1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_gpu_commands.h"
37 #include "gt/intel_ring.h"
38 #include "gt/intel_rps.h"
39 
40 #include "i915_active.h"
41 #include "i915_drv.h"
42 #include "i915_globals.h"
43 #include "i915_trace.h"
44 #include "intel_pm.h"
45 
46 struct execute_cb {
47 	struct irq_work work;
48 	struct i915_sw_fence *fence;
49 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
50 	struct i915_request *signal;
51 };
52 
53 static struct i915_global_request {
54 	struct i915_global base;
55 	struct kmem_cache *slab_requests;
56 	struct kmem_cache *slab_execute_cbs;
57 } global;
58 
59 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
60 {
61 	return dev_name(to_request(fence)->engine->i915->drm.dev);
62 }
63 
64 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
65 {
66 	const struct i915_gem_context *ctx;
67 
68 	/*
69 	 * The timeline struct (as part of the ppgtt underneath a context)
70 	 * may be freed when the request is no longer in use by the GPU.
71 	 * We could extend the life of a context to beyond that of all
72 	 * fences, possibly keeping the hw resource around indefinitely,
73 	 * or we just give them a false name. Since
74 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
75 	 * lie seems justifiable.
76 	 */
77 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
78 		return "signaled";
79 
80 	ctx = i915_request_gem_context(to_request(fence));
81 	if (!ctx)
82 		return "[" DRIVER_NAME "]";
83 
84 	return ctx->name;
85 }
86 
87 static bool i915_fence_signaled(struct dma_fence *fence)
88 {
89 	return i915_request_completed(to_request(fence));
90 }
91 
92 static bool i915_fence_enable_signaling(struct dma_fence *fence)
93 {
94 	return i915_request_enable_breadcrumb(to_request(fence));
95 }
96 
97 static signed long i915_fence_wait(struct dma_fence *fence,
98 				   bool interruptible,
99 				   signed long timeout)
100 {
101 	return i915_request_wait(to_request(fence),
102 				 interruptible | I915_WAIT_PRIORITY,
103 				 timeout);
104 }
105 
106 struct kmem_cache *i915_request_slab_cache(void)
107 {
108 	return global.slab_requests;
109 }
110 
111 static void i915_fence_release(struct dma_fence *fence)
112 {
113 	struct i915_request *rq = to_request(fence);
114 
115 	/*
116 	 * The request is put onto a RCU freelist (i.e. the address
117 	 * is immediately reused), mark the fences as being freed now.
118 	 * Otherwise the debugobjects for the fences are only marked as
119 	 * freed when the slab cache itself is freed, and so we would get
120 	 * caught trying to reuse dead objects.
121 	 */
122 	i915_sw_fence_fini(&rq->submit);
123 	i915_sw_fence_fini(&rq->semaphore);
124 
125 	/*
126 	 * Keep one request on each engine for reserved use under mempressure
127 	 *
128 	 * We do not hold a reference to the engine here and so have to be
129 	 * very careful in what rq->engine we poke. The virtual engine is
130 	 * referenced via the rq->context and we released that ref during
131 	 * i915_request_retire(), ergo we must not dereference a virtual
132 	 * engine here. Not that we would want to, as the only consumer of
133 	 * the reserved engine->request_pool is the power management parking,
134 	 * which must-not-fail, and that is only run on the physical engines.
135 	 *
136 	 * Since the request must have been executed to be have completed,
137 	 * we know that it will have been processed by the HW and will
138 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
139 	 * at this point is stable. rq->execution_mask will be a single
140 	 * bit if the last and _only_ engine it could execution on was a
141 	 * physical engine, if it's multiple bits then it started on and
142 	 * could still be on a virtual engine. Thus if the mask is not a
143 	 * power-of-two we assume that rq->engine may still be a virtual
144 	 * engine and so a dangling invalid pointer that we cannot dereference
145 	 *
146 	 * For example, consider the flow of a bonded request through a virtual
147 	 * engine. The request is created with a wide engine mask (all engines
148 	 * that we might execute on). On processing the bond, the request mask
149 	 * is reduced to one or more engines. If the request is subsequently
150 	 * bound to a single engine, it will then be constrained to only
151 	 * execute on that engine and never returned to the virtual engine
152 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
153 	 * know that if the rq->execution_mask is a single bit, rq->engine
154 	 * can be a physical engine with the exact corresponding mask.
155 	 */
156 	if (is_power_of_2(rq->execution_mask) &&
157 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
158 		return;
159 
160 	kmem_cache_free(global.slab_requests, rq);
161 }
162 
163 const struct dma_fence_ops i915_fence_ops = {
164 	.get_driver_name = i915_fence_get_driver_name,
165 	.get_timeline_name = i915_fence_get_timeline_name,
166 	.enable_signaling = i915_fence_enable_signaling,
167 	.signaled = i915_fence_signaled,
168 	.wait = i915_fence_wait,
169 	.release = i915_fence_release,
170 };
171 
172 static void irq_execute_cb(struct irq_work *wrk)
173 {
174 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
175 
176 	i915_sw_fence_complete(cb->fence);
177 	kmem_cache_free(global.slab_execute_cbs, cb);
178 }
179 
180 static void irq_execute_cb_hook(struct irq_work *wrk)
181 {
182 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
183 
184 	cb->hook(container_of(cb->fence, struct i915_request, submit),
185 		 &cb->signal->fence);
186 	i915_request_put(cb->signal);
187 
188 	irq_execute_cb(wrk);
189 }
190 
191 static __always_inline void
192 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
193 {
194 	struct execute_cb *cb, *cn;
195 
196 	if (llist_empty(&rq->execute_cb))
197 		return;
198 
199 	llist_for_each_entry_safe(cb, cn,
200 				  llist_del_all(&rq->execute_cb),
201 				  work.node.llist)
202 		fn(&cb->work);
203 }
204 
205 static void __notify_execute_cb_irq(struct i915_request *rq)
206 {
207 	__notify_execute_cb(rq, irq_work_queue);
208 }
209 
210 static bool irq_work_imm(struct irq_work *wrk)
211 {
212 	wrk->func(wrk);
213 	return false;
214 }
215 
216 static void __notify_execute_cb_imm(struct i915_request *rq)
217 {
218 	__notify_execute_cb(rq, irq_work_imm);
219 }
220 
221 static void free_capture_list(struct i915_request *request)
222 {
223 	struct i915_capture_list *capture;
224 
225 	capture = fetch_and_zero(&request->capture_list);
226 	while (capture) {
227 		struct i915_capture_list *next = capture->next;
228 
229 		kfree(capture);
230 		capture = next;
231 	}
232 }
233 
234 static void __i915_request_fill(struct i915_request *rq, u8 val)
235 {
236 	void *vaddr = rq->ring->vaddr;
237 	u32 head;
238 
239 	head = rq->infix;
240 	if (rq->postfix < head) {
241 		memset(vaddr + head, val, rq->ring->size - head);
242 		head = 0;
243 	}
244 	memset(vaddr + head, val, rq->postfix - head);
245 }
246 
247 static void remove_from_engine(struct i915_request *rq)
248 {
249 	struct intel_engine_cs *engine, *locked;
250 
251 	/*
252 	 * Virtual engines complicate acquiring the engine timeline lock,
253 	 * as their rq->engine pointer is not stable until under that
254 	 * engine lock. The simple ploy we use is to take the lock then
255 	 * check that the rq still belongs to the newly locked engine.
256 	 */
257 	locked = READ_ONCE(rq->engine);
258 	spin_lock_irq(&locked->active.lock);
259 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
260 		spin_unlock(&locked->active.lock);
261 		spin_lock(&engine->active.lock);
262 		locked = engine;
263 	}
264 	list_del_init(&rq->sched.link);
265 
266 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
267 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
268 
269 	/* Prevent further __await_execution() registering a cb, then flush */
270 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
271 
272 	spin_unlock_irq(&locked->active.lock);
273 
274 	__notify_execute_cb_imm(rq);
275 }
276 
277 bool i915_request_retire(struct i915_request *rq)
278 {
279 	if (!i915_request_completed(rq))
280 		return false;
281 
282 	RQ_TRACE(rq, "\n");
283 
284 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
285 	trace_i915_request_retire(rq);
286 	i915_request_mark_complete(rq);
287 
288 	/*
289 	 * We know the GPU must have read the request to have
290 	 * sent us the seqno + interrupt, so use the position
291 	 * of tail of the request to update the last known position
292 	 * of the GPU head.
293 	 *
294 	 * Note this requires that we are always called in request
295 	 * completion order.
296 	 */
297 	GEM_BUG_ON(!list_is_first(&rq->link,
298 				  &i915_request_timeline(rq)->requests));
299 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
300 		/* Poison before we release our space in the ring */
301 		__i915_request_fill(rq, POISON_FREE);
302 	rq->ring->head = rq->postfix;
303 
304 	if (!i915_request_signaled(rq)) {
305 		spin_lock_irq(&rq->lock);
306 		dma_fence_signal_locked(&rq->fence);
307 		spin_unlock_irq(&rq->lock);
308 	}
309 
310 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
311 		atomic_dec(&rq->engine->gt->rps.num_waiters);
312 
313 	/*
314 	 * We only loosely track inflight requests across preemption,
315 	 * and so we may find ourselves attempting to retire a _completed_
316 	 * request that we have removed from the HW and put back on a run
317 	 * queue.
318 	 *
319 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
320 	 * after removing the breadcrumb and signaling it, so that we do not
321 	 * inadvertently attach the breadcrumb to a completed request.
322 	 */
323 	if (!list_empty(&rq->sched.link))
324 		remove_from_engine(rq);
325 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326 
327 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328 
329 	intel_context_exit(rq->context);
330 	intel_context_unpin(rq->context);
331 
332 	free_capture_list(rq);
333 	i915_sched_node_fini(&rq->sched);
334 	i915_request_put(rq);
335 
336 	return true;
337 }
338 
339 void i915_request_retire_upto(struct i915_request *rq)
340 {
341 	struct intel_timeline * const tl = i915_request_timeline(rq);
342 	struct i915_request *tmp;
343 
344 	RQ_TRACE(rq, "\n");
345 
346 	GEM_BUG_ON(!i915_request_completed(rq));
347 
348 	do {
349 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
350 	} while (i915_request_retire(tmp) && tmp != rq);
351 }
352 
353 static struct i915_request * const *
354 __engine_active(struct intel_engine_cs *engine)
355 {
356 	return READ_ONCE(engine->execlists.active);
357 }
358 
359 static bool __request_in_flight(const struct i915_request *signal)
360 {
361 	struct i915_request * const *port, *rq;
362 	bool inflight = false;
363 
364 	if (!i915_request_is_ready(signal))
365 		return false;
366 
367 	/*
368 	 * Even if we have unwound the request, it may still be on
369 	 * the GPU (preempt-to-busy). If that request is inside an
370 	 * unpreemptible critical section, it will not be removed. Some
371 	 * GPU functions may even be stuck waiting for the paired request
372 	 * (__await_execution) to be submitted and cannot be preempted
373 	 * until the bond is executing.
374 	 *
375 	 * As we know that there are always preemption points between
376 	 * requests, we know that only the currently executing request
377 	 * may be still active even though we have cleared the flag.
378 	 * However, we can't rely on our tracking of ELSP[0] to know
379 	 * which request is currently active and so maybe stuck, as
380 	 * the tracking maybe an event behind. Instead assume that
381 	 * if the context is still inflight, then it is still active
382 	 * even if the active flag has been cleared.
383 	 *
384 	 * To further complicate matters, if there a pending promotion, the HW
385 	 * may either perform a context switch to the second inflight execlists,
386 	 * or it may switch to the pending set of execlists. In the case of the
387 	 * latter, it may send the ACK and we process the event copying the
388 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
389 	 * this implies the HW is arbitrating and not struck in *active, we do
390 	 * not worry about complete accuracy, but we do require no read/write
391 	 * tearing of the pointer [the read of the pointer must be valid, even
392 	 * as the array is being overwritten, for which we require the writes
393 	 * to avoid tearing.]
394 	 *
395 	 * Note that the read of *execlists->active may race with the promotion
396 	 * of execlists->pending[] to execlists->inflight[], overwritting
397 	 * the value at *execlists->active. This is fine. The promotion implies
398 	 * that we received an ACK from the HW, and so the context is not
399 	 * stuck -- if we do not see ourselves in *active, the inflight status
400 	 * is valid. If instead we see ourselves being copied into *active,
401 	 * we are inflight and may signal the callback.
402 	 */
403 	if (!intel_context_inflight(signal->context))
404 		return false;
405 
406 	rcu_read_lock();
407 	for (port = __engine_active(signal->engine);
408 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
409 	     port++) {
410 		if (rq->context == signal->context) {
411 			inflight = i915_seqno_passed(rq->fence.seqno,
412 						     signal->fence.seqno);
413 			break;
414 		}
415 	}
416 	rcu_read_unlock();
417 
418 	return inflight;
419 }
420 
421 static int
422 __await_execution(struct i915_request *rq,
423 		  struct i915_request *signal,
424 		  void (*hook)(struct i915_request *rq,
425 			       struct dma_fence *signal),
426 		  gfp_t gfp)
427 {
428 	struct execute_cb *cb;
429 
430 	if (i915_request_is_active(signal)) {
431 		if (hook)
432 			hook(rq, &signal->fence);
433 		return 0;
434 	}
435 
436 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
437 	if (!cb)
438 		return -ENOMEM;
439 
440 	cb->fence = &rq->submit;
441 	i915_sw_fence_await(cb->fence);
442 	init_irq_work(&cb->work, irq_execute_cb);
443 
444 	if (hook) {
445 		cb->hook = hook;
446 		cb->signal = i915_request_get(signal);
447 		cb->work.func = irq_execute_cb_hook;
448 	}
449 
450 	/*
451 	 * Register the callback first, then see if the signaler is already
452 	 * active. This ensures that if we race with the
453 	 * __notify_execute_cb from i915_request_submit() and we are not
454 	 * included in that list, we get a second bite of the cherry and
455 	 * execute it ourselves. After this point, a future
456 	 * i915_request_submit() will notify us.
457 	 *
458 	 * In i915_request_retire() we set the ACTIVE bit on a completed
459 	 * request (then flush the execute_cb). So by registering the
460 	 * callback first, then checking the ACTIVE bit, we serialise with
461 	 * the completed/retired request.
462 	 */
463 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
464 		if (i915_request_is_active(signal) ||
465 		    __request_in_flight(signal))
466 			__notify_execute_cb_imm(signal);
467 	}
468 
469 	return 0;
470 }
471 
472 static bool fatal_error(int error)
473 {
474 	switch (error) {
475 	case 0: /* not an error! */
476 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
477 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
478 		return false;
479 	default:
480 		return true;
481 	}
482 }
483 
484 void __i915_request_skip(struct i915_request *rq)
485 {
486 	GEM_BUG_ON(!fatal_error(rq->fence.error));
487 
488 	if (rq->infix == rq->postfix)
489 		return;
490 
491 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
492 
493 	/*
494 	 * As this request likely depends on state from the lost
495 	 * context, clear out all the user operations leaving the
496 	 * breadcrumb at the end (so we get the fence notifications).
497 	 */
498 	__i915_request_fill(rq, 0);
499 	rq->infix = rq->postfix;
500 }
501 
502 void i915_request_set_error_once(struct i915_request *rq, int error)
503 {
504 	int old;
505 
506 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
507 
508 	if (i915_request_signaled(rq))
509 		return;
510 
511 	old = READ_ONCE(rq->fence.error);
512 	do {
513 		if (fatal_error(old))
514 			return;
515 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
516 }
517 
518 void i915_request_mark_eio(struct i915_request *rq)
519 {
520 	if (__i915_request_is_complete(rq))
521 		return;
522 
523 	GEM_BUG_ON(i915_request_signaled(rq));
524 
525 	i915_request_set_error_once(rq, -EIO);
526 	i915_request_mark_complete(rq);
527 }
528 
529 bool __i915_request_submit(struct i915_request *request)
530 {
531 	struct intel_engine_cs *engine = request->engine;
532 	bool result = false;
533 
534 	RQ_TRACE(request, "\n");
535 
536 	GEM_BUG_ON(!irqs_disabled());
537 	lockdep_assert_held(&engine->active.lock);
538 
539 	/*
540 	 * With the advent of preempt-to-busy, we frequently encounter
541 	 * requests that we have unsubmitted from HW, but left running
542 	 * until the next ack and so have completed in the meantime. On
543 	 * resubmission of that completed request, we can skip
544 	 * updating the payload, and execlists can even skip submitting
545 	 * the request.
546 	 *
547 	 * We must remove the request from the caller's priority queue,
548 	 * and the caller must only call us when the request is in their
549 	 * priority queue, under the active.lock. This ensures that the
550 	 * request has *not* yet been retired and we can safely move
551 	 * the request into the engine->active.list where it will be
552 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
553 	 * request, this would be a horrible use-after-free.)
554 	 */
555 	if (i915_request_completed(request))
556 		goto xfer;
557 
558 	if (unlikely(intel_context_is_banned(request->context)))
559 		i915_request_set_error_once(request, -EIO);
560 
561 	if (unlikely(fatal_error(request->fence.error)))
562 		__i915_request_skip(request);
563 
564 	/*
565 	 * Are we using semaphores when the gpu is already saturated?
566 	 *
567 	 * Using semaphores incurs a cost in having the GPU poll a
568 	 * memory location, busywaiting for it to change. The continual
569 	 * memory reads can have a noticeable impact on the rest of the
570 	 * system with the extra bus traffic, stalling the cpu as it too
571 	 * tries to access memory across the bus (perf stat -e bus-cycles).
572 	 *
573 	 * If we installed a semaphore on this request and we only submit
574 	 * the request after the signaler completed, that indicates the
575 	 * system is overloaded and using semaphores at this time only
576 	 * increases the amount of work we are doing. If so, we disable
577 	 * further use of semaphores until we are idle again, whence we
578 	 * optimistically try again.
579 	 */
580 	if (request->sched.semaphores &&
581 	    i915_sw_fence_signaled(&request->semaphore))
582 		engine->saturated |= request->sched.semaphores;
583 
584 	engine->emit_fini_breadcrumb(request,
585 				     request->ring->vaddr + request->postfix);
586 
587 	trace_i915_request_execute(request);
588 	engine->serial++;
589 	result = true;
590 
591 xfer:
592 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
593 		list_move_tail(&request->sched.link, &engine->active.requests);
594 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
595 	}
596 
597 	/*
598 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
599 	 *
600 	 * In the future, perhaps when we have an active time-slicing scheduler,
601 	 * it will be interesting to unsubmit parallel execution and remove
602 	 * busywaits from the GPU until their master is restarted. This is
603 	 * quite hairy, we have to carefully rollback the fence and do a
604 	 * preempt-to-idle cycle on the target engine, all the while the
605 	 * master execute_cb may refire.
606 	 */
607 	__notify_execute_cb_irq(request);
608 
609 	/* We may be recursing from the signal callback of another i915 fence */
610 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
611 		i915_request_enable_breadcrumb(request);
612 
613 	return result;
614 }
615 
616 void i915_request_submit(struct i915_request *request)
617 {
618 	struct intel_engine_cs *engine = request->engine;
619 	unsigned long flags;
620 
621 	/* Will be called from irq-context when using foreign fences. */
622 	spin_lock_irqsave(&engine->active.lock, flags);
623 
624 	__i915_request_submit(request);
625 
626 	spin_unlock_irqrestore(&engine->active.lock, flags);
627 }
628 
629 void __i915_request_unsubmit(struct i915_request *request)
630 {
631 	struct intel_engine_cs *engine = request->engine;
632 
633 	/*
634 	 * Only unwind in reverse order, required so that the per-context list
635 	 * is kept in seqno/ring order.
636 	 */
637 	RQ_TRACE(request, "\n");
638 
639 	GEM_BUG_ON(!irqs_disabled());
640 	lockdep_assert_held(&engine->active.lock);
641 
642 	/*
643 	 * Before we remove this breadcrumb from the signal list, we have
644 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
645 	 * attach itself. We first mark the request as no longer active and
646 	 * make sure that is visible to other cores, and then remove the
647 	 * breadcrumb if attached.
648 	 */
649 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
650 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
651 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
652 		i915_request_cancel_breadcrumb(request);
653 
654 	/* We've already spun, don't charge on resubmitting. */
655 	if (request->sched.semaphores && i915_request_started(request))
656 		request->sched.semaphores = 0;
657 
658 	/*
659 	 * We don't need to wake_up any waiters on request->execute, they
660 	 * will get woken by any other event or us re-adding this request
661 	 * to the engine timeline (__i915_request_submit()). The waiters
662 	 * should be quite adapt at finding that the request now has a new
663 	 * global_seqno to the one they went to sleep on.
664 	 */
665 }
666 
667 void i915_request_unsubmit(struct i915_request *request)
668 {
669 	struct intel_engine_cs *engine = request->engine;
670 	unsigned long flags;
671 
672 	/* Will be called from irq-context when using foreign fences. */
673 	spin_lock_irqsave(&engine->active.lock, flags);
674 
675 	__i915_request_unsubmit(request);
676 
677 	spin_unlock_irqrestore(&engine->active.lock, flags);
678 }
679 
680 static int __i915_sw_fence_call
681 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
682 {
683 	struct i915_request *request =
684 		container_of(fence, typeof(*request), submit);
685 
686 	switch (state) {
687 	case FENCE_COMPLETE:
688 		trace_i915_request_submit(request);
689 
690 		if (unlikely(fence->error))
691 			i915_request_set_error_once(request, fence->error);
692 
693 		/*
694 		 * We need to serialize use of the submit_request() callback
695 		 * with its hotplugging performed during an emergency
696 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
697 		 * critical section in order to force i915_gem_set_wedged() to
698 		 * wait until the submit_request() is completed before
699 		 * proceeding.
700 		 */
701 		rcu_read_lock();
702 		request->engine->submit_request(request);
703 		rcu_read_unlock();
704 		break;
705 
706 	case FENCE_FREE:
707 		i915_request_put(request);
708 		break;
709 	}
710 
711 	return NOTIFY_DONE;
712 }
713 
714 static int __i915_sw_fence_call
715 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
716 {
717 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
718 
719 	switch (state) {
720 	case FENCE_COMPLETE:
721 		break;
722 
723 	case FENCE_FREE:
724 		i915_request_put(rq);
725 		break;
726 	}
727 
728 	return NOTIFY_DONE;
729 }
730 
731 static void retire_requests(struct intel_timeline *tl)
732 {
733 	struct i915_request *rq, *rn;
734 
735 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
736 		if (!i915_request_retire(rq))
737 			break;
738 }
739 
740 static noinline struct i915_request *
741 request_alloc_slow(struct intel_timeline *tl,
742 		   struct i915_request **rsvd,
743 		   gfp_t gfp)
744 {
745 	struct i915_request *rq;
746 
747 	/* If we cannot wait, dip into our reserves */
748 	if (!gfpflags_allow_blocking(gfp)) {
749 		rq = xchg(rsvd, NULL);
750 		if (!rq) /* Use the normal failure path for one final WARN */
751 			goto out;
752 
753 		return rq;
754 	}
755 
756 	if (list_empty(&tl->requests))
757 		goto out;
758 
759 	/* Move our oldest request to the slab-cache (if not in use!) */
760 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
761 	i915_request_retire(rq);
762 
763 	rq = kmem_cache_alloc(global.slab_requests,
764 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
765 	if (rq)
766 		return rq;
767 
768 	/* Ratelimit ourselves to prevent oom from malicious clients */
769 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
770 	cond_synchronize_rcu(rq->rcustate);
771 
772 	/* Retire our old requests in the hope that we free some */
773 	retire_requests(tl);
774 
775 out:
776 	return kmem_cache_alloc(global.slab_requests, gfp);
777 }
778 
779 static void __i915_request_ctor(void *arg)
780 {
781 	struct i915_request *rq = arg;
782 
783 	spin_lock_init(&rq->lock);
784 	i915_sched_node_init(&rq->sched);
785 	i915_sw_fence_init(&rq->submit, submit_notify);
786 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
787 
788 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
789 
790 	rq->capture_list = NULL;
791 
792 	init_llist_head(&rq->execute_cb);
793 }
794 
795 struct i915_request *
796 __i915_request_create(struct intel_context *ce, gfp_t gfp)
797 {
798 	struct intel_timeline *tl = ce->timeline;
799 	struct i915_request *rq;
800 	u32 seqno;
801 	int ret;
802 
803 	might_sleep_if(gfpflags_allow_blocking(gfp));
804 
805 	/* Check that the caller provided an already pinned context */
806 	__intel_context_pin(ce);
807 
808 	/*
809 	 * Beware: Dragons be flying overhead.
810 	 *
811 	 * We use RCU to look up requests in flight. The lookups may
812 	 * race with the request being allocated from the slab freelist.
813 	 * That is the request we are writing to here, may be in the process
814 	 * of being read by __i915_active_request_get_rcu(). As such,
815 	 * we have to be very careful when overwriting the contents. During
816 	 * the RCU lookup, we change chase the request->engine pointer,
817 	 * read the request->global_seqno and increment the reference count.
818 	 *
819 	 * The reference count is incremented atomically. If it is zero,
820 	 * the lookup knows the request is unallocated and complete. Otherwise,
821 	 * it is either still in use, or has been reallocated and reset
822 	 * with dma_fence_init(). This increment is safe for release as we
823 	 * check that the request we have a reference to and matches the active
824 	 * request.
825 	 *
826 	 * Before we increment the refcount, we chase the request->engine
827 	 * pointer. We must not call kmem_cache_zalloc() or else we set
828 	 * that pointer to NULL and cause a crash during the lookup. If
829 	 * we see the request is completed (based on the value of the
830 	 * old engine and seqno), the lookup is complete and reports NULL.
831 	 * If we decide the request is not completed (new engine or seqno),
832 	 * then we grab a reference and double check that it is still the
833 	 * active request - which it won't be and restart the lookup.
834 	 *
835 	 * Do not use kmem_cache_zalloc() here!
836 	 */
837 	rq = kmem_cache_alloc(global.slab_requests,
838 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
839 	if (unlikely(!rq)) {
840 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
841 		if (!rq) {
842 			ret = -ENOMEM;
843 			goto err_unreserve;
844 		}
845 	}
846 
847 	rq->context = ce;
848 	rq->engine = ce->engine;
849 	rq->ring = ce->ring;
850 	rq->execution_mask = ce->engine->mask;
851 
852 	kref_init(&rq->fence.refcount);
853 	rq->fence.flags = 0;
854 	rq->fence.error = 0;
855 	INIT_LIST_HEAD(&rq->fence.cb_list);
856 
857 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
858 	if (ret)
859 		goto err_free;
860 
861 	rq->fence.context = tl->fence_context;
862 	rq->fence.seqno = seqno;
863 
864 	RCU_INIT_POINTER(rq->timeline, tl);
865 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
866 	rq->hwsp_seqno = tl->hwsp_seqno;
867 	GEM_BUG_ON(i915_request_completed(rq));
868 
869 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
870 
871 	/* We bump the ref for the fence chain */
872 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
873 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
874 
875 	i915_sched_node_reinit(&rq->sched);
876 
877 	/* No zalloc, everything must be cleared after use */
878 	rq->batch = NULL;
879 	GEM_BUG_ON(rq->capture_list);
880 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
881 
882 	/*
883 	 * Reserve space in the ring buffer for all the commands required to
884 	 * eventually emit this request. This is to guarantee that the
885 	 * i915_request_add() call can't fail. Note that the reserve may need
886 	 * to be redone if the request is not actually submitted straight
887 	 * away, e.g. because a GPU scheduler has deferred it.
888 	 *
889 	 * Note that due to how we add reserved_space to intel_ring_begin()
890 	 * we need to double our request to ensure that if we need to wrap
891 	 * around inside i915_request_add() there is sufficient space at
892 	 * the beginning of the ring as well.
893 	 */
894 	rq->reserved_space =
895 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
896 
897 	/*
898 	 * Record the position of the start of the request so that
899 	 * should we detect the updated seqno part-way through the
900 	 * GPU processing the request, we never over-estimate the
901 	 * position of the head.
902 	 */
903 	rq->head = rq->ring->emit;
904 
905 	ret = rq->engine->request_alloc(rq);
906 	if (ret)
907 		goto err_unwind;
908 
909 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
910 
911 	intel_context_mark_active(ce);
912 	list_add_tail_rcu(&rq->link, &tl->requests);
913 
914 	return rq;
915 
916 err_unwind:
917 	ce->ring->emit = rq->head;
918 
919 	/* Make sure we didn't add ourselves to external state before freeing */
920 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
921 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
922 
923 err_free:
924 	kmem_cache_free(global.slab_requests, rq);
925 err_unreserve:
926 	intel_context_unpin(ce);
927 	return ERR_PTR(ret);
928 }
929 
930 struct i915_request *
931 i915_request_create(struct intel_context *ce)
932 {
933 	struct i915_request *rq;
934 	struct intel_timeline *tl;
935 
936 	tl = intel_context_timeline_lock(ce);
937 	if (IS_ERR(tl))
938 		return ERR_CAST(tl);
939 
940 	/* Move our oldest request to the slab-cache (if not in use!) */
941 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
942 	if (!list_is_last(&rq->link, &tl->requests))
943 		i915_request_retire(rq);
944 
945 	intel_context_enter(ce);
946 	rq = __i915_request_create(ce, GFP_KERNEL);
947 	intel_context_exit(ce); /* active reference transferred to request */
948 	if (IS_ERR(rq))
949 		goto err_unlock;
950 
951 	/* Check that we do not interrupt ourselves with a new request */
952 	rq->cookie = lockdep_pin_lock(&tl->mutex);
953 
954 	return rq;
955 
956 err_unlock:
957 	intel_context_timeline_unlock(tl);
958 	return rq;
959 }
960 
961 static int
962 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
963 {
964 	struct dma_fence *fence;
965 	int err;
966 
967 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
968 		return 0;
969 
970 	if (i915_request_started(signal))
971 		return 0;
972 
973 	fence = NULL;
974 	rcu_read_lock();
975 	spin_lock_irq(&signal->lock);
976 	do {
977 		struct list_head *pos = READ_ONCE(signal->link.prev);
978 		struct i915_request *prev;
979 
980 		/* Confirm signal has not been retired, the link is valid */
981 		if (unlikely(i915_request_started(signal)))
982 			break;
983 
984 		/* Is signal the earliest request on its timeline? */
985 		if (pos == &rcu_dereference(signal->timeline)->requests)
986 			break;
987 
988 		/*
989 		 * Peek at the request before us in the timeline. That
990 		 * request will only be valid before it is retired, so
991 		 * after acquiring a reference to it, confirm that it is
992 		 * still part of the signaler's timeline.
993 		 */
994 		prev = list_entry(pos, typeof(*prev), link);
995 		if (!i915_request_get_rcu(prev))
996 			break;
997 
998 		/* After the strong barrier, confirm prev is still attached */
999 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1000 			i915_request_put(prev);
1001 			break;
1002 		}
1003 
1004 		fence = &prev->fence;
1005 	} while (0);
1006 	spin_unlock_irq(&signal->lock);
1007 	rcu_read_unlock();
1008 	if (!fence)
1009 		return 0;
1010 
1011 	err = 0;
1012 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1013 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1014 						    fence, 0,
1015 						    I915_FENCE_GFP);
1016 	dma_fence_put(fence);
1017 
1018 	return err;
1019 }
1020 
1021 static intel_engine_mask_t
1022 already_busywaiting(struct i915_request *rq)
1023 {
1024 	/*
1025 	 * Polling a semaphore causes bus traffic, delaying other users of
1026 	 * both the GPU and CPU. We want to limit the impact on others,
1027 	 * while taking advantage of early submission to reduce GPU
1028 	 * latency. Therefore we restrict ourselves to not using more
1029 	 * than one semaphore from each source, and not using a semaphore
1030 	 * if we have detected the engine is saturated (i.e. would not be
1031 	 * submitted early and cause bus traffic reading an already passed
1032 	 * semaphore).
1033 	 *
1034 	 * See the are-we-too-late? check in __i915_request_submit().
1035 	 */
1036 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1037 }
1038 
1039 static int
1040 __emit_semaphore_wait(struct i915_request *to,
1041 		      struct i915_request *from,
1042 		      u32 seqno)
1043 {
1044 	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1045 	u32 hwsp_offset;
1046 	int len, err;
1047 	u32 *cs;
1048 
1049 	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1050 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1051 
1052 	/* We need to pin the signaler's HWSP until we are finished reading. */
1053 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1054 	if (err)
1055 		return err;
1056 
1057 	len = 4;
1058 	if (has_token)
1059 		len += 2;
1060 
1061 	cs = intel_ring_begin(to, len);
1062 	if (IS_ERR(cs))
1063 		return PTR_ERR(cs);
1064 
1065 	/*
1066 	 * Using greater-than-or-equal here means we have to worry
1067 	 * about seqno wraparound. To side step that issue, we swap
1068 	 * the timeline HWSP upon wrapping, so that everyone listening
1069 	 * for the old (pre-wrap) values do not see the much smaller
1070 	 * (post-wrap) values than they were expecting (and so wait
1071 	 * forever).
1072 	 */
1073 	*cs++ = (MI_SEMAPHORE_WAIT |
1074 		 MI_SEMAPHORE_GLOBAL_GTT |
1075 		 MI_SEMAPHORE_POLL |
1076 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1077 		has_token;
1078 	*cs++ = seqno;
1079 	*cs++ = hwsp_offset;
1080 	*cs++ = 0;
1081 	if (has_token) {
1082 		*cs++ = 0;
1083 		*cs++ = MI_NOOP;
1084 	}
1085 
1086 	intel_ring_advance(to, cs);
1087 	return 0;
1088 }
1089 
1090 static int
1091 emit_semaphore_wait(struct i915_request *to,
1092 		    struct i915_request *from,
1093 		    gfp_t gfp)
1094 {
1095 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1096 	struct i915_sw_fence *wait = &to->submit;
1097 
1098 	if (!intel_context_use_semaphores(to->context))
1099 		goto await_fence;
1100 
1101 	if (i915_request_has_initial_breadcrumb(to))
1102 		goto await_fence;
1103 
1104 	if (!rcu_access_pointer(from->hwsp_cacheline))
1105 		goto await_fence;
1106 
1107 	/*
1108 	 * If this or its dependents are waiting on an external fence
1109 	 * that may fail catastrophically, then we want to avoid using
1110 	 * sempahores as they bypass the fence signaling metadata, and we
1111 	 * lose the fence->error propagation.
1112 	 */
1113 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1114 		goto await_fence;
1115 
1116 	/* Just emit the first semaphore we see as request space is limited. */
1117 	if (already_busywaiting(to) & mask)
1118 		goto await_fence;
1119 
1120 	if (i915_request_await_start(to, from) < 0)
1121 		goto await_fence;
1122 
1123 	/* Only submit our spinner after the signaler is running! */
1124 	if (__await_execution(to, from, NULL, gfp))
1125 		goto await_fence;
1126 
1127 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1128 		goto await_fence;
1129 
1130 	to->sched.semaphores |= mask;
1131 	wait = &to->semaphore;
1132 
1133 await_fence:
1134 	return i915_sw_fence_await_dma_fence(wait,
1135 					     &from->fence, 0,
1136 					     I915_FENCE_GFP);
1137 }
1138 
1139 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1140 					  struct dma_fence *fence)
1141 {
1142 	return __intel_timeline_sync_is_later(tl,
1143 					      fence->context,
1144 					      fence->seqno - 1);
1145 }
1146 
1147 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1148 					 const struct dma_fence *fence)
1149 {
1150 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1151 }
1152 
1153 static int
1154 __i915_request_await_execution(struct i915_request *to,
1155 			       struct i915_request *from,
1156 			       void (*hook)(struct i915_request *rq,
1157 					    struct dma_fence *signal))
1158 {
1159 	int err;
1160 
1161 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1162 
1163 	/* Submit both requests at the same time */
1164 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1165 	if (err)
1166 		return err;
1167 
1168 	/* Squash repeated depenendices to the same timelines */
1169 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1170 					  &from->fence))
1171 		return 0;
1172 
1173 	/*
1174 	 * Wait until the start of this request.
1175 	 *
1176 	 * The execution cb fires when we submit the request to HW. But in
1177 	 * many cases this may be long before the request itself is ready to
1178 	 * run (consider that we submit 2 requests for the same context, where
1179 	 * the request of interest is behind an indefinite spinner). So we hook
1180 	 * up to both to reduce our queues and keep the execution lag minimised
1181 	 * in the worst case, though we hope that the await_start is elided.
1182 	 */
1183 	err = i915_request_await_start(to, from);
1184 	if (err < 0)
1185 		return err;
1186 
1187 	/*
1188 	 * Ensure both start together [after all semaphores in signal]
1189 	 *
1190 	 * Now that we are queued to the HW at roughly the same time (thanks
1191 	 * to the execute cb) and are ready to run at roughly the same time
1192 	 * (thanks to the await start), our signaler may still be indefinitely
1193 	 * delayed by waiting on a semaphore from a remote engine. If our
1194 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1195 	 * want to start our payload until our signaler also starts theirs.
1196 	 * So we wait.
1197 	 *
1198 	 * However, there is also a second condition for which we need to wait
1199 	 * for the precise start of the signaler. Consider that the signaler
1200 	 * was submitted in a chain of requests following another context
1201 	 * (with just an ordinary intra-engine fence dependency between the
1202 	 * two). In this case the signaler is queued to HW, but not for
1203 	 * immediate execution, and so we must wait until it reaches the
1204 	 * active slot.
1205 	 */
1206 	if (intel_engine_has_semaphores(to->engine) &&
1207 	    !i915_request_has_initial_breadcrumb(to)) {
1208 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1209 		if (err < 0)
1210 			return err;
1211 	}
1212 
1213 	/* Couple the dependency tree for PI on this exposed to->fence */
1214 	if (to->engine->schedule) {
1215 		err = i915_sched_node_add_dependency(&to->sched,
1216 						     &from->sched,
1217 						     I915_DEPENDENCY_WEAK);
1218 		if (err < 0)
1219 			return err;
1220 	}
1221 
1222 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1223 					     &from->fence);
1224 }
1225 
1226 static void mark_external(struct i915_request *rq)
1227 {
1228 	/*
1229 	 * The downside of using semaphores is that we lose metadata passing
1230 	 * along the signaling chain. This is particularly nasty when we
1231 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1232 	 * fatal errors we want to scrub the request before it is executed,
1233 	 * which means that we cannot preload the request onto HW and have
1234 	 * it wait upon a semaphore.
1235 	 */
1236 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1237 }
1238 
1239 static int
1240 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1241 {
1242 	mark_external(rq);
1243 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1244 					     i915_fence_context_timeout(rq->engine->i915,
1245 									fence->context),
1246 					     I915_FENCE_GFP);
1247 }
1248 
1249 static int
1250 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1251 {
1252 	struct dma_fence *iter;
1253 	int err = 0;
1254 
1255 	if (!to_dma_fence_chain(fence))
1256 		return __i915_request_await_external(rq, fence);
1257 
1258 	dma_fence_chain_for_each(iter, fence) {
1259 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1260 
1261 		if (!dma_fence_is_i915(chain->fence)) {
1262 			err = __i915_request_await_external(rq, iter);
1263 			break;
1264 		}
1265 
1266 		err = i915_request_await_dma_fence(rq, chain->fence);
1267 		if (err < 0)
1268 			break;
1269 	}
1270 
1271 	dma_fence_put(iter);
1272 	return err;
1273 }
1274 
1275 int
1276 i915_request_await_execution(struct i915_request *rq,
1277 			     struct dma_fence *fence,
1278 			     void (*hook)(struct i915_request *rq,
1279 					  struct dma_fence *signal))
1280 {
1281 	struct dma_fence **child = &fence;
1282 	unsigned int nchild = 1;
1283 	int ret;
1284 
1285 	if (dma_fence_is_array(fence)) {
1286 		struct dma_fence_array *array = to_dma_fence_array(fence);
1287 
1288 		/* XXX Error for signal-on-any fence arrays */
1289 
1290 		child = array->fences;
1291 		nchild = array->num_fences;
1292 		GEM_BUG_ON(!nchild);
1293 	}
1294 
1295 	do {
1296 		fence = *child++;
1297 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1298 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1299 			continue;
1300 		}
1301 
1302 		if (fence->context == rq->fence.context)
1303 			continue;
1304 
1305 		/*
1306 		 * We don't squash repeated fence dependencies here as we
1307 		 * want to run our callback in all cases.
1308 		 */
1309 
1310 		if (dma_fence_is_i915(fence))
1311 			ret = __i915_request_await_execution(rq,
1312 							     to_request(fence),
1313 							     hook);
1314 		else
1315 			ret = i915_request_await_external(rq, fence);
1316 		if (ret < 0)
1317 			return ret;
1318 	} while (--nchild);
1319 
1320 	return 0;
1321 }
1322 
1323 static int
1324 await_request_submit(struct i915_request *to, struct i915_request *from)
1325 {
1326 	/*
1327 	 * If we are waiting on a virtual engine, then it may be
1328 	 * constrained to execute on a single engine *prior* to submission.
1329 	 * When it is submitted, it will be first submitted to the virtual
1330 	 * engine and then passed to the physical engine. We cannot allow
1331 	 * the waiter to be submitted immediately to the physical engine
1332 	 * as it may then bypass the virtual request.
1333 	 */
1334 	if (to->engine == READ_ONCE(from->engine))
1335 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1336 							&from->submit,
1337 							I915_FENCE_GFP);
1338 	else
1339 		return __i915_request_await_execution(to, from, NULL);
1340 }
1341 
1342 static int
1343 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1344 {
1345 	int ret;
1346 
1347 	GEM_BUG_ON(to == from);
1348 	GEM_BUG_ON(to->timeline == from->timeline);
1349 
1350 	if (i915_request_completed(from)) {
1351 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1352 		return 0;
1353 	}
1354 
1355 	if (to->engine->schedule) {
1356 		ret = i915_sched_node_add_dependency(&to->sched,
1357 						     &from->sched,
1358 						     I915_DEPENDENCY_EXTERNAL);
1359 		if (ret < 0)
1360 			return ret;
1361 	}
1362 
1363 	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1364 		ret = await_request_submit(to, from);
1365 	else
1366 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1367 	if (ret < 0)
1368 		return ret;
1369 
1370 	return 0;
1371 }
1372 
1373 int
1374 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1375 {
1376 	struct dma_fence **child = &fence;
1377 	unsigned int nchild = 1;
1378 	int ret;
1379 
1380 	/*
1381 	 * Note that if the fence-array was created in signal-on-any mode,
1382 	 * we should *not* decompose it into its individual fences. However,
1383 	 * we don't currently store which mode the fence-array is operating
1384 	 * in. Fortunately, the only user of signal-on-any is private to
1385 	 * amdgpu and we should not see any incoming fence-array from
1386 	 * sync-file being in signal-on-any mode.
1387 	 */
1388 	if (dma_fence_is_array(fence)) {
1389 		struct dma_fence_array *array = to_dma_fence_array(fence);
1390 
1391 		child = array->fences;
1392 		nchild = array->num_fences;
1393 		GEM_BUG_ON(!nchild);
1394 	}
1395 
1396 	do {
1397 		fence = *child++;
1398 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1399 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1400 			continue;
1401 		}
1402 
1403 		/*
1404 		 * Requests on the same timeline are explicitly ordered, along
1405 		 * with their dependencies, by i915_request_add() which ensures
1406 		 * that requests are submitted in-order through each ring.
1407 		 */
1408 		if (fence->context == rq->fence.context)
1409 			continue;
1410 
1411 		/* Squash repeated waits to the same timelines */
1412 		if (fence->context &&
1413 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1414 						 fence))
1415 			continue;
1416 
1417 		if (dma_fence_is_i915(fence))
1418 			ret = i915_request_await_request(rq, to_request(fence));
1419 		else
1420 			ret = i915_request_await_external(rq, fence);
1421 		if (ret < 0)
1422 			return ret;
1423 
1424 		/* Record the latest fence used against each timeline */
1425 		if (fence->context)
1426 			intel_timeline_sync_set(i915_request_timeline(rq),
1427 						fence);
1428 	} while (--nchild);
1429 
1430 	return 0;
1431 }
1432 
1433 /**
1434  * i915_request_await_object - set this request to (async) wait upon a bo
1435  * @to: request we are wishing to use
1436  * @obj: object which may be in use on another ring.
1437  * @write: whether the wait is on behalf of a writer
1438  *
1439  * This code is meant to abstract object synchronization with the GPU.
1440  * Conceptually we serialise writes between engines inside the GPU.
1441  * We only allow one engine to write into a buffer at any time, but
1442  * multiple readers. To ensure each has a coherent view of memory, we must:
1443  *
1444  * - If there is an outstanding write request to the object, the new
1445  *   request must wait for it to complete (either CPU or in hw, requests
1446  *   on the same ring will be naturally ordered).
1447  *
1448  * - If we are a write request (pending_write_domain is set), the new
1449  *   request must wait for outstanding read requests to complete.
1450  *
1451  * Returns 0 if successful, else propagates up the lower layer error.
1452  */
1453 int
1454 i915_request_await_object(struct i915_request *to,
1455 			  struct drm_i915_gem_object *obj,
1456 			  bool write)
1457 {
1458 	struct dma_fence *excl;
1459 	int ret = 0;
1460 
1461 	if (write) {
1462 		struct dma_fence **shared;
1463 		unsigned int count, i;
1464 
1465 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1466 							&excl, &count, &shared);
1467 		if (ret)
1468 			return ret;
1469 
1470 		for (i = 0; i < count; i++) {
1471 			ret = i915_request_await_dma_fence(to, shared[i]);
1472 			if (ret)
1473 				break;
1474 
1475 			dma_fence_put(shared[i]);
1476 		}
1477 
1478 		for (; i < count; i++)
1479 			dma_fence_put(shared[i]);
1480 		kfree(shared);
1481 	} else {
1482 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1483 	}
1484 
1485 	if (excl) {
1486 		if (ret == 0)
1487 			ret = i915_request_await_dma_fence(to, excl);
1488 
1489 		dma_fence_put(excl);
1490 	}
1491 
1492 	return ret;
1493 }
1494 
1495 static struct i915_request *
1496 __i915_request_add_to_timeline(struct i915_request *rq)
1497 {
1498 	struct intel_timeline *timeline = i915_request_timeline(rq);
1499 	struct i915_request *prev;
1500 
1501 	/*
1502 	 * Dependency tracking and request ordering along the timeline
1503 	 * is special cased so that we can eliminate redundant ordering
1504 	 * operations while building the request (we know that the timeline
1505 	 * itself is ordered, and here we guarantee it).
1506 	 *
1507 	 * As we know we will need to emit tracking along the timeline,
1508 	 * we embed the hooks into our request struct -- at the cost of
1509 	 * having to have specialised no-allocation interfaces (which will
1510 	 * be beneficial elsewhere).
1511 	 *
1512 	 * A second benefit to open-coding i915_request_await_request is
1513 	 * that we can apply a slight variant of the rules specialised
1514 	 * for timelines that jump between engines (such as virtual engines).
1515 	 * If we consider the case of virtual engine, we must emit a dma-fence
1516 	 * to prevent scheduling of the second request until the first is
1517 	 * complete (to maximise our greedy late load balancing) and this
1518 	 * precludes optimising to use semaphores serialisation of a single
1519 	 * timeline across engines.
1520 	 */
1521 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1522 						  &rq->fence));
1523 	if (prev && !i915_request_completed(prev)) {
1524 		/*
1525 		 * The requests are supposed to be kept in order. However,
1526 		 * we need to be wary in case the timeline->last_request
1527 		 * is used as a barrier for external modification to this
1528 		 * context.
1529 		 */
1530 		GEM_BUG_ON(prev->context == rq->context &&
1531 			   i915_seqno_passed(prev->fence.seqno,
1532 					     rq->fence.seqno));
1533 
1534 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1535 			i915_sw_fence_await_sw_fence(&rq->submit,
1536 						     &prev->submit,
1537 						     &rq->submitq);
1538 		else
1539 			__i915_sw_fence_await_dma_fence(&rq->submit,
1540 							&prev->fence,
1541 							&rq->dmaq);
1542 		if (rq->engine->schedule)
1543 			__i915_sched_node_add_dependency(&rq->sched,
1544 							 &prev->sched,
1545 							 &rq->dep,
1546 							 0);
1547 	}
1548 
1549 	/*
1550 	 * Make sure that no request gazumped us - if it was allocated after
1551 	 * our i915_request_alloc() and called __i915_request_add() before
1552 	 * us, the timeline will hold its seqno which is later than ours.
1553 	 */
1554 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1555 
1556 	return prev;
1557 }
1558 
1559 /*
1560  * NB: This function is not allowed to fail. Doing so would mean the the
1561  * request is not being tracked for completion but the work itself is
1562  * going to happen on the hardware. This would be a Bad Thing(tm).
1563  */
1564 struct i915_request *__i915_request_commit(struct i915_request *rq)
1565 {
1566 	struct intel_engine_cs *engine = rq->engine;
1567 	struct intel_ring *ring = rq->ring;
1568 	u32 *cs;
1569 
1570 	RQ_TRACE(rq, "\n");
1571 
1572 	/*
1573 	 * To ensure that this call will not fail, space for its emissions
1574 	 * should already have been reserved in the ring buffer. Let the ring
1575 	 * know that it is time to use that space up.
1576 	 */
1577 	GEM_BUG_ON(rq->reserved_space > ring->space);
1578 	rq->reserved_space = 0;
1579 	rq->emitted_jiffies = jiffies;
1580 
1581 	/*
1582 	 * Record the position of the start of the breadcrumb so that
1583 	 * should we detect the updated seqno part-way through the
1584 	 * GPU processing the request, we never over-estimate the
1585 	 * position of the ring's HEAD.
1586 	 */
1587 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1588 	GEM_BUG_ON(IS_ERR(cs));
1589 	rq->postfix = intel_ring_offset(rq, cs);
1590 
1591 	return __i915_request_add_to_timeline(rq);
1592 }
1593 
1594 void __i915_request_queue_bh(struct i915_request *rq)
1595 {
1596 	i915_sw_fence_commit(&rq->semaphore);
1597 	i915_sw_fence_commit(&rq->submit);
1598 }
1599 
1600 void __i915_request_queue(struct i915_request *rq,
1601 			  const struct i915_sched_attr *attr)
1602 {
1603 	/*
1604 	 * Let the backend know a new request has arrived that may need
1605 	 * to adjust the existing execution schedule due to a high priority
1606 	 * request - i.e. we may want to preempt the current request in order
1607 	 * to run a high priority dependency chain *before* we can execute this
1608 	 * request.
1609 	 *
1610 	 * This is called before the request is ready to run so that we can
1611 	 * decide whether to preempt the entire chain so that it is ready to
1612 	 * run at the earliest possible convenience.
1613 	 */
1614 	if (attr && rq->engine->schedule)
1615 		rq->engine->schedule(rq, attr);
1616 
1617 	local_bh_disable();
1618 	__i915_request_queue_bh(rq);
1619 	local_bh_enable(); /* kick tasklets */
1620 }
1621 
1622 void i915_request_add(struct i915_request *rq)
1623 {
1624 	struct intel_timeline * const tl = i915_request_timeline(rq);
1625 	struct i915_sched_attr attr = {};
1626 	struct i915_gem_context *ctx;
1627 
1628 	lockdep_assert_held(&tl->mutex);
1629 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1630 
1631 	trace_i915_request_add(rq);
1632 	__i915_request_commit(rq);
1633 
1634 	/* XXX placeholder for selftests */
1635 	rcu_read_lock();
1636 	ctx = rcu_dereference(rq->context->gem_context);
1637 	if (ctx)
1638 		attr = ctx->sched;
1639 	rcu_read_unlock();
1640 
1641 	__i915_request_queue(rq, &attr);
1642 
1643 	mutex_unlock(&tl->mutex);
1644 }
1645 
1646 static unsigned long local_clock_ns(unsigned int *cpu)
1647 {
1648 	unsigned long t;
1649 
1650 	/*
1651 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1652 	 * The result and subsequent calculations are also defined in the same
1653 	 * approximate microseconds units. The principal source of timing
1654 	 * error here is from the simple truncation.
1655 	 *
1656 	 * Note that local_clock() is only defined wrt to the current CPU;
1657 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1658 	 * blocking preemption for the entire busywait, we can detect the CPU
1659 	 * switch and use that as indicator of system load and a reason to
1660 	 * stop busywaiting, see busywait_stop().
1661 	 */
1662 	*cpu = get_cpu();
1663 	t = local_clock();
1664 	put_cpu();
1665 
1666 	return t;
1667 }
1668 
1669 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1670 {
1671 	unsigned int this_cpu;
1672 
1673 	if (time_after(local_clock_ns(&this_cpu), timeout))
1674 		return true;
1675 
1676 	return this_cpu != cpu;
1677 }
1678 
1679 static bool __i915_spin_request(struct i915_request * const rq, int state)
1680 {
1681 	unsigned long timeout_ns;
1682 	unsigned int cpu;
1683 
1684 	/*
1685 	 * Only wait for the request if we know it is likely to complete.
1686 	 *
1687 	 * We don't track the timestamps around requests, nor the average
1688 	 * request length, so we do not have a good indicator that this
1689 	 * request will complete within the timeout. What we do know is the
1690 	 * order in which requests are executed by the context and so we can
1691 	 * tell if the request has been started. If the request is not even
1692 	 * running yet, it is a fair assumption that it will not complete
1693 	 * within our relatively short timeout.
1694 	 */
1695 	if (!i915_request_is_running(rq))
1696 		return false;
1697 
1698 	/*
1699 	 * When waiting for high frequency requests, e.g. during synchronous
1700 	 * rendering split between the CPU and GPU, the finite amount of time
1701 	 * required to set up the irq and wait upon it limits the response
1702 	 * rate. By busywaiting on the request completion for a short while we
1703 	 * can service the high frequency waits as quick as possible. However,
1704 	 * if it is a slow request, we want to sleep as quickly as possible.
1705 	 * The tradeoff between waiting and sleeping is roughly the time it
1706 	 * takes to sleep on a request, on the order of a microsecond.
1707 	 */
1708 
1709 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1710 	timeout_ns += local_clock_ns(&cpu);
1711 	do {
1712 		if (dma_fence_is_signaled(&rq->fence))
1713 			return true;
1714 
1715 		if (signal_pending_state(state, current))
1716 			break;
1717 
1718 		if (busywait_stop(timeout_ns, cpu))
1719 			break;
1720 
1721 		cpu_relax();
1722 	} while (!need_resched());
1723 
1724 	return false;
1725 }
1726 
1727 struct request_wait {
1728 	struct dma_fence_cb cb;
1729 	struct task_struct *tsk;
1730 };
1731 
1732 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1733 {
1734 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1735 
1736 	wake_up_process(fetch_and_zero(&wait->tsk));
1737 }
1738 
1739 /**
1740  * i915_request_wait - wait until execution of request has finished
1741  * @rq: the request to wait upon
1742  * @flags: how to wait
1743  * @timeout: how long to wait in jiffies
1744  *
1745  * i915_request_wait() waits for the request to be completed, for a
1746  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1747  * unbounded wait).
1748  *
1749  * Returns the remaining time (in jiffies) if the request completed, which may
1750  * be zero or -ETIME if the request is unfinished after the timeout expires.
1751  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1752  * pending before the request completes.
1753  */
1754 long i915_request_wait(struct i915_request *rq,
1755 		       unsigned int flags,
1756 		       long timeout)
1757 {
1758 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1759 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1760 	struct request_wait wait;
1761 
1762 	might_sleep();
1763 	GEM_BUG_ON(timeout < 0);
1764 
1765 	if (dma_fence_is_signaled(&rq->fence))
1766 		return timeout;
1767 
1768 	if (!timeout)
1769 		return -ETIME;
1770 
1771 	trace_i915_request_wait_begin(rq, flags);
1772 
1773 	/*
1774 	 * We must never wait on the GPU while holding a lock as we
1775 	 * may need to perform a GPU reset. So while we don't need to
1776 	 * serialise wait/reset with an explicit lock, we do want
1777 	 * lockdep to detect potential dependency cycles.
1778 	 */
1779 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1780 
1781 	/*
1782 	 * Optimistic spin before touching IRQs.
1783 	 *
1784 	 * We may use a rather large value here to offset the penalty of
1785 	 * switching away from the active task. Frequently, the client will
1786 	 * wait upon an old swapbuffer to throttle itself to remain within a
1787 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1788 	 * then it should not be waiting long at all, and a sleep now will incur
1789 	 * extra scheduler latency in producing the next frame. To try to
1790 	 * avoid adding the cost of enabling/disabling the interrupt to the
1791 	 * short wait, we first spin to see if the request would have completed
1792 	 * in the time taken to setup the interrupt.
1793 	 *
1794 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1795 	 * scheduler latency of a context switch, ignoring the secondary
1796 	 * impacts from a context switch such as cache eviction.
1797 	 *
1798 	 * The scheme used for low-latency IO is called "hybrid interrupt
1799 	 * polling". The suggestion there is to sleep until just before you
1800 	 * expect to be woken by the device interrupt and then poll for its
1801 	 * completion. That requires having a good predictor for the request
1802 	 * duration, which we currently lack.
1803 	 */
1804 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1805 	    __i915_spin_request(rq, state))
1806 		goto out;
1807 
1808 	/*
1809 	 * This client is about to stall waiting for the GPU. In many cases
1810 	 * this is undesirable and limits the throughput of the system, as
1811 	 * many clients cannot continue processing user input/output whilst
1812 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1813 	 * to the GPU load and thus incurs additional latency for the client.
1814 	 * We can circumvent that by promoting the GPU frequency to maximum
1815 	 * before we sleep. This makes the GPU throttle up much more quickly
1816 	 * (good for benchmarks and user experience, e.g. window animations),
1817 	 * but at a cost of spending more power processing the workload
1818 	 * (bad for battery).
1819 	 */
1820 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1821 		intel_rps_boost(rq);
1822 
1823 	wait.tsk = current;
1824 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1825 		goto out;
1826 
1827 	/*
1828 	 * Flush the submission tasklet, but only if it may help this request.
1829 	 *
1830 	 * We sometimes experience some latency between the HW interrupts and
1831 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1832 	 * be due to lazy CS events), so lets run the tasklet manually if there
1833 	 * is a chance it may submit this request. If the request is not ready
1834 	 * to run, as it is waiting for other fences to be signaled, flushing
1835 	 * the tasklet is busy work without any advantage for this client.
1836 	 *
1837 	 * If the HW is being lazy, this is the last chance before we go to
1838 	 * sleep to catch any pending events. We will check periodically in
1839 	 * the heartbeat to flush the submission tasklets as a last resort
1840 	 * for unhappy HW.
1841 	 */
1842 	if (i915_request_is_ready(rq))
1843 		__intel_engine_flush_submission(rq->engine, false);
1844 
1845 	for (;;) {
1846 		set_current_state(state);
1847 
1848 		if (dma_fence_is_signaled(&rq->fence))
1849 			break;
1850 
1851 		if (signal_pending_state(state, current)) {
1852 			timeout = -ERESTARTSYS;
1853 			break;
1854 		}
1855 
1856 		if (!timeout) {
1857 			timeout = -ETIME;
1858 			break;
1859 		}
1860 
1861 		timeout = io_schedule_timeout(timeout);
1862 	}
1863 	__set_current_state(TASK_RUNNING);
1864 
1865 	if (READ_ONCE(wait.tsk))
1866 		dma_fence_remove_callback(&rq->fence, &wait.cb);
1867 	GEM_BUG_ON(!list_empty(&wait.cb.node));
1868 
1869 out:
1870 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1871 	trace_i915_request_wait_end(rq);
1872 	return timeout;
1873 }
1874 
1875 static int print_sched_attr(const struct i915_sched_attr *attr,
1876 			    char *buf, int x, int len)
1877 {
1878 	if (attr->priority == I915_PRIORITY_INVALID)
1879 		return x;
1880 
1881 	x += snprintf(buf + x, len - x,
1882 		      " prio=%d", attr->priority);
1883 
1884 	return x;
1885 }
1886 
1887 static char queue_status(const struct i915_request *rq)
1888 {
1889 	if (i915_request_is_active(rq))
1890 		return 'E';
1891 
1892 	if (i915_request_is_ready(rq))
1893 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
1894 
1895 	return 'U';
1896 }
1897 
1898 static const char *run_status(const struct i915_request *rq)
1899 {
1900 	if (i915_request_completed(rq))
1901 		return "!";
1902 
1903 	if (i915_request_started(rq))
1904 		return "*";
1905 
1906 	if (!i915_sw_fence_signaled(&rq->semaphore))
1907 		return "&";
1908 
1909 	return "";
1910 }
1911 
1912 static const char *fence_status(const struct i915_request *rq)
1913 {
1914 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
1915 		return "+";
1916 
1917 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
1918 		return "-";
1919 
1920 	return "";
1921 }
1922 
1923 void i915_request_show(struct drm_printer *m,
1924 		       const struct i915_request *rq,
1925 		       const char *prefix,
1926 		       int indent)
1927 {
1928 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
1929 	char buf[80] = "";
1930 	int x = 0;
1931 
1932 	/*
1933 	 * The prefix is used to show the queue status, for which we use
1934 	 * the following flags:
1935 	 *
1936 	 *  U [Unready]
1937 	 *    - initial status upon being submitted by the user
1938 	 *
1939 	 *    - the request is not ready for execution as it is waiting
1940 	 *      for external fences
1941 	 *
1942 	 *  R [Ready]
1943 	 *    - all fences the request was waiting on have been signaled,
1944 	 *      and the request is now ready for execution and will be
1945 	 *      in a backend queue
1946 	 *
1947 	 *    - a ready request may still need to wait on semaphores
1948 	 *      [internal fences]
1949 	 *
1950 	 *  V [Ready/virtual]
1951 	 *    - same as ready, but queued over multiple backends
1952 	 *
1953 	 *  E [Executing]
1954 	 *    - the request has been transferred from the backend queue and
1955 	 *      submitted for execution on HW
1956 	 *
1957 	 *    - a completed request may still be regarded as executing, its
1958 	 *      status may not be updated until it is retired and removed
1959 	 *      from the lists
1960 	 */
1961 
1962 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1963 
1964 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
1965 		   prefix, indent, "                ",
1966 		   queue_status(rq),
1967 		   rq->fence.context, rq->fence.seqno,
1968 		   run_status(rq),
1969 		   fence_status(rq),
1970 		   buf,
1971 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1972 		   name);
1973 }
1974 
1975 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1976 #include "selftests/mock_request.c"
1977 #include "selftests/i915_request.c"
1978 #endif
1979 
1980 static void i915_global_request_shrink(void)
1981 {
1982 	kmem_cache_shrink(global.slab_execute_cbs);
1983 	kmem_cache_shrink(global.slab_requests);
1984 }
1985 
1986 static void i915_global_request_exit(void)
1987 {
1988 	kmem_cache_destroy(global.slab_execute_cbs);
1989 	kmem_cache_destroy(global.slab_requests);
1990 }
1991 
1992 static struct i915_global_request global = { {
1993 	.shrink = i915_global_request_shrink,
1994 	.exit = i915_global_request_exit,
1995 } };
1996 
1997 int __init i915_global_request_init(void)
1998 {
1999 	global.slab_requests =
2000 		kmem_cache_create("i915_request",
2001 				  sizeof(struct i915_request),
2002 				  __alignof__(struct i915_request),
2003 				  SLAB_HWCACHE_ALIGN |
2004 				  SLAB_RECLAIM_ACCOUNT |
2005 				  SLAB_TYPESAFE_BY_RCU,
2006 				  __i915_request_ctor);
2007 	if (!global.slab_requests)
2008 		return -ENOMEM;
2009 
2010 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
2011 					     SLAB_HWCACHE_ALIGN |
2012 					     SLAB_RECLAIM_ACCOUNT |
2013 					     SLAB_TYPESAFE_BY_RCU);
2014 	if (!global.slab_execute_cbs)
2015 		goto err_requests;
2016 
2017 	i915_global_register(&global.base);
2018 	return 0;
2019 
2020 err_requests:
2021 	kmem_cache_destroy(global.slab_requests);
2022 	return -ENOMEM;
2023 }
2024