1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 #include "gt/intel_ring.h" 35 #include "gt/intel_rps.h" 36 37 #include "i915_active.h" 38 #include "i915_drv.h" 39 #include "i915_globals.h" 40 #include "i915_trace.h" 41 #include "intel_pm.h" 42 43 struct execute_cb { 44 struct list_head link; 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_dependencies; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 static void i915_fence_release(struct dma_fence *fence) 106 { 107 struct i915_request *rq = to_request(fence); 108 109 /* 110 * The request is put onto a RCU freelist (i.e. the address 111 * is immediately reused), mark the fences as being freed now. 112 * Otherwise the debugobjects for the fences are only marked as 113 * freed when the slab cache itself is freed, and so we would get 114 * caught trying to reuse dead objects. 115 */ 116 i915_sw_fence_fini(&rq->submit); 117 i915_sw_fence_fini(&rq->semaphore); 118 119 kmem_cache_free(global.slab_requests, rq); 120 } 121 122 const struct dma_fence_ops i915_fence_ops = { 123 .get_driver_name = i915_fence_get_driver_name, 124 .get_timeline_name = i915_fence_get_timeline_name, 125 .enable_signaling = i915_fence_enable_signaling, 126 .signaled = i915_fence_signaled, 127 .wait = i915_fence_wait, 128 .release = i915_fence_release, 129 }; 130 131 static void irq_execute_cb(struct irq_work *wrk) 132 { 133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 134 135 i915_sw_fence_complete(cb->fence); 136 kmem_cache_free(global.slab_execute_cbs, cb); 137 } 138 139 static void irq_execute_cb_hook(struct irq_work *wrk) 140 { 141 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 142 143 cb->hook(container_of(cb->fence, struct i915_request, submit), 144 &cb->signal->fence); 145 i915_request_put(cb->signal); 146 147 irq_execute_cb(wrk); 148 } 149 150 static void __notify_execute_cb(struct i915_request *rq) 151 { 152 struct execute_cb *cb; 153 154 lockdep_assert_held(&rq->lock); 155 156 if (list_empty(&rq->execute_cb)) 157 return; 158 159 list_for_each_entry(cb, &rq->execute_cb, link) 160 irq_work_queue(&cb->work); 161 162 /* 163 * XXX Rollback on __i915_request_unsubmit() 164 * 165 * In the future, perhaps when we have an active time-slicing scheduler, 166 * it will be interesting to unsubmit parallel execution and remove 167 * busywaits from the GPU until their master is restarted. This is 168 * quite hairy, we have to carefully rollback the fence and do a 169 * preempt-to-idle cycle on the target engine, all the while the 170 * master execute_cb may refire. 171 */ 172 INIT_LIST_HEAD(&rq->execute_cb); 173 } 174 175 static inline void 176 remove_from_client(struct i915_request *request) 177 { 178 struct drm_i915_file_private *file_priv; 179 180 if (!READ_ONCE(request->file_priv)) 181 return; 182 183 rcu_read_lock(); 184 file_priv = xchg(&request->file_priv, NULL); 185 if (file_priv) { 186 spin_lock(&file_priv->mm.lock); 187 list_del(&request->client_link); 188 spin_unlock(&file_priv->mm.lock); 189 } 190 rcu_read_unlock(); 191 } 192 193 static void free_capture_list(struct i915_request *request) 194 { 195 struct i915_capture_list *capture; 196 197 capture = fetch_and_zero(&request->capture_list); 198 while (capture) { 199 struct i915_capture_list *next = capture->next; 200 201 kfree(capture); 202 capture = next; 203 } 204 } 205 206 static void remove_from_engine(struct i915_request *rq) 207 { 208 struct intel_engine_cs *engine, *locked; 209 210 /* 211 * Virtual engines complicate acquiring the engine timeline lock, 212 * as their rq->engine pointer is not stable until under that 213 * engine lock. The simple ploy we use is to take the lock then 214 * check that the rq still belongs to the newly locked engine. 215 */ 216 locked = READ_ONCE(rq->engine); 217 spin_lock_irq(&locked->active.lock); 218 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 219 spin_unlock(&locked->active.lock); 220 spin_lock(&engine->active.lock); 221 locked = engine; 222 } 223 list_del_init(&rq->sched.link); 224 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 225 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 226 spin_unlock_irq(&locked->active.lock); 227 } 228 229 bool i915_request_retire(struct i915_request *rq) 230 { 231 if (!i915_request_completed(rq)) 232 return false; 233 234 RQ_TRACE(rq, "\n"); 235 236 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 237 trace_i915_request_retire(rq); 238 239 /* 240 * We know the GPU must have read the request to have 241 * sent us the seqno + interrupt, so use the position 242 * of tail of the request to update the last known position 243 * of the GPU head. 244 * 245 * Note this requires that we are always called in request 246 * completion order. 247 */ 248 GEM_BUG_ON(!list_is_first(&rq->link, 249 &i915_request_timeline(rq)->requests)); 250 rq->ring->head = rq->postfix; 251 252 /* 253 * We only loosely track inflight requests across preemption, 254 * and so we may find ourselves attempting to retire a _completed_ 255 * request that we have removed from the HW and put back on a run 256 * queue. 257 */ 258 remove_from_engine(rq); 259 260 spin_lock_irq(&rq->lock); 261 i915_request_mark_complete(rq); 262 if (!i915_request_signaled(rq)) 263 dma_fence_signal_locked(&rq->fence); 264 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 265 i915_request_cancel_breadcrumb(rq); 266 if (i915_request_has_waitboost(rq)) { 267 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 268 atomic_dec(&rq->engine->gt->rps.num_waiters); 269 } 270 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 271 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 272 __notify_execute_cb(rq); 273 } 274 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 275 spin_unlock_irq(&rq->lock); 276 277 remove_from_client(rq); 278 list_del(&rq->link); 279 280 intel_context_exit(rq->context); 281 intel_context_unpin(rq->context); 282 283 free_capture_list(rq); 284 i915_sched_node_fini(&rq->sched); 285 i915_request_put(rq); 286 287 return true; 288 } 289 290 void i915_request_retire_upto(struct i915_request *rq) 291 { 292 struct intel_timeline * const tl = i915_request_timeline(rq); 293 struct i915_request *tmp; 294 295 RQ_TRACE(rq, "\n"); 296 297 GEM_BUG_ON(!i915_request_completed(rq)); 298 299 do { 300 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 301 } while (i915_request_retire(tmp) && tmp != rq); 302 } 303 304 static int 305 __await_execution(struct i915_request *rq, 306 struct i915_request *signal, 307 void (*hook)(struct i915_request *rq, 308 struct dma_fence *signal), 309 gfp_t gfp) 310 { 311 struct execute_cb *cb; 312 313 if (i915_request_is_active(signal)) { 314 if (hook) 315 hook(rq, &signal->fence); 316 return 0; 317 } 318 319 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 320 if (!cb) 321 return -ENOMEM; 322 323 cb->fence = &rq->submit; 324 i915_sw_fence_await(cb->fence); 325 init_irq_work(&cb->work, irq_execute_cb); 326 327 if (hook) { 328 cb->hook = hook; 329 cb->signal = i915_request_get(signal); 330 cb->work.func = irq_execute_cb_hook; 331 } 332 333 spin_lock_irq(&signal->lock); 334 if (i915_request_is_active(signal)) { 335 if (hook) { 336 hook(rq, &signal->fence); 337 i915_request_put(signal); 338 } 339 i915_sw_fence_complete(cb->fence); 340 kmem_cache_free(global.slab_execute_cbs, cb); 341 } else { 342 list_add_tail(&cb->link, &signal->execute_cb); 343 } 344 spin_unlock_irq(&signal->lock); 345 346 /* Copy across semaphore status as we need the same behaviour */ 347 rq->sched.flags |= signal->sched.flags; 348 return 0; 349 } 350 351 bool __i915_request_submit(struct i915_request *request) 352 { 353 struct intel_engine_cs *engine = request->engine; 354 bool result = false; 355 356 RQ_TRACE(request, "\n"); 357 358 GEM_BUG_ON(!irqs_disabled()); 359 lockdep_assert_held(&engine->active.lock); 360 361 /* 362 * With the advent of preempt-to-busy, we frequently encounter 363 * requests that we have unsubmitted from HW, but left running 364 * until the next ack and so have completed in the meantime. On 365 * resubmission of that completed request, we can skip 366 * updating the payload, and execlists can even skip submitting 367 * the request. 368 * 369 * We must remove the request from the caller's priority queue, 370 * and the caller must only call us when the request is in their 371 * priority queue, under the active.lock. This ensures that the 372 * request has *not* yet been retired and we can safely move 373 * the request into the engine->active.list where it will be 374 * dropped upon retiring. (Otherwise if resubmit a *retired* 375 * request, this would be a horrible use-after-free.) 376 */ 377 if (i915_request_completed(request)) 378 goto xfer; 379 380 if (intel_context_is_banned(request->context)) 381 i915_request_skip(request, -EIO); 382 383 /* 384 * Are we using semaphores when the gpu is already saturated? 385 * 386 * Using semaphores incurs a cost in having the GPU poll a 387 * memory location, busywaiting for it to change. The continual 388 * memory reads can have a noticeable impact on the rest of the 389 * system with the extra bus traffic, stalling the cpu as it too 390 * tries to access memory across the bus (perf stat -e bus-cycles). 391 * 392 * If we installed a semaphore on this request and we only submit 393 * the request after the signaler completed, that indicates the 394 * system is overloaded and using semaphores at this time only 395 * increases the amount of work we are doing. If so, we disable 396 * further use of semaphores until we are idle again, whence we 397 * optimistically try again. 398 */ 399 if (request->sched.semaphores && 400 i915_sw_fence_signaled(&request->semaphore)) 401 engine->saturated |= request->sched.semaphores; 402 403 engine->emit_fini_breadcrumb(request, 404 request->ring->vaddr + request->postfix); 405 406 trace_i915_request_execute(request); 407 engine->serial++; 408 result = true; 409 410 xfer: /* We may be recursing from the signal callback of another i915 fence */ 411 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 412 413 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 414 list_move_tail(&request->sched.link, &engine->active.requests); 415 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 416 } 417 418 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 419 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 420 !i915_request_enable_breadcrumb(request)) 421 intel_engine_signal_breadcrumbs(engine); 422 423 __notify_execute_cb(request); 424 425 spin_unlock(&request->lock); 426 427 return result; 428 } 429 430 void i915_request_submit(struct i915_request *request) 431 { 432 struct intel_engine_cs *engine = request->engine; 433 unsigned long flags; 434 435 /* Will be called from irq-context when using foreign fences. */ 436 spin_lock_irqsave(&engine->active.lock, flags); 437 438 __i915_request_submit(request); 439 440 spin_unlock_irqrestore(&engine->active.lock, flags); 441 } 442 443 void __i915_request_unsubmit(struct i915_request *request) 444 { 445 struct intel_engine_cs *engine = request->engine; 446 447 RQ_TRACE(request, "\n"); 448 449 GEM_BUG_ON(!irqs_disabled()); 450 lockdep_assert_held(&engine->active.lock); 451 452 /* 453 * Only unwind in reverse order, required so that the per-context list 454 * is kept in seqno/ring order. 455 */ 456 457 /* We may be recursing from the signal callback of another i915 fence */ 458 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 459 460 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 461 i915_request_cancel_breadcrumb(request); 462 463 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 464 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 465 466 spin_unlock(&request->lock); 467 468 /* We've already spun, don't charge on resubmitting. */ 469 if (request->sched.semaphores && i915_request_started(request)) { 470 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 471 request->sched.semaphores = 0; 472 } 473 474 /* 475 * We don't need to wake_up any waiters on request->execute, they 476 * will get woken by any other event or us re-adding this request 477 * to the engine timeline (__i915_request_submit()). The waiters 478 * should be quite adapt at finding that the request now has a new 479 * global_seqno to the one they went to sleep on. 480 */ 481 } 482 483 void i915_request_unsubmit(struct i915_request *request) 484 { 485 struct intel_engine_cs *engine = request->engine; 486 unsigned long flags; 487 488 /* Will be called from irq-context when using foreign fences. */ 489 spin_lock_irqsave(&engine->active.lock, flags); 490 491 __i915_request_unsubmit(request); 492 493 spin_unlock_irqrestore(&engine->active.lock, flags); 494 } 495 496 static int __i915_sw_fence_call 497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 498 { 499 struct i915_request *request = 500 container_of(fence, typeof(*request), submit); 501 502 switch (state) { 503 case FENCE_COMPLETE: 504 trace_i915_request_submit(request); 505 506 if (unlikely(fence->error)) 507 i915_request_skip(request, fence->error); 508 509 /* 510 * We need to serialize use of the submit_request() callback 511 * with its hotplugging performed during an emergency 512 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 513 * critical section in order to force i915_gem_set_wedged() to 514 * wait until the submit_request() is completed before 515 * proceeding. 516 */ 517 rcu_read_lock(); 518 request->engine->submit_request(request); 519 rcu_read_unlock(); 520 break; 521 522 case FENCE_FREE: 523 i915_request_put(request); 524 break; 525 } 526 527 return NOTIFY_DONE; 528 } 529 530 static int __i915_sw_fence_call 531 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 532 { 533 struct i915_request *request = 534 container_of(fence, typeof(*request), semaphore); 535 536 switch (state) { 537 case FENCE_COMPLETE: 538 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 539 break; 540 541 case FENCE_FREE: 542 i915_request_put(request); 543 break; 544 } 545 546 return NOTIFY_DONE; 547 } 548 549 static void retire_requests(struct intel_timeline *tl) 550 { 551 struct i915_request *rq, *rn; 552 553 list_for_each_entry_safe(rq, rn, &tl->requests, link) 554 if (!i915_request_retire(rq)) 555 break; 556 } 557 558 static noinline struct i915_request * 559 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 560 { 561 struct i915_request *rq; 562 563 if (list_empty(&tl->requests)) 564 goto out; 565 566 if (!gfpflags_allow_blocking(gfp)) 567 goto out; 568 569 /* Move our oldest request to the slab-cache (if not in use!) */ 570 rq = list_first_entry(&tl->requests, typeof(*rq), link); 571 i915_request_retire(rq); 572 573 rq = kmem_cache_alloc(global.slab_requests, 574 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 575 if (rq) 576 return rq; 577 578 /* Ratelimit ourselves to prevent oom from malicious clients */ 579 rq = list_last_entry(&tl->requests, typeof(*rq), link); 580 cond_synchronize_rcu(rq->rcustate); 581 582 /* Retire our old requests in the hope that we free some */ 583 retire_requests(tl); 584 585 out: 586 return kmem_cache_alloc(global.slab_requests, gfp); 587 } 588 589 static void __i915_request_ctor(void *arg) 590 { 591 struct i915_request *rq = arg; 592 593 spin_lock_init(&rq->lock); 594 i915_sched_node_init(&rq->sched); 595 i915_sw_fence_init(&rq->submit, submit_notify); 596 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 597 598 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 599 600 rq->file_priv = NULL; 601 rq->capture_list = NULL; 602 603 INIT_LIST_HEAD(&rq->execute_cb); 604 } 605 606 struct i915_request * 607 __i915_request_create(struct intel_context *ce, gfp_t gfp) 608 { 609 struct intel_timeline *tl = ce->timeline; 610 struct i915_request *rq; 611 u32 seqno; 612 int ret; 613 614 might_sleep_if(gfpflags_allow_blocking(gfp)); 615 616 /* Check that the caller provided an already pinned context */ 617 __intel_context_pin(ce); 618 619 /* 620 * Beware: Dragons be flying overhead. 621 * 622 * We use RCU to look up requests in flight. The lookups may 623 * race with the request being allocated from the slab freelist. 624 * That is the request we are writing to here, may be in the process 625 * of being read by __i915_active_request_get_rcu(). As such, 626 * we have to be very careful when overwriting the contents. During 627 * the RCU lookup, we change chase the request->engine pointer, 628 * read the request->global_seqno and increment the reference count. 629 * 630 * The reference count is incremented atomically. If it is zero, 631 * the lookup knows the request is unallocated and complete. Otherwise, 632 * it is either still in use, or has been reallocated and reset 633 * with dma_fence_init(). This increment is safe for release as we 634 * check that the request we have a reference to and matches the active 635 * request. 636 * 637 * Before we increment the refcount, we chase the request->engine 638 * pointer. We must not call kmem_cache_zalloc() or else we set 639 * that pointer to NULL and cause a crash during the lookup. If 640 * we see the request is completed (based on the value of the 641 * old engine and seqno), the lookup is complete and reports NULL. 642 * If we decide the request is not completed (new engine or seqno), 643 * then we grab a reference and double check that it is still the 644 * active request - which it won't be and restart the lookup. 645 * 646 * Do not use kmem_cache_zalloc() here! 647 */ 648 rq = kmem_cache_alloc(global.slab_requests, 649 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 650 if (unlikely(!rq)) { 651 rq = request_alloc_slow(tl, gfp); 652 if (!rq) { 653 ret = -ENOMEM; 654 goto err_unreserve; 655 } 656 } 657 658 rq->i915 = ce->engine->i915; 659 rq->context = ce; 660 rq->engine = ce->engine; 661 rq->ring = ce->ring; 662 rq->execution_mask = ce->engine->mask; 663 664 kref_init(&rq->fence.refcount); 665 rq->fence.flags = 0; 666 rq->fence.error = 0; 667 INIT_LIST_HEAD(&rq->fence.cb_list); 668 669 ret = intel_timeline_get_seqno(tl, rq, &seqno); 670 if (ret) 671 goto err_free; 672 673 rq->fence.context = tl->fence_context; 674 rq->fence.seqno = seqno; 675 676 RCU_INIT_POINTER(rq->timeline, tl); 677 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 678 rq->hwsp_seqno = tl->hwsp_seqno; 679 680 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 681 682 /* We bump the ref for the fence chain */ 683 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 684 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 685 686 i915_sched_node_reinit(&rq->sched); 687 688 /* No zalloc, everything must be cleared after use */ 689 rq->batch = NULL; 690 GEM_BUG_ON(rq->file_priv); 691 GEM_BUG_ON(rq->capture_list); 692 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 693 694 /* 695 * Reserve space in the ring buffer for all the commands required to 696 * eventually emit this request. This is to guarantee that the 697 * i915_request_add() call can't fail. Note that the reserve may need 698 * to be redone if the request is not actually submitted straight 699 * away, e.g. because a GPU scheduler has deferred it. 700 * 701 * Note that due to how we add reserved_space to intel_ring_begin() 702 * we need to double our request to ensure that if we need to wrap 703 * around inside i915_request_add() there is sufficient space at 704 * the beginning of the ring as well. 705 */ 706 rq->reserved_space = 707 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 708 709 /* 710 * Record the position of the start of the request so that 711 * should we detect the updated seqno part-way through the 712 * GPU processing the request, we never over-estimate the 713 * position of the head. 714 */ 715 rq->head = rq->ring->emit; 716 717 ret = rq->engine->request_alloc(rq); 718 if (ret) 719 goto err_unwind; 720 721 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 722 723 intel_context_mark_active(ce); 724 return rq; 725 726 err_unwind: 727 ce->ring->emit = rq->head; 728 729 /* Make sure we didn't add ourselves to external state before freeing */ 730 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 731 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 732 733 err_free: 734 kmem_cache_free(global.slab_requests, rq); 735 err_unreserve: 736 intel_context_unpin(ce); 737 return ERR_PTR(ret); 738 } 739 740 struct i915_request * 741 i915_request_create(struct intel_context *ce) 742 { 743 struct i915_request *rq; 744 struct intel_timeline *tl; 745 746 tl = intel_context_timeline_lock(ce); 747 if (IS_ERR(tl)) 748 return ERR_CAST(tl); 749 750 /* Move our oldest request to the slab-cache (if not in use!) */ 751 rq = list_first_entry(&tl->requests, typeof(*rq), link); 752 if (!list_is_last(&rq->link, &tl->requests)) 753 i915_request_retire(rq); 754 755 intel_context_enter(ce); 756 rq = __i915_request_create(ce, GFP_KERNEL); 757 intel_context_exit(ce); /* active reference transferred to request */ 758 if (IS_ERR(rq)) 759 goto err_unlock; 760 761 /* Check that we do not interrupt ourselves with a new request */ 762 rq->cookie = lockdep_pin_lock(&tl->mutex); 763 764 return rq; 765 766 err_unlock: 767 intel_context_timeline_unlock(tl); 768 return rq; 769 } 770 771 static int 772 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 773 { 774 struct dma_fence *fence; 775 int err; 776 777 GEM_BUG_ON(i915_request_timeline(rq) == 778 rcu_access_pointer(signal->timeline)); 779 780 fence = NULL; 781 rcu_read_lock(); 782 spin_lock_irq(&signal->lock); 783 if (!i915_request_started(signal) && 784 !list_is_first(&signal->link, 785 &rcu_dereference(signal->timeline)->requests)) { 786 struct i915_request *prev = list_prev_entry(signal, link); 787 788 /* 789 * Peek at the request before us in the timeline. That 790 * request will only be valid before it is retired, so 791 * after acquiring a reference to it, confirm that it is 792 * still part of the signaler's timeline. 793 */ 794 if (i915_request_get_rcu(prev)) { 795 if (list_next_entry(prev, link) == signal) 796 fence = &prev->fence; 797 else 798 i915_request_put(prev); 799 } 800 } 801 spin_unlock_irq(&signal->lock); 802 rcu_read_unlock(); 803 if (!fence) 804 return 0; 805 806 err = 0; 807 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 808 err = i915_sw_fence_await_dma_fence(&rq->submit, 809 fence, 0, 810 I915_FENCE_GFP); 811 dma_fence_put(fence); 812 813 return err; 814 } 815 816 static intel_engine_mask_t 817 already_busywaiting(struct i915_request *rq) 818 { 819 /* 820 * Polling a semaphore causes bus traffic, delaying other users of 821 * both the GPU and CPU. We want to limit the impact on others, 822 * while taking advantage of early submission to reduce GPU 823 * latency. Therefore we restrict ourselves to not using more 824 * than one semaphore from each source, and not using a semaphore 825 * if we have detected the engine is saturated (i.e. would not be 826 * submitted early and cause bus traffic reading an already passed 827 * semaphore). 828 * 829 * See the are-we-too-late? check in __i915_request_submit(). 830 */ 831 return rq->sched.semaphores | rq->engine->saturated; 832 } 833 834 static int 835 __emit_semaphore_wait(struct i915_request *to, 836 struct i915_request *from, 837 u32 seqno) 838 { 839 const int has_token = INTEL_GEN(to->i915) >= 12; 840 u32 hwsp_offset; 841 int len, err; 842 u32 *cs; 843 844 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 845 846 /* We need to pin the signaler's HWSP until we are finished reading. */ 847 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 848 if (err) 849 return err; 850 851 len = 4; 852 if (has_token) 853 len += 2; 854 855 cs = intel_ring_begin(to, len); 856 if (IS_ERR(cs)) 857 return PTR_ERR(cs); 858 859 /* 860 * Using greater-than-or-equal here means we have to worry 861 * about seqno wraparound. To side step that issue, we swap 862 * the timeline HWSP upon wrapping, so that everyone listening 863 * for the old (pre-wrap) values do not see the much smaller 864 * (post-wrap) values than they were expecting (and so wait 865 * forever). 866 */ 867 *cs++ = (MI_SEMAPHORE_WAIT | 868 MI_SEMAPHORE_GLOBAL_GTT | 869 MI_SEMAPHORE_POLL | 870 MI_SEMAPHORE_SAD_GTE_SDD) + 871 has_token; 872 *cs++ = seqno; 873 *cs++ = hwsp_offset; 874 *cs++ = 0; 875 if (has_token) { 876 *cs++ = 0; 877 *cs++ = MI_NOOP; 878 } 879 880 intel_ring_advance(to, cs); 881 return 0; 882 } 883 884 static int 885 emit_semaphore_wait(struct i915_request *to, 886 struct i915_request *from, 887 gfp_t gfp) 888 { 889 /* Just emit the first semaphore we see as request space is limited. */ 890 if (already_busywaiting(to) & from->engine->mask) 891 goto await_fence; 892 893 if (i915_request_await_start(to, from) < 0) 894 goto await_fence; 895 896 /* Only submit our spinner after the signaler is running! */ 897 if (__await_execution(to, from, NULL, gfp)) 898 goto await_fence; 899 900 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 901 goto await_fence; 902 903 to->sched.semaphores |= from->engine->mask; 904 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 905 return 0; 906 907 await_fence: 908 return i915_sw_fence_await_dma_fence(&to->submit, 909 &from->fence, 0, 910 I915_FENCE_GFP); 911 } 912 913 static int 914 i915_request_await_request(struct i915_request *to, struct i915_request *from) 915 { 916 int ret; 917 918 GEM_BUG_ON(to == from); 919 GEM_BUG_ON(to->timeline == from->timeline); 920 921 if (i915_request_completed(from)) 922 return 0; 923 924 if (to->engine->schedule) { 925 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 926 if (ret < 0) 927 return ret; 928 } 929 930 if (to->engine == from->engine) 931 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 932 &from->submit, 933 I915_FENCE_GFP); 934 else if (intel_context_use_semaphores(to->context)) 935 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 936 else 937 ret = i915_sw_fence_await_dma_fence(&to->submit, 938 &from->fence, 0, 939 I915_FENCE_GFP); 940 if (ret < 0) 941 return ret; 942 943 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 944 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 945 &from->fence, 0, 946 I915_FENCE_GFP); 947 if (ret < 0) 948 return ret; 949 } 950 951 return 0; 952 } 953 954 int 955 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 956 { 957 struct dma_fence **child = &fence; 958 unsigned int nchild = 1; 959 int ret; 960 961 /* 962 * Note that if the fence-array was created in signal-on-any mode, 963 * we should *not* decompose it into its individual fences. However, 964 * we don't currently store which mode the fence-array is operating 965 * in. Fortunately, the only user of signal-on-any is private to 966 * amdgpu and we should not see any incoming fence-array from 967 * sync-file being in signal-on-any mode. 968 */ 969 if (dma_fence_is_array(fence)) { 970 struct dma_fence_array *array = to_dma_fence_array(fence); 971 972 child = array->fences; 973 nchild = array->num_fences; 974 GEM_BUG_ON(!nchild); 975 } 976 977 do { 978 fence = *child++; 979 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 980 i915_sw_fence_set_error_once(&rq->submit, fence->error); 981 continue; 982 } 983 984 /* 985 * Requests on the same timeline are explicitly ordered, along 986 * with their dependencies, by i915_request_add() which ensures 987 * that requests are submitted in-order through each ring. 988 */ 989 if (fence->context == rq->fence.context) 990 continue; 991 992 /* Squash repeated waits to the same timelines */ 993 if (fence->context && 994 intel_timeline_sync_is_later(i915_request_timeline(rq), 995 fence)) 996 continue; 997 998 if (dma_fence_is_i915(fence)) 999 ret = i915_request_await_request(rq, to_request(fence)); 1000 else 1001 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1002 fence->context ? I915_FENCE_TIMEOUT : 0, 1003 I915_FENCE_GFP); 1004 if (ret < 0) 1005 return ret; 1006 1007 /* Record the latest fence used against each timeline */ 1008 if (fence->context) 1009 intel_timeline_sync_set(i915_request_timeline(rq), 1010 fence); 1011 } while (--nchild); 1012 1013 return 0; 1014 } 1015 1016 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1017 struct dma_fence *fence) 1018 { 1019 return __intel_timeline_sync_is_later(tl, 1020 fence->context, 1021 fence->seqno - 1); 1022 } 1023 1024 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1025 const struct dma_fence *fence) 1026 { 1027 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1028 } 1029 1030 static int 1031 __i915_request_await_execution(struct i915_request *to, 1032 struct i915_request *from, 1033 void (*hook)(struct i915_request *rq, 1034 struct dma_fence *signal)) 1035 { 1036 int err; 1037 1038 /* Submit both requests at the same time */ 1039 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1040 if (err) 1041 return err; 1042 1043 /* Squash repeated depenendices to the same timelines */ 1044 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1045 &from->fence)) 1046 return 0; 1047 1048 /* Ensure both start together [after all semaphores in signal] */ 1049 if (intel_engine_has_semaphores(to->engine)) 1050 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1051 else 1052 err = i915_request_await_start(to, from); 1053 if (err < 0) 1054 return err; 1055 1056 /* Couple the dependency tree for PI on this exposed to->fence */ 1057 if (to->engine->schedule) { 1058 err = i915_sched_node_add_dependency(&to->sched, &from->sched); 1059 if (err < 0) 1060 return err; 1061 } 1062 1063 return intel_timeline_sync_set_start(i915_request_timeline(to), 1064 &from->fence); 1065 } 1066 1067 int 1068 i915_request_await_execution(struct i915_request *rq, 1069 struct dma_fence *fence, 1070 void (*hook)(struct i915_request *rq, 1071 struct dma_fence *signal)) 1072 { 1073 struct dma_fence **child = &fence; 1074 unsigned int nchild = 1; 1075 int ret; 1076 1077 if (dma_fence_is_array(fence)) { 1078 struct dma_fence_array *array = to_dma_fence_array(fence); 1079 1080 /* XXX Error for signal-on-any fence arrays */ 1081 1082 child = array->fences; 1083 nchild = array->num_fences; 1084 GEM_BUG_ON(!nchild); 1085 } 1086 1087 do { 1088 fence = *child++; 1089 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1090 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1091 continue; 1092 } 1093 1094 /* 1095 * We don't squash repeated fence dependencies here as we 1096 * want to run our callback in all cases. 1097 */ 1098 1099 if (dma_fence_is_i915(fence)) 1100 ret = __i915_request_await_execution(rq, 1101 to_request(fence), 1102 hook); 1103 else 1104 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1105 I915_FENCE_TIMEOUT, 1106 GFP_KERNEL); 1107 if (ret < 0) 1108 return ret; 1109 } while (--nchild); 1110 1111 return 0; 1112 } 1113 1114 /** 1115 * i915_request_await_object - set this request to (async) wait upon a bo 1116 * @to: request we are wishing to use 1117 * @obj: object which may be in use on another ring. 1118 * @write: whether the wait is on behalf of a writer 1119 * 1120 * This code is meant to abstract object synchronization with the GPU. 1121 * Conceptually we serialise writes between engines inside the GPU. 1122 * We only allow one engine to write into a buffer at any time, but 1123 * multiple readers. To ensure each has a coherent view of memory, we must: 1124 * 1125 * - If there is an outstanding write request to the object, the new 1126 * request must wait for it to complete (either CPU or in hw, requests 1127 * on the same ring will be naturally ordered). 1128 * 1129 * - If we are a write request (pending_write_domain is set), the new 1130 * request must wait for outstanding read requests to complete. 1131 * 1132 * Returns 0 if successful, else propagates up the lower layer error. 1133 */ 1134 int 1135 i915_request_await_object(struct i915_request *to, 1136 struct drm_i915_gem_object *obj, 1137 bool write) 1138 { 1139 struct dma_fence *excl; 1140 int ret = 0; 1141 1142 if (write) { 1143 struct dma_fence **shared; 1144 unsigned int count, i; 1145 1146 ret = dma_resv_get_fences_rcu(obj->base.resv, 1147 &excl, &count, &shared); 1148 if (ret) 1149 return ret; 1150 1151 for (i = 0; i < count; i++) { 1152 ret = i915_request_await_dma_fence(to, shared[i]); 1153 if (ret) 1154 break; 1155 1156 dma_fence_put(shared[i]); 1157 } 1158 1159 for (; i < count; i++) 1160 dma_fence_put(shared[i]); 1161 kfree(shared); 1162 } else { 1163 excl = dma_resv_get_excl_rcu(obj->base.resv); 1164 } 1165 1166 if (excl) { 1167 if (ret == 0) 1168 ret = i915_request_await_dma_fence(to, excl); 1169 1170 dma_fence_put(excl); 1171 } 1172 1173 return ret; 1174 } 1175 1176 void i915_request_skip(struct i915_request *rq, int error) 1177 { 1178 void *vaddr = rq->ring->vaddr; 1179 u32 head; 1180 1181 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1182 dma_fence_set_error(&rq->fence, error); 1183 1184 if (rq->infix == rq->postfix) 1185 return; 1186 1187 /* 1188 * As this request likely depends on state from the lost 1189 * context, clear out all the user operations leaving the 1190 * breadcrumb at the end (so we get the fence notifications). 1191 */ 1192 head = rq->infix; 1193 if (rq->postfix < head) { 1194 memset(vaddr + head, 0, rq->ring->size - head); 1195 head = 0; 1196 } 1197 memset(vaddr + head, 0, rq->postfix - head); 1198 rq->infix = rq->postfix; 1199 } 1200 1201 static struct i915_request * 1202 __i915_request_add_to_timeline(struct i915_request *rq) 1203 { 1204 struct intel_timeline *timeline = i915_request_timeline(rq); 1205 struct i915_request *prev; 1206 1207 /* 1208 * Dependency tracking and request ordering along the timeline 1209 * is special cased so that we can eliminate redundant ordering 1210 * operations while building the request (we know that the timeline 1211 * itself is ordered, and here we guarantee it). 1212 * 1213 * As we know we will need to emit tracking along the timeline, 1214 * we embed the hooks into our request struct -- at the cost of 1215 * having to have specialised no-allocation interfaces (which will 1216 * be beneficial elsewhere). 1217 * 1218 * A second benefit to open-coding i915_request_await_request is 1219 * that we can apply a slight variant of the rules specialised 1220 * for timelines that jump between engines (such as virtual engines). 1221 * If we consider the case of virtual engine, we must emit a dma-fence 1222 * to prevent scheduling of the second request until the first is 1223 * complete (to maximise our greedy late load balancing) and this 1224 * precludes optimising to use semaphores serialisation of a single 1225 * timeline across engines. 1226 */ 1227 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1228 &rq->fence)); 1229 if (prev && !i915_request_completed(prev)) { 1230 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1231 i915_sw_fence_await_sw_fence(&rq->submit, 1232 &prev->submit, 1233 &rq->submitq); 1234 else 1235 __i915_sw_fence_await_dma_fence(&rq->submit, 1236 &prev->fence, 1237 &rq->dmaq); 1238 if (rq->engine->schedule) 1239 __i915_sched_node_add_dependency(&rq->sched, 1240 &prev->sched, 1241 &rq->dep, 1242 0); 1243 } 1244 1245 list_add_tail(&rq->link, &timeline->requests); 1246 1247 /* 1248 * Make sure that no request gazumped us - if it was allocated after 1249 * our i915_request_alloc() and called __i915_request_add() before 1250 * us, the timeline will hold its seqno which is later than ours. 1251 */ 1252 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1253 1254 return prev; 1255 } 1256 1257 /* 1258 * NB: This function is not allowed to fail. Doing so would mean the the 1259 * request is not being tracked for completion but the work itself is 1260 * going to happen on the hardware. This would be a Bad Thing(tm). 1261 */ 1262 struct i915_request *__i915_request_commit(struct i915_request *rq) 1263 { 1264 struct intel_engine_cs *engine = rq->engine; 1265 struct intel_ring *ring = rq->ring; 1266 u32 *cs; 1267 1268 RQ_TRACE(rq, "\n"); 1269 1270 /* 1271 * To ensure that this call will not fail, space for its emissions 1272 * should already have been reserved in the ring buffer. Let the ring 1273 * know that it is time to use that space up. 1274 */ 1275 GEM_BUG_ON(rq->reserved_space > ring->space); 1276 rq->reserved_space = 0; 1277 rq->emitted_jiffies = jiffies; 1278 1279 /* 1280 * Record the position of the start of the breadcrumb so that 1281 * should we detect the updated seqno part-way through the 1282 * GPU processing the request, we never over-estimate the 1283 * position of the ring's HEAD. 1284 */ 1285 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1286 GEM_BUG_ON(IS_ERR(cs)); 1287 rq->postfix = intel_ring_offset(rq, cs); 1288 1289 return __i915_request_add_to_timeline(rq); 1290 } 1291 1292 void __i915_request_queue(struct i915_request *rq, 1293 const struct i915_sched_attr *attr) 1294 { 1295 /* 1296 * Let the backend know a new request has arrived that may need 1297 * to adjust the existing execution schedule due to a high priority 1298 * request - i.e. we may want to preempt the current request in order 1299 * to run a high priority dependency chain *before* we can execute this 1300 * request. 1301 * 1302 * This is called before the request is ready to run so that we can 1303 * decide whether to preempt the entire chain so that it is ready to 1304 * run at the earliest possible convenience. 1305 */ 1306 i915_sw_fence_commit(&rq->semaphore); 1307 if (attr && rq->engine->schedule) 1308 rq->engine->schedule(rq, attr); 1309 i915_sw_fence_commit(&rq->submit); 1310 } 1311 1312 void i915_request_add(struct i915_request *rq) 1313 { 1314 struct intel_timeline * const tl = i915_request_timeline(rq); 1315 struct i915_sched_attr attr = {}; 1316 struct i915_request *prev; 1317 1318 lockdep_assert_held(&tl->mutex); 1319 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1320 1321 trace_i915_request_add(rq); 1322 1323 prev = __i915_request_commit(rq); 1324 1325 if (rcu_access_pointer(rq->context->gem_context)) 1326 attr = i915_request_gem_context(rq)->sched; 1327 1328 /* 1329 * Boost actual workloads past semaphores! 1330 * 1331 * With semaphores we spin on one engine waiting for another, 1332 * simply to reduce the latency of starting our work when 1333 * the signaler completes. However, if there is any other 1334 * work that we could be doing on this engine instead, that 1335 * is better utilisation and will reduce the overall duration 1336 * of the current work. To avoid PI boosting a semaphore 1337 * far in the distance past over useful work, we keep a history 1338 * of any semaphore use along our dependency chain. 1339 */ 1340 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1341 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1342 1343 /* 1344 * Boost priorities to new clients (new request flows). 1345 * 1346 * Allow interactive/synchronous clients to jump ahead of 1347 * the bulk clients. (FQ_CODEL) 1348 */ 1349 if (list_empty(&rq->sched.signalers_list)) 1350 attr.priority |= I915_PRIORITY_WAIT; 1351 1352 local_bh_disable(); 1353 __i915_request_queue(rq, &attr); 1354 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1355 1356 /* 1357 * In typical scenarios, we do not expect the previous request on 1358 * the timeline to be still tracked by timeline->last_request if it 1359 * has been completed. If the completed request is still here, that 1360 * implies that request retirement is a long way behind submission, 1361 * suggesting that we haven't been retiring frequently enough from 1362 * the combination of retire-before-alloc, waiters and the background 1363 * retirement worker. So if the last request on this timeline was 1364 * already completed, do a catch up pass, flushing the retirement queue 1365 * up to this client. Since we have now moved the heaviest operations 1366 * during retirement onto secondary workers, such as freeing objects 1367 * or contexts, retiring a bunch of requests is mostly list management 1368 * (and cache misses), and so we should not be overly penalizing this 1369 * client by performing excess work, though we may still performing 1370 * work on behalf of others -- but instead we should benefit from 1371 * improved resource management. (Well, that's the theory at least.) 1372 */ 1373 if (prev && 1374 i915_request_completed(prev) && 1375 rcu_access_pointer(prev->timeline) == tl) 1376 i915_request_retire_upto(prev); 1377 1378 mutex_unlock(&tl->mutex); 1379 } 1380 1381 static unsigned long local_clock_us(unsigned int *cpu) 1382 { 1383 unsigned long t; 1384 1385 /* 1386 * Cheaply and approximately convert from nanoseconds to microseconds. 1387 * The result and subsequent calculations are also defined in the same 1388 * approximate microseconds units. The principal source of timing 1389 * error here is from the simple truncation. 1390 * 1391 * Note that local_clock() is only defined wrt to the current CPU; 1392 * the comparisons are no longer valid if we switch CPUs. Instead of 1393 * blocking preemption for the entire busywait, we can detect the CPU 1394 * switch and use that as indicator of system load and a reason to 1395 * stop busywaiting, see busywait_stop(). 1396 */ 1397 *cpu = get_cpu(); 1398 t = local_clock() >> 10; 1399 put_cpu(); 1400 1401 return t; 1402 } 1403 1404 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1405 { 1406 unsigned int this_cpu; 1407 1408 if (time_after(local_clock_us(&this_cpu), timeout)) 1409 return true; 1410 1411 return this_cpu != cpu; 1412 } 1413 1414 static bool __i915_spin_request(const struct i915_request * const rq, 1415 int state, unsigned long timeout_us) 1416 { 1417 unsigned int cpu; 1418 1419 /* 1420 * Only wait for the request if we know it is likely to complete. 1421 * 1422 * We don't track the timestamps around requests, nor the average 1423 * request length, so we do not have a good indicator that this 1424 * request will complete within the timeout. What we do know is the 1425 * order in which requests are executed by the context and so we can 1426 * tell if the request has been started. If the request is not even 1427 * running yet, it is a fair assumption that it will not complete 1428 * within our relatively short timeout. 1429 */ 1430 if (!i915_request_is_running(rq)) 1431 return false; 1432 1433 /* 1434 * When waiting for high frequency requests, e.g. during synchronous 1435 * rendering split between the CPU and GPU, the finite amount of time 1436 * required to set up the irq and wait upon it limits the response 1437 * rate. By busywaiting on the request completion for a short while we 1438 * can service the high frequency waits as quick as possible. However, 1439 * if it is a slow request, we want to sleep as quickly as possible. 1440 * The tradeoff between waiting and sleeping is roughly the time it 1441 * takes to sleep on a request, on the order of a microsecond. 1442 */ 1443 1444 timeout_us += local_clock_us(&cpu); 1445 do { 1446 if (i915_request_completed(rq)) 1447 return true; 1448 1449 if (signal_pending_state(state, current)) 1450 break; 1451 1452 if (busywait_stop(timeout_us, cpu)) 1453 break; 1454 1455 cpu_relax(); 1456 } while (!need_resched()); 1457 1458 return false; 1459 } 1460 1461 struct request_wait { 1462 struct dma_fence_cb cb; 1463 struct task_struct *tsk; 1464 }; 1465 1466 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1467 { 1468 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1469 1470 wake_up_process(wait->tsk); 1471 } 1472 1473 /** 1474 * i915_request_wait - wait until execution of request has finished 1475 * @rq: the request to wait upon 1476 * @flags: how to wait 1477 * @timeout: how long to wait in jiffies 1478 * 1479 * i915_request_wait() waits for the request to be completed, for a 1480 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1481 * unbounded wait). 1482 * 1483 * Returns the remaining time (in jiffies) if the request completed, which may 1484 * be zero or -ETIME if the request is unfinished after the timeout expires. 1485 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1486 * pending before the request completes. 1487 */ 1488 long i915_request_wait(struct i915_request *rq, 1489 unsigned int flags, 1490 long timeout) 1491 { 1492 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1493 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1494 struct request_wait wait; 1495 1496 might_sleep(); 1497 GEM_BUG_ON(timeout < 0); 1498 1499 if (dma_fence_is_signaled(&rq->fence)) 1500 return timeout; 1501 1502 if (!timeout) 1503 return -ETIME; 1504 1505 trace_i915_request_wait_begin(rq, flags); 1506 1507 /* 1508 * We must never wait on the GPU while holding a lock as we 1509 * may need to perform a GPU reset. So while we don't need to 1510 * serialise wait/reset with an explicit lock, we do want 1511 * lockdep to detect potential dependency cycles. 1512 */ 1513 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1514 1515 /* 1516 * Optimistic spin before touching IRQs. 1517 * 1518 * We may use a rather large value here to offset the penalty of 1519 * switching away from the active task. Frequently, the client will 1520 * wait upon an old swapbuffer to throttle itself to remain within a 1521 * frame of the gpu. If the client is running in lockstep with the gpu, 1522 * then it should not be waiting long at all, and a sleep now will incur 1523 * extra scheduler latency in producing the next frame. To try to 1524 * avoid adding the cost of enabling/disabling the interrupt to the 1525 * short wait, we first spin to see if the request would have completed 1526 * in the time taken to setup the interrupt. 1527 * 1528 * We need upto 5us to enable the irq, and upto 20us to hide the 1529 * scheduler latency of a context switch, ignoring the secondary 1530 * impacts from a context switch such as cache eviction. 1531 * 1532 * The scheme used for low-latency IO is called "hybrid interrupt 1533 * polling". The suggestion there is to sleep until just before you 1534 * expect to be woken by the device interrupt and then poll for its 1535 * completion. That requires having a good predictor for the request 1536 * duration, which we currently lack. 1537 */ 1538 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) && 1539 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1540 dma_fence_signal(&rq->fence); 1541 goto out; 1542 } 1543 1544 /* 1545 * This client is about to stall waiting for the GPU. In many cases 1546 * this is undesirable and limits the throughput of the system, as 1547 * many clients cannot continue processing user input/output whilst 1548 * blocked. RPS autotuning may take tens of milliseconds to respond 1549 * to the GPU load and thus incurs additional latency for the client. 1550 * We can circumvent that by promoting the GPU frequency to maximum 1551 * before we sleep. This makes the GPU throttle up much more quickly 1552 * (good for benchmarks and user experience, e.g. window animations), 1553 * but at a cost of spending more power processing the workload 1554 * (bad for battery). 1555 */ 1556 if (flags & I915_WAIT_PRIORITY) { 1557 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1558 intel_rps_boost(rq); 1559 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1560 } 1561 1562 wait.tsk = current; 1563 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1564 goto out; 1565 1566 for (;;) { 1567 set_current_state(state); 1568 1569 if (i915_request_completed(rq)) { 1570 dma_fence_signal(&rq->fence); 1571 break; 1572 } 1573 1574 if (signal_pending_state(state, current)) { 1575 timeout = -ERESTARTSYS; 1576 break; 1577 } 1578 1579 if (!timeout) { 1580 timeout = -ETIME; 1581 break; 1582 } 1583 1584 intel_engine_flush_submission(rq->engine); 1585 timeout = io_schedule_timeout(timeout); 1586 } 1587 __set_current_state(TASK_RUNNING); 1588 1589 dma_fence_remove_callback(&rq->fence, &wait.cb); 1590 1591 out: 1592 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1593 trace_i915_request_wait_end(rq); 1594 return timeout; 1595 } 1596 1597 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1598 #include "selftests/mock_request.c" 1599 #include "selftests/i915_request.c" 1600 #endif 1601 1602 static void i915_global_request_shrink(void) 1603 { 1604 kmem_cache_shrink(global.slab_dependencies); 1605 kmem_cache_shrink(global.slab_execute_cbs); 1606 kmem_cache_shrink(global.slab_requests); 1607 } 1608 1609 static void i915_global_request_exit(void) 1610 { 1611 kmem_cache_destroy(global.slab_dependencies); 1612 kmem_cache_destroy(global.slab_execute_cbs); 1613 kmem_cache_destroy(global.slab_requests); 1614 } 1615 1616 static struct i915_global_request global = { { 1617 .shrink = i915_global_request_shrink, 1618 .exit = i915_global_request_exit, 1619 } }; 1620 1621 int __init i915_global_request_init(void) 1622 { 1623 global.slab_requests = 1624 kmem_cache_create("i915_request", 1625 sizeof(struct i915_request), 1626 __alignof__(struct i915_request), 1627 SLAB_HWCACHE_ALIGN | 1628 SLAB_RECLAIM_ACCOUNT | 1629 SLAB_TYPESAFE_BY_RCU, 1630 __i915_request_ctor); 1631 if (!global.slab_requests) 1632 return -ENOMEM; 1633 1634 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1635 SLAB_HWCACHE_ALIGN | 1636 SLAB_RECLAIM_ACCOUNT | 1637 SLAB_TYPESAFE_BY_RCU); 1638 if (!global.slab_execute_cbs) 1639 goto err_requests; 1640 1641 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1642 SLAB_HWCACHE_ALIGN | 1643 SLAB_RECLAIM_ACCOUNT); 1644 if (!global.slab_dependencies) 1645 goto err_execute_cbs; 1646 1647 i915_global_register(&global.base); 1648 return 0; 1649 1650 err_execute_cbs: 1651 kmem_cache_destroy(global.slab_execute_cbs); 1652 err_requests: 1653 kmem_cache_destroy(global.slab_requests); 1654 return -ENOMEM; 1655 } 1656