleep now will incur 1789 * extra scheduler latency in producing the next frame. To try to 1790 * avoid adding the cost of enabling/disabling the interrupt to the 1791 * short wait, we first spin to see if the request would have completed 1792 * in the time taken to setup the interrupt. 1793 * 1794 * We need upto 5us to enable the irq, and upto 20us to hide the 1795 * scheduler latency of a context switch, ignoring the secondary 1796 * impacts from a context switch such as cache eviction. 1797 * 1798 * The scheme used for low-latency IO is called "hybrid interrupt 1799 * polling". The suggestion there is to sleep until just before you 1800 * expect to be woken by the device interrupt and then poll for its 1801 * completion. That requires having a good predictor for the request 1802 * duration, which we currently lack. 1803 */ 1804 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1805 __i915_spin_request(rq, state)) 1806 goto out; 1807 1808 /* 1809 * This client is about to stall waiting for the GPU. In many cases 1810 * this is undesirable and limits the throughput of the system, as 1811 * many clients cannot continue processing user input/output whilst 1812 * blocked. RPS autotuning may take tens of milliseconds to respond 1813 * to the GPU load and thus incurs additional latency for the client. 1814 * We can circumvent that by promoting the GPU frequency to maximum 1815 * before we sleep. This makes the GPU throttle up much more quickly 1816 * (good for benchmarks and user experience, e.g. window animations), 1817 * but at a cost of spending more power processing the workload 1818 * (bad for battery). 1819 */ 1820 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1821 intel_rps_boost(rq); 1822 1823 wait.tsk = current; 1824 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1825 goto out; 1826 1827 /* 1828 * Flush the submission tasklet, but only if it may help this request. 1829 * 1830 * We sometimes experience some latency between the HW interrupts and 1831 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1832 * be due to lazy CS events), so lets run the tasklet manually if there 1833 * is a chance it may submit this request. If the request is not ready 1834 * to run, as it is waiting for other fences to be signaled, flushing 1835 * the tasklet is busy work without any advantage for this client. 1836 * 1837 * If the HW is being lazy, this is the last chance before we go to 1838 * sleep to catch any pending events. We will check periodically in 1839 * the heartbeat to flush the submission tasklets as a last resort 1840 * for unhappy HW. 1841 */ 1842 if (i915_request_is_ready(rq)) 1843 __intel_engine_flush_submission(rq->engine, false); 1844 1845 for (;;) { 1846 set_current_state(state); 1847 1848 if (dma_fence_is_signaled(&rq->fence)) 1849 break; 1850 1851 if (signal_pending_state(state, current)) { 1852 timeout = -ERESTARTSYS; 1853 break; 1854 } 1855 1856 if (!timeout) { 1857 timeout = -ETIME; 1858 break; 1859 } 1860 1861 timeout = io_schedule_timeout(timeout); 1862 } 1863 __set_current_state(TASK_RUNNING); 1864 1865 if (READ_ONCE(wait.tsk)) 1866 dma_fence_remove_callback(&rq->fence, &wait.cb); 1867 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1868 1869 out: 1870 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1871 trace_i915_request_wait_end(rq); 1872 return timeout; 1873 } 1874 1875 static int print_sched_attr(const struct i915_sched_attr *attr, 1876 char *buf, int x, int len) 1877 { 1878 if (attr->priority == I915_PRIORITY_INVALID) 1879 return x; 1880 1881 x += snprintf(buf + x, len - x, 1882 " prio=%d", attr->priority); 1883 1884 return x; 1885 } 1886 1887 static char queue_status(const struct i915_request *rq) 1888 { 1889 if (i915_request_is_active(rq)) 1890 return 'E'; 1891 1892 if (i915_request_is_ready(rq)) 1893 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 1894 1895 return 'U'; 1896 } 1897 1898 static const char *run_status(const struct i915_request *rq) 1899 { 1900 if (i915_request_completed(rq)) 1901 return "!"; 1902 1903 if (i915_request_started(rq)) 1904 return "*"; 1905 1906 if (!i915_sw_fence_signaled(&rq->semaphore)) 1907 return "&"; 1908 1909 return ""; 1910 } 1911 1912 static const char *fence_status(const struct i915_request *rq) 1913 { 1914 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 1915 return "+"; 1916 1917 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 1918 return "-"; 1919 1920 return ""; 1921 } 1922 1923 void i915_request_show(struct drm_printer *m, 1924 const struct i915_request *rq, 1925 const char *prefix, 1926 int indent) 1927 { 1928 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 1929 char buf[80] = ""; 1930 int x = 0; 1931 1932 /* 1933 * The prefix is used to show the queue status, for which we use 1934 * the following flags: 1935 * 1936 * U [Unready] 1937 * - initial status upon being submitted by the user 1938 * 1939 * - the request is not ready for execution as it is waiting 1940 * for external fences 1941 * 1942 * R [Ready] 1943 * - all fences the request was waiting on have been signaled, 1944 * and the request is now ready for execution and will be 1945 * in a backend queue 1946 * 1947 * - a ready request may still need to wait on semaphores 1948 * [internal fences] 1949 * 1950 * V [Ready/virtual] 1951 * - same as ready, but queued over multiple backends 1952 * 1953 * E [Executing] 1954 * - the request has been transferred from the backend queue and 1955 * submitted for execution on HW 1956 * 1957 * - a completed request may still be regarded as executing, its 1958 * status may not be updated until it is retired and removed 1959 * from the lists 1960 */ 1961 1962 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 1963 1964 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 1965 prefix, indent, " ", 1966 queue_status(rq), 1967 rq->fence.context, rq->fence.seqno, 1968 run_status(rq), 1969 fence_status(rq), 1970 buf, 1971 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 1972 name); 1973 } 1974 1975 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1976 #include "selftests/mock_request.c" 1977 #include "selftests/i915_request.c" 1978 #endif 1979 1980 static void i915_global_request_shrink(void) 1981 { 1982 kmem_cache_shrink(global.slab_execute_cbs); 1983 kmem_cache_shrink(global.slab_requests); 1984 } 1985 1986 static void i915_global_request_exit(void) 1987 { 1988 kmem_cache_destroy(global.slab_execute_cbs); 1989 kmem_cache_destroy(global.slab_requests); 1990 } 1991 1992 static struct i915_global_request global = { { 1993 .shrink = i915_global_request_shrink, 1994 .exit = i915_global_request_exit, 1995 } }; 1996 1997 int __init i915_global_request_init(void) 1998 { 1999 global.slab_requests = 2000 kmem_cache_create("i915_request", 2001 sizeof(struct i915_request), 2002 __alignof__(struct i915_request), 2003 SLAB_HWCACHE_ALIGN | 2004 SLAB_RECLAIM_ACCOUNT | 2005 SLAB_TYPESAFE_BY_RCU, 2006 __i915_request_ctor); 2007 if (!global.slab_requests) 2008 return -ENOMEM; 2009 2010 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 2011 SLAB_HWCACHE_ALIGN | 2012 SLAB_RECLAIM_ACCOUNT | 2013 SLAB_TYPESAFE_BY_RCU); 2014 if (!global.slab_execute_cbs) 2015 goto err_requests; 2016 2017 i915_global_register(&global.base); 2018 return 0; 2019 2020 err_requests: 2021 kmem_cache_destroy(global.slab_requests); 2022 return -ENOMEM; 2023 } 2024