1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 #include "gt/intel_ring.h" 35 #include "gt/intel_rps.h" 36 37 #include "i915_active.h" 38 #include "i915_drv.h" 39 #include "i915_globals.h" 40 #include "i915_trace.h" 41 #include "intel_pm.h" 42 43 struct execute_cb { 44 struct list_head link; 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_execute_cbs; 55 } global; 56 57 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 58 { 59 return dev_name(to_request(fence)->i915->drm.dev); 60 } 61 62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 63 { 64 const struct i915_gem_context *ctx; 65 66 /* 67 * The timeline struct (as part of the ppgtt underneath a context) 68 * may be freed when the request is no longer in use by the GPU. 69 * We could extend the life of a context to beyond that of all 70 * fences, possibly keeping the hw resource around indefinitely, 71 * or we just give them a false name. Since 72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 73 * lie seems justifiable. 74 */ 75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 76 return "signaled"; 77 78 ctx = i915_request_gem_context(to_request(fence)); 79 if (!ctx) 80 return "[" DRIVER_NAME "]"; 81 82 return ctx->name; 83 } 84 85 static bool i915_fence_signaled(struct dma_fence *fence) 86 { 87 return i915_request_completed(to_request(fence)); 88 } 89 90 static bool i915_fence_enable_signaling(struct dma_fence *fence) 91 { 92 return i915_request_enable_breadcrumb(to_request(fence)); 93 } 94 95 static signed long i915_fence_wait(struct dma_fence *fence, 96 bool interruptible, 97 signed long timeout) 98 { 99 return i915_request_wait(to_request(fence), 100 interruptible | I915_WAIT_PRIORITY, 101 timeout); 102 } 103 104 static void i915_fence_release(struct dma_fence *fence) 105 { 106 struct i915_request *rq = to_request(fence); 107 108 /* 109 * The request is put onto a RCU freelist (i.e. the address 110 * is immediately reused), mark the fences as being freed now. 111 * Otherwise the debugobjects for the fences are only marked as 112 * freed when the slab cache itself is freed, and so we would get 113 * caught trying to reuse dead objects. 114 */ 115 i915_sw_fence_fini(&rq->submit); 116 i915_sw_fence_fini(&rq->semaphore); 117 118 kmem_cache_free(global.slab_requests, rq); 119 } 120 121 const struct dma_fence_ops i915_fence_ops = { 122 .get_driver_name = i915_fence_get_driver_name, 123 .get_timeline_name = i915_fence_get_timeline_name, 124 .enable_signaling = i915_fence_enable_signaling, 125 .signaled = i915_fence_signaled, 126 .wait = i915_fence_wait, 127 .release = i915_fence_release, 128 }; 129 130 static void irq_execute_cb(struct irq_work *wrk) 131 { 132 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 133 134 i915_sw_fence_complete(cb->fence); 135 kmem_cache_free(global.slab_execute_cbs, cb); 136 } 137 138 static void irq_execute_cb_hook(struct irq_work *wrk) 139 { 140 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 141 142 cb->hook(container_of(cb->fence, struct i915_request, submit), 143 &cb->signal->fence); 144 i915_request_put(cb->signal); 145 146 irq_execute_cb(wrk); 147 } 148 149 static void __notify_execute_cb(struct i915_request *rq) 150 { 151 struct execute_cb *cb; 152 153 lockdep_assert_held(&rq->lock); 154 155 if (list_empty(&rq->execute_cb)) 156 return; 157 158 list_for_each_entry(cb, &rq->execute_cb, link) 159 irq_work_queue(&cb->work); 160 161 /* 162 * XXX Rollback on __i915_request_unsubmit() 163 * 164 * In the future, perhaps when we have an active time-slicing scheduler, 165 * it will be interesting to unsubmit parallel execution and remove 166 * busywaits from the GPU until their master is restarted. This is 167 * quite hairy, we have to carefully rollback the fence and do a 168 * preempt-to-idle cycle on the target engine, all the while the 169 * master execute_cb may refire. 170 */ 171 INIT_LIST_HEAD(&rq->execute_cb); 172 } 173 174 static inline void 175 remove_from_client(struct i915_request *request) 176 { 177 struct drm_i915_file_private *file_priv; 178 179 if (!READ_ONCE(request->file_priv)) 180 return; 181 182 rcu_read_lock(); 183 file_priv = xchg(&request->file_priv, NULL); 184 if (file_priv) { 185 spin_lock(&file_priv->mm.lock); 186 list_del(&request->client_link); 187 spin_unlock(&file_priv->mm.lock); 188 } 189 rcu_read_unlock(); 190 } 191 192 static void free_capture_list(struct i915_request *request) 193 { 194 struct i915_capture_list *capture; 195 196 capture = fetch_and_zero(&request->capture_list); 197 while (capture) { 198 struct i915_capture_list *next = capture->next; 199 200 kfree(capture); 201 capture = next; 202 } 203 } 204 205 static void __i915_request_fill(struct i915_request *rq, u8 val) 206 { 207 void *vaddr = rq->ring->vaddr; 208 u32 head; 209 210 head = rq->infix; 211 if (rq->postfix < head) { 212 memset(vaddr + head, val, rq->ring->size - head); 213 head = 0; 214 } 215 memset(vaddr + head, val, rq->postfix - head); 216 } 217 218 static void remove_from_engine(struct i915_request *rq) 219 { 220 struct intel_engine_cs *engine, *locked; 221 222 /* 223 * Virtual engines complicate acquiring the engine timeline lock, 224 * as their rq->engine pointer is not stable until under that 225 * engine lock. The simple ploy we use is to take the lock then 226 * check that the rq still belongs to the newly locked engine. 227 */ 228 locked = READ_ONCE(rq->engine); 229 spin_lock_irq(&locked->active.lock); 230 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 231 spin_unlock(&locked->active.lock); 232 spin_lock(&engine->active.lock); 233 locked = engine; 234 } 235 list_del_init(&rq->sched.link); 236 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 237 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 238 spin_unlock_irq(&locked->active.lock); 239 } 240 241 bool i915_request_retire(struct i915_request *rq) 242 { 243 if (!i915_request_completed(rq)) 244 return false; 245 246 RQ_TRACE(rq, "\n"); 247 248 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 249 trace_i915_request_retire(rq); 250 251 /* 252 * We know the GPU must have read the request to have 253 * sent us the seqno + interrupt, so use the position 254 * of tail of the request to update the last known position 255 * of the GPU head. 256 * 257 * Note this requires that we are always called in request 258 * completion order. 259 */ 260 GEM_BUG_ON(!list_is_first(&rq->link, 261 &i915_request_timeline(rq)->requests)); 262 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 263 /* Poison before we release our space in the ring */ 264 __i915_request_fill(rq, POISON_FREE); 265 rq->ring->head = rq->postfix; 266 267 /* 268 * We only loosely track inflight requests across preemption, 269 * and so we may find ourselves attempting to retire a _completed_ 270 * request that we have removed from the HW and put back on a run 271 * queue. 272 */ 273 remove_from_engine(rq); 274 275 spin_lock_irq(&rq->lock); 276 i915_request_mark_complete(rq); 277 if (!i915_request_signaled(rq)) 278 dma_fence_signal_locked(&rq->fence); 279 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 280 i915_request_cancel_breadcrumb(rq); 281 if (i915_request_has_waitboost(rq)) { 282 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 283 atomic_dec(&rq->engine->gt->rps.num_waiters); 284 } 285 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 286 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 287 __notify_execute_cb(rq); 288 } 289 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 290 spin_unlock_irq(&rq->lock); 291 292 remove_from_client(rq); 293 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 294 295 intel_context_exit(rq->context); 296 intel_context_unpin(rq->context); 297 298 free_capture_list(rq); 299 i915_sched_node_fini(&rq->sched); 300 i915_request_put(rq); 301 302 return true; 303 } 304 305 void i915_request_retire_upto(struct i915_request *rq) 306 { 307 struct intel_timeline * const tl = i915_request_timeline(rq); 308 struct i915_request *tmp; 309 310 RQ_TRACE(rq, "\n"); 311 312 GEM_BUG_ON(!i915_request_completed(rq)); 313 314 do { 315 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 316 } while (i915_request_retire(tmp) && tmp != rq); 317 } 318 319 static int 320 __await_execution(struct i915_request *rq, 321 struct i915_request *signal, 322 void (*hook)(struct i915_request *rq, 323 struct dma_fence *signal), 324 gfp_t gfp) 325 { 326 struct execute_cb *cb; 327 328 if (i915_request_is_active(signal)) { 329 if (hook) 330 hook(rq, &signal->fence); 331 return 0; 332 } 333 334 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 335 if (!cb) 336 return -ENOMEM; 337 338 cb->fence = &rq->submit; 339 i915_sw_fence_await(cb->fence); 340 init_irq_work(&cb->work, irq_execute_cb); 341 342 if (hook) { 343 cb->hook = hook; 344 cb->signal = i915_request_get(signal); 345 cb->work.func = irq_execute_cb_hook; 346 } 347 348 spin_lock_irq(&signal->lock); 349 if (i915_request_is_active(signal)) { 350 if (hook) { 351 hook(rq, &signal->fence); 352 i915_request_put(signal); 353 } 354 i915_sw_fence_complete(cb->fence); 355 kmem_cache_free(global.slab_execute_cbs, cb); 356 } else { 357 list_add_tail(&cb->link, &signal->execute_cb); 358 } 359 spin_unlock_irq(&signal->lock); 360 361 /* Copy across semaphore status as we need the same behaviour */ 362 rq->sched.flags |= signal->sched.flags; 363 return 0; 364 } 365 366 static bool fatal_error(int error) 367 { 368 switch (error) { 369 case 0: /* not an error! */ 370 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 371 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 372 return false; 373 default: 374 return true; 375 } 376 } 377 378 void __i915_request_skip(struct i915_request *rq) 379 { 380 GEM_BUG_ON(!fatal_error(rq->fence.error)); 381 382 if (rq->infix == rq->postfix) 383 return; 384 385 /* 386 * As this request likely depends on state from the lost 387 * context, clear out all the user operations leaving the 388 * breadcrumb at the end (so we get the fence notifications). 389 */ 390 __i915_request_fill(rq, 0); 391 rq->infix = rq->postfix; 392 } 393 394 void i915_request_set_error_once(struct i915_request *rq, int error) 395 { 396 int old; 397 398 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 399 400 if (i915_request_signaled(rq)) 401 return; 402 403 old = READ_ONCE(rq->fence.error); 404 do { 405 if (fatal_error(old)) 406 return; 407 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 408 } 409 410 bool __i915_request_submit(struct i915_request *request) 411 { 412 struct intel_engine_cs *engine = request->engine; 413 bool result = false; 414 415 RQ_TRACE(request, "\n"); 416 417 GEM_BUG_ON(!irqs_disabled()); 418 lockdep_assert_held(&engine->active.lock); 419 420 /* 421 * With the advent of preempt-to-busy, we frequently encounter 422 * requests that we have unsubmitted from HW, but left running 423 * until the next ack and so have completed in the meantime. On 424 * resubmission of that completed request, we can skip 425 * updating the payload, and execlists can even skip submitting 426 * the request. 427 * 428 * We must remove the request from the caller's priority queue, 429 * and the caller must only call us when the request is in their 430 * priority queue, under the active.lock. This ensures that the 431 * request has *not* yet been retired and we can safely move 432 * the request into the engine->active.list where it will be 433 * dropped upon retiring. (Otherwise if resubmit a *retired* 434 * request, this would be a horrible use-after-free.) 435 */ 436 if (i915_request_completed(request)) 437 goto xfer; 438 439 if (unlikely(intel_context_is_banned(request->context))) 440 i915_request_set_error_once(request, -EIO); 441 if (unlikely(fatal_error(request->fence.error))) 442 __i915_request_skip(request); 443 444 /* 445 * Are we using semaphores when the gpu is already saturated? 446 * 447 * Using semaphores incurs a cost in having the GPU poll a 448 * memory location, busywaiting for it to change. The continual 449 * memory reads can have a noticeable impact on the rest of the 450 * system with the extra bus traffic, stalling the cpu as it too 451 * tries to access memory across the bus (perf stat -e bus-cycles). 452 * 453 * If we installed a semaphore on this request and we only submit 454 * the request after the signaler completed, that indicates the 455 * system is overloaded and using semaphores at this time only 456 * increases the amount of work we are doing. If so, we disable 457 * further use of semaphores until we are idle again, whence we 458 * optimistically try again. 459 */ 460 if (request->sched.semaphores && 461 i915_sw_fence_signaled(&request->semaphore)) 462 engine->saturated |= request->sched.semaphores; 463 464 engine->emit_fini_breadcrumb(request, 465 request->ring->vaddr + request->postfix); 466 467 trace_i915_request_execute(request); 468 engine->serial++; 469 result = true; 470 471 xfer: /* We may be recursing from the signal callback of another i915 fence */ 472 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 473 474 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 475 list_move_tail(&request->sched.link, &engine->active.requests); 476 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 477 } 478 479 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 480 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 481 !i915_request_enable_breadcrumb(request)) 482 intel_engine_signal_breadcrumbs(engine); 483 484 __notify_execute_cb(request); 485 486 spin_unlock(&request->lock); 487 488 return result; 489 } 490 491 void i915_request_submit(struct i915_request *request) 492 { 493 struct intel_engine_cs *engine = request->engine; 494 unsigned long flags; 495 496 /* Will be called from irq-context when using foreign fences. */ 497 spin_lock_irqsave(&engine->active.lock, flags); 498 499 __i915_request_submit(request); 500 501 spin_unlock_irqrestore(&engine->active.lock, flags); 502 } 503 504 void __i915_request_unsubmit(struct i915_request *request) 505 { 506 struct intel_engine_cs *engine = request->engine; 507 508 RQ_TRACE(request, "\n"); 509 510 GEM_BUG_ON(!irqs_disabled()); 511 lockdep_assert_held(&engine->active.lock); 512 513 /* 514 * Only unwind in reverse order, required so that the per-context list 515 * is kept in seqno/ring order. 516 */ 517 518 /* We may be recursing from the signal callback of another i915 fence */ 519 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 520 521 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 522 i915_request_cancel_breadcrumb(request); 523 524 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 525 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 526 527 spin_unlock(&request->lock); 528 529 /* We've already spun, don't charge on resubmitting. */ 530 if (request->sched.semaphores && i915_request_started(request)) { 531 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 532 request->sched.semaphores = 0; 533 } 534 535 /* 536 * We don't need to wake_up any waiters on request->execute, they 537 * will get woken by any other event or us re-adding this request 538 * to the engine timeline (__i915_request_submit()). The waiters 539 * should be quite adapt at finding that the request now has a new 540 * global_seqno to the one they went to sleep on. 541 */ 542 } 543 544 void i915_request_unsubmit(struct i915_request *request) 545 { 546 struct intel_engine_cs *engine = request->engine; 547 unsigned long flags; 548 549 /* Will be called from irq-context when using foreign fences. */ 550 spin_lock_irqsave(&engine->active.lock, flags); 551 552 __i915_request_unsubmit(request); 553 554 spin_unlock_irqrestore(&engine->active.lock, flags); 555 } 556 557 static int __i915_sw_fence_call 558 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 559 { 560 struct i915_request *request = 561 container_of(fence, typeof(*request), submit); 562 563 switch (state) { 564 case FENCE_COMPLETE: 565 trace_i915_request_submit(request); 566 567 if (unlikely(fence->error)) 568 i915_request_set_error_once(request, fence->error); 569 570 /* 571 * We need to serialize use of the submit_request() callback 572 * with its hotplugging performed during an emergency 573 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 574 * critical section in order to force i915_gem_set_wedged() to 575 * wait until the submit_request() is completed before 576 * proceeding. 577 */ 578 rcu_read_lock(); 579 request->engine->submit_request(request); 580 rcu_read_unlock(); 581 break; 582 583 case FENCE_FREE: 584 i915_request_put(request); 585 break; 586 } 587 588 return NOTIFY_DONE; 589 } 590 591 static void irq_semaphore_cb(struct irq_work *wrk) 592 { 593 struct i915_request *rq = 594 container_of(wrk, typeof(*rq), semaphore_work); 595 596 i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE); 597 i915_request_put(rq); 598 } 599 600 static int __i915_sw_fence_call 601 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 602 { 603 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 604 605 switch (state) { 606 case FENCE_COMPLETE: 607 if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) { 608 i915_request_get(rq); 609 init_irq_work(&rq->semaphore_work, irq_semaphore_cb); 610 irq_work_queue(&rq->semaphore_work); 611 } 612 break; 613 614 case FENCE_FREE: 615 i915_request_put(rq); 616 break; 617 } 618 619 return NOTIFY_DONE; 620 } 621 622 static void retire_requests(struct intel_timeline *tl) 623 { 624 struct i915_request *rq, *rn; 625 626 list_for_each_entry_safe(rq, rn, &tl->requests, link) 627 if (!i915_request_retire(rq)) 628 break; 629 } 630 631 static noinline struct i915_request * 632 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 633 { 634 struct i915_request *rq; 635 636 if (list_empty(&tl->requests)) 637 goto out; 638 639 if (!gfpflags_allow_blocking(gfp)) 640 goto out; 641 642 /* Move our oldest request to the slab-cache (if not in use!) */ 643 rq = list_first_entry(&tl->requests, typeof(*rq), link); 644 i915_request_retire(rq); 645 646 rq = kmem_cache_alloc(global.slab_requests, 647 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 648 if (rq) 649 return rq; 650 651 /* Ratelimit ourselves to prevent oom from malicious clients */ 652 rq = list_last_entry(&tl->requests, typeof(*rq), link); 653 cond_synchronize_rcu(rq->rcustate); 654 655 /* Retire our old requests in the hope that we free some */ 656 retire_requests(tl); 657 658 out: 659 return kmem_cache_alloc(global.slab_requests, gfp); 660 } 661 662 static void __i915_request_ctor(void *arg) 663 { 664 struct i915_request *rq = arg; 665 666 spin_lock_init(&rq->lock); 667 i915_sched_node_init(&rq->sched); 668 i915_sw_fence_init(&rq->submit, submit_notify); 669 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 670 671 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 672 673 rq->file_priv = NULL; 674 rq->capture_list = NULL; 675 676 INIT_LIST_HEAD(&rq->execute_cb); 677 } 678 679 struct i915_request * 680 __i915_request_create(struct intel_context *ce, gfp_t gfp) 681 { 682 struct intel_timeline *tl = ce->timeline; 683 struct i915_request *rq; 684 u32 seqno; 685 int ret; 686 687 might_sleep_if(gfpflags_allow_blocking(gfp)); 688 689 /* Check that the caller provided an already pinned context */ 690 __intel_context_pin(ce); 691 692 /* 693 * Beware: Dragons be flying overhead. 694 * 695 * We use RCU to look up requests in flight. The lookups may 696 * race with the request being allocated from the slab freelist. 697 * That is the request we are writing to here, may be in the process 698 * of being read by __i915_active_request_get_rcu(). As such, 699 * we have to be very careful when overwriting the contents. During 700 * the RCU lookup, we change chase the request->engine pointer, 701 * read the request->global_seqno and increment the reference count. 702 * 703 * The reference count is incremented atomically. If it is zero, 704 * the lookup knows the request is unallocated and complete. Otherwise, 705 * it is either still in use, or has been reallocated and reset 706 * with dma_fence_init(). This increment is safe for release as we 707 * check that the request we have a reference to and matches the active 708 * request. 709 * 710 * Before we increment the refcount, we chase the request->engine 711 * pointer. We must not call kmem_cache_zalloc() or else we set 712 * that pointer to NULL and cause a crash during the lookup. If 713 * we see the request is completed (based on the value of the 714 * old engine and seqno), the lookup is complete and reports NULL. 715 * If we decide the request is not completed (new engine or seqno), 716 * then we grab a reference and double check that it is still the 717 * active request - which it won't be and restart the lookup. 718 * 719 * Do not use kmem_cache_zalloc() here! 720 */ 721 rq = kmem_cache_alloc(global.slab_requests, 722 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 723 if (unlikely(!rq)) { 724 rq = request_alloc_slow(tl, gfp); 725 if (!rq) { 726 ret = -ENOMEM; 727 goto err_unreserve; 728 } 729 } 730 731 rq->i915 = ce->engine->i915; 732 rq->context = ce; 733 rq->engine = ce->engine; 734 rq->ring = ce->ring; 735 rq->execution_mask = ce->engine->mask; 736 737 kref_init(&rq->fence.refcount); 738 rq->fence.flags = 0; 739 rq->fence.error = 0; 740 INIT_LIST_HEAD(&rq->fence.cb_list); 741 742 ret = intel_timeline_get_seqno(tl, rq, &seqno); 743 if (ret) 744 goto err_free; 745 746 rq->fence.context = tl->fence_context; 747 rq->fence.seqno = seqno; 748 749 RCU_INIT_POINTER(rq->timeline, tl); 750 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 751 rq->hwsp_seqno = tl->hwsp_seqno; 752 GEM_BUG_ON(i915_request_completed(rq)); 753 754 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 755 756 /* We bump the ref for the fence chain */ 757 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 758 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 759 760 i915_sched_node_reinit(&rq->sched); 761 762 /* No zalloc, everything must be cleared after use */ 763 rq->batch = NULL; 764 GEM_BUG_ON(rq->file_priv); 765 GEM_BUG_ON(rq->capture_list); 766 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 767 768 /* 769 * Reserve space in the ring buffer for all the commands required to 770 * eventually emit this request. This is to guarantee that the 771 * i915_request_add() call can't fail. Note that the reserve may need 772 * to be redone if the request is not actually submitted straight 773 * away, e.g. because a GPU scheduler has deferred it. 774 * 775 * Note that due to how we add reserved_space to intel_ring_begin() 776 * we need to double our request to ensure that if we need to wrap 777 * around inside i915_request_add() there is sufficient space at 778 * the beginning of the ring as well. 779 */ 780 rq->reserved_space = 781 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 782 783 /* 784 * Record the position of the start of the request so that 785 * should we detect the updated seqno part-way through the 786 * GPU processing the request, we never over-estimate the 787 * position of the head. 788 */ 789 rq->head = rq->ring->emit; 790 791 ret = rq->engine->request_alloc(rq); 792 if (ret) 793 goto err_unwind; 794 795 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 796 797 intel_context_mark_active(ce); 798 list_add_tail_rcu(&rq->link, &tl->requests); 799 800 return rq; 801 802 err_unwind: 803 ce->ring->emit = rq->head; 804 805 /* Make sure we didn't add ourselves to external state before freeing */ 806 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 807 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 808 809 err_free: 810 kmem_cache_free(global.slab_requests, rq); 811 err_unreserve: 812 intel_context_unpin(ce); 813 return ERR_PTR(ret); 814 } 815 816 struct i915_request * 817 i915_request_create(struct intel_context *ce) 818 { 819 struct i915_request *rq; 820 struct intel_timeline *tl; 821 822 tl = intel_context_timeline_lock(ce); 823 if (IS_ERR(tl)) 824 return ERR_CAST(tl); 825 826 /* Move our oldest request to the slab-cache (if not in use!) */ 827 rq = list_first_entry(&tl->requests, typeof(*rq), link); 828 if (!list_is_last(&rq->link, &tl->requests)) 829 i915_request_retire(rq); 830 831 intel_context_enter(ce); 832 rq = __i915_request_create(ce, GFP_KERNEL); 833 intel_context_exit(ce); /* active reference transferred to request */ 834 if (IS_ERR(rq)) 835 goto err_unlock; 836 837 /* Check that we do not interrupt ourselves with a new request */ 838 rq->cookie = lockdep_pin_lock(&tl->mutex); 839 840 return rq; 841 842 err_unlock: 843 intel_context_timeline_unlock(tl); 844 return rq; 845 } 846 847 static int 848 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 849 { 850 struct dma_fence *fence; 851 int err; 852 853 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 854 return 0; 855 856 if (i915_request_started(signal)) 857 return 0; 858 859 fence = NULL; 860 rcu_read_lock(); 861 spin_lock_irq(&signal->lock); 862 do { 863 struct list_head *pos = READ_ONCE(signal->link.prev); 864 struct i915_request *prev; 865 866 /* Confirm signal has not been retired, the link is valid */ 867 if (unlikely(i915_request_started(signal))) 868 break; 869 870 /* Is signal the earliest request on its timeline? */ 871 if (pos == &rcu_dereference(signal->timeline)->requests) 872 break; 873 874 /* 875 * Peek at the request before us in the timeline. That 876 * request will only be valid before it is retired, so 877 * after acquiring a reference to it, confirm that it is 878 * still part of the signaler's timeline. 879 */ 880 prev = list_entry(pos, typeof(*prev), link); 881 if (!i915_request_get_rcu(prev)) 882 break; 883 884 /* After the strong barrier, confirm prev is still attached */ 885 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 886 i915_request_put(prev); 887 break; 888 } 889 890 fence = &prev->fence; 891 } while (0); 892 spin_unlock_irq(&signal->lock); 893 rcu_read_unlock(); 894 if (!fence) 895 return 0; 896 897 err = 0; 898 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 899 err = i915_sw_fence_await_dma_fence(&rq->submit, 900 fence, 0, 901 I915_FENCE_GFP); 902 dma_fence_put(fence); 903 904 return err; 905 } 906 907 static intel_engine_mask_t 908 already_busywaiting(struct i915_request *rq) 909 { 910 /* 911 * Polling a semaphore causes bus traffic, delaying other users of 912 * both the GPU and CPU. We want to limit the impact on others, 913 * while taking advantage of early submission to reduce GPU 914 * latency. Therefore we restrict ourselves to not using more 915 * than one semaphore from each source, and not using a semaphore 916 * if we have detected the engine is saturated (i.e. would not be 917 * submitted early and cause bus traffic reading an already passed 918 * semaphore). 919 * 920 * See the are-we-too-late? check in __i915_request_submit(). 921 */ 922 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 923 } 924 925 static int 926 __emit_semaphore_wait(struct i915_request *to, 927 struct i915_request *from, 928 u32 seqno) 929 { 930 const int has_token = INTEL_GEN(to->i915) >= 12; 931 u32 hwsp_offset; 932 int len, err; 933 u32 *cs; 934 935 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 936 937 /* We need to pin the signaler's HWSP until we are finished reading. */ 938 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 939 if (err) 940 return err; 941 942 len = 4; 943 if (has_token) 944 len += 2; 945 946 cs = intel_ring_begin(to, len); 947 if (IS_ERR(cs)) 948 return PTR_ERR(cs); 949 950 /* 951 * Using greater-than-or-equal here means we have to worry 952 * about seqno wraparound. To side step that issue, we swap 953 * the timeline HWSP upon wrapping, so that everyone listening 954 * for the old (pre-wrap) values do not see the much smaller 955 * (post-wrap) values than they were expecting (and so wait 956 * forever). 957 */ 958 *cs++ = (MI_SEMAPHORE_WAIT | 959 MI_SEMAPHORE_GLOBAL_GTT | 960 MI_SEMAPHORE_POLL | 961 MI_SEMAPHORE_SAD_GTE_SDD) + 962 has_token; 963 *cs++ = seqno; 964 *cs++ = hwsp_offset; 965 *cs++ = 0; 966 if (has_token) { 967 *cs++ = 0; 968 *cs++ = MI_NOOP; 969 } 970 971 intel_ring_advance(to, cs); 972 return 0; 973 } 974 975 static int 976 emit_semaphore_wait(struct i915_request *to, 977 struct i915_request *from, 978 gfp_t gfp) 979 { 980 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 981 982 if (!intel_context_use_semaphores(to->context)) 983 goto await_fence; 984 985 if (!rcu_access_pointer(from->hwsp_cacheline)) 986 goto await_fence; 987 988 /* Just emit the first semaphore we see as request space is limited. */ 989 if (already_busywaiting(to) & mask) 990 goto await_fence; 991 992 if (i915_request_await_start(to, from) < 0) 993 goto await_fence; 994 995 /* Only submit our spinner after the signaler is running! */ 996 if (__await_execution(to, from, NULL, gfp)) 997 goto await_fence; 998 999 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1000 goto await_fence; 1001 1002 to->sched.semaphores |= mask; 1003 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 1004 return 0; 1005 1006 await_fence: 1007 return i915_sw_fence_await_dma_fence(&to->submit, 1008 &from->fence, 0, 1009 I915_FENCE_GFP); 1010 } 1011 1012 static int 1013 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1014 { 1015 int ret; 1016 1017 GEM_BUG_ON(to == from); 1018 GEM_BUG_ON(to->timeline == from->timeline); 1019 1020 if (i915_request_completed(from)) 1021 return 0; 1022 1023 if (to->engine->schedule) { 1024 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 1025 if (ret < 0) 1026 return ret; 1027 } 1028 1029 if (to->engine == from->engine) 1030 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 1031 &from->submit, 1032 I915_FENCE_GFP); 1033 else 1034 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1035 if (ret < 0) 1036 return ret; 1037 1038 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 1039 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 1040 &from->fence, 0, 1041 I915_FENCE_GFP); 1042 if (ret < 0) 1043 return ret; 1044 } 1045 1046 return 0; 1047 } 1048 1049 int 1050 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1051 { 1052 struct dma_fence **child = &fence; 1053 unsigned int nchild = 1; 1054 int ret; 1055 1056 /* 1057 * Note that if the fence-array was created in signal-on-any mode, 1058 * we should *not* decompose it into its individual fences. However, 1059 * we don't currently store which mode the fence-array is operating 1060 * in. Fortunately, the only user of signal-on-any is private to 1061 * amdgpu and we should not see any incoming fence-array from 1062 * sync-file being in signal-on-any mode. 1063 */ 1064 if (dma_fence_is_array(fence)) { 1065 struct dma_fence_array *array = to_dma_fence_array(fence); 1066 1067 child = array->fences; 1068 nchild = array->num_fences; 1069 GEM_BUG_ON(!nchild); 1070 } 1071 1072 do { 1073 fence = *child++; 1074 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1075 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1076 continue; 1077 } 1078 1079 /* 1080 * Requests on the same timeline are explicitly ordered, along 1081 * with their dependencies, by i915_request_add() which ensures 1082 * that requests are submitted in-order through each ring. 1083 */ 1084 if (fence->context == rq->fence.context) 1085 continue; 1086 1087 /* Squash repeated waits to the same timelines */ 1088 if (fence->context && 1089 intel_timeline_sync_is_later(i915_request_timeline(rq), 1090 fence)) 1091 continue; 1092 1093 if (dma_fence_is_i915(fence)) 1094 ret = i915_request_await_request(rq, to_request(fence)); 1095 else 1096 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1097 fence->context ? I915_FENCE_TIMEOUT : 0, 1098 I915_FENCE_GFP); 1099 if (ret < 0) 1100 return ret; 1101 1102 /* Record the latest fence used against each timeline */ 1103 if (fence->context) 1104 intel_timeline_sync_set(i915_request_timeline(rq), 1105 fence); 1106 } while (--nchild); 1107 1108 return 0; 1109 } 1110 1111 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1112 struct dma_fence *fence) 1113 { 1114 return __intel_timeline_sync_is_later(tl, 1115 fence->context, 1116 fence->seqno - 1); 1117 } 1118 1119 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1120 const struct dma_fence *fence) 1121 { 1122 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1123 } 1124 1125 static int 1126 __i915_request_await_execution(struct i915_request *to, 1127 struct i915_request *from, 1128 void (*hook)(struct i915_request *rq, 1129 struct dma_fence *signal)) 1130 { 1131 int err; 1132 1133 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1134 1135 /* Submit both requests at the same time */ 1136 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1137 if (err) 1138 return err; 1139 1140 /* Squash repeated depenendices to the same timelines */ 1141 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1142 &from->fence)) 1143 return 0; 1144 1145 /* 1146 * Wait until the start of this request. 1147 * 1148 * The execution cb fires when we submit the request to HW. But in 1149 * many cases this may be long before the request itself is ready to 1150 * run (consider that we submit 2 requests for the same context, where 1151 * the request of interest is behind an indefinite spinner). So we hook 1152 * up to both to reduce our queues and keep the execution lag minimised 1153 * in the worst case, though we hope that the await_start is elided. 1154 */ 1155 err = i915_request_await_start(to, from); 1156 if (err < 0) 1157 return err; 1158 1159 /* 1160 * Ensure both start together [after all semaphores in signal] 1161 * 1162 * Now that we are queued to the HW at roughly the same time (thanks 1163 * to the execute cb) and are ready to run at roughly the same time 1164 * (thanks to the await start), our signaler may still be indefinitely 1165 * delayed by waiting on a semaphore from a remote engine. If our 1166 * signaler depends on a semaphore, so indirectly do we, and we do not 1167 * want to start our payload until our signaler also starts theirs. 1168 * So we wait. 1169 * 1170 * However, there is also a second condition for which we need to wait 1171 * for the precise start of the signaler. Consider that the signaler 1172 * was submitted in a chain of requests following another context 1173 * (with just an ordinary intra-engine fence dependency between the 1174 * two). In this case the signaler is queued to HW, but not for 1175 * immediate execution, and so we must wait until it reaches the 1176 * active slot. 1177 */ 1178 if (intel_engine_has_semaphores(to->engine)) { 1179 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1180 if (err < 0) 1181 return err; 1182 } 1183 1184 /* Couple the dependency tree for PI on this exposed to->fence */ 1185 if (to->engine->schedule) { 1186 err = i915_sched_node_add_dependency(&to->sched, &from->sched); 1187 if (err < 0) 1188 return err; 1189 } 1190 1191 return intel_timeline_sync_set_start(i915_request_timeline(to), 1192 &from->fence); 1193 } 1194 1195 int 1196 i915_request_await_execution(struct i915_request *rq, 1197 struct dma_fence *fence, 1198 void (*hook)(struct i915_request *rq, 1199 struct dma_fence *signal)) 1200 { 1201 struct dma_fence **child = &fence; 1202 unsigned int nchild = 1; 1203 int ret; 1204 1205 if (dma_fence_is_array(fence)) { 1206 struct dma_fence_array *array = to_dma_fence_array(fence); 1207 1208 /* XXX Error for signal-on-any fence arrays */ 1209 1210 child = array->fences; 1211 nchild = array->num_fences; 1212 GEM_BUG_ON(!nchild); 1213 } 1214 1215 do { 1216 fence = *child++; 1217 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1218 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1219 continue; 1220 } 1221 1222 /* 1223 * We don't squash repeated fence dependencies here as we 1224 * want to run our callback in all cases. 1225 */ 1226 1227 if (dma_fence_is_i915(fence)) 1228 ret = __i915_request_await_execution(rq, 1229 to_request(fence), 1230 hook); 1231 else 1232 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1233 I915_FENCE_TIMEOUT, 1234 GFP_KERNEL); 1235 if (ret < 0) 1236 return ret; 1237 } while (--nchild); 1238 1239 return 0; 1240 } 1241 1242 /** 1243 * i915_request_await_object - set this request to (async) wait upon a bo 1244 * @to: request we are wishing to use 1245 * @obj: object which may be in use on another ring. 1246 * @write: whether the wait is on behalf of a writer 1247 * 1248 * This code is meant to abstract object synchronization with the GPU. 1249 * Conceptually we serialise writes between engines inside the GPU. 1250 * We only allow one engine to write into a buffer at any time, but 1251 * multiple readers. To ensure each has a coherent view of memory, we must: 1252 * 1253 * - If there is an outstanding write request to the object, the new 1254 * request must wait for it to complete (either CPU or in hw, requests 1255 * on the same ring will be naturally ordered). 1256 * 1257 * - If we are a write request (pending_write_domain is set), the new 1258 * request must wait for outstanding read requests to complete. 1259 * 1260 * Returns 0 if successful, else propagates up the lower layer error. 1261 */ 1262 int 1263 i915_request_await_object(struct i915_request *to, 1264 struct drm_i915_gem_object *obj, 1265 bool write) 1266 { 1267 struct dma_fence *excl; 1268 int ret = 0; 1269 1270 if (write) { 1271 struct dma_fence **shared; 1272 unsigned int count, i; 1273 1274 ret = dma_resv_get_fences_rcu(obj->base.resv, 1275 &excl, &count, &shared); 1276 if (ret) 1277 return ret; 1278 1279 for (i = 0; i < count; i++) { 1280 ret = i915_request_await_dma_fence(to, shared[i]); 1281 if (ret) 1282 break; 1283 1284 dma_fence_put(shared[i]); 1285 } 1286 1287 for (; i < count; i++) 1288 dma_fence_put(shared[i]); 1289 kfree(shared); 1290 } else { 1291 excl = dma_resv_get_excl_rcu(obj->base.resv); 1292 } 1293 1294 if (excl) { 1295 if (ret == 0) 1296 ret = i915_request_await_dma_fence(to, excl); 1297 1298 dma_fence_put(excl); 1299 } 1300 1301 return ret; 1302 } 1303 1304 static struct i915_request * 1305 __i915_request_add_to_timeline(struct i915_request *rq) 1306 { 1307 struct intel_timeline *timeline = i915_request_timeline(rq); 1308 struct i915_request *prev; 1309 1310 /* 1311 * Dependency tracking and request ordering along the timeline 1312 * is special cased so that we can eliminate redundant ordering 1313 * operations while building the request (we know that the timeline 1314 * itself is ordered, and here we guarantee it). 1315 * 1316 * As we know we will need to emit tracking along the timeline, 1317 * we embed the hooks into our request struct -- at the cost of 1318 * having to have specialised no-allocation interfaces (which will 1319 * be beneficial elsewhere). 1320 * 1321 * A second benefit to open-coding i915_request_await_request is 1322 * that we can apply a slight variant of the rules specialised 1323 * for timelines that jump between engines (such as virtual engines). 1324 * If we consider the case of virtual engine, we must emit a dma-fence 1325 * to prevent scheduling of the second request until the first is 1326 * complete (to maximise our greedy late load balancing) and this 1327 * precludes optimising to use semaphores serialisation of a single 1328 * timeline across engines. 1329 */ 1330 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1331 &rq->fence)); 1332 if (prev && !i915_request_completed(prev)) { 1333 /* 1334 * The requests are supposed to be kept in order. However, 1335 * we need to be wary in case the timeline->last_request 1336 * is used as a barrier for external modification to this 1337 * context. 1338 */ 1339 GEM_BUG_ON(prev->context == rq->context && 1340 i915_seqno_passed(prev->fence.seqno, 1341 rq->fence.seqno)); 1342 1343 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1344 i915_sw_fence_await_sw_fence(&rq->submit, 1345 &prev->submit, 1346 &rq->submitq); 1347 else 1348 __i915_sw_fence_await_dma_fence(&rq->submit, 1349 &prev->fence, 1350 &rq->dmaq); 1351 if (rq->engine->schedule) 1352 __i915_sched_node_add_dependency(&rq->sched, 1353 &prev->sched, 1354 &rq->dep, 1355 0); 1356 } 1357 1358 /* 1359 * Make sure that no request gazumped us - if it was allocated after 1360 * our i915_request_alloc() and called __i915_request_add() before 1361 * us, the timeline will hold its seqno which is later than ours. 1362 */ 1363 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1364 1365 return prev; 1366 } 1367 1368 /* 1369 * NB: This function is not allowed to fail. Doing so would mean the the 1370 * request is not being tracked for completion but the work itself is 1371 * going to happen on the hardware. This would be a Bad Thing(tm). 1372 */ 1373 struct i915_request *__i915_request_commit(struct i915_request *rq) 1374 { 1375 struct intel_engine_cs *engine = rq->engine; 1376 struct intel_ring *ring = rq->ring; 1377 u32 *cs; 1378 1379 RQ_TRACE(rq, "\n"); 1380 1381 /* 1382 * To ensure that this call will not fail, space for its emissions 1383 * should already have been reserved in the ring buffer. Let the ring 1384 * know that it is time to use that space up. 1385 */ 1386 GEM_BUG_ON(rq->reserved_space > ring->space); 1387 rq->reserved_space = 0; 1388 rq->emitted_jiffies = jiffies; 1389 1390 /* 1391 * Record the position of the start of the breadcrumb so that 1392 * should we detect the updated seqno part-way through the 1393 * GPU processing the request, we never over-estimate the 1394 * position of the ring's HEAD. 1395 */ 1396 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1397 GEM_BUG_ON(IS_ERR(cs)); 1398 rq->postfix = intel_ring_offset(rq, cs); 1399 1400 return __i915_request_add_to_timeline(rq); 1401 } 1402 1403 void __i915_request_queue(struct i915_request *rq, 1404 const struct i915_sched_attr *attr) 1405 { 1406 /* 1407 * Let the backend know a new request has arrived that may need 1408 * to adjust the existing execution schedule due to a high priority 1409 * request - i.e. we may want to preempt the current request in order 1410 * to run a high priority dependency chain *before* we can execute this 1411 * request. 1412 * 1413 * This is called before the request is ready to run so that we can 1414 * decide whether to preempt the entire chain so that it is ready to 1415 * run at the earliest possible convenience. 1416 */ 1417 if (attr && rq->engine->schedule) 1418 rq->engine->schedule(rq, attr); 1419 i915_sw_fence_commit(&rq->semaphore); 1420 i915_sw_fence_commit(&rq->submit); 1421 } 1422 1423 void i915_request_add(struct i915_request *rq) 1424 { 1425 struct intel_timeline * const tl = i915_request_timeline(rq); 1426 struct i915_sched_attr attr = {}; 1427 struct i915_gem_context *ctx; 1428 1429 lockdep_assert_held(&tl->mutex); 1430 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1431 1432 trace_i915_request_add(rq); 1433 __i915_request_commit(rq); 1434 1435 /* XXX placeholder for selftests */ 1436 rcu_read_lock(); 1437 ctx = rcu_dereference(rq->context->gem_context); 1438 if (ctx) 1439 attr = ctx->sched; 1440 rcu_read_unlock(); 1441 1442 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1443 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1444 if (list_empty(&rq->sched.signalers_list)) 1445 attr.priority |= I915_PRIORITY_WAIT; 1446 1447 local_bh_disable(); 1448 __i915_request_queue(rq, &attr); 1449 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1450 1451 mutex_unlock(&tl->mutex); 1452 } 1453 1454 static unsigned long local_clock_ns(unsigned int *cpu) 1455 { 1456 unsigned long t; 1457 1458 /* 1459 * Cheaply and approximately convert from nanoseconds to microseconds. 1460 * The result and subsequent calculations are also defined in the same 1461 * approximate microseconds units. The principal source of timing 1462 * error here is from the simple truncation. 1463 * 1464 * Note that local_clock() is only defined wrt to the current CPU; 1465 * the comparisons are no longer valid if we switch CPUs. Instead of 1466 * blocking preemption for the entire busywait, we can detect the CPU 1467 * switch and use that as indicator of system load and a reason to 1468 * stop busywaiting, see busywait_stop(). 1469 */ 1470 *cpu = get_cpu(); 1471 t = local_clock(); 1472 put_cpu(); 1473 1474 return t; 1475 } 1476 1477 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1478 { 1479 unsigned int this_cpu; 1480 1481 if (time_after(local_clock_ns(&this_cpu), timeout)) 1482 return true; 1483 1484 return this_cpu != cpu; 1485 } 1486 1487 static bool __i915_spin_request(const struct i915_request * const rq, int state) 1488 { 1489 unsigned long timeout_ns; 1490 unsigned int cpu; 1491 1492 /* 1493 * Only wait for the request if we know it is likely to complete. 1494 * 1495 * We don't track the timestamps around requests, nor the average 1496 * request length, so we do not have a good indicator that this 1497 * request will complete within the timeout. What we do know is the 1498 * order in which requests are executed by the context and so we can 1499 * tell if the request has been started. If the request is not even 1500 * running yet, it is a fair assumption that it will not complete 1501 * within our relatively short timeout. 1502 */ 1503 if (!i915_request_is_running(rq)) 1504 return false; 1505 1506 /* 1507 * When waiting for high frequency requests, e.g. during synchronous 1508 * rendering split between the CPU and GPU, the finite amount of time 1509 * required to set up the irq and wait upon it limits the response 1510 * rate. By busywaiting on the request completion for a short while we 1511 * can service the high frequency waits as quick as possible. However, 1512 * if it is a slow request, we want to sleep as quickly as possible. 1513 * The tradeoff between waiting and sleeping is roughly the time it 1514 * takes to sleep on a request, on the order of a microsecond. 1515 */ 1516 1517 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1518 timeout_ns += local_clock_ns(&cpu); 1519 do { 1520 if (i915_request_completed(rq)) 1521 return true; 1522 1523 if (signal_pending_state(state, current)) 1524 break; 1525 1526 if (busywait_stop(timeout_ns, cpu)) 1527 break; 1528 1529 cpu_relax(); 1530 } while (!need_resched()); 1531 1532 return false; 1533 } 1534 1535 struct request_wait { 1536 struct dma_fence_cb cb; 1537 struct task_struct *tsk; 1538 }; 1539 1540 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1541 { 1542 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1543 1544 wake_up_process(wait->tsk); 1545 } 1546 1547 /** 1548 * i915_request_wait - wait until execution of request has finished 1549 * @rq: the request to wait upon 1550 * @flags: how to wait 1551 * @timeout: how long to wait in jiffies 1552 * 1553 * i915_request_wait() waits for the request to be completed, for a 1554 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1555 * unbounded wait). 1556 * 1557 * Returns the remaining time (in jiffies) if the request completed, which may 1558 * be zero or -ETIME if the request is unfinished after the timeout expires. 1559 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1560 * pending before the request completes. 1561 */ 1562 long i915_request_wait(struct i915_request *rq, 1563 unsigned int flags, 1564 long timeout) 1565 { 1566 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1567 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1568 struct request_wait wait; 1569 1570 might_sleep(); 1571 GEM_BUG_ON(timeout < 0); 1572 1573 if (dma_fence_is_signaled(&rq->fence)) 1574 return timeout; 1575 1576 if (!timeout) 1577 return -ETIME; 1578 1579 trace_i915_request_wait_begin(rq, flags); 1580 1581 /* 1582 * We must never wait on the GPU while holding a lock as we 1583 * may need to perform a GPU reset. So while we don't need to 1584 * serialise wait/reset with an explicit lock, we do want 1585 * lockdep to detect potential dependency cycles. 1586 */ 1587 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1588 1589 /* 1590 * Optimistic spin before touching IRQs. 1591 * 1592 * We may use a rather large value here to offset the penalty of 1593 * switching away from the active task. Frequently, the client will 1594 * wait upon an old swapbuffer to throttle itself to remain within a 1595 * frame of the gpu. If the client is running in lockstep with the gpu, 1596 * then it should not be waiting long at all, and a sleep now will incur 1597 * extra scheduler latency in producing the next frame. To try to 1598 * avoid adding the cost of enabling/disabling the interrupt to the 1599 * short wait, we first spin to see if the request would have completed 1600 * in the time taken to setup the interrupt. 1601 * 1602 * We need upto 5us to enable the irq, and upto 20us to hide the 1603 * scheduler latency of a context switch, ignoring the secondary 1604 * impacts from a context switch such as cache eviction. 1605 * 1606 * The scheme used for low-latency IO is called "hybrid interrupt 1607 * polling". The suggestion there is to sleep until just before you 1608 * expect to be woken by the device interrupt and then poll for its 1609 * completion. That requires having a good predictor for the request 1610 * duration, which we currently lack. 1611 */ 1612 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1613 __i915_spin_request(rq, state)) { 1614 dma_fence_signal(&rq->fence); 1615 goto out; 1616 } 1617 1618 /* 1619 * This client is about to stall waiting for the GPU. In many cases 1620 * this is undesirable and limits the throughput of the system, as 1621 * many clients cannot continue processing user input/output whilst 1622 * blocked. RPS autotuning may take tens of milliseconds to respond 1623 * to the GPU load and thus incurs additional latency for the client. 1624 * We can circumvent that by promoting the GPU frequency to maximum 1625 * before we sleep. This makes the GPU throttle up much more quickly 1626 * (good for benchmarks and user experience, e.g. window animations), 1627 * but at a cost of spending more power processing the workload 1628 * (bad for battery). 1629 */ 1630 if (flags & I915_WAIT_PRIORITY) { 1631 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1632 intel_rps_boost(rq); 1633 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1634 } 1635 1636 wait.tsk = current; 1637 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1638 goto out; 1639 1640 for (;;) { 1641 set_current_state(state); 1642 1643 if (i915_request_completed(rq)) { 1644 dma_fence_signal(&rq->fence); 1645 break; 1646 } 1647 1648 intel_engine_flush_submission(rq->engine); 1649 1650 if (signal_pending_state(state, current)) { 1651 timeout = -ERESTARTSYS; 1652 break; 1653 } 1654 1655 if (!timeout) { 1656 timeout = -ETIME; 1657 break; 1658 } 1659 1660 timeout = io_schedule_timeout(timeout); 1661 } 1662 __set_current_state(TASK_RUNNING); 1663 1664 dma_fence_remove_callback(&rq->fence, &wait.cb); 1665 1666 out: 1667 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1668 trace_i915_request_wait_end(rq); 1669 return timeout; 1670 } 1671 1672 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1673 #include "selftests/mock_request.c" 1674 #include "selftests/i915_request.c" 1675 #endif 1676 1677 static void i915_global_request_shrink(void) 1678 { 1679 kmem_cache_shrink(global.slab_execute_cbs); 1680 kmem_cache_shrink(global.slab_requests); 1681 } 1682 1683 static void i915_global_request_exit(void) 1684 { 1685 kmem_cache_destroy(global.slab_execute_cbs); 1686 kmem_cache_destroy(global.slab_requests); 1687 } 1688 1689 static struct i915_global_request global = { { 1690 .shrink = i915_global_request_shrink, 1691 .exit = i915_global_request_exit, 1692 } }; 1693 1694 int __init i915_global_request_init(void) 1695 { 1696 global.slab_requests = 1697 kmem_cache_create("i915_request", 1698 sizeof(struct i915_request), 1699 __alignof__(struct i915_request), 1700 SLAB_HWCACHE_ALIGN | 1701 SLAB_RECLAIM_ACCOUNT | 1702 SLAB_TYPESAFE_BY_RCU, 1703 __i915_request_ctor); 1704 if (!global.slab_requests) 1705 return -ENOMEM; 1706 1707 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1708 SLAB_HWCACHE_ALIGN | 1709 SLAB_RECLAIM_ACCOUNT | 1710 SLAB_TYPESAFE_BY_RCU); 1711 if (!global.slab_execute_cbs) 1712 goto err_requests; 1713 1714 i915_global_register(&global.base); 1715 return 0; 1716 1717 err_requests: 1718 kmem_cache_destroy(global.slab_requests); 1719 return -ENOMEM; 1720 } 1721