1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36 
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42 
43 struct execute_cb {
44 	struct list_head link;
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_execute_cbs;
55 } global;
56 
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 	return dev_name(to_request(fence)->i915->drm.dev);
60 }
61 
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 	const struct i915_gem_context *ctx;
65 
66 	/*
67 	 * The timeline struct (as part of the ppgtt underneath a context)
68 	 * may be freed when the request is no longer in use by the GPU.
69 	 * We could extend the life of a context to beyond that of all
70 	 * fences, possibly keeping the hw resource around indefinitely,
71 	 * or we just give them a false name. Since
72 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 	 * lie seems justifiable.
74 	 */
75 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 		return "signaled";
77 
78 	ctx = i915_request_gem_context(to_request(fence));
79 	if (!ctx)
80 		return "[" DRIVER_NAME "]";
81 
82 	return ctx->name;
83 }
84 
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 	return i915_request_completed(to_request(fence));
88 }
89 
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 	return i915_request_enable_breadcrumb(to_request(fence));
93 }
94 
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 				   bool interruptible,
97 				   signed long timeout)
98 {
99 	return i915_request_wait(to_request(fence),
100 				 interruptible | I915_WAIT_PRIORITY,
101 				 timeout);
102 }
103 
104 static void i915_fence_release(struct dma_fence *fence)
105 {
106 	struct i915_request *rq = to_request(fence);
107 
108 	/*
109 	 * The request is put onto a RCU freelist (i.e. the address
110 	 * is immediately reused), mark the fences as being freed now.
111 	 * Otherwise the debugobjects for the fences are only marked as
112 	 * freed when the slab cache itself is freed, and so we would get
113 	 * caught trying to reuse dead objects.
114 	 */
115 	i915_sw_fence_fini(&rq->submit);
116 	i915_sw_fence_fini(&rq->semaphore);
117 
118 	kmem_cache_free(global.slab_requests, rq);
119 }
120 
121 const struct dma_fence_ops i915_fence_ops = {
122 	.get_driver_name = i915_fence_get_driver_name,
123 	.get_timeline_name = i915_fence_get_timeline_name,
124 	.enable_signaling = i915_fence_enable_signaling,
125 	.signaled = i915_fence_signaled,
126 	.wait = i915_fence_wait,
127 	.release = i915_fence_release,
128 };
129 
130 static void irq_execute_cb(struct irq_work *wrk)
131 {
132 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
133 
134 	i915_sw_fence_complete(cb->fence);
135 	kmem_cache_free(global.slab_execute_cbs, cb);
136 }
137 
138 static void irq_execute_cb_hook(struct irq_work *wrk)
139 {
140 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
141 
142 	cb->hook(container_of(cb->fence, struct i915_request, submit),
143 		 &cb->signal->fence);
144 	i915_request_put(cb->signal);
145 
146 	irq_execute_cb(wrk);
147 }
148 
149 static void __notify_execute_cb(struct i915_request *rq)
150 {
151 	struct execute_cb *cb;
152 
153 	lockdep_assert_held(&rq->lock);
154 
155 	if (list_empty(&rq->execute_cb))
156 		return;
157 
158 	list_for_each_entry(cb, &rq->execute_cb, link)
159 		irq_work_queue(&cb->work);
160 
161 	/*
162 	 * XXX Rollback on __i915_request_unsubmit()
163 	 *
164 	 * In the future, perhaps when we have an active time-slicing scheduler,
165 	 * it will be interesting to unsubmit parallel execution and remove
166 	 * busywaits from the GPU until their master is restarted. This is
167 	 * quite hairy, we have to carefully rollback the fence and do a
168 	 * preempt-to-idle cycle on the target engine, all the while the
169 	 * master execute_cb may refire.
170 	 */
171 	INIT_LIST_HEAD(&rq->execute_cb);
172 }
173 
174 static inline void
175 remove_from_client(struct i915_request *request)
176 {
177 	struct drm_i915_file_private *file_priv;
178 
179 	if (!READ_ONCE(request->file_priv))
180 		return;
181 
182 	rcu_read_lock();
183 	file_priv = xchg(&request->file_priv, NULL);
184 	if (file_priv) {
185 		spin_lock(&file_priv->mm.lock);
186 		list_del(&request->client_link);
187 		spin_unlock(&file_priv->mm.lock);
188 	}
189 	rcu_read_unlock();
190 }
191 
192 static void free_capture_list(struct i915_request *request)
193 {
194 	struct i915_capture_list *capture;
195 
196 	capture = fetch_and_zero(&request->capture_list);
197 	while (capture) {
198 		struct i915_capture_list *next = capture->next;
199 
200 		kfree(capture);
201 		capture = next;
202 	}
203 }
204 
205 static void __i915_request_fill(struct i915_request *rq, u8 val)
206 {
207 	void *vaddr = rq->ring->vaddr;
208 	u32 head;
209 
210 	head = rq->infix;
211 	if (rq->postfix < head) {
212 		memset(vaddr + head, val, rq->ring->size - head);
213 		head = 0;
214 	}
215 	memset(vaddr + head, val, rq->postfix - head);
216 }
217 
218 static void remove_from_engine(struct i915_request *rq)
219 {
220 	struct intel_engine_cs *engine, *locked;
221 
222 	/*
223 	 * Virtual engines complicate acquiring the engine timeline lock,
224 	 * as their rq->engine pointer is not stable until under that
225 	 * engine lock. The simple ploy we use is to take the lock then
226 	 * check that the rq still belongs to the newly locked engine.
227 	 */
228 	locked = READ_ONCE(rq->engine);
229 	spin_lock_irq(&locked->active.lock);
230 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
231 		spin_unlock(&locked->active.lock);
232 		spin_lock(&engine->active.lock);
233 		locked = engine;
234 	}
235 	list_del_init(&rq->sched.link);
236 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
237 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
238 	spin_unlock_irq(&locked->active.lock);
239 }
240 
241 bool i915_request_retire(struct i915_request *rq)
242 {
243 	if (!i915_request_completed(rq))
244 		return false;
245 
246 	RQ_TRACE(rq, "\n");
247 
248 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
249 	trace_i915_request_retire(rq);
250 
251 	/*
252 	 * We know the GPU must have read the request to have
253 	 * sent us the seqno + interrupt, so use the position
254 	 * of tail of the request to update the last known position
255 	 * of the GPU head.
256 	 *
257 	 * Note this requires that we are always called in request
258 	 * completion order.
259 	 */
260 	GEM_BUG_ON(!list_is_first(&rq->link,
261 				  &i915_request_timeline(rq)->requests));
262 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
263 		/* Poison before we release our space in the ring */
264 		__i915_request_fill(rq, POISON_FREE);
265 	rq->ring->head = rq->postfix;
266 
267 	/*
268 	 * We only loosely track inflight requests across preemption,
269 	 * and so we may find ourselves attempting to retire a _completed_
270 	 * request that we have removed from the HW and put back on a run
271 	 * queue.
272 	 */
273 	remove_from_engine(rq);
274 
275 	spin_lock_irq(&rq->lock);
276 	i915_request_mark_complete(rq);
277 	if (!i915_request_signaled(rq))
278 		dma_fence_signal_locked(&rq->fence);
279 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
280 		i915_request_cancel_breadcrumb(rq);
281 	if (i915_request_has_waitboost(rq)) {
282 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
283 		atomic_dec(&rq->engine->gt->rps.num_waiters);
284 	}
285 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
286 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
287 		__notify_execute_cb(rq);
288 	}
289 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
290 	spin_unlock_irq(&rq->lock);
291 
292 	remove_from_client(rq);
293 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
294 
295 	intel_context_exit(rq->context);
296 	intel_context_unpin(rq->context);
297 
298 	free_capture_list(rq);
299 	i915_sched_node_fini(&rq->sched);
300 	i915_request_put(rq);
301 
302 	return true;
303 }
304 
305 void i915_request_retire_upto(struct i915_request *rq)
306 {
307 	struct intel_timeline * const tl = i915_request_timeline(rq);
308 	struct i915_request *tmp;
309 
310 	RQ_TRACE(rq, "\n");
311 
312 	GEM_BUG_ON(!i915_request_completed(rq));
313 
314 	do {
315 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
316 	} while (i915_request_retire(tmp) && tmp != rq);
317 }
318 
319 static int
320 __await_execution(struct i915_request *rq,
321 		  struct i915_request *signal,
322 		  void (*hook)(struct i915_request *rq,
323 			       struct dma_fence *signal),
324 		  gfp_t gfp)
325 {
326 	struct execute_cb *cb;
327 
328 	if (i915_request_is_active(signal)) {
329 		if (hook)
330 			hook(rq, &signal->fence);
331 		return 0;
332 	}
333 
334 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
335 	if (!cb)
336 		return -ENOMEM;
337 
338 	cb->fence = &rq->submit;
339 	i915_sw_fence_await(cb->fence);
340 	init_irq_work(&cb->work, irq_execute_cb);
341 
342 	if (hook) {
343 		cb->hook = hook;
344 		cb->signal = i915_request_get(signal);
345 		cb->work.func = irq_execute_cb_hook;
346 	}
347 
348 	spin_lock_irq(&signal->lock);
349 	if (i915_request_is_active(signal)) {
350 		if (hook) {
351 			hook(rq, &signal->fence);
352 			i915_request_put(signal);
353 		}
354 		i915_sw_fence_complete(cb->fence);
355 		kmem_cache_free(global.slab_execute_cbs, cb);
356 	} else {
357 		list_add_tail(&cb->link, &signal->execute_cb);
358 	}
359 	spin_unlock_irq(&signal->lock);
360 
361 	/* Copy across semaphore status as we need the same behaviour */
362 	rq->sched.flags |= signal->sched.flags;
363 	return 0;
364 }
365 
366 static bool fatal_error(int error)
367 {
368 	switch (error) {
369 	case 0: /* not an error! */
370 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
371 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
372 		return false;
373 	default:
374 		return true;
375 	}
376 }
377 
378 void __i915_request_skip(struct i915_request *rq)
379 {
380 	GEM_BUG_ON(!fatal_error(rq->fence.error));
381 
382 	if (rq->infix == rq->postfix)
383 		return;
384 
385 	/*
386 	 * As this request likely depends on state from the lost
387 	 * context, clear out all the user operations leaving the
388 	 * breadcrumb at the end (so we get the fence notifications).
389 	 */
390 	__i915_request_fill(rq, 0);
391 	rq->infix = rq->postfix;
392 }
393 
394 void i915_request_set_error_once(struct i915_request *rq, int error)
395 {
396 	int old;
397 
398 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
399 
400 	if (i915_request_signaled(rq))
401 		return;
402 
403 	old = READ_ONCE(rq->fence.error);
404 	do {
405 		if (fatal_error(old))
406 			return;
407 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
408 }
409 
410 bool __i915_request_submit(struct i915_request *request)
411 {
412 	struct intel_engine_cs *engine = request->engine;
413 	bool result = false;
414 
415 	RQ_TRACE(request, "\n");
416 
417 	GEM_BUG_ON(!irqs_disabled());
418 	lockdep_assert_held(&engine->active.lock);
419 
420 	/*
421 	 * With the advent of preempt-to-busy, we frequently encounter
422 	 * requests that we have unsubmitted from HW, but left running
423 	 * until the next ack and so have completed in the meantime. On
424 	 * resubmission of that completed request, we can skip
425 	 * updating the payload, and execlists can even skip submitting
426 	 * the request.
427 	 *
428 	 * We must remove the request from the caller's priority queue,
429 	 * and the caller must only call us when the request is in their
430 	 * priority queue, under the active.lock. This ensures that the
431 	 * request has *not* yet been retired and we can safely move
432 	 * the request into the engine->active.list where it will be
433 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
434 	 * request, this would be a horrible use-after-free.)
435 	 */
436 	if (i915_request_completed(request))
437 		goto xfer;
438 
439 	if (unlikely(intel_context_is_banned(request->context)))
440 		i915_request_set_error_once(request, -EIO);
441 	if (unlikely(fatal_error(request->fence.error)))
442 		__i915_request_skip(request);
443 
444 	/*
445 	 * Are we using semaphores when the gpu is already saturated?
446 	 *
447 	 * Using semaphores incurs a cost in having the GPU poll a
448 	 * memory location, busywaiting for it to change. The continual
449 	 * memory reads can have a noticeable impact on the rest of the
450 	 * system with the extra bus traffic, stalling the cpu as it too
451 	 * tries to access memory across the bus (perf stat -e bus-cycles).
452 	 *
453 	 * If we installed a semaphore on this request and we only submit
454 	 * the request after the signaler completed, that indicates the
455 	 * system is overloaded and using semaphores at this time only
456 	 * increases the amount of work we are doing. If so, we disable
457 	 * further use of semaphores until we are idle again, whence we
458 	 * optimistically try again.
459 	 */
460 	if (request->sched.semaphores &&
461 	    i915_sw_fence_signaled(&request->semaphore))
462 		engine->saturated |= request->sched.semaphores;
463 
464 	engine->emit_fini_breadcrumb(request,
465 				     request->ring->vaddr + request->postfix);
466 
467 	trace_i915_request_execute(request);
468 	engine->serial++;
469 	result = true;
470 
471 xfer:	/* We may be recursing from the signal callback of another i915 fence */
472 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
473 
474 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
475 		list_move_tail(&request->sched.link, &engine->active.requests);
476 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
477 	}
478 
479 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
480 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
481 	    !i915_request_enable_breadcrumb(request))
482 		intel_engine_signal_breadcrumbs(engine);
483 
484 	__notify_execute_cb(request);
485 
486 	spin_unlock(&request->lock);
487 
488 	return result;
489 }
490 
491 void i915_request_submit(struct i915_request *request)
492 {
493 	struct intel_engine_cs *engine = request->engine;
494 	unsigned long flags;
495 
496 	/* Will be called from irq-context when using foreign fences. */
497 	spin_lock_irqsave(&engine->active.lock, flags);
498 
499 	__i915_request_submit(request);
500 
501 	spin_unlock_irqrestore(&engine->active.lock, flags);
502 }
503 
504 void __i915_request_unsubmit(struct i915_request *request)
505 {
506 	struct intel_engine_cs *engine = request->engine;
507 
508 	RQ_TRACE(request, "\n");
509 
510 	GEM_BUG_ON(!irqs_disabled());
511 	lockdep_assert_held(&engine->active.lock);
512 
513 	/*
514 	 * Only unwind in reverse order, required so that the per-context list
515 	 * is kept in seqno/ring order.
516 	 */
517 
518 	/* We may be recursing from the signal callback of another i915 fence */
519 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520 
521 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522 		i915_request_cancel_breadcrumb(request);
523 
524 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
525 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
526 
527 	spin_unlock(&request->lock);
528 
529 	/* We've already spun, don't charge on resubmitting. */
530 	if (request->sched.semaphores && i915_request_started(request)) {
531 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
532 		request->sched.semaphores = 0;
533 	}
534 
535 	/*
536 	 * We don't need to wake_up any waiters on request->execute, they
537 	 * will get woken by any other event or us re-adding this request
538 	 * to the engine timeline (__i915_request_submit()). The waiters
539 	 * should be quite adapt at finding that the request now has a new
540 	 * global_seqno to the one they went to sleep on.
541 	 */
542 }
543 
544 void i915_request_unsubmit(struct i915_request *request)
545 {
546 	struct intel_engine_cs *engine = request->engine;
547 	unsigned long flags;
548 
549 	/* Will be called from irq-context when using foreign fences. */
550 	spin_lock_irqsave(&engine->active.lock, flags);
551 
552 	__i915_request_unsubmit(request);
553 
554 	spin_unlock_irqrestore(&engine->active.lock, flags);
555 }
556 
557 static int __i915_sw_fence_call
558 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
559 {
560 	struct i915_request *request =
561 		container_of(fence, typeof(*request), submit);
562 
563 	switch (state) {
564 	case FENCE_COMPLETE:
565 		trace_i915_request_submit(request);
566 
567 		if (unlikely(fence->error))
568 			i915_request_set_error_once(request, fence->error);
569 
570 		/*
571 		 * We need to serialize use of the submit_request() callback
572 		 * with its hotplugging performed during an emergency
573 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
574 		 * critical section in order to force i915_gem_set_wedged() to
575 		 * wait until the submit_request() is completed before
576 		 * proceeding.
577 		 */
578 		rcu_read_lock();
579 		request->engine->submit_request(request);
580 		rcu_read_unlock();
581 		break;
582 
583 	case FENCE_FREE:
584 		i915_request_put(request);
585 		break;
586 	}
587 
588 	return NOTIFY_DONE;
589 }
590 
591 static void irq_semaphore_cb(struct irq_work *wrk)
592 {
593 	struct i915_request *rq =
594 		container_of(wrk, typeof(*rq), semaphore_work);
595 
596 	i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
597 	i915_request_put(rq);
598 }
599 
600 static int __i915_sw_fence_call
601 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
602 {
603 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
604 
605 	switch (state) {
606 	case FENCE_COMPLETE:
607 		if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
608 			i915_request_get(rq);
609 			init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
610 			irq_work_queue(&rq->semaphore_work);
611 		}
612 		break;
613 
614 	case FENCE_FREE:
615 		i915_request_put(rq);
616 		break;
617 	}
618 
619 	return NOTIFY_DONE;
620 }
621 
622 static void retire_requests(struct intel_timeline *tl)
623 {
624 	struct i915_request *rq, *rn;
625 
626 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
627 		if (!i915_request_retire(rq))
628 			break;
629 }
630 
631 static noinline struct i915_request *
632 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
633 {
634 	struct i915_request *rq;
635 
636 	if (list_empty(&tl->requests))
637 		goto out;
638 
639 	if (!gfpflags_allow_blocking(gfp))
640 		goto out;
641 
642 	/* Move our oldest request to the slab-cache (if not in use!) */
643 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
644 	i915_request_retire(rq);
645 
646 	rq = kmem_cache_alloc(global.slab_requests,
647 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
648 	if (rq)
649 		return rq;
650 
651 	/* Ratelimit ourselves to prevent oom from malicious clients */
652 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
653 	cond_synchronize_rcu(rq->rcustate);
654 
655 	/* Retire our old requests in the hope that we free some */
656 	retire_requests(tl);
657 
658 out:
659 	return kmem_cache_alloc(global.slab_requests, gfp);
660 }
661 
662 static void __i915_request_ctor(void *arg)
663 {
664 	struct i915_request *rq = arg;
665 
666 	spin_lock_init(&rq->lock);
667 	i915_sched_node_init(&rq->sched);
668 	i915_sw_fence_init(&rq->submit, submit_notify);
669 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
670 
671 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
672 
673 	rq->file_priv = NULL;
674 	rq->capture_list = NULL;
675 
676 	INIT_LIST_HEAD(&rq->execute_cb);
677 }
678 
679 struct i915_request *
680 __i915_request_create(struct intel_context *ce, gfp_t gfp)
681 {
682 	struct intel_timeline *tl = ce->timeline;
683 	struct i915_request *rq;
684 	u32 seqno;
685 	int ret;
686 
687 	might_sleep_if(gfpflags_allow_blocking(gfp));
688 
689 	/* Check that the caller provided an already pinned context */
690 	__intel_context_pin(ce);
691 
692 	/*
693 	 * Beware: Dragons be flying overhead.
694 	 *
695 	 * We use RCU to look up requests in flight. The lookups may
696 	 * race with the request being allocated from the slab freelist.
697 	 * That is the request we are writing to here, may be in the process
698 	 * of being read by __i915_active_request_get_rcu(). As such,
699 	 * we have to be very careful when overwriting the contents. During
700 	 * the RCU lookup, we change chase the request->engine pointer,
701 	 * read the request->global_seqno and increment the reference count.
702 	 *
703 	 * The reference count is incremented atomically. If it is zero,
704 	 * the lookup knows the request is unallocated and complete. Otherwise,
705 	 * it is either still in use, or has been reallocated and reset
706 	 * with dma_fence_init(). This increment is safe for release as we
707 	 * check that the request we have a reference to and matches the active
708 	 * request.
709 	 *
710 	 * Before we increment the refcount, we chase the request->engine
711 	 * pointer. We must not call kmem_cache_zalloc() or else we set
712 	 * that pointer to NULL and cause a crash during the lookup. If
713 	 * we see the request is completed (based on the value of the
714 	 * old engine and seqno), the lookup is complete and reports NULL.
715 	 * If we decide the request is not completed (new engine or seqno),
716 	 * then we grab a reference and double check that it is still the
717 	 * active request - which it won't be and restart the lookup.
718 	 *
719 	 * Do not use kmem_cache_zalloc() here!
720 	 */
721 	rq = kmem_cache_alloc(global.slab_requests,
722 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
723 	if (unlikely(!rq)) {
724 		rq = request_alloc_slow(tl, gfp);
725 		if (!rq) {
726 			ret = -ENOMEM;
727 			goto err_unreserve;
728 		}
729 	}
730 
731 	rq->i915 = ce->engine->i915;
732 	rq->context = ce;
733 	rq->engine = ce->engine;
734 	rq->ring = ce->ring;
735 	rq->execution_mask = ce->engine->mask;
736 
737 	kref_init(&rq->fence.refcount);
738 	rq->fence.flags = 0;
739 	rq->fence.error = 0;
740 	INIT_LIST_HEAD(&rq->fence.cb_list);
741 
742 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
743 	if (ret)
744 		goto err_free;
745 
746 	rq->fence.context = tl->fence_context;
747 	rq->fence.seqno = seqno;
748 
749 	RCU_INIT_POINTER(rq->timeline, tl);
750 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
751 	rq->hwsp_seqno = tl->hwsp_seqno;
752 	GEM_BUG_ON(i915_request_completed(rq));
753 
754 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
755 
756 	/* We bump the ref for the fence chain */
757 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
758 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
759 
760 	i915_sched_node_reinit(&rq->sched);
761 
762 	/* No zalloc, everything must be cleared after use */
763 	rq->batch = NULL;
764 	GEM_BUG_ON(rq->file_priv);
765 	GEM_BUG_ON(rq->capture_list);
766 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
767 
768 	/*
769 	 * Reserve space in the ring buffer for all the commands required to
770 	 * eventually emit this request. This is to guarantee that the
771 	 * i915_request_add() call can't fail. Note that the reserve may need
772 	 * to be redone if the request is not actually submitted straight
773 	 * away, e.g. because a GPU scheduler has deferred it.
774 	 *
775 	 * Note that due to how we add reserved_space to intel_ring_begin()
776 	 * we need to double our request to ensure that if we need to wrap
777 	 * around inside i915_request_add() there is sufficient space at
778 	 * the beginning of the ring as well.
779 	 */
780 	rq->reserved_space =
781 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
782 
783 	/*
784 	 * Record the position of the start of the request so that
785 	 * should we detect the updated seqno part-way through the
786 	 * GPU processing the request, we never over-estimate the
787 	 * position of the head.
788 	 */
789 	rq->head = rq->ring->emit;
790 
791 	ret = rq->engine->request_alloc(rq);
792 	if (ret)
793 		goto err_unwind;
794 
795 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
796 
797 	intel_context_mark_active(ce);
798 	list_add_tail_rcu(&rq->link, &tl->requests);
799 
800 	return rq;
801 
802 err_unwind:
803 	ce->ring->emit = rq->head;
804 
805 	/* Make sure we didn't add ourselves to external state before freeing */
806 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
807 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
808 
809 err_free:
810 	kmem_cache_free(global.slab_requests, rq);
811 err_unreserve:
812 	intel_context_unpin(ce);
813 	return ERR_PTR(ret);
814 }
815 
816 struct i915_request *
817 i915_request_create(struct intel_context *ce)
818 {
819 	struct i915_request *rq;
820 	struct intel_timeline *tl;
821 
822 	tl = intel_context_timeline_lock(ce);
823 	if (IS_ERR(tl))
824 		return ERR_CAST(tl);
825 
826 	/* Move our oldest request to the slab-cache (if not in use!) */
827 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
828 	if (!list_is_last(&rq->link, &tl->requests))
829 		i915_request_retire(rq);
830 
831 	intel_context_enter(ce);
832 	rq = __i915_request_create(ce, GFP_KERNEL);
833 	intel_context_exit(ce); /* active reference transferred to request */
834 	if (IS_ERR(rq))
835 		goto err_unlock;
836 
837 	/* Check that we do not interrupt ourselves with a new request */
838 	rq->cookie = lockdep_pin_lock(&tl->mutex);
839 
840 	return rq;
841 
842 err_unlock:
843 	intel_context_timeline_unlock(tl);
844 	return rq;
845 }
846 
847 static int
848 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
849 {
850 	struct dma_fence *fence;
851 	int err;
852 
853 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
854 		return 0;
855 
856 	if (i915_request_started(signal))
857 		return 0;
858 
859 	fence = NULL;
860 	rcu_read_lock();
861 	spin_lock_irq(&signal->lock);
862 	do {
863 		struct list_head *pos = READ_ONCE(signal->link.prev);
864 		struct i915_request *prev;
865 
866 		/* Confirm signal has not been retired, the link is valid */
867 		if (unlikely(i915_request_started(signal)))
868 			break;
869 
870 		/* Is signal the earliest request on its timeline? */
871 		if (pos == &rcu_dereference(signal->timeline)->requests)
872 			break;
873 
874 		/*
875 		 * Peek at the request before us in the timeline. That
876 		 * request will only be valid before it is retired, so
877 		 * after acquiring a reference to it, confirm that it is
878 		 * still part of the signaler's timeline.
879 		 */
880 		prev = list_entry(pos, typeof(*prev), link);
881 		if (!i915_request_get_rcu(prev))
882 			break;
883 
884 		/* After the strong barrier, confirm prev is still attached */
885 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
886 			i915_request_put(prev);
887 			break;
888 		}
889 
890 		fence = &prev->fence;
891 	} while (0);
892 	spin_unlock_irq(&signal->lock);
893 	rcu_read_unlock();
894 	if (!fence)
895 		return 0;
896 
897 	err = 0;
898 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
899 		err = i915_sw_fence_await_dma_fence(&rq->submit,
900 						    fence, 0,
901 						    I915_FENCE_GFP);
902 	dma_fence_put(fence);
903 
904 	return err;
905 }
906 
907 static intel_engine_mask_t
908 already_busywaiting(struct i915_request *rq)
909 {
910 	/*
911 	 * Polling a semaphore causes bus traffic, delaying other users of
912 	 * both the GPU and CPU. We want to limit the impact on others,
913 	 * while taking advantage of early submission to reduce GPU
914 	 * latency. Therefore we restrict ourselves to not using more
915 	 * than one semaphore from each source, and not using a semaphore
916 	 * if we have detected the engine is saturated (i.e. would not be
917 	 * submitted early and cause bus traffic reading an already passed
918 	 * semaphore).
919 	 *
920 	 * See the are-we-too-late? check in __i915_request_submit().
921 	 */
922 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
923 }
924 
925 static int
926 __emit_semaphore_wait(struct i915_request *to,
927 		      struct i915_request *from,
928 		      u32 seqno)
929 {
930 	const int has_token = INTEL_GEN(to->i915) >= 12;
931 	u32 hwsp_offset;
932 	int len, err;
933 	u32 *cs;
934 
935 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
936 
937 	/* We need to pin the signaler's HWSP until we are finished reading. */
938 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
939 	if (err)
940 		return err;
941 
942 	len = 4;
943 	if (has_token)
944 		len += 2;
945 
946 	cs = intel_ring_begin(to, len);
947 	if (IS_ERR(cs))
948 		return PTR_ERR(cs);
949 
950 	/*
951 	 * Using greater-than-or-equal here means we have to worry
952 	 * about seqno wraparound. To side step that issue, we swap
953 	 * the timeline HWSP upon wrapping, so that everyone listening
954 	 * for the old (pre-wrap) values do not see the much smaller
955 	 * (post-wrap) values than they were expecting (and so wait
956 	 * forever).
957 	 */
958 	*cs++ = (MI_SEMAPHORE_WAIT |
959 		 MI_SEMAPHORE_GLOBAL_GTT |
960 		 MI_SEMAPHORE_POLL |
961 		 MI_SEMAPHORE_SAD_GTE_SDD) +
962 		has_token;
963 	*cs++ = seqno;
964 	*cs++ = hwsp_offset;
965 	*cs++ = 0;
966 	if (has_token) {
967 		*cs++ = 0;
968 		*cs++ = MI_NOOP;
969 	}
970 
971 	intel_ring_advance(to, cs);
972 	return 0;
973 }
974 
975 static int
976 emit_semaphore_wait(struct i915_request *to,
977 		    struct i915_request *from,
978 		    gfp_t gfp)
979 {
980 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
981 
982 	if (!intel_context_use_semaphores(to->context))
983 		goto await_fence;
984 
985 	if (!rcu_access_pointer(from->hwsp_cacheline))
986 		goto await_fence;
987 
988 	/* Just emit the first semaphore we see as request space is limited. */
989 	if (already_busywaiting(to) & mask)
990 		goto await_fence;
991 
992 	if (i915_request_await_start(to, from) < 0)
993 		goto await_fence;
994 
995 	/* Only submit our spinner after the signaler is running! */
996 	if (__await_execution(to, from, NULL, gfp))
997 		goto await_fence;
998 
999 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1000 		goto await_fence;
1001 
1002 	to->sched.semaphores |= mask;
1003 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
1004 	return 0;
1005 
1006 await_fence:
1007 	return i915_sw_fence_await_dma_fence(&to->submit,
1008 					     &from->fence, 0,
1009 					     I915_FENCE_GFP);
1010 }
1011 
1012 static int
1013 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1014 {
1015 	int ret;
1016 
1017 	GEM_BUG_ON(to == from);
1018 	GEM_BUG_ON(to->timeline == from->timeline);
1019 
1020 	if (i915_request_completed(from))
1021 		return 0;
1022 
1023 	if (to->engine->schedule) {
1024 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
1025 		if (ret < 0)
1026 			return ret;
1027 	}
1028 
1029 	if (to->engine == from->engine)
1030 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
1031 						       &from->submit,
1032 						       I915_FENCE_GFP);
1033 	else
1034 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1035 	if (ret < 0)
1036 		return ret;
1037 
1038 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
1039 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
1040 						    &from->fence, 0,
1041 						    I915_FENCE_GFP);
1042 		if (ret < 0)
1043 			return ret;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 int
1050 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1051 {
1052 	struct dma_fence **child = &fence;
1053 	unsigned int nchild = 1;
1054 	int ret;
1055 
1056 	/*
1057 	 * Note that if the fence-array was created in signal-on-any mode,
1058 	 * we should *not* decompose it into its individual fences. However,
1059 	 * we don't currently store which mode the fence-array is operating
1060 	 * in. Fortunately, the only user of signal-on-any is private to
1061 	 * amdgpu and we should not see any incoming fence-array from
1062 	 * sync-file being in signal-on-any mode.
1063 	 */
1064 	if (dma_fence_is_array(fence)) {
1065 		struct dma_fence_array *array = to_dma_fence_array(fence);
1066 
1067 		child = array->fences;
1068 		nchild = array->num_fences;
1069 		GEM_BUG_ON(!nchild);
1070 	}
1071 
1072 	do {
1073 		fence = *child++;
1074 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1075 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1076 			continue;
1077 		}
1078 
1079 		/*
1080 		 * Requests on the same timeline are explicitly ordered, along
1081 		 * with their dependencies, by i915_request_add() which ensures
1082 		 * that requests are submitted in-order through each ring.
1083 		 */
1084 		if (fence->context == rq->fence.context)
1085 			continue;
1086 
1087 		/* Squash repeated waits to the same timelines */
1088 		if (fence->context &&
1089 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1090 						 fence))
1091 			continue;
1092 
1093 		if (dma_fence_is_i915(fence))
1094 			ret = i915_request_await_request(rq, to_request(fence));
1095 		else
1096 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1097 							    fence->context ? I915_FENCE_TIMEOUT : 0,
1098 							    I915_FENCE_GFP);
1099 		if (ret < 0)
1100 			return ret;
1101 
1102 		/* Record the latest fence used against each timeline */
1103 		if (fence->context)
1104 			intel_timeline_sync_set(i915_request_timeline(rq),
1105 						fence);
1106 	} while (--nchild);
1107 
1108 	return 0;
1109 }
1110 
1111 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1112 					  struct dma_fence *fence)
1113 {
1114 	return __intel_timeline_sync_is_later(tl,
1115 					      fence->context,
1116 					      fence->seqno - 1);
1117 }
1118 
1119 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1120 					 const struct dma_fence *fence)
1121 {
1122 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1123 }
1124 
1125 static int
1126 __i915_request_await_execution(struct i915_request *to,
1127 			       struct i915_request *from,
1128 			       void (*hook)(struct i915_request *rq,
1129 					    struct dma_fence *signal))
1130 {
1131 	int err;
1132 
1133 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1134 
1135 	/* Submit both requests at the same time */
1136 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1137 	if (err)
1138 		return err;
1139 
1140 	/* Squash repeated depenendices to the same timelines */
1141 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1142 					  &from->fence))
1143 		return 0;
1144 
1145 	/*
1146 	 * Wait until the start of this request.
1147 	 *
1148 	 * The execution cb fires when we submit the request to HW. But in
1149 	 * many cases this may be long before the request itself is ready to
1150 	 * run (consider that we submit 2 requests for the same context, where
1151 	 * the request of interest is behind an indefinite spinner). So we hook
1152 	 * up to both to reduce our queues and keep the execution lag minimised
1153 	 * in the worst case, though we hope that the await_start is elided.
1154 	 */
1155 	err = i915_request_await_start(to, from);
1156 	if (err < 0)
1157 		return err;
1158 
1159 	/*
1160 	 * Ensure both start together [after all semaphores in signal]
1161 	 *
1162 	 * Now that we are queued to the HW at roughly the same time (thanks
1163 	 * to the execute cb) and are ready to run at roughly the same time
1164 	 * (thanks to the await start), our signaler may still be indefinitely
1165 	 * delayed by waiting on a semaphore from a remote engine. If our
1166 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1167 	 * want to start our payload until our signaler also starts theirs.
1168 	 * So we wait.
1169 	 *
1170 	 * However, there is also a second condition for which we need to wait
1171 	 * for the precise start of the signaler. Consider that the signaler
1172 	 * was submitted in a chain of requests following another context
1173 	 * (with just an ordinary intra-engine fence dependency between the
1174 	 * two). In this case the signaler is queued to HW, but not for
1175 	 * immediate execution, and so we must wait until it reaches the
1176 	 * active slot.
1177 	 */
1178 	if (intel_engine_has_semaphores(to->engine)) {
1179 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1180 		if (err < 0)
1181 			return err;
1182 	}
1183 
1184 	/* Couple the dependency tree for PI on this exposed to->fence */
1185 	if (to->engine->schedule) {
1186 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1187 		if (err < 0)
1188 			return err;
1189 	}
1190 
1191 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1192 					     &from->fence);
1193 }
1194 
1195 int
1196 i915_request_await_execution(struct i915_request *rq,
1197 			     struct dma_fence *fence,
1198 			     void (*hook)(struct i915_request *rq,
1199 					  struct dma_fence *signal))
1200 {
1201 	struct dma_fence **child = &fence;
1202 	unsigned int nchild = 1;
1203 	int ret;
1204 
1205 	if (dma_fence_is_array(fence)) {
1206 		struct dma_fence_array *array = to_dma_fence_array(fence);
1207 
1208 		/* XXX Error for signal-on-any fence arrays */
1209 
1210 		child = array->fences;
1211 		nchild = array->num_fences;
1212 		GEM_BUG_ON(!nchild);
1213 	}
1214 
1215 	do {
1216 		fence = *child++;
1217 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1218 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1219 			continue;
1220 		}
1221 
1222 		/*
1223 		 * We don't squash repeated fence dependencies here as we
1224 		 * want to run our callback in all cases.
1225 		 */
1226 
1227 		if (dma_fence_is_i915(fence))
1228 			ret = __i915_request_await_execution(rq,
1229 							     to_request(fence),
1230 							     hook);
1231 		else
1232 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1233 							    I915_FENCE_TIMEOUT,
1234 							    GFP_KERNEL);
1235 		if (ret < 0)
1236 			return ret;
1237 	} while (--nchild);
1238 
1239 	return 0;
1240 }
1241 
1242 /**
1243  * i915_request_await_object - set this request to (async) wait upon a bo
1244  * @to: request we are wishing to use
1245  * @obj: object which may be in use on another ring.
1246  * @write: whether the wait is on behalf of a writer
1247  *
1248  * This code is meant to abstract object synchronization with the GPU.
1249  * Conceptually we serialise writes between engines inside the GPU.
1250  * We only allow one engine to write into a buffer at any time, but
1251  * multiple readers. To ensure each has a coherent view of memory, we must:
1252  *
1253  * - If there is an outstanding write request to the object, the new
1254  *   request must wait for it to complete (either CPU or in hw, requests
1255  *   on the same ring will be naturally ordered).
1256  *
1257  * - If we are a write request (pending_write_domain is set), the new
1258  *   request must wait for outstanding read requests to complete.
1259  *
1260  * Returns 0 if successful, else propagates up the lower layer error.
1261  */
1262 int
1263 i915_request_await_object(struct i915_request *to,
1264 			  struct drm_i915_gem_object *obj,
1265 			  bool write)
1266 {
1267 	struct dma_fence *excl;
1268 	int ret = 0;
1269 
1270 	if (write) {
1271 		struct dma_fence **shared;
1272 		unsigned int count, i;
1273 
1274 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1275 							&excl, &count, &shared);
1276 		if (ret)
1277 			return ret;
1278 
1279 		for (i = 0; i < count; i++) {
1280 			ret = i915_request_await_dma_fence(to, shared[i]);
1281 			if (ret)
1282 				break;
1283 
1284 			dma_fence_put(shared[i]);
1285 		}
1286 
1287 		for (; i < count; i++)
1288 			dma_fence_put(shared[i]);
1289 		kfree(shared);
1290 	} else {
1291 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1292 	}
1293 
1294 	if (excl) {
1295 		if (ret == 0)
1296 			ret = i915_request_await_dma_fence(to, excl);
1297 
1298 		dma_fence_put(excl);
1299 	}
1300 
1301 	return ret;
1302 }
1303 
1304 static struct i915_request *
1305 __i915_request_add_to_timeline(struct i915_request *rq)
1306 {
1307 	struct intel_timeline *timeline = i915_request_timeline(rq);
1308 	struct i915_request *prev;
1309 
1310 	/*
1311 	 * Dependency tracking and request ordering along the timeline
1312 	 * is special cased so that we can eliminate redundant ordering
1313 	 * operations while building the request (we know that the timeline
1314 	 * itself is ordered, and here we guarantee it).
1315 	 *
1316 	 * As we know we will need to emit tracking along the timeline,
1317 	 * we embed the hooks into our request struct -- at the cost of
1318 	 * having to have specialised no-allocation interfaces (which will
1319 	 * be beneficial elsewhere).
1320 	 *
1321 	 * A second benefit to open-coding i915_request_await_request is
1322 	 * that we can apply a slight variant of the rules specialised
1323 	 * for timelines that jump between engines (such as virtual engines).
1324 	 * If we consider the case of virtual engine, we must emit a dma-fence
1325 	 * to prevent scheduling of the second request until the first is
1326 	 * complete (to maximise our greedy late load balancing) and this
1327 	 * precludes optimising to use semaphores serialisation of a single
1328 	 * timeline across engines.
1329 	 */
1330 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1331 						  &rq->fence));
1332 	if (prev && !i915_request_completed(prev)) {
1333 		/*
1334 		 * The requests are supposed to be kept in order. However,
1335 		 * we need to be wary in case the timeline->last_request
1336 		 * is used as a barrier for external modification to this
1337 		 * context.
1338 		 */
1339 		GEM_BUG_ON(prev->context == rq->context &&
1340 			   i915_seqno_passed(prev->fence.seqno,
1341 					     rq->fence.seqno));
1342 
1343 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1344 			i915_sw_fence_await_sw_fence(&rq->submit,
1345 						     &prev->submit,
1346 						     &rq->submitq);
1347 		else
1348 			__i915_sw_fence_await_dma_fence(&rq->submit,
1349 							&prev->fence,
1350 							&rq->dmaq);
1351 		if (rq->engine->schedule)
1352 			__i915_sched_node_add_dependency(&rq->sched,
1353 							 &prev->sched,
1354 							 &rq->dep,
1355 							 0);
1356 	}
1357 
1358 	/*
1359 	 * Make sure that no request gazumped us - if it was allocated after
1360 	 * our i915_request_alloc() and called __i915_request_add() before
1361 	 * us, the timeline will hold its seqno which is later than ours.
1362 	 */
1363 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1364 
1365 	return prev;
1366 }
1367 
1368 /*
1369  * NB: This function is not allowed to fail. Doing so would mean the the
1370  * request is not being tracked for completion but the work itself is
1371  * going to happen on the hardware. This would be a Bad Thing(tm).
1372  */
1373 struct i915_request *__i915_request_commit(struct i915_request *rq)
1374 {
1375 	struct intel_engine_cs *engine = rq->engine;
1376 	struct intel_ring *ring = rq->ring;
1377 	u32 *cs;
1378 
1379 	RQ_TRACE(rq, "\n");
1380 
1381 	/*
1382 	 * To ensure that this call will not fail, space for its emissions
1383 	 * should already have been reserved in the ring buffer. Let the ring
1384 	 * know that it is time to use that space up.
1385 	 */
1386 	GEM_BUG_ON(rq->reserved_space > ring->space);
1387 	rq->reserved_space = 0;
1388 	rq->emitted_jiffies = jiffies;
1389 
1390 	/*
1391 	 * Record the position of the start of the breadcrumb so that
1392 	 * should we detect the updated seqno part-way through the
1393 	 * GPU processing the request, we never over-estimate the
1394 	 * position of the ring's HEAD.
1395 	 */
1396 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1397 	GEM_BUG_ON(IS_ERR(cs));
1398 	rq->postfix = intel_ring_offset(rq, cs);
1399 
1400 	return __i915_request_add_to_timeline(rq);
1401 }
1402 
1403 void __i915_request_queue(struct i915_request *rq,
1404 			  const struct i915_sched_attr *attr)
1405 {
1406 	/*
1407 	 * Let the backend know a new request has arrived that may need
1408 	 * to adjust the existing execution schedule due to a high priority
1409 	 * request - i.e. we may want to preempt the current request in order
1410 	 * to run a high priority dependency chain *before* we can execute this
1411 	 * request.
1412 	 *
1413 	 * This is called before the request is ready to run so that we can
1414 	 * decide whether to preempt the entire chain so that it is ready to
1415 	 * run at the earliest possible convenience.
1416 	 */
1417 	if (attr && rq->engine->schedule)
1418 		rq->engine->schedule(rq, attr);
1419 	i915_sw_fence_commit(&rq->semaphore);
1420 	i915_sw_fence_commit(&rq->submit);
1421 }
1422 
1423 void i915_request_add(struct i915_request *rq)
1424 {
1425 	struct intel_timeline * const tl = i915_request_timeline(rq);
1426 	struct i915_sched_attr attr = {};
1427 	struct i915_gem_context *ctx;
1428 
1429 	lockdep_assert_held(&tl->mutex);
1430 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1431 
1432 	trace_i915_request_add(rq);
1433 	__i915_request_commit(rq);
1434 
1435 	/* XXX placeholder for selftests */
1436 	rcu_read_lock();
1437 	ctx = rcu_dereference(rq->context->gem_context);
1438 	if (ctx)
1439 		attr = ctx->sched;
1440 	rcu_read_unlock();
1441 
1442 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1443 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1444 	if (list_empty(&rq->sched.signalers_list))
1445 		attr.priority |= I915_PRIORITY_WAIT;
1446 
1447 	local_bh_disable();
1448 	__i915_request_queue(rq, &attr);
1449 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1450 
1451 	mutex_unlock(&tl->mutex);
1452 }
1453 
1454 static unsigned long local_clock_ns(unsigned int *cpu)
1455 {
1456 	unsigned long t;
1457 
1458 	/*
1459 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1460 	 * The result and subsequent calculations are also defined in the same
1461 	 * approximate microseconds units. The principal source of timing
1462 	 * error here is from the simple truncation.
1463 	 *
1464 	 * Note that local_clock() is only defined wrt to the current CPU;
1465 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1466 	 * blocking preemption for the entire busywait, we can detect the CPU
1467 	 * switch and use that as indicator of system load and a reason to
1468 	 * stop busywaiting, see busywait_stop().
1469 	 */
1470 	*cpu = get_cpu();
1471 	t = local_clock();
1472 	put_cpu();
1473 
1474 	return t;
1475 }
1476 
1477 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1478 {
1479 	unsigned int this_cpu;
1480 
1481 	if (time_after(local_clock_ns(&this_cpu), timeout))
1482 		return true;
1483 
1484 	return this_cpu != cpu;
1485 }
1486 
1487 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1488 {
1489 	unsigned long timeout_ns;
1490 	unsigned int cpu;
1491 
1492 	/*
1493 	 * Only wait for the request if we know it is likely to complete.
1494 	 *
1495 	 * We don't track the timestamps around requests, nor the average
1496 	 * request length, so we do not have a good indicator that this
1497 	 * request will complete within the timeout. What we do know is the
1498 	 * order in which requests are executed by the context and so we can
1499 	 * tell if the request has been started. If the request is not even
1500 	 * running yet, it is a fair assumption that it will not complete
1501 	 * within our relatively short timeout.
1502 	 */
1503 	if (!i915_request_is_running(rq))
1504 		return false;
1505 
1506 	/*
1507 	 * When waiting for high frequency requests, e.g. during synchronous
1508 	 * rendering split between the CPU and GPU, the finite amount of time
1509 	 * required to set up the irq and wait upon it limits the response
1510 	 * rate. By busywaiting on the request completion for a short while we
1511 	 * can service the high frequency waits as quick as possible. However,
1512 	 * if it is a slow request, we want to sleep as quickly as possible.
1513 	 * The tradeoff between waiting and sleeping is roughly the time it
1514 	 * takes to sleep on a request, on the order of a microsecond.
1515 	 */
1516 
1517 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1518 	timeout_ns += local_clock_ns(&cpu);
1519 	do {
1520 		if (i915_request_completed(rq))
1521 			return true;
1522 
1523 		if (signal_pending_state(state, current))
1524 			break;
1525 
1526 		if (busywait_stop(timeout_ns, cpu))
1527 			break;
1528 
1529 		cpu_relax();
1530 	} while (!need_resched());
1531 
1532 	return false;
1533 }
1534 
1535 struct request_wait {
1536 	struct dma_fence_cb cb;
1537 	struct task_struct *tsk;
1538 };
1539 
1540 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1541 {
1542 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1543 
1544 	wake_up_process(wait->tsk);
1545 }
1546 
1547 /**
1548  * i915_request_wait - wait until execution of request has finished
1549  * @rq: the request to wait upon
1550  * @flags: how to wait
1551  * @timeout: how long to wait in jiffies
1552  *
1553  * i915_request_wait() waits for the request to be completed, for a
1554  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1555  * unbounded wait).
1556  *
1557  * Returns the remaining time (in jiffies) if the request completed, which may
1558  * be zero or -ETIME if the request is unfinished after the timeout expires.
1559  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1560  * pending before the request completes.
1561  */
1562 long i915_request_wait(struct i915_request *rq,
1563 		       unsigned int flags,
1564 		       long timeout)
1565 {
1566 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1567 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1568 	struct request_wait wait;
1569 
1570 	might_sleep();
1571 	GEM_BUG_ON(timeout < 0);
1572 
1573 	if (dma_fence_is_signaled(&rq->fence))
1574 		return timeout;
1575 
1576 	if (!timeout)
1577 		return -ETIME;
1578 
1579 	trace_i915_request_wait_begin(rq, flags);
1580 
1581 	/*
1582 	 * We must never wait on the GPU while holding a lock as we
1583 	 * may need to perform a GPU reset. So while we don't need to
1584 	 * serialise wait/reset with an explicit lock, we do want
1585 	 * lockdep to detect potential dependency cycles.
1586 	 */
1587 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1588 
1589 	/*
1590 	 * Optimistic spin before touching IRQs.
1591 	 *
1592 	 * We may use a rather large value here to offset the penalty of
1593 	 * switching away from the active task. Frequently, the client will
1594 	 * wait upon an old swapbuffer to throttle itself to remain within a
1595 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1596 	 * then it should not be waiting long at all, and a sleep now will incur
1597 	 * extra scheduler latency in producing the next frame. To try to
1598 	 * avoid adding the cost of enabling/disabling the interrupt to the
1599 	 * short wait, we first spin to see if the request would have completed
1600 	 * in the time taken to setup the interrupt.
1601 	 *
1602 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1603 	 * scheduler latency of a context switch, ignoring the secondary
1604 	 * impacts from a context switch such as cache eviction.
1605 	 *
1606 	 * The scheme used for low-latency IO is called "hybrid interrupt
1607 	 * polling". The suggestion there is to sleep until just before you
1608 	 * expect to be woken by the device interrupt and then poll for its
1609 	 * completion. That requires having a good predictor for the request
1610 	 * duration, which we currently lack.
1611 	 */
1612 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1613 	    __i915_spin_request(rq, state)) {
1614 		dma_fence_signal(&rq->fence);
1615 		goto out;
1616 	}
1617 
1618 	/*
1619 	 * This client is about to stall waiting for the GPU. In many cases
1620 	 * this is undesirable and limits the throughput of the system, as
1621 	 * many clients cannot continue processing user input/output whilst
1622 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1623 	 * to the GPU load and thus incurs additional latency for the client.
1624 	 * We can circumvent that by promoting the GPU frequency to maximum
1625 	 * before we sleep. This makes the GPU throttle up much more quickly
1626 	 * (good for benchmarks and user experience, e.g. window animations),
1627 	 * but at a cost of spending more power processing the workload
1628 	 * (bad for battery).
1629 	 */
1630 	if (flags & I915_WAIT_PRIORITY) {
1631 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1632 			intel_rps_boost(rq);
1633 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1634 	}
1635 
1636 	wait.tsk = current;
1637 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1638 		goto out;
1639 
1640 	for (;;) {
1641 		set_current_state(state);
1642 
1643 		if (i915_request_completed(rq)) {
1644 			dma_fence_signal(&rq->fence);
1645 			break;
1646 		}
1647 
1648 		intel_engine_flush_submission(rq->engine);
1649 
1650 		if (signal_pending_state(state, current)) {
1651 			timeout = -ERESTARTSYS;
1652 			break;
1653 		}
1654 
1655 		if (!timeout) {
1656 			timeout = -ETIME;
1657 			break;
1658 		}
1659 
1660 		timeout = io_schedule_timeout(timeout);
1661 	}
1662 	__set_current_state(TASK_RUNNING);
1663 
1664 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1665 
1666 out:
1667 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1668 	trace_i915_request_wait_end(rq);
1669 	return timeout;
1670 }
1671 
1672 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1673 #include "selftests/mock_request.c"
1674 #include "selftests/i915_request.c"
1675 #endif
1676 
1677 static void i915_global_request_shrink(void)
1678 {
1679 	kmem_cache_shrink(global.slab_execute_cbs);
1680 	kmem_cache_shrink(global.slab_requests);
1681 }
1682 
1683 static void i915_global_request_exit(void)
1684 {
1685 	kmem_cache_destroy(global.slab_execute_cbs);
1686 	kmem_cache_destroy(global.slab_requests);
1687 }
1688 
1689 static struct i915_global_request global = { {
1690 	.shrink = i915_global_request_shrink,
1691 	.exit = i915_global_request_exit,
1692 } };
1693 
1694 int __init i915_global_request_init(void)
1695 {
1696 	global.slab_requests =
1697 		kmem_cache_create("i915_request",
1698 				  sizeof(struct i915_request),
1699 				  __alignof__(struct i915_request),
1700 				  SLAB_HWCACHE_ALIGN |
1701 				  SLAB_RECLAIM_ACCOUNT |
1702 				  SLAB_TYPESAFE_BY_RCU,
1703 				  __i915_request_ctor);
1704 	if (!global.slab_requests)
1705 		return -ENOMEM;
1706 
1707 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1708 					     SLAB_HWCACHE_ALIGN |
1709 					     SLAB_RECLAIM_ACCOUNT |
1710 					     SLAB_TYPESAFE_BY_RCU);
1711 	if (!global.slab_execute_cbs)
1712 		goto err_requests;
1713 
1714 	i915_global_register(&global.base);
1715 	return 0;
1716 
1717 err_requests:
1718 	kmem_cache_destroy(global.slab_requests);
1719 	return -ENOMEM;
1720 }
1721